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We study the quantum dynamics of many-body systems, in the presence of dissipation due to the interaction
with the environment, under Kibble-Zurek (KZ) protocols in which one Hamiltonian parameter is slowly, and
linearly in time, driven across the critical value of a zero-temperature quantum transition. In particular we address
whether, and under which conditions, open quantum systems can develop a universal dynamic scaling regime
similar to that emerging in closed systems. We focus on a class of dissipative mechanisms the dynamics of
which can be reliably described through a Lindblad master equation governing the time evolution of the system’s
density matrix. We argue that a dynamic scaling limit exists even in the presence of dissipation, the main features
of which are controlled by the universality class of the quantum transition. This requires a particular tuning of the
dissipative interactions, the decay rate u of which should scale as u ∼ t−κ

s with increasing the time scale ts of the
KZ protocol, where the exponent κ = z/(yμ + z) depends on the dynamic exponent z and the renormalization-
group dimension yμ of the driving Hamiltonian parameter. Our dynamic scaling arguments are supported by
numerical results for KZ protocols applied to a one-dimensional fermionic wire undergoing a quantum transition
in the same universality class of the quantum Ising chain, in the presence of dissipative mechanisms which
include local pumping, decay, and dephasing.
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I. INTRODUCTION

The recent experimental progress in the control and ma-
nipulation of quantum many-body systems has led to great
achievements, opening the door for the realization of quantum
simulators [1–6]. However, the effective isolation of a quan-
tum system remains a challenge, since interactions with the
environment can have a significant impact in the dynamics,
even when they interact weakly. It is thus important to un-
derstand the effects of dissipative interactions, irrespective of
their strength. This issue is of particular relevance for systems
at quantum transitions [7], where the above-mentioned effects
are generally relevant, thus tending to suppress the critical
quantum correlations [8,9].

Slow passages through quantum transitions allow us to
probe some universal features of quantum fluctuations in
such circumstances. In this respect, we mention the Kibble-
Zurek (KZ) problem [10–14], related to the amount of final
defects, after slow (quasiadiabatic) passages through con-
tinuous quantum transitions, from the disorder phase to the
order phase. Its scaling predictions have been confirmed by
experiments for various physically interesting systems (see,
e.g., Refs. [15–20]). KZ-like protocols have been largely em-
ployed to investigate the critical dynamics of closed systems,
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subject to unitary time evolutions only [21,22]. The open
nature of quantum systems, however, may lead to a departure
from the dynamic scaling behavior predicted for the isolated
case [23–35]. In particular, it has been observed that slower
quenches in open systems, or subject to noisy controls, may
generate an overabundance of defects when approaching the
adiabatic limit in KZ protocols, sometimes named anti-KZ
behavior [36].

Since dissipative mechanisms are expected to give rise
to relevant perturbations at the quantum criticality of closed
systems [8,9,37] (such as the temperature), they do not gen-
erally preserve the universal dynamic properties of quantum
transitions. From this point of view, the above-mentioned
anti-KZ behavior should not be considered as unexpected.
Indeed, due to the general relevance of the perturbations as-
sociated with dissipative mechanisms, slower protocols favor
the dissipation effects, in that they give them more time to
act. Therefore, unlike closed systems, the dynamic behaviors
arising from slow changes of the Hamiltonian parameters,
across their critical values, do not anymore develop universal
critical features controlled by the quantum transition of the
closed system. Only an appropriate tuning of the dissipation
strength may give rise to a nontrivial interplay with the critical
unitary dynamics, developing a dynamic scaling behavior
in KZ protocols controlled by the universality class of the
quantum transition.

The issue we address in this paper is whether, and under
which conditions, open dissipative systems may still present
a universal regime controlled by the universality class of the
quantum transition of the closed system. We focus on a class
of dissipative mechanisms the dynamics of which can be
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reliably described through a Lindblad master equation [38,39]
governing the time evolution of the density matrix of the
system [40–42]. We argue that, in the presence of weak dissi-
pation, the dynamics of many-body systems may still develop
a scaling behavior under KZ protocols (i.e., slow changes
of one Hamiltonian parameter across its critical value), thus
extending the dynamic KZ scaling of closed systems [14].
Its main features, in the presence of weak dissipation, are
still controlled by the universality class of the quantum tran-
sition, provided the system-environment interaction strength
is suitably tuned. This allows us to define a dynamic KZ
scaling limit in the presence of dissipation. In particular, we
argue that the decay rate u of the dissipative interactions must
scale as a power law u ∼ t−κ

s with increasing the time scale
ts of the slow variations of the KZ protocol, where κ < 1 is
an appropriate positive exponent, depending on the universal
critical exponents of the quantum transition. The suppres-
sion of the dissipation rate is necessary to observe universal
dynamic scaling and it is analogous to that found in other
dynamic problems with dissipation at quantum transitions
[8,9].

To check our general framework, we present a numerical
analysis of KZ protocols applied to the fermionic Kitaev
wire [43] across its quantum transition (belonging to the
same universality class of the one appearing in quantum Ising
chains) in the presence of dissipative mechanisms including
local pumping, decay, and dephasing. This model can be
exactly and fully solved (i.e., with respect to its full excitation
spectrum) even with a large number of sites, up to a few
thousands, thus enabling us to perform an accurate numerical
investigation of the dynamic KZ scaling behavior put forward.
Our results nicely confirm the emerging of a dynamic scaling
in the limit of slow passages across the quantum transition and
in the presence of weak dissipation.

The paper is organized as follows. In Sec. II we describe
our dynamic KZ protocol and discuss the Lindblad mod-
elization of a dissipative system-environment interaction. In
Sec. III we summarize the main features of the dynamic KZ
scaling limit, and the emerging scaling laws in the limit of
large time scale of the KZ protocol. In Sec. IV we extend
the dynamic KZ scaling laws to allow for the presence of
dissipation, thus achieving a unique framework to discuss the
interplay between (critical) coherent and dissipative drivings.
Subsequently we introduce the open-system Kitaev quantum
wire, which represents our theoretical laboratory to check
the phenomenological dynamic KZ scaling we put forward
(Sec. V), and present extensive numerical analyses of KZ
protocols for that model at its zero-temperature quantum tran-
sition in the presence of dissipation (Sec. VI). Finally, Sec. VII
contains a brief summary and some concluding remarks.

II. DYNAMIC KZ PROTOCOL IN THE PRESENCE
OF DISSIPATION

We consider a many-body system presenting a quantum
transition driven by the Hamiltonian parameters. For sim-
plicity, we assume that the Hamiltonian Ĥ depends on a
single relevant parameter μ, the variation of which drives a
quantum transition separating two different quantum phases.

The deviation

μ̄ ≡ μ − μc (1)

quantifies the distance from the critical point, located at
μ = μc. We also suppose that negative values μ̄ < 0 corre-
spond to the gapped quantum disordered phase. Quasiadia-
batic passages through the quantum transition, slowly varying
μ across μ = μc, give rise to peculiar out-of-equilibrium
phenomena, such as the one related to the so-called KZ prob-
lem [11–13,21,22] addressing the formation of defects when
passing through quantum critical points, from the gapped
disordered phase to the ordered phase.

A standard KZ protocol would proceed as follows.
(i) One starts from the ground state of the many-body

system at μ̄i < 0, or alternatively from a statistical state
described by the Gibbs distribution ∝ e−Ĥ (μ̄i )/kBT at small
temperature T .

