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Abstract

In this work, we carry out two experiments in order to assess the ability of BERT to capture the
meaning shift associated with metonymic expressions. We test the model on a new dataset that is
representative of the most common types of metonymy. We compare BERT with the Structured
Distributional Model (SDM), a model for the representation of words in context which is based
on the notion of Generalized Event Knowledge. The results reveal that, while BERT ability
to deal with metonymy is quite limited, SDM is good at predicting the meaning of metonymic
expressions, providing support for an account of metonymy based on event knowledge.

1 Introduction

Metonymy is one of the most important sources of lexical polysemy and consists in the meaning shift of
a noun that is used to refer to another entity to which it is related (Littlemore, 2015). For instance, bottle
refers to a solid container in (1a), but in (1b) it stands for some liquid contained in it:

(1) a. The guest broke the bottle.
b. The guest tasted the bottle.

Metonymy is a productive and systematic process (e.g., all nouns denoting containers show the same pol-
ysemy as bottle, giving rise to the so-called CONTAINER-FOR-CONTENT metonymic alternation). There-
fore, both linguistic (Pustejovsky, 1995; Jackendoff, 1997; Asher, 2011) and psycholinguistic (Piñango
et al., 2016) studies contest the treatment of metonymy like a case of lexical ambiguity, and instead
support the hypothesis that metonymic interpretations result from the inherently dynamic and generative
nature of lexical representations that can acquire new meanings by integrating information activated by
the textual and extralinguistic context.

Vector representations (aka word embeddings) produced by Distributional Semantic Models (DSMs)
are particularly suitable for modeling contextual semantic effects, due to their “gradedness" and their de-
pendence on the linguistic contexts (Lenci, 2018; Boleda, 2020). Traditional DSMs represent the content
of lexical types through a single vector that “summarizes” their whole distributional history. Things have
recently changed with the introduction of deep neural architectures for language modeling like BERT
(Devlin et al., 2019), whose word representations have helped achieving state-of-the-art results in a wide
variety of supervised NLP tasks. These embeddings are intrinsically contextualized, in the sense that
the model computes a different vector for each token occurrence of the same word, depending on the
sentence in which the token appears. In this work, we test whether BERT contextualized embeddings
can be used to model the meaning shifts associated with metonymic uses of words. Given its pervasive-
ness in everyday communication, we suggest that the extent to which metonymy is captured by BERT is
an important testbed to evaluate its actual ability to model natural language. In line with this goal, we
require the model to induce the additional meaning of metonymic expressions by encoding it into the
contextualized embeddings. We also compare BERT performance with that achieved by the Structured
Distributional Model by Chersoni et al. (2019), in which the context-sensitive nature of lexical meaning
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is instead captured by integrating a rich array of distributional knowledge about events and their typical
participants (McRae and Matsuki, 2009).

2 Related Work

Over the years, various methods to obtain contextualized representations of word meaning have been
developed in different fields. Research in distributional semantics (Erk and Padó, 2008; Thater et al.,
2011) has taken non-contextual representations of words as starting point from which contextualized
vectors capable of modeling various types of meaning alternations are derived (Erk and Padó, 2008;
Zarcone et al., 2012). However, these models have never been used to predict metonymic semantic
shifts. Lately, Transformer language models (e.g., BERT, GPT2, etc.) have stormed AI and NLP with
a new generation of word embeddings that are expected to capture lexical meaning variation in context
(Radford et al., 2019; Devlin et al., 2019). In particular, the representations produced by BERT (Devlin
et al., 2019) have been used to create high performing models for many language understanding tasks,
although their status as a linguistically sound model of meaning is debated (Mickus et al., 2020). Shwartz
and Dagan (2019) test BERT on several cases of figurative language, but to the best of our knowledge
BERT ability to identify metonymy has never been addressed yet.

3 Models

In BERT, the embedding of a word is modified with contextual information through the self-attention
mechanism of Transformers (Vaswani et al., 2017). As is well known, BERT is trained on two tasks:
predicting randomly masked tokens (Masked Language Model) and determining whether a sentence
follows another sentence in a dataset (Next Sentence Prediction). Since our intent is to assess the model
ability to understand metonymic meanings, we test the contextual embeddings themselves (BERT-Emb),
rather than fine-tuning them in a supervised classification task (cf. Mickus et al., 2020 for a similar
approach). We also investigate if this ability is reflected in the probabilities that the model assigns to the
masked metonymic word, thereby exploiting BERT as a language model (BERT-LM).

