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Abstract 

We propose here an evolutionary interpretation of the presence of highly hypnotizable persons 

(highs) among the general population. Current experimental evidence suggests the presence of 

stronger functional equivalence between imagery and perception, non-opioid cognitive control of 

pain, favourable cardiovascular asset and greater interoceptive sensitivity in highs. We hypothesize 

that these characteristics were greatly relevant to our ancestors’ survival,  and that they may have 

facilitated the natural selection of individuals who are now named “ highs” due to one of their side 

effects – the proneness to accept suggestions – as part of the reported physiological features. 

Unfortunately, our theoretical hypothesis cannot be currently experimentally proven. We believe, 

however, that looking at hypnotizability in a naturalistic, evolutionary perspective may emphasize 

the importance of its physiological correlates in daily life and in the prediction of the outcome of 

medical treatments.  
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An evolutionary approach to hypnotizability 

     Fifteen years ago we published a review suggesting that, in the context of experimental 

hypnosis, the dispositional  trait of hypnotizability could be considered an adaptive one 

(Santarcangelo & Sebastiani, 2004). This hypothesis was motivated by two considerations. On the 

one hand, highly hypnotizable individuals (highs) can easily change their mental and bodily state. 

On the other hand, they exhibit vascular functions with characteristics which have been associated 

with a better cardiovascular prognosis. In particular, highs appear to modulate their heart activity 

during relaxation through specific cognitive strategies  (Santarcangelo et al., 2012), to disentangle 

the autonomic activation from the subjective experience (Sebastiani, D'Alessandro, Menicucci, 

Ghelarducci, & Santarcangelo, 2007) and to escape from the cardiac correlates of unpleasant 

imagery exhibited by the general population (Sebastiani, Simoni, Gemignani, Ghelarducci & 

Santarcangelo, 2003). Additionally, in contrast to low hypnotizables (lows) and to the general 

population, the brachial artery flow mediated dilation (FMD) in highs is not or scarcely impaired by 

mental stress (Jambrik ,Santarcangelo, Ghelarducci, Picano, & Sebastiani, 2004; Jambrik , 

Sebastiani, Picano, Ghelarducci, & Santarcangelo, 2005) and nociceptive stimulation (Jambrik et 

al., 2005), respectively. This is relevant because FMD - the increase in the blood vessels diameter 

following 5 minutes occlusion - is considered to be a favourable prognostic factor for 

cardiovascular health.   

     The findings reported in our original review were limited to the cardiovascular domain. 

However, during the last 15 years, we have obtained further evidence that hypnotizability can be 

considered as an adaptive trait in the cardiovascular as well as in other physiological domains. For 

instance, the cardiac advantage of highs consists not only of their better FMD (Jambrik 

,Santarcangelo, Ghelarducci, Picano, & Sebastiani, 2004; Jambrik , Sebastiani, Picano, Ghelarducci, 

& Santarcangelo, 2005; Jambrik et al., 2005), but also of their pre-eminent parasympathetic control 

of heart rate, which can be observed during long-lasting relaxation (Santarcangelo et al., 2012).  
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Here we put forward again the proposal to consider an adaptive role of hypnotizability from an 

evolutionary perspective. We aim to theoretically answer the question: why did a consistent fraction 

of highs in the population (15%) survive to natural selection? It seems unlikely that it may have 

happened just due to their proneness to accept suggestions. 

 The power of imagery 

Among the cognitive characteristics which have been associated with high hypnotizability, the most 

intriguing  in our opinion is the peculiar ability of mental imagery and, in particular, the strong 

functional equivalence (FE) between imagery and perception (Ibanez-Marcelo, Campioni, 

Phinyomark, Petri, & Santarcangelo, 2019; Santarcangelo & Scattina, 2019).  