(ii) Then the quantum dynamics is driven by slow varia-
tions of the relevant parameter μ̄ associated with the quantum
transition, for example, linearly as

μ̄(t ) = t/ts, (2)

up to a value μ̄ f > 0. The parameter ts > 0 denotes the time
scale of the slow variations of the Hamiltonian parameter μ̄.
The time evolution is unitary, i.e.,

∂ρ

∂t
= − i

h̄
[Ĥ (μ̄), ρ], (3)

where ρ(t ) is the density matrix of the many-body system.
Even in the limit of very slow changes, corresponding to
ts → ∞, infinite-volume systems cannot satisfy the adiabatic
dynamic condition when passing through the transition point,
thus developing out-of-equilibrium behaviors. The resulting
evolution of the system is usually investigated by monitoring
observables obtained by taking expectation values at fixed
time. For example, in the case of lattice spin models, one may
consider the magnetization, the two-point function of local
operators related to the order parameter, etc.

Here we want to study the effects of weak dissipative
mechanisms on the slow dynamics across the quantum tran-
sition. Therefore, besides the changes of the Hamiltonian
parameters, we suppose that the many-body system is also
subject to some interaction with the environment. The time de-
pendence of its density matrix ρ can be reasonably described
by the Lindblad master equation [40]

∂ρ

∂t
= − i

h̄
[Ĥ (μ̄), ρ] + uD[ρ], (4)

where the first term in the right-hand side provides the coher-
ent driving, while the second term accounts for the coupling to
the environment, characterized by a global coupling constant
u > 0.

We restrict ourselves to homogeneous dissipation mecha-
nisms, preserving translational invariance. In the case of sys-
tems weakly coupled to Markovian baths, the trace-preserving
superoperator can be written as a sum of local terms, such as
[38,39]

D[ρ] =
∑

o

Do[ρ], (5)

Do[ρ] = L̂oρL̂†
o − 1

2 (ρ L̂†
oL̂o + L̂†

oL̂oρ), (6)
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where L̂o is the Lindblad jump operator associated with the
local system-bath coupling scheme, and o denotes an appro-
priate spatial coordinate. In quantum optical implementations,
the conditions leading to Eqs. (4)–(6) are typically satisfied
[42], therefore this formalism constitutes the standard choice
for theoretical investigations of this kind of systems.

In the following we analyze the dynamic scaling behav-
ior arising from dynamic protocols of quantum many-body
systems in the presence of weak dissipation, thus evolving
according to Eq. (4), when the parameter μ is slowly var-
ied across its critical value μc associated with the quantum
transition driven by the Hamiltonian, starting from the gapped
disordered phase, analogously to the standard KZ protocol for
closed systems.

III. DYNAMIC KZ SCALING FOR CLOSED
QUANTUM SYSTEMS

Before discussing the effects of dissipation, we recall the
main features of the dynamic scaling behavior developed by
many-body systems unitarily evolving at quantum transitions
[14,44–46], and in particular when they are slowly driven
across its quantum transition, according to the KZ protocol
described in Sec. II [see Eqs. (2) and (3)].

A. Homogeneous scaling laws

At the critical point, the low-energy unitary Hamiltonian
dynamics develops long-distance correlations, characterized
by a diverging equilibrium length scale ξ ∼ |μ̄|−ν [where
ν = 1/yμ and yμ is the renormalization-group (RG) dimen-
sion of the relevant parameter] and the suppression of the gap
(energy difference between the lowest states) � ∼ ξ−z. The
correlation-length exponent ν and the dynamic exponent z are
the critical exponents associated with the universality class of
the quantum transition. The dynamics at continuous quantum
transitions develop homogeneous scaling laws [12,14,44–57],
even in the presence of interactions with an environment
[8,9,37,58].

For example, in the case of instantaneous quenches of
closed systems, arising from the instantaneous variation of the
Hamiltonian parameter from μ̄i to μ̄, starting from the ground
state at μ̄i, the evolution of a generic observable B, such as the
expectation value of a local operator B̂ (assuming translation
invariance), satisfies the homogeneous scaling relation [45]

B(μ̄i, μ̄, t, L) ≡ 〈�(t )|B̂|�(t )〉
≈ b−yB B(μ̄ib

yμ, μ̄byμ, tb−z, L/b). (7)

Here |�(t )〉 indicates the quantum many-body state after the
quench, b is an arbitrary positive parameter, yB is the RG
dimension of the operator B̂, L is the size of the system, and
B is a universal scaling function apart from normalizations.
Equation (7) is expected to provide the asymptotic power-law
behavior in the large-b limit.

The KZ protocol focuses on the opposite quasiadiabatic
regime, where the driving parameter μ̄ is slowly varied across
the quantum transition, starting from the ground state at
a given μ̄i < 0 and then changing μ̄ linearly in time, as
in Eq. (2) (thus the initial condition μ̄i corresponds to the

initial time ti = tsμ̄i). A phenomenological scaling theory is
obtained by assuming the homogeneous scaling law

B(μ̄i, t, ts, L) ≈ b−yB B(μ̄ib
yμ, μ̄(t )byμ, tb−z, L/b), (8a)

where, again, b is an arbitrary positive parameter. Analogous
scaling equations can be written down for the fixed-time
correlations GAB of two local operators Â and B̂ at a distance
x. Assuming translation invariance,

GAB(x, μ̄i, t, ts, L) ≡ 〈�(t )|Â(x0)B̂(x0 + x)|�(t )〉
≈ b−ϕG(x/b, μ̄ib

yμ, μ̄(t )byμ, tb−z, L/b),

(8b)

where ϕ = yA + yB and yA and yB are the RG dimensions of
the operators Â and B̂, respectively.

The dynamic KZ scaling framework can be extended to
situations where the initial condition is given by a Gibbs
ensemble at temperature T , by adding a further dependence
on the product T bz in the KZ scaling functions of Eqs. (8a)
and (8b).

B. Dynamic scaling in the infinite-volume limit

We now concentrate on KZ protocols. To derive a dynamic
scaling theory for infinite-volume systems, it is possible to
exploit the arbitrariness of the scale parameter b in the general
homogeneous power laws (8a) and (8b). To this purpose we
set

b = λ ≡ t
1

yμ+z
s , (9)

where λ is the length scale associated with the KZ protocol,
and take the limit L/λ → ∞ (corresponding to taking the so-
called thermodynamic limit). This leads to the dynamic KZ
scaling ansatz

B(μ̄i, t, ts) ≈ λ−yB Bi(μ̄iλ
yμ, τ ), (10a)

GAB(x, μ̄i, t, ts) ≈ λ−ϕ Gi(x/λ, μ̄iλ
yμ, τ ), (10b)

where τ is the rescaled time:

τ ≡ t/tκ
s , κ = z

yμ + z
. (11)

The dynamic KZ scaling limit, where the above asymptotic
behaviors apply, is obtained by taking ts → ∞ keeping the
arguments of the dynamic scaling functions Bi and Gi fixed.
Actually, introducing a time scaling variable related to initial
time of the KZ protocol,

τi ≡ ti/tκ
s , ti = μ̄i ts, (12)

we may rewrite the scaling Eqs. (10a) and (10b) as

B(μ̄i, t, ts) ≈ λ−yB B̃i(τi, τ ), (13a)

GAB(x, μ̄i, t, ts) ≈ λ−ϕ G̃i(x/λ, τi, τ ). (13b)

Note that the scaling functions Bi, Gi and B̃i, G̃i in Eqs. (10a)–
(10b) and (13a)–(13b) do not coincide, but are trivially related
by the change of scaling variables.

