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ABSTRACT 14 

Electrical resistivity tomography (ERT) is an ill-posed and non-linear inverse problem commonly 15 

solved through deterministic gradient-based methods. These methods guarantee a fast convergence 16 

toward the final solution, but the local linearization of the inverse operator impedes accurate 17 

uncertainty assessments. On the contrary, numerical Markov Chain Monte Carlo (MCMC) algorithms 18 

allow for accurate uncertainty appraisals but appropriate MCMC recipes are needed to reduce the 19 

computational effort and make these approaches suitable to be applied to field data. A key aspect of 20 

any probabilistic inversion is the definition of an appropriate prior distribution of the model 21 

parameters that can also incorporate spatial constraints to mitigate the ill-conditioning of the inverse 22 

problem. Usually, Gaussian priors oversimplify the actual distribution of the model parameters that 23 

often exhibit multimodality due to the presence of multiple litho-fluid facies. In this work, we develop 24 

a novel probabilistic MCMC approach for inversion of ERT data. This approach jointly estimates 25 

resistivity values, litho-fluid facies, along with the associated uncertainties from the measured 26 
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apparent resistivity pseudosection. In our approach, the unknown parameters include the facies model 1 

as well as the continuous resistivity values.  At each spatial location, the distribution of the resistivity 2 

value is assumed to be multimodal and non-parametric with as many modes as the number of facies. 3 

An advanced MCMC algorithm (the Differential Evolution Markov Chain) is used to efficiently 4 

sample the posterior density in a high-dimensional parameter space. A Gaussian variogram model 5 

and a first-order Markov chain respectively account for the lateral continuity of the continuous and 6 

discrete model properties, thereby reducing the null-space of solutions. The Direct Sequential 7 

Simulation geostatistical method allows the generation of sampled models that honor both the 8 

assumed marginal prior and spatial constraints. During the MCMC walk, we iteratively sample the 9 

facies, by moving from one mode to another one, and the resistivity values, by sampling within the 10 

same mode. The proposed method is first validated by inverting the data calculated from synthetic 11 

models. Then, it is applied to field data and benchmarked against a standard local inversion algorithm. 12 

Our experiments prove that the proposed MCMC inversion retrieves reliable estimations and accurate 13 

uncertainty quantifications with a reasonable computational effort.  14 

 15 

INTRODUCTION 16 

Electrical resistivity is an important property of geological formations with high sensitivity to fluid 17 

saturation and porosity and thus, the Electrical Resistivity Tomography (ERT) method is widely and 18 

successfully employed for groundwater exploration, geotechnical characterization, mapping of 19 

contaminant plumes, and monitoring of landfills and levees (Legaz et al., 2009; Johnson et al., 2010;  20 

Müller et al., 2010; Pollock and Cirpka, 2012; Moradipour et al., 2016; Arosio et al., 2017; Whiteley 21 

et al., 2017; Crawford et al., 2018; Fiandaca et al., 2018; Hojat et al., 2019a; Tresoldi et al., 2019; 22 

Siemon et al., 2019; Hermans and Paepen, 2020). The ERT inverse problem is nonlinear and ill-posed 23 

and is usually solved through deterministic gradient-based algorithms (Zhang et al., 2005; Pidlisecky 24 

and Knight, 2008; Karoulis et al., 2014) that linearize the problem around an initial solution thereby 25 

losing the information for accurate uncertainty appraisals. Moreover, these methods are prone to get 26 



trapped in local minima of the misfit function and thus, the starting model must lie within the global 1 

minimum valley. Markov Chain Monte Carlo algorithms overcome these limitations and can be 2 

employed to cast nonlinear inverse problems into a solid Bayesian framework in which the final 3 

solution is the so-called posterior probability density (PPD) function in model space (Kaipio, 2000; 4 

Sambridge and Mosegaard, 2002; Tarantola, 2005; Ramirez et al., 2005; Linde et al., 2006; Grana 5 

and Della Rossa, 2010; Irving and Singha, 2010; Sen and Stoffa, 2013; Jardani et al., 2013; Aleardi 6 

et al., 2017; Aleardi and Mazzotti, 2017; Galetti and Curtis, 2018; Andersen et al., 2018; Aleardi and 7 

Salusti, 2020a) that fully quantifies the ambiguities in the recovered model. Although the increased 8 

computational power provided by modern parallel architectures has considerably encouraged the 9 

applications of MCMC methods to solve geophysical problems, it is always crucial adopting specific 10 

recipes to guarantee an accurate and computationally efficient sampling of the PPD. For example, 11 

many MCMC algorithms (e.g. the popular random walk Metropolis) are known to mix slowly 12 

between the modes if the target distribution is multimodal with modes separated by low probability 13 

regions (Holmes et al., 2017; Aleardi et al., 2018; Scalzo et al., 2019). A simple approach to mitigate 14 

this issue makes use of multiple MCMC chains to sample the PPD. This strategy usually offers robust 15 

protection against premature convergence because the chains use different trajectories to explore the 16 

parameter space. However, this approach is inefficient in high-dimensional problems where the curse-17 

of-dimensionality makes the target distribution highly localized within each model space dimension. 18 

This issue usually increases the probability for the MCMC chains to get trapped in local maxima of 19 

the PPD. Therefore, a considerable number of samples is needed to achieve accurate posterior 20 

estimations.  There have been many attempts to improve the convergence of MCMC algorithms in 21 

case of high-dimensional problems, for example hybridizing standard MCMC algorithms with global 22 

search methods (e.g. Differential evolution Markov Chain “DEMC”, or Differential evolution 23 

adaptive Metropolis; Turner and Sederberg, 2012; Vrugt, 2016). 24 

One challenge often posed by geophysical inversions concerns the simultaneous estimation of 25 

discrete (i.e. litho-fluid facies) and continuous (e.g. resistivity values) model parameters from the 26 



observed data (Gunning and Sams, 2018). Another challenge is related to the complexity of the 1 

property distribution and spatial correlation. On one hand, spatial model constraints can be used to 2 

reduce the ill-conditioning of the inversion problem (Doyen, 2007) and geostatistical simulation 3 

algorithms are routinely employed for this purpose (Azevedo and Soares, 2017). For example, the 4 

well-known simple kriging approach can be used for simple Gaussian priors, while in case of non-5 

Gaussian assumptions more sophisticated approaches (e.g. the Direct Sequential Simulation “DSS”, 6 

Soares, 2001; Horta and Soares, 2010) are needed. On the other hand, the actual distribution of the 7 

resistivity values in the subsurface is often multimodal due to the presence of multiple litho-facies 8 

