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Abstract

The Quadratic Multiple Knapsack Problem generalizes, simultaneously, two well-
known combinatorial optimization problems that have been intensively studied in
the literature: the (single) Quadratic Knapsack Problem and the Multiple Knap-
sack Problem. The only exact algorithm for its solution uses a formulation based
on an exponential-size number of variables, that is solved via a Branch-and-Price
algorithm. This work studies polynomial-size formulations and upper bounds. We
derive linear models from classical reformulations of 0-1 quadratic programs and
analyze theoretical properties and dominances among them. We define surrogate
and Lagrangian relaxations, and we compare the effectiveness of the Lagrangian
relaxation when applied to a quadratic formulation and to a Level 1 reformulation
linearization that leads to a decomposable structure. The proposed methods are
evaluated through extensive computational experiments.

Keywords: Quadratic Multiple Knapsack; Binary Quadratic Programming; La-
grangian Relaxation; Reformulation Linearization Technique.

1 Introduction

The (linear) Multiple Knapsack Problem (MKP) has been intensively studied in the last
40 years (see the relative chapters in the monographs by Martello and Toth [22] and
Kellerer, Pferschy, and Pisinger [19]).

The MKP is defined on n items and m knapsacks. Each knapsack k ∈M = {1, . . . ,m}
has a capacity Ck. Each item i ∈ N = {1, . . . , n} has a profit pi and a weight wi. The
objective is to select m disjoint subsets of items to be assigned to the knapsacks so that the
total weight assigned to each knapsack does not exceed its capacity and the total profit of
the selected items is maximized. By introducing nm binary variables xik (i ∈ N, k ∈ M)
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taking the value 1 if and only if item i is assigned to knapsack k, the problem is formally
defined by the 0-1 Linear Program

max
n∑
i=1

m∑
k=1

pixik (1)

s.t.
n∑
i=1

wixik ≤ Ck (k ∈M) (2)

m∑
k=1

xik ≤ 1 (i ∈ N) (3)

x ∈ {0, 1}n×m, (4)

where (2) and (3) are the classical capacity and cardinality constraints, respectively. The
problem is a generalization of the famous 0-1 Knapsack Problem (KP), in which m =
1. While the KP is ordinary NP-hard and admits pseudo-polynomial time dynamic
programming algorithms, the MKP is known to be strongly NP-hard, as it can be seen
by transformation from 3-partition (see, e.g., [22]).

Although a problem with a similar flavor had been considered by Witzgall [35] in
1975, to the best of our knowledge, the first quadratic version of a knapsack problem
was introduced by Gallo, Hammer, and Simeone [11] in 1980. In the (single) Quadratic
Knapsack Problem (QKP) one is given a knapsack with capacity C and n items. Each
item i ∈ N has a profit pi and a weight wi. In addition, each pair of distinct items i, j gives
a profit pij if both belong to the solution. (It is assumed that pji = pij.) The objective
is to select a subset of items so that the total weight does not exceed the capacity, and
the total profit (sum of the profits of the selected items and of their pairwise profits) is
maximized. Formally,

max
n∑
i=1

pixi +
n−1∑
i=1

n∑
j=i+1

pijxixj (5)

s.t.
n∑
i=1

wixi ≤ C (6)

x ∈ {0, 1}n, (7)

where xi is a binary variable taking the value 1 if and only if item i is selected. We refer
the reader to monograph [19] (Chapter 12) for an extensive treatment of the QKP until
2003, and to Billionnet and Soutif [3], Julstrom [18], Pisinger [25], Pisinger, Rasmussen,
and Sandvik [26], Pulikanti and Singh [27], and Lalla-Ruiz, Segredo, and Voß [20] for later
studies.

The Quadratic Multiple Knapsack Problem (QMKP), to which this paper is devoted,
was first introduced by Hiley and Julstrom [17], and ideally combines the objective func-
tion of the QKP and the constraints of the MKP. We have n items and m knapsacks.
Each knapsack k ∈ M has a capacity Ck ∈ Z+, each item i ∈ N has a profit pi ∈ Z+

and a weight wi ∈ Z+. Each pair of distinct items i, j produces a profit pij ∈ Z+ (with
pji = pij) if both are assigned to the same knapsack. The objective is to select m disjoint
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subsets of items to be assigned to the knapsacks, so that the total weight assigned to
each knapsack does not exceed its capacity, and the total profit (sum of the profits of
the selected items and of the pairwise profits of items assigned to the same knapsack) is
maximized. Formally,

max
n∑
i=1

m∑
k=1

pixik +
n−1∑
i=1

n∑
j=i+1

m∑
k=1

pijxikxjk (8)

s.t.
n∑
i=1

wixik ≤ Ck (k ∈M) (9)

m∑
k=1

xik ≤ 1 (i ∈ N) (10)

x ∈ {0, 1}n×m, (11)

where x is defined as for the MKP. As the QKP is the special case of the QMKP arising
when m = 1, the QMKP is stronglyNP-hard. In addition, all computational experiments
reported so far in the literature indicate that it is extremely challenging to solve in practice.