Since the KZ protocol starts from μ̄i < 0 corresponding to
the gapped phase, where the gap decreases as � ∼ ξ−z and
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the ground-state length scale ξ diverges only at the critical
point μ̄ = 0, the emerging dynamic KZ scaling should be
independent of the actual finite value of μ̄i < 0, if this is kept
fixed in the dynamic KZ scaling limit. This is essentially due
to the fact that, in a gapped phase, the evolution arising from
slow changes of the parameters is essentially adiabatic, from
μ̄i to the relevant scaling interval δμ around μ̄ = 0, which
effectively decreases as

δμ̄ ∼ t−1+κ
s → 0 (14)

in the dynamic KZ scaling limit. Therefore, when increasing
ts, keeping μi < 0 constant and finite, the dynamic KZ scaling
must be independent of μ̄i, corresponding to the τi → −∞
limit of the relations (13a) and (13b). Therefore this leads to
the dynamic scaling ansatz

B(μ̄i, t, ts) ≈ λ−yB B∞(τ ), (15a)

GAB(x, μ̄i, t, ts) ≈ λ−ϕ G∞(x/λ, τ ). (15b)

The dynamic scaling functions introduced above are ex-
pected to be universal with respect to changes of the micro-
scopic details of the Hamiltonian within the given universality
class. Of course, like any scaling function at quantum tran-
sitions, such a universality holds apart from a multiplicative
overall constant and normalizations of the scaling variables.
The approach to the asymptotic dynamic scaling behavior
is expected to be generally characterized by power-law sup-
pressed corrections.

We finally mention that the so-called KZ problem gen-
uinely addresses the formation of defects when slowly cross-
ing the quantum transition, from the disordered to the ordered
phase. The above scaling arguments in the dynamic KZ limit
(see Refs. [11,14,22]) lead to the expectation that the density
of defects arising after crossing the transition scales as the
inverse scaling volume λ−d [see Eq. (9)], that is

ρdefects ∼ λ−d = t
− d

yμ+z
s . (16)

This scaling behavior has been verified in experiments (see,
e.g., Refs. [15–20,36,59,60]).

C. Dynamic finite-size scaling

The scaling Eqs. (8a) and (8b) also allow us to derive
dynamic finite-size scaling (FSS) relations, which are valid far
from the thermodynamic limit, and which extend those pre-
dicted by the FSS theory for systems at equilibrium [61–63].
For example, by setting b = L in Eq. (8b), we obtain

GAB(x, μ̄i, t, ts, L) ≈ L−ϕ GL(x/L, μ̄iL
yμ, μ̄(t )Lyμ, tL−z ).

(17)
This dynamic FSS behavior is expected to be obtained by
taking L → ∞, while keeping the arguments of the scaling
function GL fixed. One may introduce more convenient scaling
variables, which are combinations of those entering Eq. (17).
For example, one can write it as

GAB(x, μ̄i, t, ts, L) ≈ L−ϕ GL(x/L, τi, τ, υ ), (18)

where

υ ≡ ts/Lyμ+z (19)

and τ and τi are defined in Eqs. (11) and (12), respectively.

Assuming again that the KZ protocol starts from the
gapped disordered phase and the initial μ̄i < 0 is kept fixed in
the dynamic scaling limit, the same dynamic FSS is expected
to hold, irrespective of the value of μ̄i. Thus, the dynamic FSS
in Eq. (18) simplifies into

GAB(x, μ̄i, t, ts, L) ≈ L−ϕ GL,∞(x/L, τ, υ ). (20)

Indeed, with increasing L, the dynamic FSS occurs within a
smaller and smaller interval of values of |μ| around μ̄ = 0:
since the time interval of the dynamic process scales as
tsca ∼ tκ

s , the relevant interval of values of |μ̄| shrinks as
tsca/ts ∼ L−yμ , when keeping υ fixed.

Note that, in the limit υ → ∞, the evolution as a func-
tion of μ̄(t ) = t/ts corresponds to an adiabatic dynamics.
Indeed, since the finite-size L guarantees the presence of a
gap between the lowest states, one may adiabatically cross
the critical point in the limit υ → ∞, passing through the
ground states of the finite-size system for μ̄(t ). The adiabatic
evolution across the transition point is prevented only when
L → ∞ (before the limit ts → ∞), i.e., when the time scale
of the critical correlations diverges, since τcr ∼ �−1 ∼ Lz.

IV. DYNAMIC KZ SCALING FOR OPEN
QUANTUM SYSTEMS

A. Dynamic scaling allowing for dissipation

In this section, we extend the dynamic scaling theory out-
lined in Sec. III to systems subject to dissipative interactions
with the environment, so that the time dependence of the
density matrix ρ is described by the Lindblad master equation
(4). Namely, we assume that the quantum evolution arising
from the KZ protocol occurs in the presence of dissipation
with the effective coupling u > 0, thus being ruled by Eq. (4).
The resulting dynamic KZ scaling framework will provide a
unique framework to discuss the interplay between (critical)
coherent and dissipative drivings.

The dynamic behavior in the presence of weak dissipa-
tion has been addressed within a phenomenological dynamic
scaling theory in Refs. [8,9], extending the dynamic scaling
scenario holding for closed systems. This has been obtained
by adding a further dependence associated with the dissipation
parameter u in the dynamic scaling relations (8a) and (8b),
through a power law ubz, where the dynamic exponent z
ensures the substantial balance (i.e., competition) with the
critical coherent driving. We recall that this hypothesis has
been put forward after noting that the parameter u of the dissi-
pator in Eq. (4) plays the role of a decay rate, i.e., of an inverse
relaxation time, of the associated dissipative process [40].
Thus, to observe a nontrivial competition between critical
coherent dynamics and dissipation, the dissipative coupling
must be comparable to the gap of the critical Hamiltonian,
therefore its scaling variable must be controlled by the dy-
namic exponent z.

Following the above reasoning, we conjecture that KZ
protocols in the presence of dissipation develop homogeneous
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laws, such as

B(μ̄i, t, ts, u, L)

≡ Tr[ρ(t )B̂]

≈ b−yB B(μ̄ib
yμ, μ̄(t )byμ, tb−z, L/b, ubz ), (21a)

and

GAB(x, μ̄i, t, ts, u, L)

≡ Tr[ρ(t )ÂB̂]

≈ b−ϕ G(x/b, μ̄ib
yμ, μ̄(t )byμ, tb−z, L/b, ubz ), (21b)

similar to those in Eqs. (8a) and (8b), but with one addi-
tional scaling variable associated with u.