(e.g. clay and sand). In these contexts, a Gaussian or even Gaussian-mixture prior model could not 9 

be adequate to reliably capture the complex relations among the resistivity values and the litho-facies, 10 

and for this reason, non-parametric priors should be employed. In this context, one of the outstanding 11 

benefits of MCMC algorithms is the possibility to reliably assess the PPD in case of complex mixed 12 

discrete-continuous problems with non-Gaussian priors.   13 

In this work, we implement a 2D MCMC approach for ERT inversion that simultaneously 14 

estimates resistivity values, litho-fluid facies, together with the related uncertainties from the apparent 15 

resistivity pseudosection. This approach solves this mixed continuous-discrete inversion problem by 16 

adopting a 2.5D finite elements forward operator (Karoulis et al., 2013) and assuming a non-17 

parametric mixture prior, in which each mode is associated with a specific facies. A 2D Gaussian 18 

variogram model defines the spatial correlation pattern of the resistivity values, whereas a first-order 19 

Markov chain preserves the lateral and vertical continuity of the discrete property distribution 20 

(Ulvmoen and Omre, 2010). Multiple facies (e.g., different geological formations characterized by 21 

different mineralogical compositions and/or water content) can be found in ERT application. In the 22 

context of MCMC algorithms, the simultaneous presence of continuous and discrete parameters may 23 

result in persistent rejections of models, a very low acceptance ratio, and slow convergence of the 24 

sampling toward stable PPD estimations. Therefore, we adopt a specific MCMC recipe specifically 25 

designed for multimodal distributions and mixed discrete-continuous problems (also see Holmes et 26 



al., 2017; and Aleardi and Salusti, 2020a). Our recipe includes a facies move and a resistivity move. 1 

In the former, the current facies model is perturbed thus jumping from one mode to another one, while 2 

in the latter, only the continuous property values are perturbed thus sampling within the same mode. 3 

The Differential Evolution Markov Chain (DEMC) method is employed to efficiently sample the 4 

PPD in a high-dimensional parameter space, whereas the DSS algorithm is used to generate sampled 5 

models that honor both the prior assumption and the assumed spatial correlation pattern. The 6 

methodology is first assessed on synthetic data and then applied to field data.  7 

 8 

THE IMPLEMENTED MCMC ALGORITHM 9 

MCMC algorithms generate subsurface models that honor the prior information and accept or reject 10 

these models based on their posterior likelihood value. If 𝐦𝒄𝒖𝒓𝒓 is the current model and 𝐦𝒑𝒓𝒐𝒑 is the 11 

proposed (perturbed) model, the probability for the chain to move from 𝐦𝒄𝒖𝒓𝒓 to 𝐦𝒑𝒓𝒐𝒑 is defined by 12 

the Metropolis-Hasting rule: 13 

𝑝(𝐦𝑝𝑟𝑜𝑝|𝐦𝑐𝑢𝑟𝑟) =  min [1,
𝑝(𝐦𝑝𝑟𝑜𝑝)

𝑝(𝐦𝑐𝑢𝑟𝑟)
×

𝑝(𝐝|𝐦𝑝𝑟𝑜𝑝)

𝑝(𝐝|𝐦𝑐𝑢𝑟𝑟)
×

𝑞(𝐦𝑐𝑢𝑟𝑟|𝐦𝑝𝑟𝑜𝑝)

𝑞(𝐦𝑝𝑟𝑜𝑝|𝐦𝑐𝑢𝑟𝑟)
],     (1) 14 

where 𝐝 is the observed data vector,  q() is the proposal distribution that defines the new model 𝐦𝑝𝑟𝑜𝑝 15 

as a random deviate from a probability distribution 𝑞(𝐦𝑝𝑟𝑜𝑝|𝐦𝑐𝑢𝑟𝑟) conditioned only on the current 16 

model 𝐦. Note that the proposal ratio term in equation (1) vanishes if symmetric proposals (for 17 

example a Gaussian proposal) are employed. If 𝐦𝑝𝑟𝑜𝑝 is accepted 𝐦𝑐𝑢𝑟𝑟 = 𝐦𝑝𝑟𝑜𝑝 and another model 18 

is generated as a random perturbation of 𝐦𝑐𝑢𝑟𝑟. Otherwise 𝐦𝑐𝑢𝑟𝑟 is retained and another proposed 19 

model is generated. The ensemble of accepted models after the burn-in period is used to numerically 20 

compute the PPD.  21 

The DEMC is an advanced MCMC algorithm that uses a population of different chains that evolve 22 

according to differential evolution principles (Ter Braak, 2006). In more detail, such differential 23 

evolution principles are used to generate multivariate proposals for each DEMC chain: let the m-24 

vector 𝐦 represent the state of a single chain, then at each iteration t-1, the 𝑄 chains define a 25 



population 𝐌 = {𝐦𝑡−1
1 , 𝐦𝑡−1

2 , … , 𝐦𝑡−1
𝑄 }  which corresponds to a 𝑄 × 𝑚 matrix. Multivariate 1 

proposals 𝐦𝑝 are defined as: 2 

𝐦𝑝
𝑖 = 𝐦𝑡−1

𝑖 + 𝛾(𝐦𝑡−1
𝑎 − 𝐦𝑡−1

𝑏 ) + 𝜖,     𝑎 ≠ 𝑏 ≠ 𝑖     (2) 3 

where i is the index of the current chain, 𝛾 denotes the jump rate, a and b are integer values drawn 4 

without replacement from {1, …, i-1, i+1, …, 𝑄}, and 𝜖 represents a small random perturbation drawn 5 

from a normal distribution with a small standard deviation 𝜎 tailored to the problem at hand: 𝜖 =6 

𝒩(0, 𝜎). Each proposal is accepted with Metropolis probability (see equation 1). If the proposal is 7 

accepted 𝐦𝑡
𝑖 = 𝐦𝑝

𝑖 , otherwise 𝐦𝑡
𝑖 = 𝐦𝑡−1

𝑖 . The optimal 𝛾 parameter depends on the model 8 

dimensionality and on the shape of the posterior. For example, for Gaussian assumptions it is usually 9 

set to 𝛾 = 2.38/2𝑑, where d represents the number of model parameters. Besides, with a 10% 10 

probability, the value of 𝛾 = 1 allows mode-jumping which is a significant strength of DEMC 11 

compared to more conventional MCMC methods (i.e. random walk Metropolis or adaptive 12 