Owing to its many practical applications, that range from project management to
capital budgeting to product-distribution system design, as well as to its mathematical
structure borrowing from well-studied combinatorial problems, the QMKP has received
increasing attention in the literature over the last fifteen years. In their seminal work,
Hiley and Julstrom [17] presented the first 60 benchmark instances and three heuristics.
Their paper started a stream of research based on meta-heuristic techniques, that includes
a genetic algorithm by Singh and Baghel [31], an artificial bee colony algorithm by Sundar
and Singh [33], and a memetic algorithm by Soak and Lee [32]. More recently, Garcia-
Martinez et al. [12, 13] presented a strategic oscillation algorithm and a Tabu-enhanced
iterated greedy approach. Chen and Hao [6] and Chen et al. [7] used, respectively, an it-
erative response threshold search algorithm, and an evolutionary path relinking approach,
for which recent variations have been proposed by Qin et al. [28] and Tlili et al. [34].
Despite this growing stream of research on heuristics, no exact method for the QMKP
was proposed in the literature until the recent contribution by Bergman [2], who pre-
sented the first exact solution approach to the QMKP, that uses a formulation based on
an exponential-size number of variables, solved via a Branch-and-Price algorithm.

While the literature has been so far concentrating on exponential-size formulations and
meta-heuristic approaches, our contribution consists of investigating several polynomial-
size formulations, aiming at devising the relaxations that produce good upper bounds in
reasonable computing times. In particular, our goal is to compare the effectiveness of the
Lagrangian relaxation when applied to the quadratic formulation (8)-(11) and to a Level
1 Reformulation Linearization, that leads to a decomposable structure. We present the
results of computational experiments on a large set of benchmark instances.

The paper has the following structure. In Section 2, we derive several linear models
for the QMKP, obtained from classical reformulations of 0-1 quadratic programs. Some
theoretical properties and dominances among the resulting formulations are outlined.
The surrogate relaxation of the quadratic model is discussed in Section 3. Section 4 is
concerned with the Lagrangian relaxation of the quadratic model (8)-(11) and of a linear
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reformulation leading to a set of independent, well-structured subproblems. Section 5
presents the computational results, and Section 6 contains some concluding remarks.

2 Linear Formulations

In this section we show how some linear reformulations for 0-1 Quadratic Programming
problems with linear constraints (01QP) can be specialized for the QMKP.

2.1 Classical Linear Formulations

In 1959 Fortet [8] proved that any integer-valued algebraic function can be transformed
into a linear function by introducing auxiliary binary variables and linear linking con-
straints. In 1974 the idea was independently re-discovered and developed by Glover and
Woolsey [15] for 01QP. A direct application to the QMKP would result in 4-index vari-
ables, each representing the product xikxj` for i, j ∈ N and k, ` ∈ M . We can observe,
however, that our objective function (8) only includes products involving the same knap-
sack index, so it is sufficient to introduce 3-index binary variables ŷijk, taking the value
one if and only if items i and j are assigned to the same knapsack k:

ŷijk = xikxjk for i ∈ N \ {n}, j ∈ N (j > i), k ∈M. (12)

The Fortet-Glover-Woolsey (FGW) formulation for the QMKP is

(FGW) max
n∑
i=1

m∑
k=1

pixik +
n−1∑
i=1

n∑
j=i+1

m∑
k=1

pij ŷijk (13)

s.t. ŷijk ≤ xik (i ∈ N \ {n}, j ∈ N(j > i), k ∈M) (14)

ŷijk ≤ xjk (i ∈ N \ {n}, j ∈ N(j > i), k ∈M) (15)

ŷijk ≥ xik + xjk − 1 (i ∈ N \ {n}, j ∈ N(j > i), k ∈M) (16)

ŷijk ∈ {0, 1} (i ∈ N \ {n}, j ∈ N(j > i), k ∈M) (17)

(9), (10), (11).