B. Dynamic scaling in the infinite-volume limit

Analogously to the dynamics of closed systems, it is pos-
sible to derive scaling laws in the thermodynamic limit, by
fixing b as in Eq. (9) and taking L/λ → ∞. One can easily
show that Eqs. (21a) and (21b) imply the dynamic KZ scaling
ansatz

B(μ̄i, t, ts, u) ≈ λ−yB Bi(τi, τ, γ ), (22a)

GAB(x, μ̄i, t, ts, u) ≈ λ−ϕ Gi(x/λ, τi, τ, γ ), (22b)

where we introduced the scaling variable γ associated with
the dissipation parameter:

γ = u tκ
s , κ = z

yμ + z
. (23)

The above scaling laws are expected to provide the asymptotic
behavior in the ts → ∞ limit while keeping the scaling vari-
ables fixed, including γ . In the limit γ → 0, we must recover
the scaling laws of the closed systems subject to unitary
evolutions only. More importantly, the above scaling laws tell
us that the dissipation effects are expected to be negligible
when u 
 t−κ

s .
Note that, like for closed systems, the large-ts limit of

KZ protocols starting from finite and fixed μ̄i < 0 should
correspond to the limit τi → −∞ in the right-hand side of
Eqs. (22a) and (22b). Indeed, the dissipation with coupling
strength u ∼ λ−z is not expected to play any relevant role
at finite μ̄i < 0, where the gap is � = O(1), while it should
compete with the unitary evolution only very close to μ̄ = 0
where u ∼ � ∼ λ−z. Therefore, under such conditions we
expect the scaling behavior

B(μ̄i, t, ts, u) ≈ λ−yB B∞(τ, γ ), (24a)

GAB(x, μ̄i, t, ts, u) ≈ λ−ϕ G∞(x/λ, τ, γ ). (24b)

We mention that, in the above KZ scaling limit allowing
for dissipation, the scaling law associated with the number of
defects [see Eq. (16)] should be replaced with

ρdefects ≈ λ−d D(γ ) = t
− d

yμ+z
s D(γ ), (25)

where the dependence on the dissipative coupling u enters the
scaling function D through the scaling variable γ . Of course,

one must recover the scaling law (16) for γ = 0. Notice that
Eq. (25) is expected to apply when the arrival phase is gapped,
or, generally, when the final value μ̄ f of μ̄ scales appropriately
to μ̄ = 0, i.e., as μ̄ f ∼ t−1+κ

s when increasing ts.

C. Dynamic finite-size scaling

The dynamic FSS behavior can be obtained by setting
b = L in Eqs. (21a) and (21b), thus extending the results
contained in Sec. III C to allow for the dissipation term of the
Lindblad equation. Namely,

GAB(x, μ̄i, t, ts, u, L) ≈ L−ϕ GL(x/L, τi, τ, υ, γL ), (26)

where

γL = u Lz. (27)

The above scaling law can be obtained in the L → ∞ limit
while keeping the scaling variables fixed, including γL.

Moreover, assuming again that the quantum phase for
μ̄ < 0 is gapped, with � ∼ ξ−z, and the ground-state length
scale ξ diverges only at the critical point μ̄ = 0, KZ protocols
associated with any finite initial μ̄i < 0 develop the same
dynamic FSS independently of their actual values. Thus, the
dynamic FSS can be written as

GAB(x, μ̄i, t, ts, u, L) ≈ L−ϕ GL,∞(x/L, τ, υ, γL ). (28)

Indeed, similarly to the infinite-volume case, the dissipation
with coupling strength u ∼ L−z is not expected to play any
relevant role at finite μ̄i < 0, where the gap is � = O(1),
while it should compete with the unitary evolution only very
close to the critical point where u ∼ � ∼ L−z. Like for closed
systems, the dynamic scaling limit thus involves smaller and
smaller intervals of values of |μ̄| around μ̄ = 0 with increas-
ing L: since the time interval of the dynamic process scales
as tsca ∼ tκ

s , the relevant interval of values of |μ| shrinks as
tsca/ts ∼ L−yμ , when keeping υ fixed.

V. KZ PROTOCOLS FOR THE KITAEV QUANTUM
WIRE SUBJECT TO DISSIPATION

To verify the dynamic KZ scaling laws put forward in the
previous sections, and in particular in Sec. IV, we consider a
Kitaev quantum wire defined by the Hamiltonian [43]

ĤK = −J
L∑

j=1

(ĉ†
j ĉ j+1 + δ ĉ†

j ĉ
†
j+1 + H.c.) − μ

L∑
j=1

n̂ j, (29)

where ĉ j is the fermionic annihilation operator on the jth site
of the chain, n̂ j ≡ ĉ†

j ĉ j is the density operator, and δ > 0.
We set h̄ = 1, and J = 1 as the energy scale. Moreover we
fix δ = 1. We consider antiperiodic boundary conditions,
ĉL+1 = −ĉ1, and even L for computational convenience.

The fermionic system described by the Hamiltonian (29)
undergoes a continuous quantum transition at μ = μc = −2,
independently of δ, belonging to the same universality class
of that of the quantum Ising chain (when δ > 0), i.e., the
two-dimensional Ising universality class [7,43], characterized
by the length-scale critical exponent ν = 1, related to the
RG dimension yμ = 1/ν = 1 of the Hamiltonian parameter μ

(more precisely of the difference μ̄ ≡ μ − μc). The dynamic
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exponent associated with the unitary quantum dynamics is
z = 1. Moreover, the RG dimension of the fermionic operators
ĉ j and ĉ†

j is yĉ = yĉ† = 1/2, and that of the density operator n̂ j

is yn̂ = 1 [7]. Details on the correspondence with the quantum
Ising chain are provided in Appendix.

We focus on the dynamic behavior of the Fermi lattice
gas (29) close to its quantum transition, in the presence of
homogeneous dissipation mechanisms following the Lindblad
equation (4). The dissipator D[ρ] is defined as a sum of local
(single-site) terms of the form

D j[ρ] = L̂ jρL̂†
j − 1

2 (ρ L̂†
j L̂ j + L̂†

j L̂ jρ), (30)

where L̂ j denotes the Lindblad jump operator associated with
the system-bath coupling scheme, and the index j corresponds
to a lattice site [thus replacing the index o in Eqs. (5) and
(6)]. The onsite Lindblad operators L̂ j describe the coupling
of each site with an independent bath. We consider dissipation
mechanisms associated with either particle losses (l), pumping
(p), or dephasing (d), respectively [8,29,64–68]:

L̂l, j = ĉ j, L̂p, j = ĉ†
j , L̂d, j = n̂ j . (31)

The choice of such dissipators turns out to be particularly
convenient for the numerical analysis, allowing us to scale
the difficulty of the problem linearly with L and thus to
obtain results for the Kitaev wire with thousands of sites (see
Sec. VI). This is important, in view of the necessity to perform
adequate numerical checks of a new scaling theory lying on
phenomenological grounds.

The KZ protocol that we consider starts from the ground
state of ĤK for a generic μ̄i < 0, where the system is gapped,
� = |μ̄| + O(L−2), while � ∼ L−1 at μ̄ = 0 (see Appendix).
Then the system evolves according to Eq. (4) with a time-
dependent parameter μ̄(t ) = t/ts, starting from ti < 0 such
that μ̄i = ti/ts. To characterize the dynamic properties of
the evolution described by the Lindblad equation, and in
particular the corresponding asymptotic large-time behavior,
we consider the fixed-time correlations

P(x, t ) = Tr[ρ(t ) (ĉ†
j ĉ

†
j+x + ĉ j+xĉ j )], (32a)

C(x, t ) = Tr[ρ(t ) (ĉ†
j ĉ j+x + ĉ†

j+xĉ j )], (32b)

G(x, t ) = Tr[ρ(t ) n̂ j n̂ j+x] − Tr[ρ(t ) n̂ j] Tr[ρ(t ) n̂ j+x], (32c)

where j, x ∈ [1, L/2].
The dynamic KZ scaling of the above correlation functions

is expected to be given by the general scaling laws reported
for the generic two-point function GAB in Sec. IV, taking
into account that ϕ = 1 for the correlations P and C (since
yĉ = yĉ† = 1/2), while ϕ = 2 for G (since yn̂ = 1). This scal-
ing scenario should hold for all the considered dissipation
mechanisms [see Eq. (31)]. Of course, the corresponding
scaling functions are expected to differ.