Metropolis). Different from standard random walk Metropolis, the DEMC also avoids selection of an 13 

appropriate proposal distribution because it automatically adapts the proposal to the spread of the 14 

PPD associated with each model parameter. This spread is directly inferred from the difference 15 

𝐦𝑡−1
𝑎 − 𝐦𝑡−1

𝑏  (see equation 2). Additional and more detailed theoretical insights into the DEMC, 16 

together with a Matlab implementation can be found in Vrugt (2016).  17 

Determining the convergence of the sampling to a stable posterior model is a crucial aspect of any 18 

MCMC inversion and to this end, we analyze the evolution of the potential scale reduction factor 19 

(PSRF) for the continuous model parameters (Gelman et al., 1995). We remind that a PSRF lower 20 

than 1.2 for a given unknown proves that convergence has been achieved for that model parameter. 21 

Let us now focus on the implemented MCMC-ERT inversion in which 𝛑 and 𝐞 represent the facies 22 

and the resistivity values, respectively. In our case of a mixed discrete-continuous inverse problem 23 

the posterior model can be derived from the chain rule: 24 

𝑝(𝐞, 𝛑|𝐝) =
𝑝(𝐝|𝐞, 𝛑)𝑝(𝐞|𝛑)𝑝(𝛑)

𝑝(𝐝)
=

𝑝(𝐝|𝐦)𝑝(𝐦)

𝑝(𝐝)
      (3) 25 



where 𝐦 = [𝐞, 𝛑]. Before the MCMC inversion, the available borehole data and/or geological 1 

information about the investigated area must be exploited to define the 𝑝(𝛑) and 𝑝(𝐞|𝛑) distributions. 2 

The former is the discrete prior distribution of facies, whereas the latter is the prior distribution of the 3 

resistivity values within each facies. In our implementation, the 𝑝(𝐞|𝛑) is a non-parametric mixture 4 

model that can be derived, for example, by using the kernel density estimation algorithm. The lateral 5 

correlation of the continuous property is modeled according to a Gaussian variogram model that along 6 

a single spatial direction (e.g., the horizontal x-direction) is defined by the following correlation 7 

function: 8 

τ𝑥 = exp (−
ℎ𝑥

2

𝛼𝑥
2

) , (4)    9 

where ℎ𝑥 is the spatial distance of the autocorrelation function along the x-direction, and 𝛼𝑥 is the 10 

parameter that defines the spatial dependency along the same x-axis. Note that the scalar value 𝛼𝑥
  11 

directly influences the variogram range along the x-direction. To promote the lateral continuity of the 12 

discrete property, we employ a first-order Markov model simulation during the MCMC sampling in 13 

which the probability of a transition from facies b to facies a at the spatial position with horizontal 14 

and vertical coordinates 𝑥 and 𝑦, respectively, is computed as follows: 15 

𝑝(𝛑𝑥,𝑦
𝑎 |𝛑𝑥−1,𝑦

ℎ , 𝛑𝑥+1,𝑦
ℎ , 𝛑𝑥,𝑦−1

ℎ , ) = 𝑝(𝛑𝑥−1,𝑦
ℎ |𝛑𝑥,𝑦

𝑎 )𝑝(𝛑𝑥+1,𝑦
ℎ |𝛑𝑥,𝑦

𝑎 )𝑝(𝛑𝑥,𝑦−1
ℎ |𝛑𝑥,𝑦

𝑎 ),   (5) 16 

where the coordinates (𝑥 − 1, 𝑦), (𝑥 + 1, 𝑦), and (𝑥, 𝑦 − 1) correspond to the first three neighboring 17 

positions surrounding the considered location (𝑥, 𝑦), whereas the superscript h indicates the actual 18 

facies configuration at each neighboring position. The probability to move from facies b at the 19 

neighboring positions (𝑥 − 1, 𝑦) and (𝑥 + 1, 𝑦) to facies a at position (𝑥, 𝑦) can be derived from the 20 

b-th row and a-th column of the lateral transition matrix Tl. For example: 21 

𝑝(𝛑𝑥,𝑦
𝑎 |𝛑𝑥−1,𝑦

𝑏 ) = 𝐓𝑏,𝑎
𝑙 .      (6) 22 

Similarly, the probability to move from facies b at the neighboring positions (𝑥, 𝑦 − 1) to facies a at 23 

position (𝑥, 𝑦) can be derived from the b-th row and a-th column of the vertical transition matrix Tv: 24 

𝑝(𝛑𝑥,𝑦
𝑎 |𝛑𝑦−1

𝑏 ) = 𝐓𝑏,𝑎
𝑣 .        (7) 25 



After defining the prior model and the transition matrices, the acquired data must be exploited to 1 

sample from the PPD. The following steps are advocated to this task: 2 

1) Starting model generation: for the Q DEMC chains use the DSS algorithm to generate current 3 

models 𝐦𝑐𝑢𝑟𝑟
𝑄 = [𝐞𝑐𝑢𝑟𝑟

1 , 𝐞𝑐𝑢𝑟𝑟
2 , … , 𝐞𝑐𝑢𝑟𝑟

𝑄 , 𝛑𝑐𝑢𝑟𝑟
1 , 𝛑𝑐𝑢𝑟𝑟

2 , … , 𝛑𝑐𝑢𝑟𝑟
𝑄 ] for the first MCMC iteration 4 

that honor the prior distributions 𝑝(𝐞|𝛑) and 𝑝(𝛑).  Afterward, run the forward modeling and 5 

compute the data 𝐝𝑝𝑟𝑒 associated with each generated model.  6 

2) For each chain randomly select a spatial position 𝑖𝑞(𝑥, 𝑦) to be perturbed, where the subscript 7 

q indicates the q-th chain.  8 

3)   For each chain draw a random number 𝛋𝒒 uniformly distributed over [0,1] and set the ξ 9 

parameter defined over [0,1]. Then, loop over the chains and perform the following steps:  10 

3.1) If 𝛋𝒒≤ξ, apply the facies move: perturb the current facies model  11 

𝛑𝒄𝒖𝒓𝒓
𝒒

 at the selected position 𝒊𝒒(𝐱, 𝒚), thus deriving the proposed facies model  12 

𝛑𝒑𝒓𝒐𝒑
𝒒

. The probability of replacing the current facies at the selected position depends on the 13 

previously defined vertical and lateral transition matrices (see equation 5). Then, the proposed 14 

resistivity value at the iq-th position is a random realization from the prior distribution 15 