Constraints (14) and (15) ensure that ŷijk takes the value 0 when at least one of the
two associated variables is 0. Constraints (16) force ŷijk to take the value 1 when both
associated variables are 1.

We next show that an equivalent formulation can be obtained by removing constraints
(16) and (17):

Lemma 1 The optimal solution to the LP relaxation of FGW does not change if con-
straints (16) are removed.

Proof. Let (x∗, ŷ∗) be an optimal solution to the LP relaxation of FGW without in-
equalities (16). The second term of the objective function maximizes a linear function of
ŷ with coefficients pij ≥ 0. It follows that every variable ŷ∗ijk will take the largest possible
value, and hence, from (14)-(15), ŷ∗ijk = min{x∗ik, x∗jk}. Since x∗ik ≤ 1 ∀i ∈ N and k ∈ M ,
we have min{x∗ik, x∗jk} ≥ x∗ik + x∗jk − 1. �
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Corollary 1 If the LP relaxation of FGW satisfies (11), constraints (17) are automati-
cally satisfied.

Proof. Assume that the optimal solution (x∗, ŷ∗) to the LP relaxation of FGW satisfies
x∗ik ∈ {0, 1} ∀i ∈ N and k ∈M . From the proof of Lemma 1 we have ŷ∗ijk = min{x∗ik, x∗jk},
and hence ŷ∗ijk ∈ {0, 1}. �

Proposition 1 Constraints (16) and (17) are redundant for FGW and for its LP relax-
ation.

Proof. Immediate from Lemma 1 and Corollary 1. �

Model FGW has O(n2m) variables and constraints. A more compact, O(nm), linear
model for 01QP was proposed in 1975 by Glover [14], who introduced, for each original
variable xik, a new continuous variable zik to represent its contribution to the objective
function. For the QMKP, let us define, for each i ∈ N and k ∈M ,

gik(x) =

{
pi +

∑n
j=i+1 pijxjk if i ∈ N \ {n};

pn if i = n.
(18)

The contribution of xik to the objective function is then

zik = gik(x)xik (i ∈ N, k ∈M), (19)

and observe that zik will always take integer values as the profits are assumed to be
integer. The resulting Glover model (GLOV) for the QMKP is

(GLOV) max
n∑
i=1

m∑
k=1

zik (20)

s.t. Lixik≤zik≤Uixik (i ∈ N, k ∈M) (21)

gik(x)−Ui(1−xik)≤zik≤gik(x)− Li(1− xik) (i ∈ N, k ∈M) (22)

(9), (10), (11),

where gik(x) is defined in (18), while Li = pi+
∑n

j=i+1 min{0, pij}, Ui = pi+
∑n

j=i+1 max{0, pij}
(for i ∈ N \ {n}), and Ln = Un = pn are the smallest and largest values, respectively,
that gik (and hence zik) can take. Note that, as we assume the pairwise profits pij to be
non-negative, these values can be simplified to Li = pi, Ui = pi +

∑n
j=i+1 pij (for i ∈ N).

Constraints (21) and (22) link variables xik and zik: constraints (21) impose zik = 0 when
xik = 0, while constraints (22) impose zik = gik(x) when xik = 1. (Note the similarity
with the effect of (14)-(15) and (16), respectively.)

GLOV is indeed more compact than FGW, but, as proved by Furini and Traversi [10],
its LP relaxation is weaker.
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2.2 Reformulation Linearization Technique

In 1986 Adams and Sherali [1] strengthened FGW by proposing a new linearization
method for 01QP. The idea was later extended to general 0-1 problems in Sherali and
Adams [30]. The method, known as the Reformulation Linearization Technique (RLT),
provides different Levels of representation with an increasingly stronger LP bound.

Let n̄ denote the number of original binary variables appearing in each constraint. New
quadratic constraints are added to the original formulation, to strengthen the resulting
LP relaxation. At Level 1,

(i) each equality constraint results into n̄ quadratic constraints obtained by multiplying
it by each original binary variable;

(ii) each inequality constraint results into 2n̄ quadratic constraints obtained by multi-
plying it by each original binary variable and by its complement.

All the resulting quadratic constraints are then linearized by introducing auxiliary binary
variables to represent the products of the original ones together with appropriate linking
constraints. Higher levels are rarely used as the problem size increases so sharply that
the bound computation becomes impractical.

