
Co-simulation of semi-autonomous systems: the
Line Follower Robot case study

Maurizio Palmieri1,2, Cinzia Bernardeschi2, and Paolo Masci3

1 Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy
2 Dipartimento di Ingegneria dell’Informazione, University of Florence, Italy

3 HASLab/INESC TEC and Universidade do Minho, Braga, Portugal

Abstract. Semi-autonomous systems are capable of sensing their en-
vironment and perform their tasks autonomously, but they may also
be supervised by humans. The shared manual/automatic control makes
the dynamics of such systems more complex, and undesirable and hardly
predictable behaviours can arise from human-machine interaction. When
these systems are used in critical applications, such as autonomous driv-
ing or robotic surgery, the identification of conditions that may lead the
system to violate safety requirements is of main concern, since people ac-
tually entrust their life on them. In this paper, we extend an FMI-based
co-simulation framework for cyber-physical systems with the possibility
of modelling semi-autonomous robots. Co-simulation can be used to gain
more insights on the system under analysis at early stages of system de-
velopment, and to highlight the impact of human interaction on safety.
This approach is applied to the Line Follower Robot case study, available
in the INTO-CPS project.

1 Introduction

Cyber-Physical Systems (CPS) are complex physical systems operated by digital
controllers. The physical part (the plant) may be an entirely engineered system
(e.g., a chemical plant) as in traditional control system, but can also be a natural
system (e.g., a patient) as in medical applications. From the computational point
of view, the existence of digital and physical components requires the use of
different kinds of mathematical formalisms, e.g., discrete logic-based models for
controllers, and continuous models based on differential equations for plants.
In addition, the physical parts of a same CPS may need to be modelled with
different languages and tools. Because of this, an efficient way of simulating
CPS is by using co-simulation frameworks, which enable integrated simulation
of heterogeneous models using multiple tools.

Semi-autonomous systems are a particular kind of CPS. In these systems,
the user interface of the system has an important role, as it allows an operator
to interact with the system, e.g., to override its autonomous behaviour when
desired or necessary. A common example is a car’s cruise control that automat-
ically adjusts the speed of the car. The driver can take over control at any time

just by pressing either the brake or the accelerator pedal. Another example is
robotic-assisted surgery, where a surgeon console registers the hand’s gestures of
a surgeon and translates them into micro-movement of robotic arms.

Simulation and prototyping are important technologies for early detection of
design problems in user interfaces of CPS, as they facilitate the discussion of
scenarios and design aspects in a multi-disciplinary team of developers, human
factors specialists, and domain experts. In critical application domains such as
automotive and healthcare, however, simulation and prototyping alone may not
be sufficient to ensure that the system meets the safety levels required by regu-
latory frameworks — they can be used to explore only a finite set of scenarios
and user input sequences. Formal verification technologies can be used to extend
simulation results and reach the necessary safety level. They are based on mathe-
matical proofs, and allow developers to gain additional confidence that a system
meets given safety requirements. It is therefore desirable to integrate as much
as possible formal verification with simulation and prototyping frameworks, to
make the overall development process more efficient.

In our previous work [2], we developed a CPS co-simulation framework that
integrates the Prototype Verification System (PVS) [24] and Simulink4. PVS is
used for modelling, simulation, and verification of critical CPS software compo-
nents. Simulink is used for modeling and simulation of continuous aspects of the
CPS. Ad-hoc APIs were used to execute two models in lockstep and for time
synchronization. In the present work, we enhance this PVS-based co-simulation
framework with a Functional Mockup Interface (FMI), a tool-independent co-
simulation interface that is becoming a de-facto industry standard.

Contribution. This paper reports on our work on developing an FMI-compliant
interface for the Prototype Verification System (PVS) [24] that includes the ca-
pability of a GUI and enables human-in-the-loop co-simulation. An example
based on a semi-autonomous vehicle is used to demonstrate the utility and ca-
pabilities of the developed interface. A controller is modelled and verified in
PVS; the PVSio-web [19] toolkit is then used to connect the verified PVS model
with a realistic interactive dashboard prototype; a co-simulation is then carried
out by using the developed FMI interface to integrate the PVS model and dash-
board with the rest of the system components (vehicle’s mechanics, sensors, and
environment) simulated with other tools.