𝒑(𝐞|𝛑𝒑𝒓𝒐𝒑
𝒒

). 16 

3.2) If 𝛋𝒒 > 𝛏, apply the resistivity move: preserve the current facies at the iq -th location (so 17 

that 𝛑𝒑𝒓𝒐𝒑
𝒒

= 𝛑𝒄𝒖𝒓𝒓
𝒒

)  and perturb only the resistivity values according to the DEMC strategy 18 

(see equation 2) in which the algorithm selects other two chains with indexes a and b that share 19 

with the chain q the same facies at the iq-th position. If there are no chains a and b that share 20 

with the chain p the same facies at the iq -th position, apply a simple random walk Metropolis 21 

update in which the perturbation follows a Gaussian proposal with a zero mean and a 22 

previously defined covariance matrix 𝓝(𝐞; 𝟎; ∑𝒑). 23 

4) DSS updating: Use the previously defined variogram model and the DSS algorithm to 24 

propagate the perturbation of the resistivity value at the iq-th position over the neighboring 25 



spatial locations that are determined according to the ranges of the 2-D variogram model. All 1 

the resistivity values at the spatial locations falling beyond the ranges and at the previously 2 

perturbed iq-th position are excluded from this neighboring ensemble and considered as hard 3 

data in the geostatistical simulation process. It results that only the resistivity values at the 4 

neighboring positions are perturbed (see Figure 1). This step is crucial to ensure that all the 5 

sampled resistivity models honor both the assumed spatial variability pattern and the marginal 6 

priors. At the end of this step, we obtain the ensemble of proposed models 𝐦𝑝𝑟𝑜𝑝
𝑄 =7 

[𝐞𝑝𝑟𝑜𝑝
1 , 𝐞𝑝𝑟𝑜𝑝

2 , … , 𝐞𝑝𝑟𝑜𝑝
𝑄 , 𝛑𝑝𝑟𝑜𝑝

1 , 𝛑𝑝𝑟𝑜𝑝
2 , … , 𝛑𝑝𝑟𝑜𝑝

𝑄 ]. 8 

5) For each chain compute the data generated by the ensemble of perturbed models.  9 

For the facies move the prior distribution is used as a proposal distribution, and thus, the 10 

acceptance ratio reduces to the ratio of the likelihood probabilities of the configurations 11 

(𝛑𝑝𝑟𝑜𝑝
𝑞 , 𝐦𝑝𝑟𝑜𝑝

𝑞
) and (𝛑𝑐𝑢𝑟𝑟

𝑞 , 𝐦𝑐𝑢𝑟𝑟
𝑞

). Note that the acceptance ratio does not explicitly depend 12 

on the facies 𝛑 because the likelihood distribution only depends on 𝐦, which is drawn from 13 

the prior conditioned by the facies configuration. Therefore, in this case the acceptance 14 

probability for each q-th chain is equal to: 15 

𝑝(𝐦𝑝𝑟𝑜𝑝
𝑞 |𝐦𝑐𝑢𝑟𝑟

𝑞 ) = min [1,
𝑝(𝐝|𝐦𝑝𝑟𝑜𝑝

𝑞 ) 

𝑝(𝐝|𝐦𝑐𝑢𝑟𝑟
𝑞 ) 

],      (8) 16 

Otherwise, the resistivity move gives an acceptance probability equal to: 17 

𝑝(𝐦𝑝𝑟𝑜𝑝
𝑞 |𝐦𝑐𝑢𝑟𝑟

𝑞 ) = min [1,
𝑝(𝐝|𝐦𝑝𝑟𝑜𝑝

𝑞 ) 

𝑝(𝐝|𝐦𝑐𝑢𝑟𝑟
𝑞 ) 

𝑝(𝐦𝑝𝑟𝑜𝑝
𝑞 )

𝑝(𝐦𝑐𝑢𝑟𝑟
𝑞 )

],      (9) 18 

In this case the proposed configuration (𝛑𝑝𝑟𝑜𝑝
𝑞 , 𝐦𝑝𝑟𝑜𝑝

𝑞
) is not directly drawn from the prior and 19 

thus, the acceptance probability also depends on the prior ratio term (Gamerman and Lopes, 20 

2006).   21 

6)  For each q-th chain and only if the perturbed model is accepted set 𝐦𝒄𝒖𝒓𝒓
𝒒

= 𝐦𝒑𝒓𝒐𝒑
𝒒

. 22 

7)  Store 𝐦𝒄𝒖𝒓𝒓
𝒒

 and repeat from 2) to 7) until the maximum number of iterations is reached. 23 



The ensemble of models collected by all the chains after the burn-in is used to compute the 1 

statistical properties of the posterior (e.g. mean resistivity model, standard deviation of the resistivity, 2 

maximum-a-posteriori facies solution, the posterior probability of occurrence of each facies). All the 3 

user-defined parameters (e.g. ∑𝑝, ξ) are properly set to ensure an acceptance ratio during the sampling 4 

stage between 0.2-0.4. In particular, ξ should be usually lower than 0.5 because the sampling space 5 

of a continuous property is larger than the sampling space of the underlying discrete property (Holmes 6 

et al. 2017).  In all the following examples we set ξ=0.3. Finally, note that the steps 4) and 5) can be 7 

conveniently parallelized. In other terms, the DSS updating step and the forward modeling evaluation 8 

for the Q chains can be separately run across different CPUs, thus reducing the computing time of the 9 

MCMC sampling. 10 

APPLICATION TO SYNTHETIC DATA 11 

In the following synthetic inversion, we assume that the study area is 35 m long and 11 m deep, 12 

and this area is discretized with square cells with spatial dimensions of 1 m × 1 m. The schematic 13 

synthetic model (Figure 3a) simulates a low resistivity body (50 Ωm) located around 4 m depth and 14 

hosted in a high resistivity medium (500 Ωm). Therefore, we employ two different facies: facies A 15 

describing the low resistivity medium, and facies B associated with the high resistivity body. Due to 16 

the large variability range of the continuous property in the synthetic model, we parametrize the 17 

inversion taking the natural logarithm of the resistivity value. For simplicity, we also assume that the 18 

prior for the continuous property follows a log-normal Gaussian mixture distribution. In other words, 19 

we assume that the natural logarithm of the resistivity values are Gaussian-distributed within each 20 

considered facies. However, note that the implemented approach can be also used for non-parametric 21 

prior distributions (see the following field data application). Such log-Gaussian mixture prior can be 22 

expressed as follows: 23 

𝑝(𝐞) = ∑ 𝜔𝑘𝒩

𝐾

𝑘=1

(𝐞; 𝛍𝐞
𝑘, 𝚺𝐞

𝑘),    (10) 24 



where e expresses the natural logarithm of the resistivity, K is the total number of components of the 1 

mixture, 𝜔𝑘 is the prior weight of the k-th component, 𝒩 indicates the k-th Gaussian component with 2 

mean vector 𝛍𝐞
𝑘 and covariance matrix 𝚺𝐞

𝑘, whereas the superscript k indicates that the mean and the 3 

covariance are facies dependent. The scalar value 𝜔𝑘 represents the expected frequency of occurrence 4 

of the k-th facies and for this reason, the K values 𝜔𝑘 define the prior model for the discrete property. 5 

