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Abstract

We consider the family of non-local and non-convex functionals proposed and in-
vestigated by J. Bourgain, H. Brezis and H.-M. Nguyen in a series of papers of the last
decade. It was known that this family of functionals Gamma-converges to a suitable
multiple of the Sobolev norm or the total variation, depending on the summability expo-
nent, but the exact constants and the structure of recovery families were still unknown,
even in dimension one.

We prove a Gamma-convergence result with explicit values of the constants in any
space dimension. We also show the existence of recovery families consisting of smooth
functions with compact support.

The key point is reducing the problem first to dimension one, and then to a finite
combinatorial rearrangement inequality.

Mathematics Subject Classification 2010 (MSC2010): 26B30, 46E35.
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1 Introduction

Let p > 1 and 6 > 0 be real numbers, let d be a positive integer, and let Q C R be an
open set. For every measurable function u : 2 — R we set

op
Asp(u, ) := // —— dx dy, 1.1
&p( ) 16) |y _ {L'|d+p Y ( )

where

I(6,u,Q) == {(z,y) € ¥ : |u(y) — u(z)| > §}.

Non-convex and non-local functionals of this type appeared in a paper by J. Bour-
gain, H. Brezis and P. Mironescu (see [4, Open Problem 2]). Subsequently, the family
(L)) was investigated in a series of papers by H.-M. Nguyen [15, 16} 17, 18, [19], J. Bour-
gain and H.-M. Nguyen [5], H. Brezis and H.-M. Nguyen [10] (see also [8] and [9]).

We point out that the dependence on u is just on the integration set. The fixed
integrand is divergent on the diagonal y = x, and the integration set is closer to the
diagonal where the gradient of u is large. This suggests that As,(u, Q) is proportional,
in the limit as 6 — 0T, to some norm of the gradient of u, and more precisely to the
functional

/ |Vu(z) P dzx if p>1and ue Wr(Q),
Q

Ao p(u, Q) = (1.2)

total variation of u in if p=1and u e BV(Q),

400 otherwise.

It is natural to compare the family ((ILT]) with the classical approximations of Sobolev
or BV norms, based on non-local convex functionals such as

ey ) 1= [ PO (1~ dody (13)

where gradients are replaced by finite differences weighted by a suitable family p. of
mollifiers. The idea of approximating integrals of the gradient with double integrals of
difference quotients, where all pairs of distinct points interact, has been considered in-
dependently by many authors in different contexts. For example, E. De Giorgi proposed
an approximation of this kind to the Mumford-Shah functional in any space dimension,
in order to overcome the anisotropy of the discrete approximation [I1]. The resulting
theory was put into paper in [13], and then extended in [14] to more general free dis-
continuity problems, and in particular to Sobolev and BV spaces. In the same years,
the case of Sobolev and BV norms was considered in details in [3] (see also [20]).

The result, as expected, is that the family G.,(u,R?) converges as ¢ — 0T to a
suitable multiple of Ag,(u, R%), both in the sense of pointwise convergence, and in the
sense of De Giorgi’s Gamma-convergence. This provides a characterization of Sobolev



functions (if p > 1), and of bounded variation functions (if p = 1), as those functions
for which the pointwise limit or the Gamma-limit is finite.

From the heuristic point of view, the non-convex approximating family (LI]) seems
to follow a different paradigm. Indeed, it has been observed by J.M. Morel (as quoted
at page 4 of the transparencies of the conference [7]) that this definition involves some
sort of “vertical slicing” that evokes the definition of integral a la Lebesgue, in contrast
to the definition a la Riemann that seems closer to the “horizontal slicing” of the finite
differences in (L3).

From the mathematical point of view, the asymptotic behavior of (L)) exhibits
some unexpected features. In order to state the precise results, let us introduce some
notation. Let S* ! := {o € R?: || = 1} denote the unit sphere in R%. For every p > 1
we consider the geometric constant

Gap = / |{(v,0)|Pdo, (1.4)
§d—1

where v is any element of S*! (of course the value of G4, does not depend on the
choice of v), and the integration is intended with respect to the (d — 1)-dimensional
Hausdorft measure. The value of Gy, can be explicitly computed in terms of special
functions through Beta integrals. It turns out that Gy, = 2 for every p if d = 1, and
/2 (d-1)/21 (£l
Gap = meas(SdQ)/ (cos@)P - |sin 6|2 df = 2 L (%)
/2 I (55)

The main convergence results obtained so far can be summed up as follows.

Vd > 2.

e Pointwise convergence for p > 1. For every p > 1 it turns out that

1
Jim, Asp(u, RY) = ]—)Gd,p Aop(u,RY  Vu € LP(RY). (1.5)

e Pointwise convergence for p = 1. In the case p = 1 equality (LX) holds true
for every u € C}(RY), but there do exist functions u € WH(RY) for which the
left-hand side is infinite (while of course the right-hand side is finite). A precise
characterization of equality cases is still unknown.

o Gamma-convergence for every p > 1. For every p > 1 there exists a constant Cy,,
such that

I lim A, (u,RY) = lGd,pcd,p Aop(u,RY)  Vu € LP(RY),
=0+ p
where the Gamma-limit is intended with respect to the usual metric of LP(R?)
(but the result would be the same with respect to the convergence in L'(RY) or
in measure). Moreover, it was proved that Cy,, € (0, 1), namely the Gamma-limit
is always nontrivial but different from the pointwise limit.



As a consequence, again one can characterize the Sobolev space W1P(R?) as the set
of functions in LP(R?) for which the pointwise limit or the Gamma-limit are finite. As
for BV (R?), in this setting it can be characterized only through the Gamma-limit.

Some problems remained open, and were stated explicitly in [18, [10].

o Question 1. What is the exact value of Cy ), at least in the case d = 17
o Question 2. Does Cy,, depend on d?

e Question 3. Do there exist recovery families made up of continuous functions, or
even of functions of class C'**°7

In this paper we answer these three questions. Concerning question 1 and 2, we
prove that C;, does not depend on d, and coincides with the value C), conjectured
in [16] (se also [I8, Open question 2]) for the one-dimensional case, namely

! (1 1) itp> 1
— |15 if p> 1,
C,:=¢ p—1 201 (1.6)

log 2 ifp=1.

Concerning the third question, we prove that smooth recovery families do exist. Our
main result is the following.

Theorem 1.1 (Gamma-convergence). Let us consider the functionals As, and Ag,

defined in (1.1) and (1.23), respectively.

Then for every positive integer d and every real number p > 1 it turns out that

1
I'- lim Asp(u,R?) = =Gq,Cp Ao p(u,RY)  Vu € LP(RY),
d—0+ p
where G, s the geometric constant defined in (1.4), and C,, is the constant defined in
(I.4). In particular, the following two statements hold true.

(1) (Liminf inequality) For every family {us}s-o C LP(R?), with us — u in LP(RY)
as 6 — 0%, it turns out that

6—0t

1
lim inf As ,(us, R?) > ]—de,pCp Ao p(u, RY). (1.7)

(2) (Limsup inequality) For every u € LP(R?) there exists a family {us}s-o C LP(RY),
with us — u in LP(R?) as § — 0T, such that

1
lim sup Asp(us, RY) < ~Gq,Cp Mo p(u, RY).
=0+ D

We can also assume that the family {us} consists of functions of class C*° with
compact support.



The proof of this result requires a different approach to the problem, which we briefly
sketch below. In previous literature (see [I8, formula (1.3)] or [10, formula (1.12)]) the
constant Cy, was defined through some sort of cell problem as

1
EGd,pCdJD = inf {lim inf As, (U5, (0, 1)d) U — ug in LP ((0, l)d)} ,

6—0t

where ug(z) = (21 + ... + 24)/V/d. Unfortunately, this definition is quite implicit and
provides no informations on the structure of the families that approach the optimal
value. This lack of structure complicates things, in such a way that just proving that
Cap > 0 requires extremely delicate estimates (this is the content of [5]). On the
Gamma-limsup side, since As, is quite sensitive to jumps, what is difficult is glueing
together the recovery families corresponding to different slopes, even in the case of
a piecewise affine function in dimension one. This requires a delicate surgery near
the junctions (see [18]). Finally, as for question 3, difficulties originate from the lack
of convexity or continuity of the functionals (L)), which do not seem to behave well
under convolution or similar smoothing techniques.