In order to adapt the RLT to the QMKP, let us define binary variables yijk similarly
to variables ŷijk of Section 2.1, but by considering all ordered pairs (i, j) with i 6= j, i.e.,

yijk = xikxjk for i ∈ N, j ∈ N \ {i}, k ∈M. (23)

A Level 1 RLT model (RLT1) for the QMKP is then

(RLT1) max
n∑
i=1

m∑
k=1

pixik + 1
2

n∑
i=1

n∑
j=1
j 6=i

m∑
k=1

pijyijk (24)

s.t. yijk ≤ xik (i∈N, j∈N \{i}, k∈M) (25)

yijk = yjik (i∈N \{n},j∈N(j>i),k∈M) (26)

yijk ≥ xik + xjk − 1 (i∈N, j∈N \{i}, k∈M) (27)∑
j∈N\{i}

wjyijk ≤ (Ck − wi) xik (i∈N, k∈M) (28)

∑
j∈N\{i}

wj(xjk−yijk)≤Ck(1−xik) (i∈N, k∈M) (29)

yijk ∈ {0, 1} (i∈N, j∈N \{i}, k∈M) (30)

(9), (10), (11).

The objective function (24) maps (13) in the new variable space. Constraints (25) and
(27) are equivalent to (14) and (16), respectively, while (15) are implied by (25) and
(26) (the latter known as symmetry constraints). Constraints (28) and (29) are the RLT
constraints derived from capacity constraints (9).

We next show that if we drop the RLT constraints from RLT1, the LP relaxation of
the resulting model is equivalent to the LP relaxation of FGW.

6



Proposition 2 The polyhedra associated with the LP relaxation of RLT1 without the
RLT constraints (28)-(29), and the LP relaxation of FGW are isomorphic under the
linear transformation

ŷijk = yijk = yjik ∀ i, j ∈ N (j > i), k ∈M

(with x unchanged).

Proof. Inequalities (25) and (26) imply yijk ≤ xjk ∀ i, j ∈ N (i 6= j), k ∈ M . By
observing the different j-indexing in the two objective functions, it easily follows that the
two solutions produce the same value. �

If, besides removing the RLT constraints, we also remove inequalities (27), the resulting
LP bound is still as strong as the one produced by the LP relaxation of FGW:

Corollary 2 The LP relaxation of RLT1 without constraints (27)-(29) is equivalent to
the LP relaxation of FGW.

Proof. According to Proposition 2, the polyhedra associated with the LP relaxations
of the two models are isomorphic. Lemma 1 guarantees that inequalities (27) can be
removed without changing the optimal value. �

Note that RLT1 does not include the RLT constraints obtained from cardinality con-
straints (10). The reason for this comes from our choice of having 3-index variables.
Indeed, by applying RLT to (10), we would obtain products involving different knap-
sacks, for which an additional index would be needed. On the one hand, this choice
makes the LP relaxation of the resulting model weaker, but, on the other hand,

(i) it produces a more compact model, of size O(n2m) (instead of O(n2m2)), which
lends itself to a much faster computation of the resulting LP bound;

(ii) RLT1 can be effectively decomposed, as shown in the next section.

2.2.1 A decomposable Level 1 RLT model

In this section we show how, starting from RLT1, we can construct a new linear refor-
mulation that is amenable to a decomposable Lagrangian relaxation (to be examined in
Section 4.2) that: (i) provides a stronger bound than the one given by its continuous
relaxation, and (ii) can be computed with reasonable computational effort.

Point (i) obviously requires that the relaxed model does not have the integrality prop-
erty (see, e.g., Nemhauser and Wolsey [23]). An effective way to pursue point (ii) is
to obtain a “decomposable” Lagrangian problem, leading to a set of independent, well-
structured subproblems. We generalize the approach presented by Caprara et al. [5] for
the single QKP. The same approach was later applied by Pisinger [24] to the p-dispersion
problem, then generalized by Caprara [4] to 0-1 quadratic problems with linear constraints,
and recently adopted by Guignard [16] for a generalization of the quadratic assignment
problem. Recall that the coefficients of the quadratic terms of the objective function
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(i.e., the pairwise profits pij) are assumed to be non-negative, as it normally holds for the
QMKP instances considered in the literature.

Let yijk be defined as in (23). A Decomposable Level 1 RLT model (DRLT1) for the
QMKP can be obtained from RLT1 by eliminating constraints (27) and (29), i.e.,

(DRLT1) max
n∑
i=1

m∑
k=1

pixik+
1
2

n∑
i=1

n∑
j=1
j 6=i

m∑
k=1

pijyijk (24)

s.t. yijk ≤ xik (i ∈ N, j ∈ N \ {i}, k ∈M) (25)

yijk = yjik (i∈N \{n},j∈N(j>i),k∈M) (26)∑
j∈N\{i}

wjyijk ≤ (Ck − wi) xik (i ∈ N, k ∈M) (28)

yijk ∈ {0, 1} (i∈N, j∈N \{i}, k∈M) (30)

(9), (10), (11).