FE usually regards sensory and motor mental images and it is customarily defined on the basis of 

the superimposition of brain activations occurring during the two activities. Recently, advanced 

analyses of various imagery modalities have better defined the equivalence between actual and 

imagined perception by assessing the properties of the corresponding brain functional states based  

on the networks of regional coactivations rather than their activations alone (Petri et al., 2014; Lee, 

Chung, Kang, Kim, & Lee, 2011). Such analyses have shown that the two brain functional states are 

more similar between each other in highs than in lows (Ibanez-Marcelo, Campioni, Phinyomark, 

Petri, & Santarcangelo, 2019 ), which indicates that mental imagery is more powerful and can better 

simulate actual sensorimotor conditions in highs than in lows. Indeed, the excitability of the highs’ 

motor cortex is greater than lows’ in basal conditions and shows a further increase during motor 

imagery (Spina, Chisari, & Santarcangelo, 2020). Since  imagery training is an effective  

rehabilitation treatment of brain injuries (Zimmermann-Schlatter, Schuster, Puhan, Siekierka, & 

Steurer, 2008; García Carrasco, & Aboitiz Cantalapiedra, 2013; Ang & Guan, 2015), in the 

challenging and dangerous environment where our ancestors lived, spontaneous and absorptive 

engagement in the mental images (Green & Lynn, 2011) of lost perceptive/motor abilities might  

have reduced the cognitive and behavioral effects  of the brain injuries, thus favouring the highs’ 

recovery and survival. 
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     Finally, the above cited EEG study showed that highs display a distributed mode of information 

processing (Ibanez-Marcelo, Campioni, Phinyomark, Petri, & Santarcangelo, 2019; Ibáñez-Marcelo 

, Campioni, Manzoni, Santarcangelo, & Petri, 2019), which characterizes the individuals with 

greater cortical excitability (Bassett & Sporns, 2017). Since greater excitability facilitates brain 

plasticity (Keller et al., 2018;  Ni et al., 2018; Minzenberg & Leuchter, 2019), this style of 

information processing may have contributed to make highs less vulnerable than other individuals 

to the cognitive and behavioral effects of injuries and favoured their survival.  

 Pain: to perceive or not to perceive 

The most popular  characteristic of highs is their ability to control pain through cognitive strategies 

(Brugnoli, 2016; Jensen et al., 2016; Wortzel & Spiegel, 2017; Santarcangelo & Consoli, 2019). 

While suggestions for analgesia can be accepted also by several  healthy subjects and chronic pain 

patients through different cognitive strategies, i.e. hypnotizability-related strategies, placebo 

enacted mechanisms, distraction (Santarcangelo & Consoli, 2019), it has been shown that highs 

respond consistently better than lows/mediums to explicit suggestions for analgesia and to 

conditioned analgesia. In this way, they are able to counteract pain through both top-down and 

bottom-up antinociceptive mechanisms (Fidanza. Varanini, Ciaramella, Carli, & Santarcangelo, 

2017).  

     The ability to control pain should have been a great advantage in the dangerous environment 

where our ancestors lived. In this respect, the facts are:  

a) suggestions of analgesia are not associated with release of endogenous opiates;  

b) the A118G  rs1799971 polymorphism of μ1 opioid receptors, which is more frequently found in 

highs (Presciuttini et al., 2018 ), is associated with lower sensitivity to opiates (see Santarcangelo & 

Consoli, 2019), thus highs cannot rely on an efficient opioid control of  pain;  

c) placebo responses are powerful mechanisms for pain control mostly based on the release  of 

endogenous opioids (Frisaldi, Piedimonte & Benedetti, 2015; Darnall & Colloca, 2018).  
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     We hypothesize that part of our ancestors with an inefficient opioid system may have developed 

alternative cognitive strategies to control pain and compensate for this inefficiency making them 

less prone to develop placebo responses. In fact, good placebo responders have an efficient 

endogenous opioid system (Petrovic, Kalso, Petersson, & Ingvar., 2002), whereas scarce placebo 

responses have been observed in the people exhibiting the highs’ most frequent polymorphism 

(Peciña & Zubieta, 2014; Trescot, & Faynboym, 2014). For example, these subjects  require larger 

dosage of opiates to control post-operative and cancer pain (see Santarcangelo & Consoli, 2019) 

The ancestors who developed an alternative mechanism to control pain survived because, reducing 

pain perception, they may have been able to cope with maladaptive behavior, depressive symptoms 

and social exclusion. 