We assume two different facies hereafter called facies A and facies B: The first is associated with the 6 

low resistivity body, while the latter refers to the high resistivity medium. In the following example, 7 

we assume that 𝑝(𝛑 = facies 𝐴) = 0.18 and 𝑝(𝛑 = facies 𝐵) = 0.82. The statistical properties of 8 

this prior model can be derived, for example, from borehole data or previous geological information 9 

about the study area. We also assume that the spatial variability of the variable e follows a stationary 10 

(i.e. spatial invariant) 2-D Gaussian variogram model with 𝛼𝑦 
 and 𝛼𝑥 equal to 2.5 m and 3.5 m, 11 

respectively (see equation 4). The statistical properties of the prior model and the lateral correlation 12 

functions associated with the 2-D Gaussian variogram are illustrated in Figure 2. 13 

For simplicity we employ equal lateral and vertical transition matrices that are defined as follows: 14 

𝐓𝑙   = 𝐓𝑣  = [
0.7 0.3
0.3 0.7

].      (11) 15 

For example, if we consider the vertical transition matrix 𝐓𝑣 and the i-th spatial position, the rows 16 

(from top to bottom) represent facies A and facies B at one neighboring position i-1, whereas the 17 

columns (from left to right) represent facies A and facies B at the i-th position. The higher values 18 

along the main diagonal preserve the vertical and lateral facies continuity within the sampled models. 19 

When dealing with field data inversions these matrices can be inferred from available geological 20 

information and expected lateral facies variability (see Vagis et al., 2010 for a detailed discussion on 21 

how the transition probabilities can be derived from experimental observations). However, a quality 22 

control of the inversion results and slight modifications of the so chosen transition matrices are 23 

usually needed to get final predictions with the desired vertical and lateral facies continuity. The 24 

previously mentioned FE code has been used to compute the data associated with the schematic 25 



synthetic model. We simulate a Wenner acquisition layout with 36 electrodes evenly spaced of 1 m 1 

and an injected current of 1 Ampere. The maximum a value we considered is 11. This configuration 2 

results in 11 × 35 = 385 model parameters to be estimated from 198 data points. Gaussian 3 

uncorrelated values with a standard deviation equal to 30 % of the total standard deviation of the 4 

noise-free dataset were added to the noise-free pseudosection to simulate noise contamination. This 5 

results in a signal-to-noise ratio of 15 dB. The implemented Bayesian approach assumes Gaussian-6 

distributed errors affecting the data. Therefore for simplicity, we are neglecting electrode spacing 7 

errors and errors correlated with the magnitude of the observed potential (for more details see Zhou 8 

and Dahlin, 2003). However, the next section demonstrates that this Gaussian assumption does not 9 

hamper the applicability of the implemented approach to field data.  10 

We run the MCMC inversion using 20 chains evolving for 30000 iterations and the first 5000 11 

models are disregarded from the computation of the PPD to properly burn-in. Figure 3 represents the 12 

final results for the continuous property. We observe that the low resistivity anomaly is well 13 

recovered, as well as the background resistivity values. As expected, the quality of the predictions 14 

decreases at the lateral edges and at the bottom of the model due to the limited illumination. The low 15 

spatial resolution of the estimated a-posteriori mean model is related to the employed Gaussian 16 

variogram model that smooths the lateral and vertical resistivity contrasts. However, note that the 17 

assumed spatial variability patter is crucial to reduce the ill-conditioning of this under-determined 18 

inverse problem. The posterior standard deviation map (Figure 3c) shows that the cells located just 19 

below the low resistivity body and below 8 m depth are not informed by the data and thus, the 20 

associated resistivity predictions are affected by significant uncertainties. Differently, as expected, 21 

the lowest posterior uncertainties are located within the rectangular resistivity anomaly and in the 22 

shallowest part of the model. These results demonstrate that the implemented approach provides 23 

reliable and accurate posterior estimations in agreement with the expected subsurface parameter 24 

illumination. Figure 3d shows the evolution of the negative log-likelihood values for the 20 chains 25 



where we observe that the algorithm reaches the stationary regime after 2000-3000 iterations, 1 

approximately. 2 

Figure 4 shows the results for the discrete property. The spatial location of the low resistivity body 3 

is well recovered by the maximum-a-posterior (MAP) facies solution (Figure 4b). As expected the 4 

shallowest edge of the low resistivity body is perfectly recovered, while the accuracy of the MAP 5 

solution decreases as the depth increases due to the decreased parameter illumination. The posterior 6 

probability for the discrete property (Figures 4c and 4d) shows that the occurrence of the two facies 7 

is well recovered in the shallowest part of the model and within the low resistivity body. Conversely, 8 

the uncertainty increases as the depth increases due to the reduced illumination.  Again, the low spatial 9 

resolution of the probability values shown in Figures 4c and 4d are related to the Gaussian variogram 10 

model that acts as a regularization operator in the MCMC inversion. Table 1 shows the percentage of 11 

data and model errors computed at the first and last MCMC iterations. The data error was calculated 12 

as the difference between the observed data and the data computed on the mean resistivity models at 13 

the first and last iterations.  Similarly, the model error was calculated as the difference between the 14 

true resistivity model and the mean models predicted at the first and last iterations.   15 

In Figure 5 we represent some examples of marginal posterior distributions for the discrete and 16 

continuous property estimated at three different spatial locations. As expected, the posterior model 17 

accurately predicts the actual facies configuration and resistivity values in the shallowest part of the 18 

model and within the low resistivity anomaly (Figures 5a and 5b).  In particular, note that in these 19 

cases the MAP solution for the continuous property is very close to the true resistivity value. 20 

Conversely, Figure 5c shows that the posterior model is very similar to the prior for the deepest cells, 21 

thereby demonstrating that this part of the subsurface is not informed by the data. 22 