The model against which we evaluate BERT is inspired by the Structured Distributional Model by
Chersoni et al. (2019), which is based on the notion of Generalized Event Knowledge (GEK; McRae
and Matsuki, 2009). GEK is conceptual knowledge about real-world events and their participants, which
has been shown to influence sentence processing by causing expectations regarding the upcoming input.
For example, when the first part of a sentence starting with the words The police arrested is processed,
expectations about the possible objects are generated based on knowledge about the typical patients of
the event arrest (e.g., thief, burglar, etc.). Since GEK becomes activated quickly, it has been argued that
the meaning assigned to words in context comes as a result of the interaction between lexical meaning
and the expectations generated (Elman, 2014).

The model presented here uses the graph-based distributional model of event knowledge introduced in
Chersoni et al. (2019) to compute a contextualized representation of word meaning, which is obtained by
integrating the lexical embedding of a word with a vector representation of the expectations activated by
the context for the event role of the word. As in the model of Erk and Padó (2008), we approximate the
expectations activated by a word w by selecting the words with the highest pointwise mutual information
(PMI) with w in a corpus.1 We use a parsed corpus to extract different expectations according to their
syntactic roles, as a surface approximation of semantic roles (e.g., typical patients are derived from the
verb direct objects). For example, given the sentence The guest tasted the bottle, we consider the most
typical objects of w (the verb taste), which provide an approximation of the typical patients of the event
expressed by the word. We take the direct objects since this is the function of the metonymic word wm

in the sentence (i.e., the noun bottle). A key feature of the model is that the activated words are filtered
according to their PMI association strength with the metonymic word wm. In our example, words for
foods (e.g., fruit, meat, etc.) and drinks (e.g., wine, beer, etc.) are activated by taste, but the former are
discarded because they have low PMI values with bottle. This process, which is an original innovation

1We take only the expectations activated by the verb in a direct syntactic relation to the metonymic word, even though
proposals to integrate expectations from all the sentence arguments have been developed (Lenci, 2011; Chersoni et al., 2019)
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with respect to the Chersoni et al. model, simulates the interaction between lexical information and active
expectations as described by Elman (2014), and at the same time reproduces the associative processes
involved in metonymy interpretation by updating the salience of expectations based on their relation
with the metonymic word. Finally, we calculate the centroid of the activated expectation vectors and the
embedding of wm to obtain its contextualized representation.

Let W be the k words with the highest PMI with the verb w and Wm the n words in W with the highest
PMI with the metonymic word wm (for all experiments, we set k=30 and n=5). The contextualized
representation of the metonymic word

−→
w′
m is built by summing the lexical vectors of the words in Wm

and the metonymic word wm. Each element of the resulting vector is then divided by the number of
words used for the creation of the vector (equivalent to n+1). This procedure extends the notion of mean
to a vector space to produce context-adapted representations of word meaning which are comparable
with lexical vectors. Finally,

−→
w′
m is defined as follows:

−→
w′
m =

((
∑

w∈Wm
−→w ) +−→wm)

|Wm|+ 1
(1)

4 Dataset and experiments

4.1 Dataset

We introduce a new dataset that is representative of the most common types of metonymy, which we
make available to the research community.2 The dataset includes 509 items, each consisting of two sen-
tences: i.) a sentence where a target word (e.g., bottle) is used metonymically (e.g., The guest tasted
the bottle), together with a paraphrase making explicit the metonymic meaning (metonymic paraphrase,
e.g., wine), and ii.) a sentence where the same word occurs with its literal meaning (e.g., The man
raised the bottle), together with a paraphrase making it explicit (literal paraphrase, e.g., container). The
metonymy types represented in the dataset are: CONTAINER-FOR-CONTENT (The guest tasted the bottle
→ wine) (Radden and Kövecses, 1999), PRODUCER-FOR-PRODUCT (The author is translated into the
language → novels) (Radden and Kövecses, 1999), PRODUCT-FOR-PRODUCER (The newspaper hates
the politician→ editor) (Handl, 2011), LOCATION-FOR-LOCATED (The theater applauded the perform-
ers→ audience) (Barcelona, 2015), CAUSER-FOR-RESULT (The fans than drowned out the announcer
→ screams) (Warren, 2006), POSSESSED-FOR-POSSESSOR (76 trombones marched into the park →
musicians) (Radden and Kövecses, 1999).