VI. NUMERICAL RESULTS

We now present the results of a series of numerical com-
putations we have performed on the Kitaev quantum wire. As
stated above, this model is amenable to a direct solvability
for systems with O(103) sites, thus representing the ideal
playground for open quantum lattice problems, given the

remarkable difficulty to simulate the dynamics of interacting
many-body quantum systems coupled to an external bath.

For the specific choice of dissipators in Eq. (31), the expo-
nential complexity of the Kitaev chain can be semianalytically
reduced to a polynomial one [8,29,64,69]. In particular, in the
presence of particle losses or pumping and for translationally
invariant systems, the driven-dissipative quantum dynamics
ruled by the master equation (4) can be exactly solved by
decoupling in Fourier space the various sectors with different
momenta, analogously to fermionic Gaussian Hamiltonian
models. Similar strategies can be adopted for more general
inhomogeneous (disordered) lossy dynamics, provided the
Liouvillian operator remains quadratic in the creation and an-
nihilation operators for fermions. On the other hand, although
the quantum dynamics with a dephasing mechanism cannot be
simply obtained, two-point observables are still fully captured
by a set of coupled linear differential equations, the number
of which increases linearly with the number of sites L (see,
e.g., the Appendix in Ref. [8] for details). The latter can
be integrated, e.g., with a standard fourth-order Runge-Kutta
method.

A. Dynamic KZ scaling in the infinite-volume limit

We first discuss systems in the thermodynamic limit. To
ensure that finite-size corrections are negligible on the scale of
all the numerics presented below for the dynamic scaling, we
have carefully checked that (in all cases treated here) systems
of size L = 212 = 4096 allow us to simulate KZ protocols
with a length scale λ up to O(102), corresponding to time
scales

ts = λyμ+z = λ2, (33)

of the order O(104) [see Eq. (2)].

1. Unitary KZ dynamics

Before discussing the effects of dissipation, it is instructive
to present the outcomes of a typical KZ protocol for the uni-
tary dynamics of the Kitaev quantum wire, without dissipation
(u = 0). Figure 1 shows the time behavior of the fixed-time
correlation P(x, t ) at fixed x/λ [see Eq. (32a)] during a KZ
protocol starting from a fixed rescaled initial time τi < 0 (in
the figure, τi = −10) and running up to positive values of
the rescaled time. In this way, the Hamiltonian parameter
μ̄ ≡ μ − μc of ĤK is slowly changed in time starting from
an initial value μ̄i = τi/λ < 0, the absolute value of which
decreases with the KZ length scale λ, through the critical
point μ̄ = 0 at t = τ = 0. The various parameters have been
rescaled according to Eq. (13b): we set ϕ = 1 and κ = 1/2,
and we plot λ P(x, t ) as a function of τ , for increasing values
of λ, while keeping the scaling variables x/λ and τi constant.
This corresponds to a progressive increase of the time scale
ts of the slow variations of the Hamiltonian parameter μ̄,
according to Eq. (33). In Fig. 1 we show results for the
rescaled distance x/λ = 1 only; other values of x/λ present
analogous behaviors. Already for values of λ ∼ 10, the curves
approach a nontrivial scaling behavior, in accordance with the
general KZ scaling theory for closed systems (see also the
zoom in the upper right inset). The oscillating behavior for
τ > 0 is likely due to adiabaticity losses, which are ascribable
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FIG. 1. Rescaled correlation λ P(x, t ), fixing x/λ = 1, for the
unitary dynamics of the Kitaev quantum wire in the thermodynamic
limit, as a function of the scaling time variable τ . Here we fix the
scaling variable associated with the initial time, τi = −10. Lines with
different styles are for various values of the length scale λ, from 4
to 16, as indicated in the legend; these correspond to increasing the
time scales as ts = λ2. The upper right inset shows a magnification
of the data for 4.4 < τ < 5.6, while the lower left inset displays
rescaled correlations as a function of 1/λ, for fixed τ = 4.8 (arrow
in the upper inset), supporting an O(λ−1) approach to the asymptotic
KZ scaling limit. Analogous results are obtained for other values of
the scaling variables x/λ and τi, and for the correlations C(x, t ) and
G(x, t ).

to the gapless point at τ = 0. The approach to the asymptotic
behavior in the limit λ → ∞ is analyzed in the lower inset,
for fixed τ = 4.8, where we collected data up to λ = 40
(corresponding to time scales up to ts = 1600). As expected,
corrections are suppressed with a power-law behavior that is
compatible with O(1/λ).

As stated in the previous sections, the dynamic KZ scaling
is also expected to be independent of the actual value of μ̄i,
if this is kept fixed in the dynamic KZ limit. A numerical
verification of this conjecture is presented in Fig. 2, for a
situation similar to that in Fig. 1 but fixing μ̄i < 0, rather than
τi < 0. Specifically, we have analyzed the three correlation
functions P(x, t ), C(x, t ), and G(x, t ) [see Eqs. (32a)–(32c)]
along a KZ protocol where we fixed the initial condition μ̄i.
Even in this case we can see that, after properly rescaling
the various parameters and observables, the curves nicely
approach a scaling behavior, which appears to be independent
of the choice of μ̄i. As previously discussed, the critical point
located at μ̄ = 0 prevents the system from remaining in the
instantaneous ground state.

A more accurate analysis of the independence of the
dynamic scaling functions from the initial condition μ̄i is
provided in the three insets (each for a different correlation
function), where we spotlight the convergence of the rescaled
observables with λ → ∞, for a fixed value of τ . In all the
three cases we observe that the extrapolated asymptotic value
seems to be independent of the two specific μ̄i analyzed.
Notice, however, that, while for the red data sets (μ̄i = −0.5)
the convergence to the asymptotic behavior appears regular
and compatible with a power law ∼λ−1, the black data sets

FIG. 2. Rescaled correlations λ P(x, t ) (a), λC(x, t ) (b), and
λ2 G(x, t ) (c), at fixed x/λ = 1 (results for other values of x/λ
show analogous behaviors), for the unitary dynamics of the Kitaev
quantum wire in the thermodynamic limit, as a function of the
scaling variable τ . Different line styles stand for various values of
the length scale λ, from 4 to 16, analogously to Fig. 1 (see legend).
Data belonging to one of the two color sets correspond to a given
initial Hamiltonian parameter μ̄i < 0, which is kept fixed and equal
to either μ̄i = −0.1 (black circles) or μ̄i = −0.5 (red squares). The
insets in the three panels display rescaled correlations as a function
of 1/λ, for both cases of μ̄i presented in the main frames, at the τ

value indicated by the blue arrow.

(μ̄i = −0.1) [especially for C(x, t ) and G(x, t )] exhibit oscil-
lations in 1/λ (at least up to λ = 40), which should be ascribed
to the proximity of the initial ground state at μ̄i with that
at the critical point μ̄ = 0. We have verified that the above
observations hold also for other values of τ and for different
initial conditions μ̄i (not shown), with a faster convergence
for larger values of |μ̄i|.