Note that the effect of RLT1 constraints (29) was purely to strengthen the continuous
relaxation of the model. Moreover, as formally proved in Proposition 1 (also see [5]
and [4]), constraints (27) are redundant when the coefficients of the quadratic term are
non-negative. Therefore, DRLT1 is a valid (linear) reformulation for the QMKP.

The continuous relaxation of DRLT1 is weaker than that of RLT1 but stronger than
that of FGW. In addition, it has the advantage that dualizing constraints (26) results in
a decomposable Lagrangian relaxed problem, that does not have the integrality property,
as we will show in Section 4.2.

Proposition 3 The LP relaxation of DRLT1 is stronger than the LP relaxation of FGW.

Proof. From Corollary 2, the LP relaxation of FGW is as strong as the LP relaxation
of DRLT1 without constraints (28). Therefore, it is enough to show an example where
inequalities (28) improve the LP bound. Consider an instance consisting of a single
knapsack of capacity C = 8, and three items with w1 = 2, w2 = 8, w3 = 5, p1 = 1,
p2 = 3, p3 = 1, and pairwise profits p12 = 4, p13 = 2, p23 = 2. The optimal solution of
the LP relaxation of DRLT1 is x̄1 = x̄3 = 1, x̄2 = 0.125, ȳ13 = ȳ31 = 1 (all other ȳ being
0) and has value 4.375. The optimal solution of the LP relaxation of FGW is instead
x̄1 = x̄2 = x̄3 = 0.53̄, ȳ12 = ȳ13 = ȳ23 = 0.53̄ and has value 6.93̄. �

Model DRLT1 can be improved by means of the following considerations:

(i) variables yijk for which pij = 0 can always be set to zero;

(ii) variables yijk for which wi + wj > Ck must take the value zero;.

(iii) due to Corollary 1, constraints (30) can be relaxed in a continuous way.

By defining

Sik ={j ∈ N \ {i} : pij > 0 and wi + wj ≤ Ck} (i ∈ N, k ∈M); (31)

Tik ={j ∈ N \ {i} : wi + wj > Ck} (i ∈ N, k ∈M); (32)

Rik ={j ∈ N : j > i, pij > 0, and wi + wj ≤ Ck} (i ∈ N \ {n}, k ∈M), (33)
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we get the Modified Decomposable Level 1 RLT model (MDRLT1)

(MDRLT1) max
n∑
i=1

m∑
k=1

pixik+
1
2

n∑
i=1

m∑
k=1

∑
j∈Sik

pijyijk (34)

s.t. yijk ≤ xik (i ∈ N, k ∈M, j ∈ Sik) (35)

yijk = yjik (i ∈ N \ {n}, k ∈M, j ∈ Rik) (36)∑
j∈Sik

wjyijk ≤ (Ck − wi) xik (i ∈ N, k ∈M) (37)

yijk ≥ 0 (i ∈ N, k ∈M, j ∈ Sik) (38)

xik + xjk ≤ 1 (i ∈ N, k ∈M, j ∈ Tik) (39)

(9), (10), (11).

3 Surrogate relaxation of the quadratic model

A classical relaxation technique for the (linear) MKP is obtained by surrogating the
capacity constraints (9) with multipliers πk ≥ 0 (k ∈ M). Its popularity comes from
the fact that, as proved by Martello and Toth [21], the optimal choice for the surrogate
multipliers is to have them all equal to any positive number. We next show that such
property carries through to the quadratic case.

For the QMKP, the surrogate relaxation of the quadratic model (8)-(11) is:

S(π) = max
n∑
i=1

m∑
k=1

pixik +
n−1∑
i=1

n∑
j=i+1

m∑
k=1

pijxikxjk (40)

s.t.
m∑
k=1

πk

n∑
i=1

wixik ≤
m∑
k=1

πkCk (41)

m∑
k=1

xik ≤ 1 (i ∈ N) (42)

x ∈ {0, 1}n×m. (43)

Lemma 2 There always exists an optimal solution to (40)-(43) that assigns all the se-
lected items to the knapsack with smallest surrogate multiplier.