 Feeling the body  

Highs seem to have a better relation with their body with respect to  lows and mediums (Diolaiuti, 

Huber, Ciaramella, Santarcangelo, & Sebastiani, 2019). They exhibit greater proneness to be aware 

of bodily sensations, concentrate on and interpret them as aspects of emotional states, to cope with 

distress by attention to body sensations, and to consider the body as a safe place. Moreover, highs 

exhibit a lower tendency to withdraw from possibly unpleasant situation with respect to mediums.  

     Hypnotizability-related interoceptive sensitivity could be sustained by differences in the brain 

regions involved in interoception such as the insula, which processes interoceptive signals and 

integrate them in conscious experience (Critchley & Garfinkel, 2019; Critchley & Harrison, 2013; 

Strigo & Craig, 2013) through connections with the cingulate and prefrontal cortex and with 

subcortical nuclei (Kṻhn, Mueller, Lohmann, & Schuetz-Bosbach, 2016). Also, differences in 

cerebellar lobules (Picerni et al., 2019) could be involved, as the cerebellum participates in 

autonomic monitoring and controls emotional behavior through its wide connections to cortical and 

subcortical regions (Koziol et al., 2014; Cavdar, Özgur, Kuvvet, & Bay, 2018; Moreno-Ruis, 2018). 

     All in all, these observations suggest that the ancestors with the cortical characteristics of present 

day highs may have been able to evaluate their physical condition and choose to enact behaviours 
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appropriate to their psychophysical conditions after injuries or illnesses, further contributing to their 

survival.  

 It's not all gold what glitters 

The absence, or great reduction of the brachial artery FMD to mental stress  (Jambrik, 

Santarcangelo, Ghelarducci, Picano, & Sebastiani, 2004; Jambrik, Sebastiani, Picano, Ghelarducci, 

& Santarcangelo, 2005) and nociceptive stimuli (Jambrik et al., 2005) indicates a conserved 

endothelial  nitric oxide (NO) supply to the blood, which is a favourable prognostic factor for the 

cardiovascular system.  Experiments aimed at assessing whether similar uncontrolled NO release 

occurs in cerebral vessels of highs have not been performed yet. In the general population, however, 

the brachial artery FMD has been found  to be correlated with the brain functional  hyperemia 

(Tarumi et al., 2015), which is in turn also largely dependent on NO (Liu, De Visa,  & Lu, 2019). 

Thus, if a similar NO release occurred in the highs’ brachial artery and brain vessels, a large release 

of endothelial  NO could be toxic for brain tissue (Contestabile, 2012). This could - at least partially 

- account for the smaller grey matter volume observed in several highs’ brain regions (Landry, 

Lifshitz & Raz 2017; Picerni et al., 2019).  

     Thus, the possible consequences of a positive cardiovascular configuration are not necessarily 

positive for the brain, as indicated by behavioral studies showing that the highs’ postural and 

visuomotor control systems are much looser than ones of the lows (Santarcangelo & Scattina, 

2016). Further, this could be related to the less accurate control by the cerebellum, which exhibits a 

reduced grey matter volume in highs (Picerni et al., 2019), and exerts a paradoxical control on pain 

after transcranial anodal stimulation (Bocci et al., 2017). 

     In an evolutionary perspective, the highs’ cardiovascular advantage may have buffered the 

detrimental effects of the low accuracy of their postural and visuomotor control,  both very 

important functions when our ancestors gained the upper stance, had to chase and struggle. 

  Conclusion 
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Theoretically, highs may have survived to natural selection owing to their cardiovascular  

advantage, greater cortical excitability reducing their vulnerability to the consequences of brain 

injuries, ability to control pain in the absence of an efficient opioid mechanism, and greater 

interoceptive sensitivity (Figure 1). 

     Unfortunately, our hypothesis cannot be experimentally tested. However, it places the trait of 

hypnotizability in a reference frame more complex than a merely psychological one. It also suggests 

that from an evolutionary perspective the proneness to accept suggestions could be just a side effect  

of other physiological features, which were instead directly relevant to survival during human 

evolution. It emphasizes the importance of hypnotizability-related physiological correlates in 

everyday life, and indicates the relevance of hypnotic assessment  as a predictor of treatments 

outcome in clinical fields, from cardiology to neurology.  
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Figure legend 

Figure. 1. Summary of the evolutionary hypothesis of hypnotizability. 

 