The core of our approach consists in proving that As, in dimension one behaves well
under vertical §-segmentation and monotone rearrangement. We refer to Section Bl for
the details, but roughly speaking this means that monotone step functions whose values
are consecutive integer multiples of § are the most efficient way to fill the gap between
any two given levels. The argument is purely one-dimensional, and it is carried out
in Proposition In turn, the proof relies on a discrete combinatorial rearrangement
inequality, which we investigate in Theorem under more general assumptions.

We observe that this strategy, namely estimating the asymptotic cost of oscillations
by reducing ourselves to a discrete combinatorial minimum problem, is the same ex-
ploited in [13| 14], with the remarkable difference that now the reduction to the discrete
setting is achieved through vertical §-segmentation, while in [I3], 4] it was obtained
through a horizontal e-segmentation (see Figure [I).

Figure 1: vertical §-segmentation vs horizontal e-segmentation (9 is the distance between the
parallel lines on the left, ¢ is the distance between the parallel lines on the right)



The asymptotic estimate on the cost of oscillations opens the door to the Gamma-
liminf inequality in dimension one, which at this point follows from well established
techniques. As for the Gamma-limsup inequality, in dimension one we just need to
exhibit a family that realizes the given explicit multiple of Ag,(u, R), and this can be
achieved through a vertical §-segmentation a la Lebesgue (see Proposition B.7)). This
produces a recovery family made up of step functions, and it is not difficult to modify
them in order to obtain functions of class C'° with asymptotically the same energy
(see Proposition B9). Finally, passing from dimension one to any dimension is just
an application of the one-dimensional result to all the one-dimensional sections of a
function of d variables.

At the end of the day, we have a completely self-contained proof of Theorem [
above, and a clear indication that the true difficulty of the problem lies in dimension
one, and actually in the discretized combinatorial model. We hope that these ideas
could be extended to the more general functionals considered in [10]. Some steps in
this direction have already been done in [2] (see also the note [I]).

This paper is organized as follows. In Section P2l we develop a theory of monotone
rearrangements, first in a discrete, and then in a semi-discrete setting. In Section [3
we prove our Gamma-convergence result in dimension one. In Section [4 we prove the
Gamma-convergence result in any space dimension.

We would like to thank an anonymous referee for pointing out that the rearrange-
ment inequality in our Theorem [2.4] is equivalent to a rearrangement inequality proved
in [I2]. This equivalence is not immediate (see Remark for further details), and
for this reason the proofs follow different paths. However, in both cases the basic step
consists in reducing the problem to a discrete combinatorial result, namely Theorem
in this paper, and a variant of Taylor’s Lemma (see [21]) in [12].

2 An aggregation/segregation problem

In this section we study the minimum problem for two simplified versions of ((I1]), which
we interpret as optimizing the disposition of some objects of different types (actually
dinosaurs of different species). The first problem is purely discrete, namely with a finite
number of dinosaurs of a finite number of species. The second one is semi-discrete,
namely with a continuum of dinosaurs belonging to a finite number of species.

2.1 Discrete setting

Let us consider
e 3 positive integer n,

e a function w: {1,...,n} — Z,



e a symmetric subset E C Z? (namely any subset with the property that (i,5) € E
if and only if (j,7) € E),

e a nonincreasing function A : {0,1,...,n — 1} — R.

Let us introduce the discrete interaction set

J(E,u) :={(z,y) € {1,...,n}" 2 <y, (u(z),u(y)) € E}, (2.1)

and let us finally define

H(h, E,u) := Z h(y — ). (2.2)

(z,y)EJ(E,u)

Just to help intuition, we think of u as an arrangement of n dinosaurs placed in the
points {1,...,n}. There are different species of dinosaurs, indexed by integer numbers,
so that u(z) denotes the species of the dinosaur in position z. The subset E C Z? is the
list of all pairs of species that are hostile to each other. A pair of points (x,y) belongs
to J(F,u) if and only if x < y and the two dinosaurs placed in = and y belong to hostile
species, and in this case the real number h(y — x) measures the “hostility” between the
two dinosaurs. As expected, the closer are the dinosaurs, the larger is their hostility.

Keeping this jurassic framework into account, sometimes in the sequel we call u a
“discrete arrangement of n dinosaurs”, we call F an “enemy list”, we call h a “discrete
hostility function”, and H(h, E,u) the “total hostility of the arrangement”. At this
level of generality, we admit the possibility that (i,7) € E for some integer ¢, namely
that a dinosaur is hostile to dinosaurs of the same species, including itself. For this
reason, the hostility function h(x) is defined also for x = 0. This generality turns out
to be useful in the proof of the main result for discrete arrangements.

In the sequel we focus on the special case where E coincides with

By :={(i,j) €Z*:|j—i| > k+1} (2.3)

for some positive integer k. In this case it is quite intuitive that the arrangements
that minimize the total hostility are the “monotone” ones, namely those in which all
dinosaurs of the same species are close to each other, and the groups corresponding to
different species are sorted in ascending or descending order. To this end, we introduce
the following notion.

Definition 2.1 (Nondecreasing rearrangement — Discrete setting). Let n be a positive
integer, and let u : {1,...,n} — Z be a function. The nondecreasing rearrangement of
u is the function Mw : {1,...,n} — Z defined as

Mu(z):=min{j € Z: [{y € {1,...,n} 1 u(y) < j}| >z},

where |A| denotes the number of elements of the set A.

6



As the name suggests, Mu is the unique nondecreasing function that can be repre-
sented in the form Mu = wom, where 7 : {1,...,n} — {1,...,n} is a suitable bijection.
The nondecreasing rearrangement can also be uniquely characterized by the fact that
the two level sets

{ze{l,...,n} u(x) =}, {ze{l,...,n}: Mu(z)=j}

have the same number of elements for every j € Z.
As expected, the main result is that monotone arrangements minimize the total
hostility with respect to the enemy list Ej.

Theorem 2.2 (Total hostility minimization — Discrete setting). Let n and k be two
positive integers, let By, C Z* be the subset defined by (2.3), and let h - {0,...,n—1} —
R be a nonincreasing function. Let uw: {1,...,n} — Z be any function, let Mu be the
nondecreasing rearrangement of u introduced in Definition [21], and let H(h, Ex,u) be
the total hostility defined in (2.23).

Then it turns out that

Taylor’s result proved in [21] is substantially equivalent to (2.4)) in the special case
where there are n dinosaurs of n different species indexed by n consecutive integers.
It is likely that Taylor’s approach based on the celebrated Hall’s Theorem, sometimes
referred to as the “marriage Theorem”, could work even in the more general setting
that we need here (see [12, section 3]). The proof we present in section 2.3 below follows
a different path.

2.2 Semi-discrete setting

Let us consider

an interval (a,b) C R,

e a measurable function u : (a,b) — Z with finite image,

a symmetric subset F C Z2,

e a nonincreasing function ¢ : (0,b — a) — R (note that c¢(o) might diverge as
o—07).

Let us introduce the semi-discrete interaction set

I(E,u) = {(z,y) € (a, b)?: (u(z),u(y)) € EY}, (2.5)

and let us finally define
F(e, B u) = // c(ly — x|) dz dy. (2.6)
I(E,u)

7



In analogy with the discrete setting, we interpret u(z) as a continuous arrangement
of dinosaurs of a finite number of species, ¢(y—x) as the hostility between two dinosaurs
of hostile species placed in = and y, and we think of F(c, E,u) as the total hostility of
the arrangement u with respect to the enemy list F.

Once again, we suspect that monotone arrangements minimize the total hostility
with respect to the enemy list Ej. This leads to the following notion.

Definition 2.3 (Nondecreasing rearrangement — Semi-discrete setting). Let u : (a,b) —
7. be a measurable function with finite image. The nondecreasing rearrangement of u
is the function Mu : (a,b) — Z defined as

Mu(z) :=min {j € Z : meas{y € (a,b) : u(y) < j} >z —a},
where meas(A) denotes the Lebesgue measure of a subset A C (a,b).