In Figure 6a we represent a direct comparison between the observed data (i.e. the apparent 23 

resistivity pseudosection flatted to a 1-D vector) and the data associated with the current models at 24 

different MCMC iterations. We observe that the observed data are well predicted after 5000 iterations, 25 

thus demonstrating that the stationary regime is attained. Figures 6b-c compares the observed and the 26 



predicted pseudosections. Again we observe a good match between the observed and predicted 1 

datasets.   2 

Figure 7 shows 12 out of 20 facies models and associated resistivity values extracted from the 3 

prior distribution p(m) that constitute some examples of starting points for the MCMC inversion. 4 

Figure 8 shows 12 out of 20 models sampled at the final MCMC iteration that can be considered as 5 

an ensemble of facies and resistivity configurations drawn from the equivalence region of solutions 6 

in the parameter space (Fernandez Martinez et al., 2011). In other terms, all these models generate 7 

predicted data that equally reproduce the observed data. Note that a low resistivity anomaly is clearly 8 

visible at the center of these models, while their differences increase as the depth increases, that is as 9 

the parameter illumination decreases. Finally, Figure 9 shows that for all the 385 continuous model 10 

parameters the MCMC inversion has reached a stable posterior model as demonstrated by PSRF 11 

values lower than the threshold of 1.2. In particular, note that the convergence to a stable PPD for the 12 

vast majority of the parameters is reached within 20000 iterations, then before the maximum 13 

allowable number of iterations. 14 

 15 

APPLICATION TO FIELD DATA 16 

We applied the implemented MCMC inversion to 2D field data acquired by a permanent 17 

monitoring system installed along a river embankment for monitoring the inner conditions of the 18 

levee. Besides reducing the hydrogeological risks, long-term ERT monitoring data can be used to 19 

understand saturation and dewatering of levee structures, and to analyze how resistivity values are 20 

related to annual variations of the water content (Tresoldi et al., 2019). In this work, we limit to invert 21 

a single dataset and we refer the reader to Hojat et al. (2019b) for more information about the study 22 

site. The electrode layout is buried in a 0.5 m-deep trench. We used the data corrected for the effect 23 

of the soil overlaying electrodes (Hojat et al. 2019c; Hojat et al. 2020). The inversion covers an area 24 

that is 94 m wide and 14 m deep and has been discretized with rectangular cells with dimensions of 25 

1 m and 2 m along the vertical and horizontal directions, respectively. The acquisition layout 26 



comprises a Wenner acquisition geometry with 48 electrodes and the unit electrode spacing a = 2 m. 1 

This configuration results in 705 resistivity values to be estimated from 360 data points.  Note that 2 

the forward modeling code embeds the inverted domain into a larger domain to avoid boundary 3 

effects and numerical artifacts (Maurer and Friedel, 2006).  4 

To define the a-priori facies and resistivity distribution we exploited both the available geological 5 

information about the investigated area and the multiple data and associated predicted resistivity 6 

sections obtained during the permanent monitoring. In particular, we expect a mainly clay body 7 

hosting a more permeable layer constituted by sand and gravel located at around 2-3 m depth. 8 

Therefore, we assume two different facies (i.e. facies A and B) associated with the clay and sand 9 

formations and characterized by low and high resistivity values, respectively. The prior facies 10 

probabilities are equal to 𝑝(𝛑 = facies 𝐴) = 0.85 and 𝑝(𝛑 = facies 𝐵) = 0.15, while the kernel 11 

density estimation algorithm has been used to numerically compute the non-parametric prior 12 

distribution of the resistivity values within each facies. The final non-parametric marginal prior model 13 

for the continuous property can be written as follows: 14 

𝑝(𝐞) = ∑ 𝜔𝑘

𝐾

𝑘=1

𝑝(𝐞|𝛑𝑘),    (12) 15 

where K=2, whereas 𝜔1 = 0.85, and 𝜔2 = 0.15. Figures 10a and 10b represent the prior model for 16 

both the discrete and the continuous property. Repeated measures of the apparent resistivity values 17 

taken within a short time frame give us an estimate of the uncertainty affecting the observed data that 18 

is used to build the data covariance matrix.  We assume a 2-D stationary Gaussian variogram model 19 

with 𝛼𝑦 
 and 𝛼𝑥 values equal to 2 m and 6 m, respectively. The lateral and vertical correlation 20 

functions associated with this variogram model are represented in Figures 10c and 10d.  Similar to 21 

the synthetic inversion we employ equal lateral and vertical transition matrices that are defined as 22 

follows: 23 

𝐓𝑙  = 𝐓𝑣   = [
0.75 0.25
0.25 0.75

].      (13) 24 



In this application, the extensive geological information available helped us in the definition of an 1 

appropriate prior model for the study area. However, the additional tests we carried out demonstrated 2 

that the final results do not significantly change if we use, for example, the same transition matrix 3 

employed in the synthetic example. This is expected because in the case of high-quality data and for 4 

the most illuminated parameters, the final results are mainly driven by the data likelihood function 5 

instead of the prior assumptions. The FE code previously used in the synthetic inversion again 6 

constitutes the forward modeling engine for the inversion process. Similarly to the synthetic example, 7 

we employ 20 chains running for 30000 iterations.  8 

Figure 11a shows the result provided by a local least-squares inversion approach (Loke, 2018), 9 

whereas Figure 11b illustrates the posterior mean model estimated by the implemented MCMC 10 

algorithm. The similarity of the two inversion outcomes ensures us about the reliability of the final 11 

solution and also confirms the suitability of the proposed MCMC algorithm for real data applications. 12 

As expected from previous inversion results obtained in the same area and from the available 13 

geological information, both algorithms predict a high resistivity body around 2 m depth (associated 14 

with sand/gravel) hosted in a low resistivity medium (clay). Differently from the local inversion, the 15 

MCMC also provides an accurate estimate of the uncertainty affecting the retrieved solution that is 16 

represented in Figure 11c in the form of a standard deviation section. As expected the shallowest part 17 

of the subsurface is characterized by the lowest uncertainty while the ambiguity increases within the 18 

high resistivity formation, at the lateral edges and at the deepest part of the model due to the lower 19 

illumination.  20 

Figure 12 shows the MAP facies solution and the marginal posterior probability for the discrete 21 

property estimated by the MCMC inversion overt the study area. We observe that the high resistivity 22 

formation has the highest probability of occurrence around 2 m depth.  Figure 13 compares the 23 

observed data and the two pseudosections computed from the model estimated by the local inversion 24 

and from the mean posterior solution shown in Figure 11b. We observe that both inversion approaches 25 

provide similar predicted data characterized by a good match with the measured pseudosection. More 26 



quantitatively, the final percentage data errors for the gradient-based and MCMC approachs are 1.35 1 