Proof. Let k∗ = arg min{πk : k ∈ M} and let x be a feasible solution to (40)-(43).
Another feasible solution x̄, not worse than x, can be obtained by setting x̄ik = 0 and
x̄ik∗ = 1 for each i ∈ N such that xik = 1 and k 6= k∗. �

Proposition 4 The optimal vector of multipliers for (40)-(43) is πk = π̄ (where π̄ is any
positive constant) for all k ∈M .
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Proof. Using Lemma 2, (40)-(43) is equivalent to the (single) QKP

S(π) = max
n∑
i=1

pixik∗ +
n−1∑
i=1

n∑
j=i+1

pijxik∗xjk∗

s.t.
n∑
i=1

wixik∗ ≤

⌊
m∑
k=1

πk
πk∗

Ck

⌋
(44)

xik∗ ∈ {0, 1} (i ∈ N).

where k∗ is the (knapsack) index corresponding to the smallest surrogate multiplier. Since⌊∑m
k=1

πk
πk∗
Ck

⌋
≥
∑m

k=1Ck, the choice πk = π̄ (any positive constant) for all k ∈ M

produces the minimum capacity and hence the minimum value of S(π). �

4 Decomposable Lagrangian relaxations

In this section we study the Lagrangian relaxation when applied to the quadratic formu-
lation (8)-(11) of Section 1, and to the DRLT1 formulation of Section 2.2.1.

4.1 Relaxing the Quadratic Model

A classical relaxation of the MKP is obtained by relaxing in a Lagrangian fashion the
cardinality constraints (10) with multipliers λi ≥ 0 (i ∈ N). For the QMKP, such
relaxation becomes:

LQ(λ) =
n∑
i=1

λi + max
n∑
i=1

m∑
k=1

(pi − λi)xik +
n−1∑
i=1

n∑
j=i+1

m∑
k=1

pijxikxjk

s.t.
n∑
i=1

wixik ≤ Ck (k ∈M) (45)

x ∈ {0, 1}n×m.
As the objective function does not contain terms involving items assigned to different
knapsacks, the problem decomposes into m independent QKPs (one for each knapsack
k ∈M).

It is worth mentioning that, if the knapsack set M is partitioned into t subsets
M1, . . . ,Mt, such that all knapsacks in Mh (h = 1, . . . , t) have the same capacity Ch,
the optimal solution to the above Lagrangian relaxation can be obtained by solving t
independent QKPs. Indeed, for each subset Mh, it is enough to solve one single QKP and
to sum up the optimal values. Such situation occurs, e.g., in the benchmark instances by
Bergman [2], where all knapsacks have the same capacity.

In order to solve the Lagrangian dual problem, i.e., to find the best possible set
of multipliers, λ∗, in our computational experiments we adopted the proximal bundle
method, as implemented by Frangioni [9]. The corresponding software is freely avail-
able at https://gitlab.com/frangio68/ndosolver_fioracle_project (as a part of
the NDOSolver/FiOracle suite of C++ solvers for NonDifferentiable Optimization, devel-
oped by the Department of Computer Science of the University of Pisa).
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4.2 Relaxing DRLT1

A different Lagrangian relaxation can be obtained by the DRLT1 model introduced in
Section 2.2.1. Let us dualize the symmetry equations (26) with multipliers λijk Q 0. We
get:

LR(λ) = max
n∑
i=1

m∑
k=1

pixik +
n∑
i=1

n∑
j=1
j 6=i

m∑
k=1

(1
2
pij + λijk)yijk (46)

s.t. yijk ≤ xik (i∈N, j∈N \{i}, k∈M) (47)∑
j∈N\{i}

wjyijk ≤ (Ck − wi) xik (i ∈ N, k ∈M) (48)

yijk ∈ {0, 1} (i∈N, j∈N \{i}, k∈M) (49)

(9), (10), (11).

Since the multipliers λijk for the symmetry constraints (26) are only defined for j > i, we
assume, for notational convenience, that λjik = −λijk in (46).