The function Mwu is nondecreasing and satisfies
meas{z € (a,b) : u(x) = j} = meas{x € (a,b) : Mu(z) = j} Vj € Z.
The following result is the semi-discrete counterpart of Theorem [2.2]

Theorem 2.4 (Total hostility minimization — Semi-discrete setting). Let (a,b) C R be
an interval, let k be a positive integer, let Ey, C Z* be the subset defined by (2.3), and
let ¢: (0,b—a) — R be a nonincreasing function. Let u : (a,b) — Z be any measurable
function with finite image, let Mu be the nondecreasing rearrangement of u introduced
in Definition 2.3, and let F(c, Ex,u) be the total hostility defined in (2.6).

Then it turns out that

‘F(Ca Ek:au) > ‘F(Ca EkaMu) (27)

Remark 2.5. Theorem 2.4l above is stated in the form that we need in the proof of
Proposition With a further approximation step in the proof, one can show that
the same conclusion (2.7)) holds true also without assuming that the image of u is finite
and contained in Z, and without assuming that & is a positive integer (but just a real
number greater than —1).

It is interesting to compare this extended result with [I2] Theorem 1.1], which states
that for every nondecreasing function @ : [0, +00) — [0, +00), and every ¢ € (0,b — a),
it turns out that

/ O(luly) — u(x)]) dedy > / O(|Mu(y) — Mu(z)|) dz dy, (2.8)
D(t) D(t)

where D(t) := {(z,y) € (a,b)* : |y — z| < t}. We observe that in (Z8) the integral
involves only the pairs (z,y) € (a,b)? that are close enough to the diagonal y = z, and
the integrand ® penalizes the pairs for which |u(y) —u(x)| is large. On the contrary, in



our total hostility the integral involves only the pairs with |u(y) — u(x)| large enough,
and the integrand c penalizes the pairs that are close to the diagonal. In this sense the
two statements seem to be two sides of the same coin (again as the Riemann and the
Lebesgue integral), and actually one can show that both statements are equivalent to
saying that the inequality

meas{(z,y) € (a,b)” : [y — 2 < ¢, |u(y) — u(z)| > 6}
> meas{(z,y) € (a,0)* : |y — 2| < t, |Mu(y) — Mu(x)| > 6} (2.9)

holds true for every t € (0,b — a) and every § > 0.

The proof of (Z8) given in [I2] relies on this equivalence, and establishes (2.9])
through a variant of Taylor’s result. The proof of (27) that we present in section 2.4]
follows a more direct path, based on our Theorem 2.2] which anyway is again discrete
combinatorics.

2.3 Proof of Theorem

Since the hostility function A is fixed once for all, in the sequel we simply write H(F, u)
instead of H(h, E, u).

Our idea is to proceed by induction on the number of dinosaurs. In the case n =1
there is nothing to prove. Let us assume now that (2.4)) holds true for all arrangements
of n dinosaurs, and let u be any arrangement of n + 1 dinosaurs. In order to obtain an
arrangement of n dinosaurs, we remove from u the rightmost dinosaur of the species
indexed by the highest integer, and we shift one position to the left all subsequent
dinosaurs. More formally, we set

po=max{u(i): i € {1,...,n+1}},

we consider the largest index m € {1,...,n + 1} such that u(m) = p, and we call
reduction of u the new arrangement Red(u) : {1,...,n} — Z defined as

u(7) if i < m,
u(i+1) if i > m.

Red(u))0) = {

When passing from u to Red(u), the total hostility changes by an amount that we
call hostility gap, defined as

A(E,u) :==H(E,u) — H(E,Red(u)).
Since M (Red(u)) = Red(Mu), the inductive hypothesis reads as

H(Ey, Red(u)) > H(E, M(Red(u))) = H(Eg, Red(Mu)),



and therefore
H(Ek, Red(Mu)) + A(Ek, u)

v

As a consequence, (24)) is proved for the arrangement u if we can show that

namely that the monotone rearrangement decreases (or at least does not increase) the
hostility gap.

In order to prove (2I0), we begin by deriving a formula for the hostility gap. Let
us consider the removal that leads from u to Red(u). We observe that interactions
between any two dinosaurs placed on the same side of the removed one are equal before
and after the removal, and therefore they cancel out when computing the gap. On the
contrary, if two hostile dinosaurs are placed within distance d on opposite sides of the
removed one, their hostility changes from h(d) to h(d — 1) after the removal. It follows
that the hostility gap can be written as

AEBw)= > hilm-i)— > (Mi-i-1)—h(j—i), (211)

ieJl(Evuvm) (Z,j)eJQ(E,UﬂTL)

where

Ji(E,u,m):={i€{l,....,n+1}: (u(i),u(m)) € E}
and
Jo(E,u,m) =={(i,j) € {1,...,n+ 1} i <m < j, (u(i),u(j)) € E}.

The first sum in (Z.I7)) keeps into account the interactions of the removed dinosaur
with the rest of the world, the second sum represents the increment of the total hostility
due to the reduction of distances among the others.

Now we introduce the new enemy list

E<l‘> = Z2\{:u7:u_ 17"'7:u_k}27
and we claim that
A(Ek,u) Z A(Ew), u) Z A(E(M), M’LL) = A(Ek, Mu), (2.12)

which of course implies (2.10).
The equality between the last two terms of (ZI2)) follows from formula (ZI1)). In-

deed, since Mu is nondecreasing, the removed dinosaur is the rightmost one, and there-
fore in both cases the second sum in (Z.I7]) is void. Also the first sum in (2.I1]) is the

10



same in both cases, because a dinosaur of the highest species is hostile to another di-
nosaur with respect to the enemy list Fj, if and only if it is hostile to the same dinosaur
with respect to the enemy list Ey,.

The inequality between the first two terms of (2.12) follows again from formula
(2I0). Indeed, the first sum has the same terms both in the case of the enemy list Ej
and in the case of the enemy list F,, as observed above. As for the second sum, the
interactions with respect to £}, are also interactions with respect to F(,, and therefore
when passing from Ej to F(, the second sum cannot decrease. Since the second sum
appears in (2I1) with negative sign, the hostility gap with respect to E, is less than
or equal to the hostility gap with respect to Ej.

It remains to prove that

A(Eqy,u) = A(Eq, Mu). (2.13)
To this end, we introduce the complement enemy list

B, ={pp—1,...,p—k}? =7\ Ey,.

Since Z? is the disjoint union of Ey, and Efm, and the total hostility is additive
with respect to the enemy list, we deduce that

H(Eyy, w) = H(Z* w) — H(E],,w)
for every arrangement w, and for the same reason
A(E@,w) = A(ZZ,w) — A( (cu)’w)'

Moreover, we observe that the total hostility with respect to Z? depends only on
the number of dinosaurs, and in particular A(Z?,u) = A(Z? Mu). As a consequence,
proving (213)) is equivalent to showing that

A(E,,u) < A(ES,, Mu). (2.14)

The advantage of this “complement formulation” is that hostility gaps with respect

to E@L) depend only on the relative positions of the removed dinosaur with respect to

the other dinosaurs of the species with indices between pu — k and pu.
To be more precise, let us compute the left-hand side of (2I4). Let m denote as
usual the position of the dinosaur that is removed from u to Red(u), and let us set

Ru):={r>1:ulm+r)e{upn—1,....0—k}},

Lu):={{>1:um—0) e {p,p—1,...,u—Fk}}.

In other words, this means that
{m—C:0eLu)}u{mtu{m+r:reR(u)}

11



is the set of all integers ¢ € {1,...,n+ 1} such that u(i) € {p,n—1,..., u—k}, namely
the set of positions where the dlnosaurs of the last k + 1 species are placed. With this
notation, the first sum in (2.I7]) is

+ D O+ ) hGr
leL(u) reR(u)

(we recall that in this “complement formulation” the dinosaur in position m is also
hostile to itself), while the second sum in (Z.17]) is

S (ht+r—1)=h(t+r)).
(¢,r)eL(u)x R(u)

Therefore, it turns out that

where the function G is defined by

G(L,R) :==h(0)+ Y h(O)+ Y h(r)— Y (h(t+r—1)=h(l+7r)) (215)

el reR (¢,r)ELXR

for any two sets L and R of positive integers.
On the other hand, in the nondecreasing arrangement Mwu the rightmost dinosaur
has |L(u)| + |R(u)| dinosaurs of the last k 4 1 species exactly on its left, and therefore

[ L (w)|+|R(w)]
A(EG,, Mu)= > ).

i=0
As a consequence, inequality (2.14) is proved if we show that

|LI+|R|

Z h(3) (2.16)

for every choice of the sets L and R. For this final step, we argue by induction on the
number of elements of R. If R = (), from (ZI3]) we deduce that

L] |L|+| R
G(L, R) := h(0) + Y _h(0) Zh(i): Z h(i),

where the inequality is true term-by-term because h is nonincreasing.
Let us assume now that the conclusion holds true whenever R has n elements, and
let us consider any pair (L, R) with |R| = n + 1. Let us set

a = max R, b:=min{n e N\ {0} : n & L},

12



and let us consider the new pair (L;, R1) defined as
Ly := LU {b}, Ry =R\ {a}.