Structure. Section 2 presents related work on simulation and verification of
CPS. Section 3 illustrates background concepts and tools used in this work. Sec-
tions 4 and 5 present the main contributions of this work, i.e., the development
of an FMI-compliant interface for PVS, and an example application based on a
semi-autonomous system. Section 6 concludes the paper.

2 Related work

In [7], an approach is presented, based on expressing the discrete-event model
in the Vienna Development Method (VDM) [8] and the continuous-time model

4 http://www.mathworks.com/products/simulink

in the Bond-Graph notation [14]. The simulation environment Overture [16]
for VDM and the simulation environment 20-sim [5] for Bond-Graphs are in-
tegrated into the Crescendo tool [17]. The information needed to co-ordinate
the two models, including shared parameters, variables, and events are identi-
fied in a contract listing. Synchronization and data exchange is managed by a
co-simulation engine.

In [23], the ForSyDe modelling framework [25] is extended to support het-
erogeneous co-simulation. A ForSyDe model is a hierarchical set of processes,
where each process may belong to a Model of Computation (MoC) [18]. A MoC
represents the underlying time, synchronization, and communication model as-
sumed by a process. The framework enables processes with different MoCs to
co-execute. This framework has been extended with wrapper processes interact-
ing with external simulators or hardware components.

The INTO-CPS project [13] created an integrated tool chain for compre-
hensive Model-Based Design of CPS based on the Functional Mockup Interface
(FMI) standard [3, 4]. The core of INTO-CPS is an FMI-compliant Co-simulation
Orchestration Engine that enables a coordinated simulation of heterogeneous
models in a distributed environment. Even if many challenges are still open,
such as establishing the correctness of the co-simulation of mix continuous and
discrete behaviour [6], there are efforts to apply this standard in industry.

Other works address the problem of simulating CPS by using only one spec-
ification formalism for both continuous and discrete systems (like for example,
HybridSim [27]) or extend original languages to new features, for example, in [26,
12] the integration of MATLab/Simulink with UML is proposed. For a recent
survey of co-simulation technologies for cyber-physical systems, readers may re-
fer to [10].

A complementary approach to the analysis of CPS is formal verification. In
this respect, KeYmaera [9] is a theorem prover for differential dynamic logic.
It has been applied successfully for proving correctness of automotive, avionics
and medical CPS. Our work differs from KeYmaera in that we aim to integrate
formal verification by theorem proving in PVS (see for example [1]) with the
possibility of performing co-simulation of the system. Our aim is ultimately
to facilitate the introduction of formal verification technologies in development
processes that routinely use simulation and prototyping.

3 Background

3.1 The Functional Mockup Interface

The Functional Mockup Interface (FMI) [3, 4] is a tool-independent standard
to support both model exchange and co-simulation of dynamic models. Co-
simulation is performed by a number of Functional Mockup Units (FMUs), each
responsible for simulating a single sub-model. An FMU contains a sub-model
represented in the native formalism of the tool that created it, and the infor-
mation or tools needed for its execution. That is, an FMU may carry a whole

Fig. 1. FMI communication schema.

simulation environment, or just information needed by an FMI-compliant host
environment to simulate the model contained in the FMU. An FMI-compliant
host environment provides a master program that communicates with the FMUs
acting as slaves. The FMI defines a standard API for the FMUs and standard
methods of deployment for them.

The FMU’s APIs include functions called at the initialization phase, functions
to trigger one simulation step (fmi2DoStep()), and functions to exchange data.
The latter have a standard signature fmi2Get<TYPE> and fmi2Set<TYPE>,
where <TYPE> is a concrete type name, e.g., Integer or Real. These func-
tions are used to transmit data from and to the FMUs, respectively. Other two
functions, fmi2Termminate and fmi2FreeInstance, can be used to terminate
simulation and release resources. Figure 1 shows the communication pattern for
these functions.