2. Dissipative KZ dynamics

We now turn to a situation where the Hamiltonian Kitaev
chain ĤK is coupled to a Markovian bath in the form of either
incoherent particle losses, pumping, or dephasing [the three
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FIG. 3. Rescaled correlations λ P(x, t ) [(a1), (b1), (c1)] and λC(x, t ) [(a2), (b2), (c2)], at fixed rescaled distance x/λ = 1 and initial rescaled
time τi = −10, for the dissipative Kitaev quantum wire in the thermodynamic limit, as a function of the scaling variable τ . Analogous scaling
behaviors are observed for other values of x/λ and τi, with different asymptotic scaling functions of τ . Each panel in one of the three columns
refers to a specific type of dissipation mechanism [see Eq. (31)]: decay [(a1), (a2), (a3)], pumping [(b1), (b2), (b3)], and dephasing [(c1), (c2),
(c3)]. The color code stands for three rescaled dissipative couplings: γ = 0.1 (black), γ = 1 (red), and γ = 10 (green). Different line styles are
for various values of λ, from 8 to 16 (see legend). (a3), (b3), (c3) Rescaled correlations as a function of 1/λ, up to λ = 102, for τ = 6 (arrows
in the panels above) and a given value of γ for each panel (see figure).

different types of Lindblad operators are reported in Eq. (31)
and are supposed to act uniformly over all the sites of the
chain]. According to the dynamic KZ scaling framework dis-
cussed in Sec. IV, an additional scaling variable γ associated
with the dissipation strength u needs to be considered [see
Eq. (23)]. In passing we note that the dissipation parameter
u = γ /λ entering the master equation (4) is inversely propor-
tional to λ, therefore it needs to be progressively decreased
down to zero when increasing the KZ length scale λ. For
the two-point correlations analyzed here, one thus expects the
emerging scaling behavior (22b).

We proceed as in Sec. VI A 1 in the absence of dissi-
pation, and first address KZ protocols where the Hamilto-
nian parameter μ̄ is slowly increased and driven across a
critical point (μ̄ = 0), starting from an initial value μ̄i < 0
such that the corresponding value of the rescaled time τi is

kept fixed. Results for the correlations P(x, t ) and C(x, t ),
in the presence of either decay, pumping, or dephasing, are
shown in Fig. 3 [analogous outcomes have been obtained
for G(x, t )—not shown]. Again, we present results for the
particular rescaled distance x/λ = 1 and rescaled initial time
τi = −10; analogous scaling behaviors are observed for other
values of x/λ and τi, but, of course, with different asymptotic
scaling functions of τ .

Figures 3(a1), 3(b1), 3(c1), 3(a2), 3(b2), and 3(c2) evidence
that, after a proper rescaling of the various variables, and in
particular fixing the rescaled dissipation rate γ as in Eq. (23),
the two observables nicely approach a scaling function with
increasing λ, that is, with increasing the KZ time scale ts = λ2

[see Eq. (33)]. Of course, the latter function depends both on
the type of dissipation and on γ . In particular, numerical data
show that the dephasing mechanism appears to be more effec-
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FIG. 4. Same kind of analysis as in Fig. 3, but fixing the initial Hamiltonian parameter μ̄i, rather than the initial time τi. We again show
results for x/λ = 1. In all the panels we kept the rescaled dissipation strength fixed and equal to γ = 0.5. The color code refers to μ̄i = −0.1
(black) and to μ̄i = −0.5 (red), while different line styles stand for various values of the length scale λ, from 10 to 40. [(a3), (b3), (c3)] Rescaled
correlations λ P(x, t ) (filled symbols) and λC(x, t ) (empty symbols) as a function of 1/λ, for μ̄i = −0.1 (circles) or μ̄i = −0.5 (squares), at
fixed τ = 4 (arrows in the above panels). Panels in the three columns refer to incoherent decay [(a1), (a2), (a3)], pumping [(b1), (b2), (b3)], and
dephasing [(c1), (c2), (c3)].

tive in destroying this type of correlations: with increasing γ ,
the various curves rapidly decay to a very small asymptotic
value for λ large [i.e., green curves for γ = 10 in Figs. 3(c1)
and 3(c2) are hardly distinguishable from zero]. On the other
hand, for the incoherent decay or pumping, definitely larger
values of γ are required to suppress correlations.

The convergence to the asymptotic behavior is analyzed
more in depth in Figs. 3(a3), 3(b3), and 3(c3) for a fixed
τ , where we explicitly show the dependence of the cor-
relation functions on 1/λ, up to λ = 100. Our data hint
at the presence of 1/λ power-law corrections, similarly to
what has been observed for the unitary case (compare with
Fig. 1).

Even in the presence of dissipation, the dynamic KZ scal-
ing should not depend on the choice of the initial μ̄i, if this is
kept fixed, and thus one expects the scaling behavior reported
in Eqs. (24a)–(24b). This has been verified numerically by

fixing μ̄i < 0, as shown in Fig. 4 for P(x, t ) [Figs. 4(a1), 4(b1),
and 4(c1)] and C(x, t ) [Figs. 4(a2), 4(b2), and 4(c2)], and in
Fig. 5 for G(x, t ) [Figs. 5(a1) and 5(b1)]. The displayed data
are for a specific value of γ = 0.5 and for two different values
of μ̄i = −0.1 (black) and −0.5 (red). The various curves
stand for different values of λ. In all cases we observe that
they approach the same asymptotic behavior, irrespective of
the choice of μ̄i; the approach becomes faster, when further
increasing |μ̄i| (not shown). Note that, for the incoherent
decay, this appears to be much faster than for the other kinds
of dissipation (especially for KZ protocols with μ̄i = −0.1,
starting close to the critical point μ̄ = 0). In contrast, as
suggested in Figs. 3(c1) and 3(c2) for fixed τi and different
γ , dephasing seems to be the most disruptive dissipation
mechanism: the red curves in Figs. 4(c1) and 4(c2) (where |τi|
is much larger than for the black ones) are rapidly suppressed
with λ.
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FIG. 5. Same analysis as in Fig. 4, but for the rescaled correlation
λ2G(x, t ). We have computed it the presence of either incoherent
decay or pumping, since with dephasing we were only able to
compute two-point observables (while density-density correlations
are a four-point observable) [8].

Figures 4(a3), 4(b3), 4(c3), 5(a2), and 5(b2) show the
convergence to the asymptotic behavior with λ and for a given
τ , which is again expected to be a power law. Note that the
speed with λ at which data for the two μ̄i converge to the
same value depends on the type of dissipation and observable.
In general, we observe that for decay the convergence is much
faster than in the other cases. Moreover, in the limit λ → ∞,
while with either decay or pumping the correlators go toward
a nonzero value, with dephasing the scaling functions (for τ

sufficiently larger than zero) are compatible with zero.
We conclude this part by emphasizing that, in order to

obtain the correct KZ asymptotic scaling behavior, it is crucial
to allow for the dissipation to be suitably rescaled, so that
it asymptotically approaches the zero value in the ts → ∞
limit. That is, the parameter u entering the dissipator in the
Lindblad master equation (4) must be scaled as u ∼ t−κ

s , with
κ = z/(yμ + z), meaning that the scaling variable γ = u tκ

s
has to be kept fixed [see Eq. (23)]. In contrast, if the dissi-
pation strength u is not changed with ts, one would obtain
the result of Fig. 6, where we plot the rescaled correlation
λ P(x, t ) as a function of τ , fixing all the required scaling
variables except that associated to the incoherent particle loss
mechanism (γ ). We note that, contrary to all the cases studied
before, here the various curves for different λ values do not
approach a scaling behavior in the λ = √

ts → ∞ limit, but
rather seem to converge to a trivial regime dominated by the
dissipation, where all the long-distance correlations drop to
zero.