In words, we have removed the largest element of R, and added the smallest possible
element to L. We observe that |R;| = n and |L,| + |Ry| = |L| + |R|. Therefore, if we
show that

G(L,R) < G(L1, Ry). @2.17)

then (2.10) follows from the inductive assumption.

In order to prove (ZIT), we expand the left-hand side and the right-hand side
according to (ZIH). After canceling out the common terms, with some algebra we
obtain that inequality (2Z.I7) holds true if and only if

(@) + > (Ab+7r—1) = h(b+7)) )+ (Ml+a—1)—h(l+a)). (218)
reRy leLl

All terms in the sums are nonnegative because h is nonincreasing. Let us consider
the left-hand side. If @ > 1 we know that R; C {1,...,a — 1}, and hence

(@)+ Y (hb+r—1)—h(b+r)) < h +§: hb+r—1)—h(b+7))
o = h(a) + &m—hm+b—n. (2.19)

The same inequality is true for trivial reasons also if a = 1.
Let us consider now the right-hand side of (ZI8). If b > 1 we know that L D
{1,...,b— 1}, and hence

®)+ > (h(t+a=1)=h(l+a)) > +Z ((+a—1)—h(l+a))

= h(b) + h(a) —h(a+b-1). (2.20)

As before, the same inequality is true for trivial reasons also if b = 1.

Combining (2:20) and (Z19) we obtain (2.I8), which in turn is equivalent to (Z.I7).
This completes the proof of (Z.16). O

2.4 Proof of Theorem [2.4]

The proof relies on the following approximation result (we omit the proof, which is an
exercise in basic measure theory).

Lemma 2.6. Let m be a positive integer, and let Dy,...,D,, be disjoint measurable
subsets of (0,1) such that

UJDi=0,1).

i=1
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Then for every € > 0 there exist disjoint subsets Dy ., ..., Dy . of [0,1] such that

m

UDic=(0.1),
i=1
and such that for every i =1,...,m it turns out that

e D;. is a finite union of intervals with rational endpoints,

o the Lebesgue measure of the symmetric difference between D; and D; . is less than
or equal to €.

We are now ready to prove Theorem [2.4l First of all, we observe that (2.7) is invari-
ant by translations and homotheties. As a consequence, there is no loss of generality
in assuming that (a,b) = (0,1) and ¢ : (0,1) — R. Then we proceed in three steps. To
begin with, we prove (27) in the special case where the hostility function ¢ is bounded
and the arrangement u has a very rigid structure, then for general u but again bounded
hostility function, and finally in the general setting.

Step 1 We prove (2.7) under the additional assumption that the hostility function
¢:(0,1) — R is bounded, and that there exists a positive integer d such that u(z) is
constant in each interval of the form ((¢ — 1)/d,i/d) withi=1,.... d.

Indeed, this is actually the discrete setting. To be more precise, we introduce the
discrete arrangement v : {1,...,d} — Z defined as

(i) ::u(i_dm) Vie{l,...,d},

and the discrete hostility function b : {0,...,d — 1} — R defined as

1/d (i+1)/d
h(i) ::/ dx/ c(ly—z)dy  Vied{0,...,d—1},
0 i/d

which represents the contribution to the total hostility of two intervals of length 1/d

occupied by hostile dinosaurs, and placed at distance i/d from each other. Then for
every enemy list Fj it turns out that

F(c, Ex,u) = 2H(h, Ey,v),

where H(h, Ey, v) is the discrete total hostility defined in (22]), and the factor 2 keeps
into account that both (z,y) and (y,x) are included in the semi-discrete interaction
set I(Fj,u), while only one of them is included in the discrete counterpart J(FEj,v)
(see (2I) and (2Z.3])). Moreover, the monotone rearrangement Mv of v is related to the
monotone rearrangement Mu of u by the formula

Mu(i) = Mu (i_d1/2> Vie{1,....d},
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and again it turns out that
F(c, Ex, Mu) = 2H(h, Ey,, Mv)
for every enemy list Ej. At this point, (2.7) is equivalent to
H(h, Ey,v) > H(h, Ey, Mv),
which in turn is true because of Theorem
Step 2 We prove (27) for a general arrangement « : (0,1) — Z, but again under the

additional assumption that the hostility function ¢ : (0,1) — R is bounded.
To this end, let 21 < z5 < ... < 2z, denote the elements in the image of u, and let

D;:={z€(0,1):u(z) = 2z} Vie{l,...,m}

denote the set of positions of dinosaurs of the species z;. For every € > 0, let us consider
the sets Dy, ..., Dy, given by Lemma 2.6, and the function u. : (0,1) — Z defined
as

us(r) = 2z Vo € D;e.

Since the hostility function ¢ is bounded, and the symmetric difference between D;
and D; . has measure less than or equal to ¢, there exists a constant I' (depending on
m and ¢, but independent of €) such that

|F(c, Ey,u) — F(c, Ey,u.)| <Te and | F (¢, By, Mu) — F(c, Ey,, Mu.)| < Te.

On the other hand, the function w. satisfies the assumptions of the previous step,
and therefore

F(c, Ey,u:) > Flc, By, Mu,).

From all these inequalities it follows that
F(c, Eg,u) > Fl(c, Ex, Mu) — 2Te.

Since € > 0 is arbitrary, (2.7) is proved in this case.

Step 3 We prove (2.7) without assuming that the hostility function ¢(z) is bounded.
To this end, for every n € N we consider the truncated hostility function

cn(2) ;== min{c(x),n}  Vz € (0,1).

We observe that
F(c, Ey,u) > F(cpn, Ex, u) Vn € N

because ¢(z) > ¢,(x) for every x € (0,1), and

F(cn, Ex,u) > F(cn, Ex, Mu) Vn € N

15



because of the result of the previous step applied to the bounded hostility function
cn(x). As a consequence, we obtain that

F(c, Ex,u) > Flcp, Bx, Mu)  ¥n € N. (2.21)
On the other hand, by monotone convergence we deduce that

F(c, Ex, Mu) = sup F(cp, Ex,, Mu),

neN

and therefore (2.7) follows from (Z21). O

3 Gamma-convergence in dimension one
In this section we prove Theorem [I.I] for d = 1, in which case
Gip,=2 Vp>1. (3.1)

To begin with, we introduce the notion of vertical d-segmentation, which is going to
play a crucial role in many parts of the proof.

Definition 3.1 (Vertical §-segmentation). Let X be any set, let w : X — R be any
function, and let 6 > 0. The vertical J-segmentation of w is the function Ssw : X — R
defined by
Ssw(x) =0 {@J Vz € X. (3.2)
The function Ssw takes its values in §Z, and it is uniquely characterized by the fact
that Ssw(z) = ké for some k € Z if and only if ké < w(z) < (k+ 1)J.

3.1 Asymptotic cost of oscillations

Let us assume that a function us(x) oscillates between two values A and B in some
interval (a,b). Does this provide an estimate from below for Aj,(us, (a,b)), at least
when ¢ is small enough? The following Proposition and the subsequent corollaries give
a sharp quantitative answer to this question. They are the fundamental tool in the
proof of the liminf inequality.

Proposition 3.2 (Limit cost of vertical oscillations). Let p > 1 be a real number, let
(a,b) C R be an interval, and let {us}s~o C LP((a,b)) be a family of functions.
Let us assume that there exist two real numbers A < B such that

h(;moiilf meas{z € (a,b) : us(x) < A+e} >0 Ve > 0, (3.3)
_)
and
h(;moiilf meas{z € (a,b) : us(r) > B—¢} >0 Ve > 0. (3.4)
_)
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Then it turns out that

(B - Ay

lim inf A5, (us, (a, b)) > (b— a1V

2
Z.c,-
d—0+ p

(3.5)
where C, is the constant defined in (1.0).