3.2 INTO-CPS

INTO-CPS [15] is a EU-funded project that is finalizing the development of an
integrated tool-chain for model-based design of CPS based on FMI-compliant
co-simulation. The tool-chain currently supports simulation of models produced
by various tools, including OpenModelica, 20-sim, and Overture. SysML is used
to specify the overall architecture of the system to be simulated, by representing
the interconnections among the sub-models.

In this work, we embrace the INTO-CPS tool-chain and a case study devel-
oped in the INTO-CPS project (the Line Follower Robot5), and use them to

5 https://github.com/into-cps/case-study line follower robot

demonstrate the FMI extensions we have developed for PVS (additional details
on the case study are in Section 5).

3.3 The Prototype Verification System (PVS)

The Prototype Verification System (PVS) [24] is an interactive theorem prov-
ing environment for higher-order logic. The PVS specification language provides
basic types, such as Booleans, naturals, integers, reals, and others, and type
constructors to define more complex data-types (e.g., records) and subtypes. The
mathematical properties of each type are defined axiomatically in a set of fun-
damental theories, called the prelude. New types are declared using the TYPE

keyword. A record type is a tuple whose elements are referred to by their respec-
tive field name. For example, given the declarations:

Wheels: TYPE = [# left: real , right: real #]

axle: Wheels = (# left := 1.0, right := 0.5 #)

the expressions left(axle) and right(axle) denote the speeds of the left
and right wheels of axle, respectively. Equivalent notations are axle‘left and
axle‘right. The override expression WITH [..] can be used for in-line re-
definition of record field values. For example, for the declarations above, the
expression axle WITH [left := -1.0] denotes the record value (# left :=

-1.0, right := 0.5 #). An example PVS subtype is the following:

Speed: TYPE = { x: real | x >= -1 AND x <= 1 }

which defines type Speed as a subtype of real numbers in the interval [−1, 1].
Subtypes can be used in function definitions to define safety constraints and
limits that shall be checked. We will use these feature in Section 5, to verify
that, e.g., the velocity commanded by the controller does never exceed the robot’s
mechanical specifications.

3.4 PVSio and PVSio-web

PVSio [22] is a ground evaluator that computes the value of ground (variable-
free) expressions. The PVSio evaluator acts as an interactive interpreter for
the logic language of PVS, and can be used by developers to simulate a PVS
model. At the PVSio prompt, the user types a ground PVS expression (which
is equivalent to a function call of imperative languages) and PVSio returns the
result of the evaluation. For example, if a PVS theory contains the following
function definition

compute_velocity(v:real , a:real , t:real): real = v + a*t

then its value for a particular triple of arguments can be computed with the
following function application: compute velocity(3.5, 1.8, 3.0);

PVSio-web [19] is an open source toolkit that extends PVSio with functions
for creating and executing realistic user interface prototypes based on PVS mod-
els. Using PVSio-web, developers can define the visual appearance of the proto-
type, as well as capture user actions over input widgets, and render feedback on
displays and other output widgets on the user interface. These functionalities are
used in Section 5 to create an interactive dashboard for driving a Line Follower
robot.

4 Development of an FMI-compliant interface for PVS

We developed an FMI-compliant interface for PVS by creating a C wrapper
module that implements the FMI interface and spawns a PVSio process. At
the beginning of the co-simulation, the wrapper starts a PVSio instance, loads
a given PVS model in PVSio, creates a server module to exchange commands
with interactive GUI, and waits for input. In more detail, the wrapper performs
the following two actions at each simulation step:

– Translates calls to FMI functions into appropriate commands for PVSio;

– Receives replies from PVSio and stores them into appropriate buffers.

Communication between the wrapper and PVSio relies on standard Unix pipes,
and communication between the wrapper and GUI uses the WebSocket6 pro-
tocol. This latter choice allows us to have a loose coupling between the FMU
and the GUI, which promotes separation of concerns between the visual appear-
ance of the user interface from its functional behaviour (Model-Controller-View
architectural pattern). The overall architecture is summarized in Figure 2.