% and 1.18 %, respectively. The slightly higher misfit provided by the MCMC inversion can be 2 

attributed to the many model constraints (i.e. for both the discrete and the contoìinuos property) 3 

infused into the inversion framework.    4 

The evolution of the negative log-likelihood for the 20 chains highlights the fast convergence of 5 

the MCMC sampling toward the stationary regime that is attained after 2000-3000 iterations (Figure 6 

14a). The evolution of the PSRF confirms (Figure 14b) that the convergence to a stable posterior 7 

model for all the continuous model parameters has been achieved within the maximum number of 8 

iterations allowed. In particular, note that only 20000 iterations are needed to reach a stable PPD for 9 

the vast majority of the unknowns.  10 

Figure 15 shows examples of marginal prior and posterior probabilities computed for some cells. 11 

In Figures 15a and 15b we observe that in the shallow part of the model the PPDs are very different 12 

from the prior thereby confirming that these cells are informed by the data. We can also appreciate 13 

how the posterior uncertainty substantially increases moving from the low resistivity body located in 14 

the shallowest part of the model to the high resistivity formation located around 2 m depth. As 15 

expected the prior and the posterior are very similar for the cell located at the lateral edge of the model 16 

where the data illumination is poor (Figure 15c).  17 

Finally, Figure 16 illustrates some examples of facies and corresponding resistivity models 18 

extracted from the a-priori assumptions and forming the starting points of the MCMC inversion, 19 

wheres Figure 17 shows some facies configurations and associated resistivity values sampled at the 20 

end of the MCMC inversion. Note in Figure 17 that all the considered chains univocally predict a 21 

high resistivity body located around 2 m depth.   22 

 23 

DISCUSSION 24 

The implemented Markov Chain Monte Carlo (MCMC) inversion is aimed at accurately assessing 25 

the multi-modal posterior distribution of facies and resistivity values in a high-dimensional parameter 26 



space. In our application, the DEMC approach has been used to sample the posterior model.  Before 1 

selecting this MCMC method we carried out many inversion tests in which we compared the sampling 2 

abilities of different MCMC algorithms (i.e. Random Walk Metropolis, Adaptive Metropolis, 3 

Metropolis algorithm with adaptation of the scaling factor, Differential Evolution Markov Chain, and 4 

the Differential Evolution Adaptive Metropolis) on analytical probability density functions and on 5 

synthetic geophysical inversion problems (e.g., cross-hole traveltime tomography, ERT inversion). 6 

These tests proved thatthe DEMC constitutes the optimal compromise between the converge rate 7 

toward a stable posterior and the computational effort in all examples. 8 

In our inversion examples, we assume the noise to be uncorrelated and Gaussian-distributed. 9 

Possible improvements could be including the noise spatial correlation and/or the noise standard 10 

deviation as additional unknowns to be sampled during the inversion (Bodin et al. 2012). From a 11 

mathematical point of view, the 2-D implemented approach can be easily extended to 3-D models by 12 

adding additional lateral constrains for the continuous and discrete model parameters.  One of the 13 

challenges of 3-D applications is related to the curse of dimensionality problem (Curtis and Lomax 14 

2001) that can drastically decrease the convergence of the algorithm to a stationary posterior model 15 

because in high-dimensional problems the PPD tends to be highly localized within each model 16 

dimension. This results in a low acceptance ratio and a very slow convergence of the probabilistic 17 

sampling. In other words, the chain tends to converge to local optima of the PPD associated with a 18 

given facies configuration. To partially overcome this situation, we suggest using a high ξ value 19 

(around 0.8-0.9) at the beginning of the inversion thus promoting jumps between different facies 20 

configurations. Then, the ξ value should be decreased (i.e. to 0.2-0.3) during the sampling to get a 21 

reliable estimate of the posterior probability of the continuous property.  22 

There are usually no rigid rules to set the MCMC hyperparameters. In our application, we set the 23 

user-defined parameters (ξ, ∑𝑝, 𝛾) through a trial and error procedure in which we monitored the 24 

acceptance ratio during the sampling stage. Indeed, it is known that an acceptance ratio lying in the 25 

range [0.2, 0.4] usually offers the best compromise between the exploitation and the exploration of 26 



the algorithm. In our experiments, we also found that ξ and 𝛾 are the parameters that mostly influence 1 

the acceptance ratio value. It is also known that the use of the a-priori as the proposal usually reduces 2 

the acceptance ratio of the chain and slows down the convergence. For this reason, the algorithm can 3 

be improved by sampling from an approximate posterior distribution rather than from the prior 4 

assumption. To this end many strategies could be adopted, for example, sampling from an 5 

approximated estimate of the posterior covariance matrix computed from a local approximation of 6 

the Jacobian matrix (see Dosso et al. 2014). Another viable strategy to reduce the burn-in period could 7 

be starting the MCMC sampling from the model predicted by a local inversion. More advanced 8 

MCMC algorithms that incorporate the principles of Hamiltonian dynamics into the standard 9 

Metropolis-Hasting method (Betancourt, 2017; Fichtner et al. 2019; Gebraad et al. 2020; Aleardi and 10 

Salusti 2020b; Aleardi et al. 2020) could be useful to speed up the probabilistic ERT inversion. The 11 

major computational requirement of the Hamiltonian Monte Carlo algorithm is the need for 12 

computing the derivative (i.e. the Jacobian matrix) for each sampled model. To this end, the adjoint-13 

state method can be employed. Alternatively, one can also exploit Machine learning algorithms to 14 

approximate the Jacobian around each considered model (Aleardi, 2020).  15 

The MCMC inversion and the employed FE forward modeling code have been implemented in 16 

Matlab. In particular, we used a parallel MCMC code in which the model update and the forward 17 

evaluations are distributed across different cores. The synthetic inversion and real data examples run 18 

in approximately 1.5 and 2 days, approximately, on a two deca-core intel E5-2630 at 2.2 GHz (128 19 