Proof To begin with, we observe that (B.3]) is trivial if A = B, and therefore in the
sequel we assume that that A < B.

Let us fix € > 0 such that 4¢ < B — A. Due to assumptions ([3.3) and (3.4), there
exist 7 > 0 and g > 0 such that

meas{z € (a,b) :us(x) < A+e}>n Vo€ (0,d), (3.6)

meas{z € (a,b) : us(x) > B—¢c}>n Vo€ (0,d). (3.7)

Truncation, d-segmentation and monotone rearrangement In this section of the
proof, we replace {us} with a new family {us} of monotone piecewise constant functions
that still satisfies (B.3]) and (B.4]), without increasing the left-hand side of (83). To this
end, we perform three operations on us(x).

The first operation is a truncation between A and B. To be more precise, we define
Ty pus : (a,b) — R by setting

A if us(z) < A,
Tapus(z) =< us(z) if A <ws(z) < B,
B if us(z) > B.

We observe that the implication
Tapus(y) — Tapus(z)| >0 = |us(y) —us(@)| >0
holds true for every x and y in (a,b), and hence
Asp(Ta pus, (a, b)) < Asp(us, (a,b)) Vo > 0.

We also observe that (3.6) and (B.7) remain true if we replace us(x) by Ta pus(x).
The second operation is a vertical d-segmentation, namely we replace T4 pus by the
function SsT4 pus defined according to (3.2)). Again we observe that the implications

|S§TA7BU5<y) — S(;TABu(;(a:)\ > 5 = |S§TA,BU5<y) — SgTA,Bu(;(SL’H Z 25
= [Ta,pus(y) — Ta,pus(z)| >0
hold true for every z and y in (a,b), and hence

Asp(S5Ta,Bus, (a,b)) < Asp(Ta,pus, (a,b)) Vo > 0.
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As for (B:6) and (3.7)), we set 6; := min{e, &}, and we observe that now
meas{z € (a,b) : SsTapus(x) < A+2}>n Vi€ (0,0), (3.8)
meas{z € (a,b) : ST pus(x) > B—2e} >n Vo€ (0,0). (3.9)

The third and last operation we perform is monotone rearrangement, namely we
replace SsT'4 pus with the nondecreasing function M.SsT4 pus in (a,b) whose level sets
have the same measure of the level sets of S5T4 pus (see Definition [2.3]).

From (3.8)) and (B.9) we deduce that now

MSsTy pus(x) < A+ 2e Vo € (a,a+mn), Vée(0,6), (3.10)

MSsTy pus(x) > B — 2¢ Ve e (b—mn,b), Vo€ (0,0). (3.11)
Moreover, we claim that

A5 p(M SsTa pus, (a,b)) < Asp(SsTapus, (a,b)) Vo > 0. (3.12)

This is a straightforward consequence of Theorem 2.4l To be more formal, let us
consider the semi-discrete arrangement vs : (a,b) — Z defined by

1
5

(we recall that SsT'4 pus takes its values in dZ, and hence vs(z) is integer valued), and
the hostility function c: (0,0 — a) — R defined as ¢(o) := §?a~'P. We observe that

MSsT s pus(x) = dMuvs(z) Vo € (a,b),

where Muvs is the nondecreasing rearrangement of vs according to Definition
We observe also that for every pair of points « and y in (a, b) it turns out that

(.T,y) S [<57 S5TA,Bu57 (av b)) — |U5<y) - U5<SL’)| >2 <~ (l’,y) S [<E17U5)7

vs(x) = =SsTs pus(x) Vo € (a,b)

where Fj is the enemy list defined in ([2.3]), and I(E1, vs) is the semi-discrete interaction
set defined according to (Z3]). It follows that

Nsp(S5Ta,pus, (a, b)) = F(c, Ev, vs), N5 p(MS5Ta,pus, (a, b)) = F(c, Er, Mvs),
and therefore ([B.12) is equivalent to (2.7)).

In conclusion, the three operations described so far delivered us a family
ﬁ(; = MS(STAB’LL(;

of nondecreasing functions such that the image of us is contained in §Z. This family

satisfies (B.10) and (B.11), and

A57p(u(5, (a, b)) > A57p(ﬁ5, (CL, b)) Vo > 0. (313)
In the sequel we are going to show that any such family satisfies
o R 2 (B—A—4e)P
lim inf A, (us, (a,0)) = b Cp- b= apt (3.14)

Due to (3.13) and the arbitrariness of € > 0, this is enough to prove (B.3]).

18



Extension of the integrals to a vertical strip In this section of the proof we modify
the domain of integration in order to simplify the computation of As,(us, (a,b)). To
begin with, we observe that

A5 (us, (a, b)) = v dzx d v dz d
Us, (a, = T dy > T dy,
PR ) //A(s ly — x|+P Y //Bg ly — x|+P Y

As = 1(5,7is, (a,b)) = {(z,y) € (a,b)? : [As(y) — Ts(x)| > 6},
By = {(x,y) € (atn.b—n) x (a.b) : [s(y) — Tax)| > b}

Then we write the last integral in the form

[
—————drdy = ————dvdy— || ——=dudy,
Bs |y _x|1+p BsUCys |y - x|1+p Cs |y _':L‘|1+p

Cs = (a+n,b—n) x (R\ (a,)).

In other words, the set BsU Cjs consists of the vertical strip (a+n,b—n) x R minus
the set of points (x,y) € (a +n,b —1n) X (a,b) such that |us(y) — us(x)| < §. Now we

observe that
// 5p b—n —+o00 1
7dxdy:25p/ dx/ —dy.
Cs |y_l»|1+p a+n b |y_x|1+p

From the convergence of the last double integral it follows that

Ii o dx d
g%//cém =0

5P
liminf A ,(us, (a,b)) > liminf// ——dxdy
p( ( )) Bs |y —.T‘ler

where

where

and therefore

5—0+ 0—07t

1 f o dx d

= limi —_ : 1
o //c ly = .
Computing the integrals In this last part of the proof we show that
oP 2 B — A —4¢e)P

liminf// ﬁdxdyz—-cp-( f) . (3.16)
-0+ pyucs |y — @7 p (b—a)r~

Recalling (B.I5), this proves (3.14]), and hence also (3.0).
To this end, we need to introduce some notation. We know that us is a nondecreasing

function with finite image. Let us consider the partition

a=rg<r<...<x,=0b
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of (a,b) with the property that us(x) is constant in each interval of the form (x; 1, z;)
and different intervals correspond to different constants. Let us set

h:=min{i € {1,...,n} 1 z; > a+n},
k:=max{i €{0,....,n—1} :2; <b—n}.
Of course n, h, k, as well as the partition, do depend on d. Now we claim that

oP 2 6P(k —h —1)P
e >Z2.0 . . 4
//Bgucé ly — x| drdy 2 Cr (b— a)p! V6 € (0,61) (3.17)

To this end we can limit ourselves, without loss of generality, to the case where
the values of us(z) in neighboring intervals are consecutive multiples of ¢, namely if
us(z) = mé in (x;_1,x;) for some m € Z, then us(x) = (m + 1)d in (z;, x;41). Indeed,
if us(z) > (m+2)0 in (x;,;41), then it turns out that

v dzd " d e d
> .
//l;guCg y — z[ y_/x“ x/m (y—a)p

Since the integral in the right-hand side is divergent, the left-hand side is divergent
as well, and in this case ([B.I7) is trivially true.