4.1 Implementation of the FMU

The FMU module implements four core functions: fmi2Instantiate, which ini-
tializes the FMU; fmi2DoStep, which executes a simulation step; and a battery
of fmi2Get/fmi2Set functions for data exchange. To use a PVS model in the
FMU, the model needs to provide at least two functions: init, that initializes
the PVS model to the initial state (where the state is represented using a PVS
record type); and step, that performs a simulation step.

The initialization function (fmi2Instantiate) starts the PVSio interpreter,
redirects the PVSio standard I/O towards a Unix pipe, invokes the init function
of the PVS model, and stores the result of the evaluation in a variable of the
FMU. Finally, a WebSocket server necessary for communication with a PVSio-
web prototype is created.

The fmi2DoStep function sends PVSio a string encoding a call to the PVS
function step. A function argument is included, representing the current state
of the system. The result of the evaluation is stored in a variable in the FMU.

6 https://www.websocket.org

Fig. 2. Architecture of the FMU module for PVS.

4.2 Implementation of the PVSio-web prototype

The PVSio-web prototype is a JavaScript module executed in a web browser.
The prototype builds on the PVSio-web communication architecture to open
a Websocket connection to Websocket server executed in the PVS FMU. A
picture is used as a basis to create the visual appearance of the prototype (e.g.,
to create the remote dashboard controller prototype illustrated in Section 5, we
used a photo of a joypad and a smartphone — see left side of Figure 4). Control
and display elements in the prototype are created using a library of input and
output widgets provided by PVSio-web. Button widgets capture user actions
on certain areas of the prototype (e.g., pressing a button) and translate these
actions into commands for the FMU. Display widgets are used for rendering
visible state attributes of the system, using an appropriate visualization style
(e.g., the velocity of a vehicle can be rendered with speedometer gauges). The
FMU, in turn, translates these commands into calls to functions defined in the
PVS model. State updates are periodically sent by the FMU to the PVSio-web
prototype, to keep the user interface updated with the actual system state.

5 Case study

Our case study is based on the Line Follower Robot example provided by the
INTO-CPS European project. In the original example, an autonomous robot (see
Figure 3) has the goal of following a line painted on the ground. The controller of
the robot receives the readings from two light sensors placed on the front of the
robot, and sends commands to the left and right motors which are in charge of
the rotation of the left and right wheels, respectively. The aim of the controller is

Fig. 3. The INTO-CPS Line Follower Robot (from [13]).

to keep the robot on a path (the dark line in Figure 3). The INTO-CPS project
provides the FMU of the robot mechanics (created with the 20-sim tool), the
FMU of the sensors (created with 20-sim and OpenModelica), and the FMU of
the controller (created with the Overture tool). It also provides a SysML model
necessary to link these components.

In the present work, we replaced the original controller of the robot with a
more advanced controller developed in PVS. The new controller allows a driver
to override the automatic line following control of the robot, and operate the
robot manually, using controls on a dashboard. The sensors and the mechanics
of the robot are unaltered with respect to the original INTO-CPS example.

The prototype of the dashboard (see left side of Figure 4) provides a naviga-
tion display with the trajectory of the robot, two speedometer gauges to monitor
the velocities of the wheels, a speedometer gauge to monitor the velocity of the
robot, and various control buttons to allow a driver to accelerate or brake, change
direction of the robot (turn right, turn left), and change gear (drive, reverse).
There is also a command (home) to switch control mode from manual back to
automatic. Velocity and trajectory shown on the dashboard mirror sensor data
communicated to the dashboard through the FMI interface. The original SysML
model has been modified to include these new communication links.

In the following sub-section, a description of the PVS controller and the
PVSio-web prototype of the dashboard are presented. The full example, includ-
ing the PVS theory and the PVSio-web prototype, can be downloaded from our
repository on github7.