Gb RAM). The major computational requirement, as expected, is related to the forward modeling 20 

evaluation that covers more than the 85% of the entire computational cost of the implemented 21 

inversion approach. Therefore, the MCMC inversion is much more computationally demanding than 22 

a gradient-based inversion that runs in a few minutes on the same hardware. Although this is an 23 

important disadvantage to invert monitoring data that require real-time results (Hojat et al., 2020), 24 

the method can be efficiently used to get reasonable results for a variety of studies (e.g. archaeological 25 

studies, mineral exploration, groundwater studies). The main advantage of the MCMC inversion over 26 



the local approach is the possibility to reliably assess the uncertainty affecting the recovered solution 1 

that can be used to build multiple realizations of both the continuous and discrete properties. Such 2 

realizations can be extremely useful during the geological interpretation phase because represent 3 

possible subsurface scenarios all in accordance with the recorded data.  4 

If needed, the use of geostatistical simulation approaches allows for a direct inclusion of hard 5 

model constraints (e.g. facies or resistivity constraints provided by borehole data) into the 6 

implemented inversion framework. Finally, we point out that there is still room for a substantial 7 

reduction of the computational cost for example by employing a more efficient and scalable forward 8 

modeling code. For this reason, we are exploring the possibility to translate the Matlab code into a 9 

low-level programming language. 10 

 11 

CONCLUSIONS 12 

We implemented an MCMC inversion algorithm for Bayesian ERT inversion in which the subsurface 13 

resistivity model, the facies configuration, and the associated uncertainties are inferred from the 14 

measured apparent resistivity values. The proposed approach provides accurate uncertainty 15 

estimations in case of mixed discrete-continuous inverse problems, non-linear forward models, and 16 

multimodal, non-parametric prior distributions. In other terms, our approach does not require any 17 

assumptions (i.e. Gaussianity) about the distribution of the continuous model property in a given 18 

facies. To reduce the ill-conditioning of the inversion process we included spatial constraints for both 19 

the continuous and discrete model parameters. In particular, we used a Gaussian variogram model for 20 

the resistivity value, and a 1D Markov prior models for the facies, whereas a FE code was used for 21 

forward modeling. The synthetic and field inversions showed that the implemented MCMC approach 22 

yielded reliable final predictions in accordance with the outcomes of a gradient-based inversion. 23 

However, the outstanding benefit of the MCMC algorithm is the possibility to accurately assess the 24 

uncertainties affecting the recovered solution. 25 

 26 
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FIGURES 1 

 2 

 3 

Figure 1: Example of a resistivity model in which we highlight the hard data values and the 4 

neighboring locations where the current resistivity values will be modified by the DSS 5 

updating step. 6 
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 1 

Figure 2: a) Prior distribution for the discrete property showing the expected frequency of 2 

occurrence of the two facies in the synthetic example. b) Marginal prior distribution for the 3 

natural logarithm of the resistivity values. The red and green curves show the Gaussian 4 

components forming the Gaussian mixture model (black curve). c), and d) spatial correlation 5 

functions associated with the assumed 2-D variogram model along the lateral and vertical 6 

directions, respectively.  7 
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 1 

Figure 3: a) The true model for the synthetic inversion. b) The a-posteriori mean solution 2 

estimated by the MCMC inversion. c) The standard deviation estimated by the MCMC 3 

inversion. d) Evolution of the negative log-likelihood value for the 20 chains. 4 
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Figure 4: a) True facies model. b) Maximum-a-posteriori (MAP) facies solution. c), and d) 3 

posterior probabilities for the discrete property showing the probability of observing the two 4 

facies at each subsurface spatial location.   5 
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 1 

Figure 5: a), b), and c) examples of marginal posterior distributions for the discrete and 2 

continuous property at three different spatial locations.  3 
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 1 

Figure 6: a) Comparison between the observed data and the data predicted at different 2 

MCMC iterations. For graphical convenience, the apparent resistivity pseudosections have 3 

been flattened to 1-D vectors. Note that 5000 iterations are enough to accurately predict the 4 

observed data. b) The observed pseudosection. c) The pseudosection computed on the a-5 

posterior mean model (Figure 3b). 6 
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Figure 7: Examples of facies configurations (a) and associated resistivity values (b) extracted 2 

from the a-priori distribution and forming 12 out of the 20 current models of the first MCMC 3 

iteration. 4 
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Figure 8: Examples of facies configurations (a) and associated resistivity values (b) forming 3 

12 out of the 20 current models of the last MCMC iteration. 4 
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 1 

Figure 9: Evolution of the PSRF values for all the 385 model parameters. The dotted red line 2 

at 1.2 indicates the threshold of convergence. 3 
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 1 

Figure 10: a) Prior distribution for the discrete property showing the expected frequency of 2 

occurrence of the two facies in the investigated area. Facies A and B refer to the low and 3 

high resistivity formations. b) Non-parametric marginal prior distribution for the resistivity 4 

values (dotted black curve). The red and green curves show the non-parametric components 5 

associated with each facies. c), and d) normalized spatial correlation functions associated 6 

with the assumed 2D Gaussian variogram model along the lateral and vertical directions, 7 

respectively. 8 
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Figure 11: a) The model estimated by a gradient-based least-squares inversion. b) The a-4 

posteriori mean solution estimated by the MCMC inversion. c) The standard deviation map 5 

estimated by the MCMC inversion. 6 
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 1 

Figure 12: a) Maximum-a-posteriori (MAP) facies solution. b), and c) posterior probabilities 2 

for the discrete property showing the probability of observing the two facies at each 3 

subsurface spatial location.   4 
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 1 

Figure 13: a) Observed pseudo-section. b) Pseudo-section predicted by a local least-squares 2 

inversion. c) Pseudo-section computed on the mean posterior solution provided by the 3 

MCMC inversion. 4 
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Figure 14: a) Evolution of the negative log-likelihood value for the 20 chains. b) Evolution 3 

of the PSRF values for all the 705 model parameters. The dotted red line at 1.2 indicates the 4 

threshold of convergence. 5 
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Figure 15: a), b), and c) examples of marginal prior and posterior distributions for the 4 

discrete and continuous property at three different spatial locations. 5 
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Figure 16: Examples of facies configurations (a) and associated resistivity values (b) 3 

extracted from the a-priori distribution and forming 12 out of the 20 current models of the 4 

first MCMC iteration. 5 
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Figure 17: Examples of facies configurations (a) and associated resistivity values (b) forming 3 

12 out of the 20 current models of the last MCMC iteration. 4 
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TABLE 1 

 Data error (%) Model error (%) 

First iteration 29.9 25.2 

Last Iteration 5.8 9.3 

Table 1: Data and model errors (in percentage) computed at the first and last MCMC 2 

iteration.  3 

 4 

 5 