Therefore, in the sequel we treat the case where the values of us(x) in neighboring
intervals are consecutive multiples of §. Under this assumption it turns out that

// 7&) dx d
€T ay
BsUCs ‘y - 'T‘1+p
</ +oo p Ti+1
dﬂ?/ dy+/ da:/ )
1+ . 1+
i=h+1 Tit1 ‘ P |y .§L’| p
k—1 ) )
517 T4 1 Tit1 1
R
p i=h41 Ti—1 ('riJrl - x)p x; (37 - xifl)p

Now we distinguish two cases.

v

e If p =1, computing the integrals we obtain that

k—1
// d;z: dy ) Z log <$z+1 — Ti—1 ) Tiy1 — 901—1) _
Béuq; i+1 — T Ti — Ti—1

X
i=h+1 i+l

If ¢; == x; — x;_1 denotes the length of the i-th interval of the partition, and we
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apply the inequality between arithmetic and geometric mean, we obtain that

E + £z+1>
d:c dy > 0 log
//35UC5 Z g £Z+1

i=h+1

= 2log2-6(k—h—1),
which proves ([B.17) in this case.

e If p > 1, computing the integrals we obtain that

P S A | 1 9
% drdy> —2 + ~ ,
//B(;UC(; y— 2 Y= 1) Z (Ef;f N (TR fz)’”)

h+1

where we set ¢; := x; —x;_1 as before. Therefore, with two applications of Jensen’s
inequality to the convex function t — 177, we obtain that

& e v 2
—  _dedy > ——— S . —
//J;%UC(S |y — x|t v p(p—1) i;H (liyr + €:)P
57(20 — 2) (k—h—1)

P (S )
S P2 (k—h-1p

= -0 Ch-ay

2 P(k—h-1p
AN

which proves ([B.17) also in this case.

9

Now it remains to estimate 6(k—h—1). To this end, from ([B.10) and the minimality
of h we deduce that

A+2e >us(x) =2masd Vo€ (rp_1,xh).
Similarly, from (3.11)) and the maximality of k we deduce that
B —2< a(;(l’) =:mpgd Vx € (.T}k,l’kJrl).

Since the values of 75 in consecutive intervals are consecutive multiples of ¢, it turns
out that

mp =ma+ (k—h+1),
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and therefore
(k—h—-1)0=(k—-h+1)0 —26 = (mp —ma)d —20 > B—A—4e — 2.

Plugging this inequality into (BI7), and letting 6 — 07, we obtain (BIG]), which
completes the proof. [

The following result is a straightforward consequence of Proposition 321

Corollary 3.3. Let us assume that us — w in LP(R), and let (a,b) C R be an interval
whose endpoints a and b are Lebesque points of u.
Then it turns out that

lim inf As,(us, (a,b)) >

6—0t

%Iw

Proof 1t is enough to apply Proposition with A := min{u(a),u(b)} and B :=
max{u(a),u(b)}. Assumptions (B.3) and (B.4]) are satisfied because a and b are Lebesgue

points of the limit of the sequence us. [

We conclude with another variant of Proposition 8.2l We do not need this statement
in the sequel, but we think that it clarifies once more the relation between oscillations
of us and values of As,(us, (a,b)).

Corollary 3.4. Let (a,b) C R be an interval, let {us}s=0 € LP((a,b)) be a family of
functions, and let osc(us, (a,b)) denote the essential oscillation of us in (a,b).
Then it turns out that

2 1 P
hérgénf Asp(us, (a,b)) > ]—?Cpm <1161£1>é£1f osc(ug, (a, b))) .

Proof Let is and ss denote the essential infimum and the essential supremum of us(x)
in (a,b), respectively. Let us assume that is and ss are real numbers (otherwise an
analogous argument works with standard minor changes). Let us set ws(z) := us(x)—is,
and let us observe that

A&P(U(Sv (a’a b)) = Aé,p(wéa (a, b)) Vo > 0.
Now it is enough to apply Proposition with A := 0 and

B :=1lim 1nf(55 —is) = liminf osc(us, (a,b)). O

6—0t 6—0t
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3.2 Piecewise affine approximation

The value of Ag,(u,R) is the supremum of Ag,(v,R) as v ranges over a sequence of
piecewise affine functions that approximate u. The formal statement is the following
(we omit the standard proof, based on the convexity of the norm).

Lemma 3.5 (Piecewise affine horizontal segmentation). Let p > 1 be a real number,
and let uw € LP(R).
Then there exists ¢ € R such that ¢ 4+ q is a Lebesgue point of u for every q € Q.
Moreover, if for every positive integer k we consider the piecewise affine function

v - R — R such that
vk<c+%):u(c+%) Vi € 7,
then it turns out that

Nop(u,R) = hm /|v/,C \pda:—sup/|v,’g(x)\pda:.

k>1

3.3 Proof of Gamma-liminf inequality in dimension one

We are now ready to prove (L7) in the case d = 1. The idea is that Corollary B3l
represents a “localized” version of the liminf inequality (I.7)), which now follows from
well established techniques (see for example [13] [14]). To this end, let us — u be any
family converging in LP(R), and let ¢ and v, be as in Lemma For every i € Z, we
set ¢ := c+i/k, and we apply Corollary B3 in the interval (cx;, ckiv1). We obtain
that

2 ulcpirt) —u(er)P 2 Chyit1
lim inf As,, (us, (Cris Crit1)) > ]—)Cp| (c, (Jrll/)k)p_f k)| = ]—)C’p/ v}, (z)|P dz.

6—0t Ck,i
Since
Asp(us, R) =~ Asp(us, (Cris crin1)) V6 >0,
iz
we deduce that
liminf As,(us, R) > liminf Z Asp(us, (Cris Criv1))

6—0t 6—0t

=
> E lim inf A, (s, (Chyir Criit1))
6—0t
€L
Cki4+1
> —C E / vy (@) [P dx
€L

2
= —Cp/lvé(w)lpdw-
p R

Letting k — o0, and recalling (B.1)), we obtain exactly (L17). O
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3.4 Proof of Gamma-limsup inequality in dimension one

This subsection is devoted to a proof of statement (2) of Theorem [[.Tin the case d = 1.

It is well-known that we can limit ourselves to showing the existence of recovery
families for every u belonging to a subset of LP(R) that is dense in energy with respect
to Agp(u,R). Classical examples of subsets that are dense in energy are the space
C>(R) of functions of class C*° with compact support, or the space of piecewise affine
functions with compact support. Here for the sake of generality we consider the space
PCI(R) of piecewise C'! functions with compact support, defined as follows.

Definition 3.6. Let u : R — R be a function. We say that u € PC!(R) if u has
compact support, it is Lipschitz continuous, and there exists a finite subset S C R such

that u € CH(R\ S).

We show that for every v € PC(R) the family Ssu of vertical d-segmentations of u
is a recovery family. This proves the Gamma-limsup inequality in dimension one.

Proposition 3.7 (Existence of recovery families). Let p > 1 be a real number, and
let u € PCHR) be a piecewise C' function with compact support according to Defini-
tion[3.8. For every 6 > 0, let Ssu denote the vertical §-segmentation of u according to
Definition [31.

Then it turns out that

2
lim sup As,(Ssu, R) < Z;Cp/ |u/(2)|P dx. (3.18)
R

6—0t

Proof To begin with, we introduce some notation. Let Ry > 1 be any real number
such that the support of u is contained in [—Ry + 1, Ry — 1]. Let L be the Lipschitz
constant of v in R, and let S C R be a finite set such that u € C*(R\ S). For every
x € R and every 6 > 0 we set

J(6,u,z) == {y € R: |Ssu(y) — Ssu(z)| > 0}, (3.19)

5P
Hs,(x) = J ——dy,

(6,u,2) |y - x|1+p

and

so that
A57p(55u,R) = / H57p(l‘) dx Vo > 0. (320)
R

In the sequel we call Hs,(z) the “pointwise hostility function”. It represents the
contribution of each point = to the double integral defining As,(Ssu, R).
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Strategy of the proof The outline of the proof is the following. First of all, we show

that
— Ry “+00

lim Hs,(x)dxr = lim Hs,(z)dx = 0. (3.21)

=0t J_ 6—0t Ro

Then we define an averaged pointwise hostility function ﬁ57p(:c) with the property

that
Ro Ry R

Hs,(z)dx = Hs,(x) dx. (3.22)
—Ro —Ro
We also show that the averaged pointwise hostility function satisfies the uniform
bound

~ 2
Hs,(z) < Z;Lp Vo € [-Rg, Ro], V6 >0, (3.23)
and the asymptotic estimate
~ 2
limsup Hsp(x) < =Cyl|u/ ()P Vz € [-Ro, Ro] \ S. (3.24)
6—0t p

At this point, from Fatou’s lemma we deduce that
Ro RO ~

lim sup Hs,(z)dx = limsup Hs,(x)dx
50+ J—Ry 50t J—Ro

Ro N
< / lim sup Hs,(x) dx

—RQ 6—0T

2 flo
< BCP/ |u/()|P dx.