B. Dynamic KZ finite-size scaling

We now switch to systems with finite size, and utilize
the FSS framework of Sec. IV C to analyze the behavior of
the dissipative Kitaev wire undergoing a KZ protocol which
crosses the quantum transition point. Results for the three

FIG. 6. Rescaled correlation λ P(x, t ), fixing x/λ = 1 and
μ̄i = −0.5, for the dissipative Kitaev quantum wire in the thermo-
dynamic limit, as a function of the scaling time variable τ . The
dissipation has been chosen in the form of incoherent particle losses,
with a coupling u entering the Lindblad master equation (4) that is
kept fixed and equal to u = 0.2. Different lines stand for various
values of the length scale λ, from 20 to 100 (see legend). Note that
the various curves start from different initial rescaled times τi = λμ̄i.

fixed-time correlation functions P(x, t ), C(x, t ), and G(x, t )
are reported in Fig. 7, where we analyze their temporal
behavior along a KZ protocol associated with a slow variation
of the Hamiltonian parameter μ̄ from negative to positive
values, in the presence of incoherent particle losses. Following
the FSS scaling behavior of Eq. (26), we kept fixed the ratio
x/L, the parameter υ inversely proportional to the speed of the
driving [cf. Eq. (19)], the rescaled dissipation strength γL [cf.
Eq. (27)], and the initial rescaled time τi < 0. Note that, in the
FSS framework, the dissipation strength u = γL/L entering
the master equation (4) is inversely proportional to the system
size, thus scaling down to zero in the limit L → ∞.

In all cases, the rescaled correlations nicely approach a
scaling function with increasing L, as predicted by the scaling
law in Eq. (26). The finite-size approach to the asymptotic
behavior is compatible with a L−1 behavior, as highlighted in
the inset of Fig. 7(c) at fixed τ . We also observe that, for small
values of τ , the scaling curves develop complex nonanalytic
spikes in τ , the magnitude and frequency of which increase
with L, similarly to other dynamic situations such as after
sudden quenches [8,9]; for larger τ dissipation tends to smear
those apparent singularities.

To shed light on the effects of the system-bath coupling,
in Fig. 8 we have analyzed the correlation C(x, t ) for the
three different types of dissipation of Eq. (31), and for varying
rescaled strength γL as indicated in the legends. We have also
reported the KZ behavior in the unitary case (black curves),
to be compared with that in the presence of an environmental
interaction (colored curves). Besides the nice convergence to
a scaling function for L → ∞, we observe that dephasing
appears to be more effective in destroying correlations, since,
with increasing γL, the curves rapidly approach the zero value
in time; in contrast, for both incoherent decay and incoher-
ent pumping, definitely larger values of γL are required to
suppress correlations. Moreover, in the presence of pumping,
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FIG. 7. Rescaled correlations L P(x, t ) (a), L C(x, t ) (b), and
L2 G(x, t ) (c), fixing x/L = 1/4 (results for other values of x/L
show analogous behaviors), for the dissipative Kitaev quantum wire
with a finite length L, as a function of the scaling variable τ . The
color code corresponds to several values of the inverse KZ speed
υ, while different line styles stand for various system sizes L (see
legends). Here we fix the scaling variables associated to the initial
time (τi = −10) and to the dissipation (γL = 1), which has been
chosen in the form of incoherent particle losses. The inset in panel
(c) displays the rescaled correlation L2 G(x, t ) as a function of 1/L
(data up to L = 512), for fixed υ = 0.1 and τ = −0.5 (arrow in the
main panel).

even a tiny amount of dissipation is capable to drive the
system far from the equilibrium state in the τ < 0 side (see
also the discussion in Sec. VI A 2).

We have also numerically verified that, analogously to
the dynamic scaling behavior in the infinite-volume limit,
the dynamic FSS functions do not depend on the initial
Hamiltonian parameter μ̄i < 0 if this is kept fixed in the
dynamic KZ limit [see Eq. (28)]. Figure 9 reports the behavior
of the rescaled correlation L P(x, t ) as a function of τ , for
three different choices of μ̄i, and for dissipation provided by
incoherent decay at fixed γL. Figures 9(a1), 9(b1), and 9(c1)
show convergence with L to a scaling function, which appears

FIG. 8. Same as in Fig. 7, but for the correlation C(x, t ), for
dissipation given by decay (a), pumping (b), or dephasing (c). The
color code corresponds to several values of γL , while different line
styles stand for various values of L (see legends). Black curves are for
γL = 0 [in panels (b) and (c) we replot the same curve corresponding
to L = 256, for reference]. Here we fix τi = −10 and υ = 1.

to be the same: Figs. 9(a2), 9(b2), and 9(c2) unveil how tiny
discrepancies in the temporal behavior, starting from different
μ̄i, can be suppressed in the large-L limit.

VII. SUMMARY AND CONCLUSIONS

We have investigated the interplay between coherent and
dissipative drivings in the dynamics of quantum many-body
systems subject to KZ protocols across continuous quantum
transitions, starting from the gapped disordered phase, that is,
when one Hamiltonian parameter is slowly driven across its
critical value, for example, with a linear dependence on time.
Specifically, the issue we have addressed here is whether, and

FIG. 9. The rescaled correlation L P(x, t ) with x/L = 1/4 as
a function of τ (results for other values of x/L show analogous
behaviors), fixing the initial Hamiltonian parameter μ̄i = −0.1 [(a1),
(a2), black curves], −0.2 [(b1), (b2), red curves], and −0.5 [(c1),
(c2), blue curves]. Different line styles stand for various L (see
legend). (a2), (b2), (c2) Magnifications of panels (a1), (b1), and (c1),
for 6 � τ � 9. Here we fix υ = 0.1, and γL = 1 with dissipation
given by incoherent decay. Note that the three continuous curves,
corresponding to the largest size L = 256 and different μ̄i, are plotted
in each of the six panels and cannot be distinguished on the scale of
the plots reported.
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under which conditions, open dissipative systems can develop
a universal dynamic scaling regime similar to that shown
by closed systems at quantum transitions, characterized by
asymptotic homogeneous scaling laws. To this purpose we
have focused on a class of dissipative mechanisms, the dy-
namics of which can be reliably described through a Lindblad
master equation governing the time evolution of the density
matrix of the open system.