5.1 PVS theory of the new controller

Theory advanced controller defines the characteristics and functionalities of
the new controller. The initial part of the theory defines the structure of the
controller state (lines 9-13), and the data-types of the state attributes:

7 https://github.com/PaoloMasci/pvsioweb-fmi-extensions

1 advanced_controller: THEORY BEGIN

2 %-- type definitions

3 LSR: TYPE = { x: nonneg_real | x <= 255 }

4 LightSensors: TYPE = [# left: LSR , right: LSR #]

5 Speed: TYPE = { x: real | x >= -1 AND x <= 1 }

6 MotorSpeed: TYPE = [# left: Speed , right: Speed #]

7 ControlMode: TYPE = { AUTO , MANUAL }

8 %-- controller state

9 State: TYPE = [#

10 lightSensors: LightSensors ,

11 motorSpeed: MotorSpeed ,

12 gear: Gear ,

13 cm: ControlMode #]

14 %-- ... more definitions omitted for brevity

15 END advanced_controller

Field lightSensors in the state of the controller (line 10 in the snippet above)
holds the input values received from the light sensors, ranging from 0 to 255,
according to the robot’s sensors specifications; motorSpeed holds the rotation
speed of the robot wheels, ranging from -1 to 1, according to the robot’s me-
chanical specifications; gear is an extension used to represent possible gears of a
car-like system. It can be DRIVE or REVERSE; cm stores the control mode, which
can be either AUTO or MANUAL.

The step function called at every simulation step updates the rotation speed
of the left and right motors when cm is in mode AUTO.

1 step(st: State): State =

2 IF cm(st) = AUTO

3 THEN st WITH [

4 motorSpeed := (#

5 left := update_left_motor_speed(st),

6 right := update_right_motor_speed(st)

7 #)] ELSE st ENDIF

Function update left motor speed (update right motor speed) in the snip-
pet above updates the left (right) motor speed using a simple control algorithm
based on a threshold and the current light sensors reading. The same algorithm
was also used in the Overture model of original controller of the robot.

1 update_left_motor_speed(st: State): Speed =

2 LET ls = lightSensors(st)

3 IN COND ls`right < 150 AND ls `left < 150 -> 0.4,

4 ls`right > 150 AND ls `left < 150 -> 0.5,

5 ls`right < 150 AND ls `left > 150 -> 0.1,

6 ELSE -> motorSpeed(st)`left ENDCOND

In the snipped above, the LET-IN construct introduces local definition that can
be used in the expressions following IN. The COND-ENDCOND expression is a many-
way switch composed of clauses of the form condition → expression, where all

conditions must be mutually exclusive and must cover all possible combinations
of their truth values (an ELSE clause provides a catch-all). The PVS type checker
verifies that these constraints are satisfied.

For each control provided on the dashboard, the PVS theory provides a
matching function. For example, the accelerate button is associated with the
PVS function accelerate, which is defined as follows:

1 accelerate(st: State): State = st WITH [

2 cm := MANUAL ,

3 motorSpeed := (#

4 left := COND

5 gear(st) = DRIVE

6 -> inc_CW_speed(motorSpeed(st)`left , ACC_STEP),

7 gear(st) = REVERSE

8 -> inc_CCW_speed(motorSpeed(st)`left , ACC_STEP),

9 ENDCOND ,

10 right := COND

11 gear(st) = DRIVE

12 -> inc_CCW_speed(motorSpeed(st)`right , ACC_STEP),

13 gear(st) = REVERSE

14 -> inc_CW_speed(motorSpeed(st)`right , ACC_STEP),

15 ENDCOND #)]

When function accelerate is executed, cruise control is automatically changed
to MANUAL (line 2 in the snippet above). The speed of the robot is increased
by updating the rotation speed of the left and right motors of the robot by
an acceleration step ACC STEP. The specific direction of rotation of the motors
(clockwise, or counter-clockwise) depends on the gear selected by the driver,
and on which wheel the motor controls (e.g., to move the robot forward, the left
motor needs to rotate clockwise, but the right motor needs to rotate counter-
clockwise). When the gear is DRIVE (lines 5-6 and 11-12) the rotation speed of
the left and right motors is set to move the robot forward. When the gear is
REVERSE (lines 7-8 and 13-14) the rotation speed of the left and right motors is
set to move the robot backwards.