—Ro

Keeping ([3.20) and (3.2I)) into account, this estimate implies (3.18]).

Reducing integration to a bounded interval ~We prove (B.21]).
To this end, let us consider any x < —R,;. We observe that in this case the set
J(9,u, x) defined in (BI9) is contained in the support of u, and hence

—Ro Ry Ro—1
Hs,(x)dr < 5p/ dx/ dy.
_oo #l Ro+1 [y — |+ x‘Hp

At this point the first limit in (3.21]) follows from the convergence of the double
integral. The proof of the second limit is analogous.

25



Uniform bound on the pointwise hostility function We prove that
Hy () < %L” Wz € [~ Ro, Ro], V6 > 0. (3.25)
To this end, we observe that the implication
[Ssuly) — Ssu(z)| > 6 = |uly) —u(z)] >

holds true for every (z,y) € R?. Since u is Lipschitz continuous, we deduce that

o
Ssuly) = Ssu@)| > = |y—a| = 7,

and hence

Hy () o [T 2
5,p(T S/ o Yy = / z=—L"
g y—z|zo/L [y — [HFP 5L 2P p

as required.

Averaged pointwise hostility function In this part of the proof we introduce the
averaged pointwise hostility function. To this end, we consider the open set

A(u,6) :={x € (—Ry, Ry) : u(x) & 0Z}.

A connected component (a,b) of A(u,d) is called monotone if [a,b] NS = (), and
|u/(x)| > ¢ for every = € [a,b]. In this case there exists k € Z such that u(a) = kd and
u(b) = ké £ 6, where the sign depends on the sign of u/(z) in (a,b). From the Lipschitz
continuity of u we deduce that A(u,d) has only a finite number of monotone connected
components. N

The averaged pointwise hostility function H;, : R — R is defined as

~ 1 b
Hs,(x) = . a/ Hs,(s)ds

if z € [a, b) for some monotone connected component of A(, u), and ﬁ[g,p(a:) = Hs,(2)
otherwise.

At this point, inequality ([8.23) follows from (B.25]), while (3.22]) is true because the
integrals of H;,(x) and ﬁg’p(i‘) are the same both in all monotone connected compo-
nents, and in the complement set.
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Asymptotic estimate in stationary points We prove that ([3.24) holds true for every
x € (—Ry, Ry) \ S with |u/(x)] = 0.

To begin with, we observe that in this case = ¢ [a, b) for every monotone connected
component (a,b) of A(d,u) (because |u'(z)| is strictly positive in the closure of every
monotone connected component), and therefore ]/'\I(;J;(ZL‘) = H; () for every § > 0.

If J(6,u,z) = 0 for every 6 > 0, then u is identically null, and the conclusion is
trivial. Otherwise J(d,u,z) # () when 0 is small enough. In this case, let rs; be the
largest positive real number such that

(x —rs,x+1s) N J(,u,z) =0,

T oo g 2 (5\"
< [ [ a2 (5
671)( ) /oo ‘y_x|1+p Y z+rs |y_x|1+p Y P \Ts

Let &, — 01 be any sequence such that

so that

J J
limsup — = lim —. (3.26)
s—ot Ts  kotoo Ty,

Up to subsequences, we can also assume that 75, tends to some ry. If ryg > 0, then
the limit in the right-hand side of (8.26]) is 0, which proves (3.24)) in this case. If ry = 0,
then from the maximality of 5, we deduce that |u(xz £ 15, ) — u(z)| = & for a suitable
choice of the sign, which might depend on k. In any case, the limit in the right-hand
side of (3:20]) turns out to be

u(e £ 15,) — u()]

J
lim — = lim = |u/(z)] =0,
k=400 15, k—4o00 s

k

which proves (3.24]) also in this case.

Asymptotic estimate in non-stationary points We prove that (8.24) holds true for
every x € (—Ry, Ry) \ S with |u/(x)| > 0.

Let us assume, without loss of generality, that u/(z) > 0 (the other case is analogous).
Then for every § > 0 small enough it turns out that x lies in the closure of a monotone
connected component of A(d,u). More precisely, there exist four real numbers as, b,
Cs, d(g with

a5<65§x<05<d5,

and ks € Z such that
u(as) = (ks —1)0, u(bs) = ksd, u(cs) = (ks +1)d, u(ds) = (ks + 2)9,

and
u(y) € ((ks —1)0,ks0)  Vy € (as, bs), (3.27)
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u(y) € (ksd, (ks +1)0) Yy € (bs, cs),
u(y) € ((ks + 1)9, (ks + 2)0) Yy € (cs,ds).
We observe that as, bs, cs, and ds tend to  as § — 01, and hence

bs) —
lim i = lim ulbs) — ulas) =u'(z).
6—0t b(g — as §—0t b(g — ags

Similarly it turns out that

4] o
I = li =
6—1>%1+ Cs — b(g 6—1>I(§l+ d5 — Cs b (l’),
and also 5 )
lim = lim U (@)
6—0t Cs — ag 6—07t d5 — bg 2

From (327)) through (3:29) we deduce that
J(6,u,s) C (—o0,as)U[ds, +00) Vs € (bs,cs).

It follows that

oP oP 1 1
Y [ I J S N
s2(%) B\(ag.d5) |Y — S|P p \(ds—s)P  (s—as)

and hence

(3.31)

(3.32)

) Vs € [55,65),

~ 1 05 or 1 “ 1 1
H;s,(z) = Hsp(s)ds < — / (( + )p) ds (3.33)
bs

65—b5 bs pC(;—b(g d(;—s)p (s—a5
for every x € [bs, ¢5). Now we distinguish two cases.

e If p =1, computing the integrals in (3.33]) we obtain that

1:_\[5,17(3:) < 1) log (d(g - b5 ) ) Cs — Qg . 1) ) ’

_C(;—b(g ) .d(g—C(; ) b(g—a(g
and therefore ([8:24) follows from (B.30) through (3:32).

e If p > 1, computing the integrals in (8:33]) we obtain that

1 1)
p(p—1)cs — bs

Hsp(z) <

{ -1 -1 o1 o1
U

ds — 05);)71 + <b5 — a(;)p*1 B <d5 — b(;)pfl B (05 — a(;)p*

and therefore also in this case ([B.24]) follows from (B.30) through (B.32]).
This completes the proof. [J

28

3



3.5 Smooth recovery families

The aim of this subsection is refining the Gamma-limsup inequality by showing the
existence of recovery families consisting of C'* functions with compact support. To this
end, we introduce the following notion.

Definition 3.8 (J-step functions). Let ¢ be a positive real number. A function w :
R — R is called a d-step function if there exists a positive integer n, a (n + 1)-uple
g < 1 < ...< x, of real numbers, and (kq,...,k,) € Z" such that

e u(x) =0 for every z € (—00,xq) U (2, +00),
o u(z) = ki in (x;_y1, ;) for every i = 1,...,n,
o |ki| = |k, =1and |k; — k;_q| =1 for every i = 2,... n.

The values of u(z) for x € {zg, x1,...,2,} are not relevant (just to fix ideas, we can
define u(z;) as the maximum between the limit of u(z) as z — x;” and the limit of u(z)
as T — x; ).

Now we show that, for every fized > 0, every d-step function can be approximated
in energy by functions of class C* with compact support. Roughly speaking, this is
possible because the rigid structure of J-step functions allows to control the effect of
convolutions, which otherwise is unpredictable due to the sensitivity of the integration
region in (ILI]) to small perturbations.

Proposition 3.9 (Smooth approximation of d-step functions). Let § > 0 and p > 1 be
real numbers, and let u : R — R be a d-step function.
Then there ezists a family {u:}eso C C°(R) such that

lim u. = u in LP(R),
e—0t

and
lim As,(ue, R) = As,(u, R).

e—0t

Proof Let n, x; and k; be as in the definition of d-step functions, and let
To=min{r; —x; 1 :i=1,...,n}

be the length of the smallest interval of the partition. We observe that points in
neighboring intervals do not contribute to the computation of As,(u,R). In particular,

if we write as usual 5
Asp(u,R) = // ————dx dy,
P [6uR) 1Y — TP

ly—z|>17  V(zv,y) € I(J,u,R). (3.34)
Let us fix a mollifier p € C°(R) with

then it turns out that
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e p(x) >0 for every = € R,
e p(z) =0 for every z € R with |z| > 1,

o fpple)de=1,

and let us consider the usual regularization by convolution

ue() == / u(z + ey)ply) dy.