The perturbation arising from the dissipation turns out
to be relevant at the quantum transition [8,9]. This implies
that open systems cannot develop asymptotic dynamic scaling
behaviors controlled by the universality class of the quantum
transition when keeping the dissipation decay rate u finite and
fixed in the critical limit of the Hamiltonian parameter. This
is analogous to the effect of any relevant RG perturbation
close to a critical point [7], like the temperature, which makes
the system run away from criticality. Nevertheless, we argue
that a dynamic KZ scaling limit exists in the presence of a
sufficiently weak dissipation. Such a scaling limit, controlled
by the universality class of the quantum transition, arises in
a regime of weak dissipation. Indeed, it requires a tuning of
the dissipative interactions, and in particular of the decay-rate
parameter u of the Lindblad master equation describing the
evolution of the density matrix [see Eq. (4)]. The decay rate
u must decrease as u ∼ t−κ

s when increasing the time scale
ts of the KZ protocol, where the positive exponent
κ = z/(yμ + z) < 1 depends on the dynamic exponent z and
the RG dimension yμ of the driving Hamiltonian parame-
ter (usually related to the correlation-length exponent ν by
ν = y−1

μ ). The resulting dynamic KZ scaling laws, allowing
for the presence of dissipation, provide a unique framework
to discuss the interplay between (critical) coherent and dissi-
pative drivings.

The dynamic KZ scaling scenario has been checked within
fermionic wires [see Eq. (29)], in the presence of homoge-
neous dissipation due to local incoherent pumping, decay, and
dephasing, which are described by the Lindblad operators
reported in Eq. (31). The particularly convenient choice of
this model enables us to scale its complexity linearly with its
size, allowing us to simulate the exact dissipative dynamics
of systems with thousands of sites; we have thus elected
it as a testbed for accurate numerical investigations of the
many-body Lindblad master equation. Our numerical analysis
ultimately supports the phenomenological dynamic KZ scal-
ing framework addressing the competition between coherent
dynamics and dissipation at a continuous quantum transition.

We believe that, in the near future, it will be also possible
to address and verify this scenario through suitably engineered
experiments with ultracold atoms or cavity-QED technology
aimed at realizing and controlling driven-dissipative quantum
many-body systems (see, e.g., Ref. [70]).

It would be tempting to investigate and carefully verify our
dynamic KZ scaling in other quantum dissipative systems,
such as Ising-like quantum spin models. To that purpose,
given the difficulties in finding a numerical solution to the
Lindblad master equation for a generic many-body problem
(4), a FSS framework should be adopted as the primary
setting, due to the relatively small system sizes that could be
reached and the substantial impossibility to address infinite-
volume systems (this would be the case, e.g., for the standard

quantum Ising chain, with realistic local dissipation related to
the spin operators). In that respect, an interesting issue would
be to extend the dynamic KZ scaling to protocols across first-
order quantum transitions (e.g., in the quantum Ising chain
in a transverse plus longitudinal field). The exponentially
closing gap between the two lowest states of the ordered phase
might be relevant and new features may become apparent for
systems with O(10) spins, such as sensitivity to the type of
boundary conditions [63,71,72].

APPENDIX: SIMILARITIES AND DIFFERENCES
BETWEEN THE KITAEV WIRE AND

THE QUANTUM ISING CHAIN

In Sec. V we stated that the Kitaev quantum wire described
by the Hamiltonian (29) undergoes a continuous quantum
transition in the same universality class of the quantum Ising
chain. The similarities between the two models can be put on
a formal ground by means of a Jordan-Wigner transformation,
which maps the spinless fermions into spin-1/2 operators:

σ̂±
j = exp

(
iπ

∑
�< j

n̂�

)
ĉ±

j . (A1)

Here σ̂±
j = 1

2 (σ̂ x
j ± iσ̂ y

j ) are the spin-1/2 raising/lowering
operators and σ̂ α

j (α = x, y, z) denote the usual Pauli matrices
associated to site j in the chain.

Indeed, it can be easily shown that, neglecting boundary
terms, the above transformation maps ĤK of Eq. (29) into the
XY chain (δ 
= 0):

ĤXY = −t
∑

j

[
1 + δ

2
σ̂ x

j σ̂
x
j+1 + 1 − δ

2
σ̂

y
j σ̂

y
j+1 + μ

2t
σ̂ z

j

]
.

(A2)
In particular, for t = δ = 1, the corresponding spin model
coincides with the quantum Ising chain

ĤIs = −
∑

j

(
σ̂ x

j σ̂
x
j+1 + gσ̂ z

j

)
, (A3)

with g = −μ/2.
It is, however, crucial to stress that the boundary conditions

play an important role in this mapping. As a matter of fact,
the nonlocal Jordan-Wigner transformation of the Ising chain
with periodic or antiperiodic boundary conditions does not
map into the fermionic model (29) with periodic or antiperi-
odic boundary conditions. Indeed further considerations apply
[73,74], leading to a less straightforward correspondence,
which also depends on the parity of the particle number eigen-
value (see below). Therefore, although the bulk behaviors of
the above models in the infinite-volume limit (and thus their
phase diagram) are analogous, the resulting FSS functions
are different, since they subtly depend on the choice of the
boundary conditions.

Even more, the Kitaev quantum wire with antiperiodic
boundary conditions, explicitly studied in this paper, turns out
to be gapped in both of the phases separated by the quantum
transition at μc = −2. Indeed, the energy difference � of the
two lowest states is given by

� =
√

μ̄2 + 4(2 − μ̄) [1 − cos(π/L)], (A4)
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where μ̄ = μ − μc, such that

� =
{|μ̄| + π2(2−μ̄)

|μ̄|L2 + O(L−4) for |μ̄| > 0,

2π
L + O(L−3) for |μ̄| = 0.

(A5)

Therefore, the Kitaev quantum wire studied here does not
exhibit the lowest-state degeneracy of the ordered phase of
the quantum Ising chain (i.e., the exponential suppression of
the gap with increasing L). The reason for that substantial dis-
crepancy resides in the fact that the Hilbert space of the Kitaev
quantum wire with antiperiodic boundary conditions alone is
restricted with respect to that of the quantum Ising chain, so
that it is not possible to restore the competition between the
two vacua belonging to the symmetric/antisymmetric sectors
of the Ising model [43,62,73].

The ultimate reason why we prefer to stick with the Kitaev
quantum wire is twofold: (i) the dissipation that we consider
in this paper is more naturally defined for Fermi lattice gases,
and (ii) the dissipative fermionic decay and pumping mecha-
nisms cannot be mapped into simple spin operators, due to the
presence of a nonlocal string operator in the transformation
(A1). In this respect, simulating a conventional quantum

Ising chain with local dissipation in the form of spin losses
(L̂l, j = σ̂−

j ) or pumping (L̂p, j = σ̂+
j ) would prevent one from

exploiting the particularly simple solvability of the Kitaev
model with a polynomial amount of resources, due to the
appearance of Jordan-Wigner strings when mapping the term
L̂ jρL̂†

j of the Lindblad master equation in fermionic language
[29].

In light of this, it is, finally, worth mentioning that,
although we have only shown numerical results for KZ
protocols where the Hamiltonian parameter μ is linearly
driven in time from an initial value μi < μc to a final value
μ f > μc, there is no reason to expect qualitative differences
when reverting the protocol, i.e., starting from μi > μc and
ending with μ f < μc. The reason resides in the fact that the
Kitaev chain with antiperiodic boundary conditions is gapped
in both phases on the left and on the right of the quantum
transition point μc, and thus the evolution arising from slow
changes of μ is essentially adiabatic, from any μ̄i far from
criticality to the relevant scaling interval around μc. The
situation may change for the above-mentioned quantum Ising
chain, since one of the two phases is ordered and presents a
double degeneracy (see, e.g., Ref. [75]).
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