The main reason for relaxing (26) is that the resulting model has a decomposable
structure. Observe indeed that constraints (47) allow a variable yijk to be 1 only if xik is
1. Moreover, for each pair i, k (i ∈ N, k ∈ M), variables yijk (j ∈ N \ {i}) only appear
in capacity constraints (48) and in the objective function. Hence, if all xik variables are
fixed, the relaxed problem consists of nm independent sub-problems, one for each pair
i, k. More precisely, the relaxed problem decomposes into nm+ 1 sub-problems, that can
be cascaded as follows:

(i) first we solve nm (linear) KPs, one for each pair i, k (i ∈ N, k ∈M), of the form:

max
n∑

j=1
j 6=i

(1
2
pij + λijk)yijk

s.t.
∑

j∈N\{i}

wjyijk ≤ (Ck − wi)xik (50)

yijk ∈ {0, 1} (j ∈ N \ {i})
xik ∈ {0, 1}.

having only one xik variable and its associated n − 1 auxiliary variables yijk (j ∈
N \ {i}) subject to a single capacity constraint (50) associated with the pair (i, k).
We denote by vik the optimal solution value when xik = 1, while the optimal solution
value is clearly 0 when xik = 0.

(ii) then we solve a unique (linear) pseudo-MKP with all the original xik variables sub-
ject to constraints (9)-(11):

max
n∑
i=1

m∑
k=1

p̃ikxik (51)

s.t. (9), (10), (11),

where p̃ik = pi + vik (i ∈ N, k ∈M).
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Observe that, as it is known that the polyhedron of the 0-1 knapsack problem KP
is not integral (see, e.g., Nemhauser and Wolsey [23]), our Lagrangian problem does not
have the integrality property. Therefore, the Lagrangian bound, corresponding to the
optimal dual multipliers λ∗, is not dominated by the standard continuous relaxation of
DRLT1.

In this case too we performed our computational experiments by solving the La-
grangian dual problem by means of the proximal bundle method, as implemented by
Frangioni [9].

5 Computational experiments

The formulations and the relaxations introduced in the previous sections were imple-
mented in C++ language. In the present section, we report the outcome of computa-
tional experiments aimed at evaluating the quality of the upper bounds produced by the
polynomial-size models and the relaxations we have introduced. All the experiments were
performed on a single thread of an AMD Ryzen 7 2700X Eight-Core Processor running
at 3.7 GHz with 64 GB RAM. In order to evaluate our models and relaxations, we used
benchmark instances adopted by Bergman [2], for most of which his Branch-and-Price
algorithm could find the optimal solution (available online, see below). For the sake of
completeness, in the next section we describe the way in which the instances were gener-
ated. The solution of our mathematical models was obtained using different codes:

• the general purpose solver CPLEX 12.10;

• the open source C code quadknap, that implements the algorithm for the QKP de-
veloped by Caprara et al. [5] and is available at the home page of D. Pisinger,
http://hjemmesider.diku.dk/~pisinger/codes.html . This code works with in-
teger parameters and non-negative pairwise profits pij: in Section 5.2 we detail how
we handled this feature to solve Lagrangian subproblems;

• the open source Fortran code MT1R, that implements a variant of the KP algorithm
MT1 by Martello and Toth [22] (adapted to non-integer parameters), available at
the home page of S. Martello, http://www.or.deis.unibo.it/knapsack.html .

5.1 Benchmark instances

Bergman [2] presented two sets of random instances, called HJ and SS, based on the
generation schemes proposed, respectively, by Hiley and Julstrom [17] for the QMKP and
by Sarac and Sipahioglu [29] for a generalization of the problem. However, as reported
by Chen and Hao [6], the known optimality gap for even the easiest of the HJ instances
(n = 100) is enormous, so smaller instances were generated by Bergman [2] (with n ∈
{20, 25, 30, 35}) to test his exact approach. For our experiments, we considered the HJ

instances, both because they have been specifically designed for the QMKP and because
all the involved pairwise profits are non-negative.

All the instances can be downloaded from the INFORMS page as a zipfile at the ad-
dress https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2018.0840/suppl_
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file/ijoc.2018.0840-instances.sm2.zip . The knapsacks have a common integer ca-
pacity C, with n ranging in {20, 25, 30, 35} and m in {3, 5, 10}. Three different values
d ∈ (0, 1] were used for the density of the non-zero quadratic terms: d ∈ {0.25, 0.50, 0.75}.
For each triple (n,m, d), 5 random instances were produced as follows. Linear profits pi
were generated as uniformly random integers from (0, 100). For every pair i, j ∈ N ,
quadratic profits pij were set with probability d to a random integer value uniformly
drawn from (0, 100), and to 0 with probability 1− d.

The weights wi were generated as uniformly random integers from (1, 50), while the
capacities C were all set to b0.8

∑
i∈N wi/mc. In total, 180 instances were thus generated.