4.2 Experiments

We perform two different experiments to determine whether the models reproduce the whole set of
semantic relations described in each item of the dataset. There are two different versions of each ex-
periment. The first version is designed to be carried out using contextualized embeddings produced by
BERT and SDM, the second using BERT as a language model.
Experiment 1 – The goal is to verify whether a model is able to detect the meaning shift associated with
metonymy by representing the new meaning at the same time. Contextualized embeddings (BERT,
SDM): We test whether the similarity relations described in the dataset between a word and its para-
phrase are reproduced in the structure of the vector spaces produced by the models. We can infer from
the items of the dataset the following structure of semantic relations: the contextual meaning resulting
from the metonymic usage of a word (e.g., the meaning of bottle in The guest tasted the bottle) is more
similar to the meaning of a possible metonymic interpretation (e.g., wine) and less similar to the meaning
of the same word used in its literal sense (e.g., in The man raised the bottle). For each test item, we feed
the models with the metonymic sentence (e.g., The guest tasted the bottle) and we take the model rep-
resentation of the target word (−−→met). Then, we feed the models with the literal sentence (e.g., The man
raised the bottle) and we take the model representation of the target word (

−→
lit). Finally, we feed the mod-

els with the metonymic sentence in which the target word has been replaced with the metonymic para-
2The dataset is available here: https://github.com/ppedin/MetonymyData. Sentences were manually ex-

tracted from online corpora of written English from various genres.
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phrase (e.g., The guest tasted the wine). This time, we take the model representation of the metonymic
paraphrase (−−−−→metpar), which we use as a ground-truth representation of the metonymic meaning. We
expect the model to satisfy the inequality sim(

−−→
met,

−−−−→
metpar) > sim(

−−→
met,

−→
lit), if metonymy is inter-

preted correctly (sim = cosine similarity). Language Model (BERT): We examine whether, given the
surrounding context of a word that receives a metonymic interpretation (like the sequence The guest
tasted), the model is able to compute a representation of the most plausible completions of the context
that match data from the dataset, namely that the corresponding metonymic sense (e.g., wine) is preferred
to the literal interpretation of a word like bottle. For each test item, we feed BERT with the metonymic
sentence in which the target word has been masked (e.g., The guest tasted the [MASK]). We then get the
probabilities of the target word (e.g., bottle) and its metonymic paraphrase (e.g., wine). If the preference
for the metonymic interpretation is reflected in BERT prediction, then the probability of the metonymic
paraphrase is expected to be higher than that of the target.

Experiment 2 – The goal is to test the model ability to associate each target word occurrence with the
corresponding (literal vs. metonymic) sense. The experiment consists of two subtasks: Metonymic
Matching and Literal Matching. Contextualized embeddings (BERT, SDM): We follow the same
methodology from Experiment 1, but this time we use a more extensive set of semantic similarity rela-
tions from the dataset. We consider the following relations: Compared to the literal usage of the same
word (e.g., The man raised the bottle), the semantic representation for the metonymic usage of a word
(e.g., The guest tasted the bottle) is more similar to a possible metonymic interpretation (e.g., wine),
and at the same time is less similar to a paraphrase of its literal meaning (e.g., container). We cre-
ate two new sentences for each test item, one with the metonymic paraphrase (e.g., The wine steward
decanted the wine), and another one with the literal paraphrase (e.g., The customer fills the container)
so that we can extract contextualized representations of the paraphrases which are directly comparable
with those of the target word. As in the previous experiment, we feed the models with the metonymic
(e.g., The guest tasted the bottle) and the literal sentence (e.g., The man raised the bottle) and we take
the representations of the target word (−−→met and

−→
lit respectively). Then, we feed the models with the

newly created sentence with the metonymic paraphrase (e.g., The wine steward decanted the wine) and
we take the model representation of the paraphrase (−−−−→metpar), which we use as a ground-truth repre-
sentation of the metonymic sense. Finally, we feed the models with the newly created sentence with
the literal paraphrase (e.g., The customer fills the container) and we take the model representation of
the paraphrase (

−−−→
litpar), which we use as a ground-truth representation of the literal meaning of the

target word. In the Metonymic Matching subtask, we assess whether the models satisfy the inequality
sim(