For the developed theory, the PVS type-checker automatically generated 22
proof obligations to ensure correct use of types, coverage of conditions, and
disjointness of conditions. All proof obligations were automatically verified by
the PVS theorem prover in just 0.29 seconds on a standard laptop (Intel Core i7-
5500U, 8GB RAM). This ensures that the developed model does not have bugs
such as division by zero, or logic errors such as erroneous control definitions that
overshoot the robot’s motors specifications.

5.2 PVSio-web prototype of dashboard

We developed a dashboard prototype in PVSio-web (see Figure 4) to allow a
driver to interact with the PVS controller and, by doing so, operate the robot and
monitor its speed and position. The prototype is based on a joypad: directional
arrows are used to steer the robot, and a number of buttons can be used to effect

Fig. 4. Screenshot taken during a co-simulation run. The dashboard prototype is on
the left. The output of the INTO-CPS co-simulation window is on the right.

actions of the robot. For example, if the robot had a mechanical arm, some of
the buttons could be used to move the arm, or if the robot represents a car-like
vehicle, as in our case, they can simulate a gear shift control.

The developed dashboard prototype uses directional arrows to control the
direction and accelerate/brake. The home button at the centre for the joypad
can be used to activate automatic control mode. These interactive controls were
created by overlaying the picture of the joypad with transparent interactive areas
that can detect button presses. Gears can be shifted using the joypad buttons
Y (drive), and A (brake). This is the standard approach used in PVSio-web to
create interactive controls.

A smartphone mounted at the top of the joypad is used to render speedometer
with the current speed of the robot and the current gear, and a navigation display
with the current position and direction of the robot on a map. A frameless
display at the top of the smartphone shows the control mode (auto/manual).
Two additional gauge displays are placed at the bottom of the joypad, to monitor
the current rotation speed of the wheels. All these display elements were created
by overlaying the picture of the joypad with digital displays available in the
PVSio-web distribution. An external JavaScript library (d3-gauge-plus8) is used
to render gauges. The navigator display is implemented using HTML5 Scalable
Vector Graphics (SVG). The gauge and navigator displays are part of a new
domain-specific library for the PVSio-web, which will be released with the next
version of the toolkit.

5.3 Results

Several co-simulation runs were performed by connecting the PVS FMU to the
INTO-CPS Co-Simulation Engine. All experiments were configured with a fixed

8 https://github.com/gimbo/d3-gauge-plus

Fig. 5. Control mode validation. Fig. 6. Automatic vs. Manual drive.

simulation step of 0.01 seconds, and a duration of 35 seconds of simulated time.
Figure 4 shows a screen-shot from an ongoing simulation. On the left side, the
image shows the joypad prototype displaying the trajectory and speed of the
robot. On the right side, the image shows the INTO-CPS application window
hosting the co-simulation.

As a first experiment, we checked that the behaviour of the new PVS con-
troller in automatic control mode was the same of that produced by the original
Overture controller developed in the INTO-CPS project. As shown in Figure 5,
this check was successful: the trajectory of the robot is identical in the two cases
(modulo small differences due to mathematical approximation).

Other experiments were then performed to check that the robot was following
the commands given by a driver with the dashboard prototype. In one experi-
ment, we tried to use the manual drive to follow the same path as the automatic
controller, obtaining the result in Fig. 6 (manual driving is shown with a dashed
line). The plot shows that it is possible to approximately follow the same path.
The low accuracy in some sections of the track are mainly due to the relatively
high speed used by the driver to move the robot, which did not allow an accurate
control of the robot’s direction.

Finally, experiments were also performed to check the robot behaviour when
switching control mode from automatic to manual, and vice-versa. Switching
from manual to automatic mode highlighted some interesting scenarios where
the robot had an unexpected behaviour. For example, the robot was sometimes
overshooting the path so much that a U-turn was then necessary to get back
on track (see Figure 7). This happened, e.g., when the control of the robot was
initially set to manual, the driver accelerated the robot to its maximum speed,
and then switched to automatic control mode. When switching from manual to
automatic control mode, the robot keeps the same speed set by the driver until
a direction adjustment is needed. Because of this, when the robot encounters
the line painted on the track, the speed is too high and the directional change
issued by the controller is not enough to perform the necessary sharp turn.