It is well-known that u. € C°(R) for every € > 0, and that for every p > 1 it turns
out that u. — uwin LP(R) as ¢ — 0%,
Let us assume that 2¢ < 7, let us consider the two open sets

A= U(xi_57$i+€)gR7 B, :=(A: xR)U(R x A.) CR?,

and let us write

oP oP
As (u,R):// 7d:cdy+// ——F—dx dy.
mE I(6ue®)nB. Y — [HFP [(6ueR\B. |y — T[HFP

Since the support of p is contained in [—1, 1], it turns out that u.(z) = wu(z) for
every © € R\ A.. It follows that

I(0,u.,,R)\ B: = I(d,u,R) \ B,

and therefore

oP oP
lim // drdy = lim // ————dxdy = Asp(u, R),
e=0% JJ1(6uc R\B. 1Y — $|1+p e=0t ) rsumrnB. |y — [P v

where the last equality follows from Lebesgue’s dominated convergence theorem because
B, shrinks to a set of null measure. So it remains to show that

5P
P dx dy = 0. (3.35)

lim / /
e=0% JJ1(6,ue, R)NB: 1Y

To this end, from (3.34]) and the properties of the support of the mollifier, we deduce
that now

‘y—l’|27'—2€ V(:L’,y)EI(é,us,R),

and therefore

517 Tite 5p
———drdy < 2 / dx / —dz
/[(é,ug,R)ﬂBg ly — x|*P Z zi—e o> r—2e |27

337.4’62 p
< 2 —d
- Z/—e p|7—_25|p !
4
S 1
p|7‘—2€|p 2e(n+ 1),
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which implies (330). O

We are now ready to show the existence of smooth recovery families. As usual, it is
enough to show the existence of such a family for every u in a subset of L(R) which is
dense in energy for Ay ,(u,R). In this case we consider the space PA.(R) of piecewise
affine functions with compact support.

Since piecewise affine functions are piecewise C!, we know from Proposition B.7]
that the family Ssu of vertical J-segmentations of u is a (non-smooth) recovery family
for u. The key point is that the vertical J-segmentation of a piecewise affine function
with compact support is a d-step function according to Definition B.8 Thus from
Proposition we deduce the existence of a function us € C2°(R) such that

||U5 - S(SUHLP(]R) S ) and A57p(u5, R) S A57p(55u, R) + )

for every 6 > 0. This implies that {us} is a smooth recovery family for u. [

4 Gamma-convergence in any dimension

It remains to prove Theorem [[.I] in any space dimension. This follows from well es-
tablished sectioning techniques. For every o € S¥! let ()1 denote the hyperplane
orthogonal to o, namely

(o)t ={z€eR?: (z,0) = 0}.

Given any u : R? — R, for every o € S%! and every z € (o)*, we consider the
one-dimensional section u, , : R — R defined as

Up (7)== u(z + o) Vo € R.

The main idea is that Sobolev norms, total variation, and functionals such as Ajs,
computed in u are a sort of average of the same quantities computed on the one-
dimensional sections u, .. The result is the following.

Proposition 4.1 (Integral-geometric representation). Let u : R — R be any measur-
able function. Let As, and Ao, be the functionals defined in (I1) and (1.3), respectively.

(1) For every p > 1 it turns out that

/Sd1 dO’/ Ao,p(uw, R) dz = Gd,p Ao’p<u, Rd),

(o)t
where G, is the geometric constant defined in (1.4)).

(2) For every 6 > 0 and every p > 1 it turns out that
/ da/ Asp(tug 2, R)dz = 2A57p(u,]Rd). O
d—1
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We skip the details of the proof of Proposition 1l which is a simple application
of variable changes in multiple integrals. More generally, for every o € S%~! and every
g € LY(RY) it turns out that

/ o) dy = / dz / g(z + ov) da,
R4 (o) + R

and this is the main ingredient in the proof of statement (1).
Similarly, for every g € L*(R? x R?) it turns out that

1
// g(u,v) dudv = —/ da/ dz// g(z+ o, 2+ oy) - ly — 2| d dy,
Rd xRd 2 Sd-1 (o) + RxR

and this is the main ingredient in the proof of statement (2).

We are now ready to prove Theorem [LTL

Gamma-liminf Let us assume that us; — u in L'(R?). Then for every o € S it
turns out that
(ué)a,z — ua,z n Ll (R)

for almost every z € (o)t. Therefore, from the integral-geometric representations of
Proposition [4.1], Fatou’s lemma, and the one-dimensional result, we obtain that

6—0t 50t 2

1
liminf Aj,(us, R?) = liminf—/ da/ Nsp((us)oz, R) dz
Sd—l <0->L

v

1
—/ dcr/ lim inf As,((4s)s,2, R) dz
2 Sd-1 <U>

1 =0t

1 2
— d -C, A o2 R)d
2 /Sd—1 0-/<U>L P P 0’p(u ’ ) N

1
- Z—)decp onp(u, Rd)

v

Gamma-limsup Let u € C>*(R?) be any function with compact support. For every
0 > 0 we consider the vertical §-segmentation Ssu of u, and we observe that this
operation commutes with the one-dimensional sections, in the sense that

(Sst)s.. = Ss(Uo,2) Vo € ST vz e (o)t

Therefore, from the integral-geometric representations of Proposition E.1], Fatou’s
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lemma, and the one-dimensional result, we obtain that

1
limsup As,(Ssu, RY) = limsupé/ dcr/ Asp((Ssu)pz, R) dz
Sd—l <>L

6—0t 6—0t o

IN

1
—/ dcr/ lim sup As,((Ssu)o,z, R) dz
2 Sd-1 <U>

L §—=0t

1 2
- d 20, Ao p(uy s, R) d
2 qu 0-/<U>L P P 0’p(u ’ ) N

1
== 5Gd7pcp onp(u, Rd)

IN

The é-independent bounds on As,((Ssu)s., R) needed in order to apply Fatou’s
lemma follow from the Lipschitz continuity of u and the boundedness of its support.

Smooth recovery families It remains to show the existence of smooth recovery families.
The strategy is analogous to the one-dimensional case, and therefore we limit ourselves
to outlining the argument, sparing the reader all technicalities.

To begin with, we observe that the space PA.(R?) of piecewise affine functions with
compact support is a subspace of LP(R?) that is dense in energy for Ay, (u, R?). This
is true because C°(RY) is dense in energy, and in turn any function in C2°(R%) can be
approximated in W1°(R?) by functions in PA.(R?) (see for example Chapter 4 in [6],
and in particular Corollary (4.4.24)).

As a consequence, it is enough to show the existence of a recovery family for every
u € PA.(R?), in which case a non-smooth recovery family is provided by the vertical
0-segmentations Ssu of u. On the other hand, vertical d-segmentations of piecewise
affine functions with compact support are d-step functions, and these functions can be
approximated in energy by smooth functions. It follows that for every ¢ > 0 there exists
us € C°(R?) such that

||U5 - S(;uHLp(Rd) S ) and A(;,p(u(g, Rd) S A57p(55u, Rd) + 5,

and therefore {us} is the required recovery family.

The last approximation step can be proved by convolution as we did in Proposi-
tion 3.9 To be more precise, a d-step function in dimension d is a function v : R — R
with the property that there exist a finite set P, ..., P,, of disjoint open polytopes
(bounded intersections of half-spaces), and integer numbers ki, ..., k,, such that

e v(z) =Fk;idin P, for every i = 1,...,m,

e v(x) = 0 in the open set Py defined as the complement set of the closure of
PU...UP,,

o |k; — k;| <1 whenever the closure of P, intersects the closure of P;,
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e |k;| <1 whenever the closure of P; intersects the closure of F.

In words, the level sets of a d-step function are finite unions of polytopes, and values
in adjacent regions differ by 9.
The key point is that for every d-step function v there exists a positive real number
7 such that
(z,y) € I(6,v,RY) = |y—a|>T

As a consequence, when we define v, as the convolution of v with a mollifier whose
support is contained in the ball with center in the origin and radius €, we obtain that

(z,y) 6](5,05,Rd) = |y—z|>71— 2,

and at this point the conclusion follows exactly as in the proof of Proposition 3.9, [
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