−−→
met,

−−−−→
metpar) > sim(

−→
lit,
−−−−→
metpar). In the Literal Matching subtask, we assess whether the mod-

els satisfy the condition sim(
−→
lit,
−−−→
litpar) > sim(

−−→
met,

−−−→
litpar). Language Model (BERT): We adopt the

same methodology used for Experiment 1. We use BERT language model to compute a representation
of the most likely completions of the surrounding context of a metonymic word (like the sequence The
guest tasted). We examine whether the representation reflects the fact that a possible metonymic sense
of a word like bottle (e.g., wine) is preferred to the literal interpretation of the word. This time, we use a
paraphrase of the literal meaning of the target word (e.g., container) instead of the word itself. Moreover,
we do the same for the context in which the word occurs with its literal sense (e.g., the sequence The man
raised) and we investigate whether the representation expresses the preference for the literal meaning.
For each test item, we feed BERT with the metonymic and the literal sentences with the target word
masked (The guest tasted the [MASK] and The man raised the [MASK] respectively). We then compare
the probabilities of the metonymic (e.g., wine) and the literal paraphrase (e.g., container). We expect the
former to be higher than the latter in the metonymic sentence (Metonymic Matching subtask), and the
opposite to be true in the literal sentence (Literal Matching subtask).

We use BERTBASE (number of layers=12, hidden size=768, number of self-attention heads=12) in all
experiments. To implement SDM, we produce 300-dimensional dependency-based embeddings using
Skip-gram with negative sampling (Levy and Goldberg, 2014) trained on a parsed corpus of about 3.9
billion tokens, which is a concatenation of ukWaC and a 2018 dump of Wikipedia.
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Experiment 1 Experiment 2
Metonymic Matching Literal Matching

BERT SDM BERT SDM BERT SDM
Type of Metonymy (#Items) Emb LM Emb LM Emb LM
CONTAINER-FOR-CONTENT (89) 0.37 0.53 0.78 0.56 0.76 0.71 0.57 0.45 0.66
PRODUCER-FOR-PRODUCT (110) 0.59 0.80 0.95 0.63 0.49 0.81 0.71 0.86 0.59
PRODUCT-FOR-PRODUCER (47) 0.47 0.23 0.96 0.70 0.53 0.62 0.62 0.91 0.75
LOCATION-FOR-LOCATED (94) 0.39 0.52 0.82 0.66 0.52 0.75 0.78 0.89 0.80
CAUSER-FOR-RESULT (92) 0.17 0.71 0.84 0.72 0.79 0.69 0.70 0.78 0.66
POSSESSED-FOR-POSSESSOR (77) 0.45 0.55 0.86 0.60 0.73 0.62 0.69 0.61 0.65
All 0.41 0.59 0.87 0.64 0.64 0.72 0.68 0.75 0.69

Table 1: Accuracy of the models in the two experiments.

5 Results and discussion

The results of the experiments are presented in Table 1. We report model accuracy in satisfying the
expected inequality conditions for each subtask.

In Experiment 1, SDM largely outperforms BERT in all metonymy types. These results indicate that
SDM is particularly effective in deriving the additional meaning (the average cosine similarity between
the representation of a metonymic word and its paraphrase is 0.79). On the other hand, BERT ability
to deal with metonymy is much more limited, although performance varies considerably both within
and between the two methods we used. This variability is interesting, as it suggests that the various
metonymy types have different properties that deserve more in-depth analysis and might call for different
computational solutions. However, BERT generally achieves higher accuracy when used as a language
model (0.59 vs. 0.41). This can be attributed to the fact that BERT-LM is based on information that is
similar to that used by SDM (i.e., context-based predictions). However, SDM also explicitly integrate
word meaning with general world knowledge in the form of typical event participants, which could
explain its better performance.

The results of Experiment 2 indicate that BERT is much more accurate when asked to choose between
two possible interpretations (metonymic and literal) of the same word. However, the results can be
viewed as supporting the findings of the first experiment since i.) SDM performance on the Metonymic
Matching subtask (involving the association of metonymic words with their interpretations) is gener-
ally higher than the other methods, and ii.) while SDM performs better on the former subtask than
on the latter, the opposite is true for BERT. Again, important variability between metonymy types and
between methods can be observed. In particular, BERT-LM scores for some metonymy types on the Lit-
eral Matching subtask are significantly high, confirming the trend that BERT generally produces more
accurate predictions about the interpretation of words in context when used as a language model.

6 Conclusion

We have shown that BERT effectiveness in modeling word meaning in context is quite limited when a
metonymic shift is involved. On the other hand, a model like SDM that simulates the associative as-
pects of sentence processing potentially involved in metonymy produces contextualized representations
that encode a significant amount of information about metonymic meaning. These results have potential
implications for linguistic theory, since they suggest a relationship between metonymic meaning and the
conceptual event-based expectations that we produce during processing, contributing to a psycholinguis-
tic model of how metonymy (and language in general) is interpreted. This finding is further corroborated
by the fact that BERT yields better results when its predictions about the interpretation of metonymic
expressions are based on the probabilities it assigns to words when used as a language model.
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