Fig. 7. U-turn due to high speed. Fig. 8. Missed turn.

Another example abnormal situation is shown in Figure 8, where the robot
under automatic control mode does not perform the directional change necessary
to bring the robot on track. This seems to be a boundary case of the cruise control
algorithm: when the robot reaches the path perpendicularly, both sensors return
the same value, and the control algorithm decides not to turn.

6 Conclusions

We have presented the implementation of the FMI-compliant interface for the
PVS system. This allows us to use PVS in FMI-based frameworks, such as the
INTO-CPS tool-chain. An example based on a semi-autonomous vehicle was
developed. The example builds on the Line Follower Robot case study of the
INTO-CPS project. We extended the example by developing a new controller
that allows an operator to drive manually the robot using a joypad-like controller.
The logic of operation of the new controller is entirely specified in PVS, which
allows the use of the PVS theorem prover to verify use-related safety properties
of the human-machine interface of the system, e.g., consistency of response to
user actions, visibility of operating modes, and predictability of response to user
commands (see also [11, 20, 21]) .

Acknowledgments. We would like to thank the INTO-CPS team for their support

with the INTO-CPS tool-chain and the Line Follower Robot example. Paolo Masci’s

work is financed by the ERDF (European Regional Development Fund) through the

Operational Programme for Competitiveness and Internationalisation – COMPETE

2020 Programme, within the project POCI-01-0145-FEDER-006961, and by National

Funds through the Portuguese funding agency, FCT (Fundação para a Ciência e a

Tecnologia) as part of the project UID/EEA/50014/2013.

References

1. Cinzia Bernardeschi and Andrea Domenici. Verifying safety properties of a nonlin-
ear control by interactive theorem proving with the Prototype Verification System.
Information Processing Letters, 116(6):409–415, 2016.

2. Cinzia Bernardeschi, Andrea Domenici, and Paolo Masci. A PVS-Simulink Inte-
grated Environment for Model-Based Analysis of Cyber-Physical Systems. IEEE
Transactions on Software Engineering, PP(99):1–1, 2017.

3. T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist, A. Jung-
hanns, J. Mauß, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz,
and S. Wolf. The Functional Mockup Interface for Tool independent Exchange of
Simulation Models. In Proc. of the 8th Intl. Modelica Conference, pages 105–114.
Linköping University Electronic Press, 2011.

4. Torsten Blochwitz, Martin Otter, Johan Åkesson, Martin Arnold, Christoph Clauß,
Hilding Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauß, Dietmar
Neumerkel, Hans Olsson, and Antoine Viel. Functional Mockup Interface 2.0: The
Standard for Tool independent Exchange of Simulation Models. In Proc. of the
9th Intl. Modelica Conference, pages 173–184. The Modelica Association, 2012.

5. J. F. Broenink. Modelling, simulation and analysis with 20-sim. Journal A, 38(3):22
–25, September 1997.

6. Fabio Cremona, Marten Lohstroh, David Broman, Stavros Tripakis, Edward A.
Lee, and Michael Masin. Hybrid co-simulation: It’s about time. Technical Report
UCB/EECS-2017-6, University of California, Berkeley, Apr 2017.

7. John Fitzgerald, Peter Gorm Larsen, Ken Pierce, Marcel Verhoef, and Sune
Wolff. Integrated Formal Methods: 8th International Conference, IFM 2010, Nancy,
France, October 11-14, 2010. Proceedings, chapter Collaborative Modelling and Co-
simulation in the Development of Dependable Embedded Systems, pages 12–26.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

8. John S. Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef. Vienna Development
Method. John Wiley & Sons, Inc., 2007.

9. F. Franchetti, T. M. Low, S. Mitsch, J. P. Mendoza, L. Gui, A. Phaosawasdi,
D. Padua, S. Kar, J. M. F. Moura, M. Franusich, J. Johnson, A. Platzer, and
M. M. Veloso. High-assurance spiral: End-to-end guarantees for robot and car
control. IEEE Control Systems, 37(2):82–103, April 2017.

10. Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans
Vangheluwe. Co-simulation: State of the art. arXiv:1702.00686, 2017.

11. Michael D Harrison, P. Masci, José C Campos, and Paul Curzon. Verification
of User Interface Software: the Example of Use-Related Safety Requirements and
Programmable Medical Devices. IEEE Transactions on Human-Machine Systems,
to appear., 2017.

12. J. Hooman, N. Mulyar, and L. Posta. Coupling Simulink and UML models. In
In Proc. Symposium FORMS/FORMATS, Formal Methods for Automation and
Safety in Railway and Automotive Systems, B. Schnieder and G. Tarnai (eds.),
pages 304–311. 2004.

13. INTO-CPS: Integrated Tool Chain for Model-based Design of Cyber-Physical
Systems®, Horizon H2020 project. Grant #644047.

14. Dean Karnopp and Ronald Rosenberg. Analysis and simulation of multiport sys-
tems; the bond graph approach to physical system dynamics. M.I.T. Press, Cam-
bridge, MA, USA, 1968.

15. P. G. Larsen, J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn,
T. Lecomte, M. Pfeil, O. Green, S. Basagiannis, and A. Sadovykh. Integrated tool
chain for model-based design of cyber-physical systems: The into-cps project. In
2016 2nd International Workshop on Modelling, Analysis, and Control of Complex
CPS (CPS Data), pages 1–6, April 2016.

16. Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Laus-
dahl, and Marcel Verhoef. The Overture Initiative Integrating Tools for VDM.
SIGSOFT Softw. Eng. Notes, 35(1):1–6, January 2010.

17. Peter Gorm Larsen, Carl Gamble, Kenneth Pierce, Augusto Ribeiro, and Kenneth
Lausdahl. Support for Co-modelling and Co-simulation: The Crescendo Tool, pages
97–114. Springer, 2014.

18. E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 17(12):1217–1229, Dec 1998.

19. Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon, and Harold
Thimbleby. PVSio-web 2.0: Joining PVS to HCI, pages 470–478. Springer Inter-
national Publishing, 2015.

20. Paolo Masci, Rimvydas Rukšenas, Patrick Oladimeji, Abigail Cauchi, Andy Gim-
blett, Yunqiu Li, Paul Curzon, and Harold Thimbleby. The benefits of formalising
design guidelines: A case study on the predictability of drug infusion pumps. In-
novations in Systems and Software Engineering, 11(2):73–93, 2015.

21. Paolo Masci, Yi Zhang, Paul Jones, Paul Curzon, and Harold Thimbleby. Formal
verification of medical device user interfaces using pvs. In ETAPS/FASE2014, 17th
International Conference on Fundamental Approaches to Software Engineering.
Springer Berlin Heidelberg, 2014.

22. C. Muñoz. Rapid prototyping in PVS. Technical Report NIA 2003-03, NASA/CR-
2003-212418, National Institute of Aerospace, Hampton, VA, USA, 2003.

23. S. H. Attarzadeh Niaki and I. Sander. Co-simulation of embedded systems in a
heterogeneous MoC-based modeling framework. In 2011 6th IEEE International
Symposium on Industrial and Embedded Systems, pages 238–247, June 2011.

24. S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification system. In
Deepak Kapur, editor, Automated Deduction — CADE-11, volume 607 of Lecture
Notes in Computer Science, pages 748–752. Springer Berlin Heidelberg, 1992.

25. I. Sander and A. Jantsch. System modeling and transformational design refinement
in ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 23(1):17–32, Jan 2004.

26. Carl-Johan Sjöstedt, Martin Törngren, Jianlin Shi, De-Jiu Chen, and Viktor
Ahlsten. Mapping simulink to uml in the design of embedded systems:investigating
scenarios and transformations. In OMER4 Post-proceedings, 2008, pages 137–160,
2008. QC 20100810.

27. B. Wang and J. S. Baras. HybridSim: A Modeling and Co-simulation Toolchain
for Cyber-physical Systems. In Distributed Simulation and Real Time Applications
(DS-RT), 2013 IEEE/ACM 17th International Symposium on, pages 33–40, 2013.