5.2 Experiments

We first evaluate the polynomial-size formulations discussed in Sections 1 and 2, for
what concerns both their performance on the computation of the optimal solution and
the quality of the LP relaxation of the linear ones. Table 1 reports on the different
formulations of the QMKP, when solved through CPLEX, with one hour time limit. The
six groups, of three columns each, refer to the models we have obtained for the QMKP:

• CPLEX-QF: 0-1 quadratic formulation (Section 1);

• CPLEX-FGW: 0-1 linear formulation by Fortet, Glover, and Woolsey (Section 2);

• CPLEX-GLOV: mixed-integer linear formulation by Glover (Section 2);

• CPLEX-RLT1: Level 1 reformulation linearization by Sherali and Adams (Section
2.2);

• CPLEX-DRLT1: decomposable Level 1 reformulation (Section 2.2.1).

• CPLEX-MDRLT1: modified decomposable Level 1 reformulation (Section 2.2.1).

Each line refers to a triple (n,m, d). For each formulation, the three entries in the
table report (over the corresponding 5 instances),

• %gap = average percentage optimality gap of the best solution value z obtained
by CPLEX within one CPU hour with respect to its best found upper bound u,
computed as 100 (u − z)/z. In parentheses #, total number of instances solved to
proven optimality;

• nodes = average number of nodes of the CPLEX branch-decision tree;

• t(s) = average CPU time expressed in seconds.

The average values of %gap, nodes, t(s) and the total value of # for each value of n
(45 instances) are also reported, as well as the overall values over the 180 instances.

The table shows that the direct use of the models to provide solutions to the QMKP
through a general purpose solver like CPLEX (we also tried Gurobi 9, with similar results)
can only be effective for small size instances. We can note that the quadratic formulation
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QF and the two linear formulations FGW and GLOV obtain worse results than those
obtained by the three Level 1 RLT formulations.

For n ≤ 25, RLT1, DRLT1, and MDRLT1 could solve all 90 instances to optimality.
DRLT1 turned out to be the fastest method, although it requires a higher number of
CPLEX decision nodes than RLT1. For n = 30, the same models could solve, respectively,
40, 43, and 44 instances out of 45, with CPU times of few hundred seconds. The models
look instead inadequate for instances with n = 35.

As previously mentioned, all the considered instances but two were efficiently solved
to optimality by Bergman’s [2] Branch-and-Price algorithm, referred to as BBP in the
following. (He used Gurobi 7.5.1 with one hour time limit on a computer similar to ours,
namely an Intel Core i7-4770 running at 3.40 GHz with 32 GB RAM.) Although a direct
comparison between the CPLEX solution of polynomial-size models and a specialized
Branch-and-Price algorithm may be questionable, we can observe that the Level 1 RLT
models appear to perform better for n = 20 and n = 25, while BBP is more effective for
n = 30, and much better for n = 35. More specifically,

• for n = 20, the three Level 1 reformulations and BBP solved all instances, with
DRLT1 and MDRLT1 taking smaller times (on average, 1.6 and 2.1 seconds, re-
spectively, versus 4.2 seconds of RLT1 and 3.6 seconds of BBP);

• for n = 25, RLT1 and DRLT1 solved all 45 instances (with average times 62.1 and
60.0 seconds, respectively) while BBP solved one instance less with average time
95.8 seconds. MDRLT1 solved all instances, but required a much higher, anomalous,
time;

• for n = 30, MDRLT1 solved 44 instances with an average time of 462.4 seconds,
while BBP solved all 45 instances with an average time of 151.2 seconds;

• for n = 35, RLT1 solved 29 instances with an average time of 1974.2 seconds, while
BBP solved 44 instances with an average time of 455.2 seconds.

Table 2 examines the quality of the upper bounds computed through the LP relaxations
of the linear models considered in Table 1. The five groups, of two columns each, refer to:

• LP-FGW: LP relaxation of FGW (Section 2.1);

• LP-GLOV: LP relaxation of GLOV (Section 2.1);

• LP-RLT1: LP relaxation of RLT1 (Section 2.2);

• LP-DRLT1: LP relaxation of DRLT1 (Section 2.2.1);

• LP-MDRLT1: LP relaxation of MDRLT1 (Section 2.2.1);

The LP relaxations were solved through CPLEX. Each line refers to a triple (n,m, d).
For each formulation, the two entries in the table report the values (over the corresponding
5 instances) of:
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instance LP-FGW LP-GLOV LP-RLT1 LP-DRLT1 LP-MDRLT1

n m d %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s)
20 3 0.25 37.75 0.01 39.21 0.00 29.83 0.01 29.83 0.00 29.83 0.00
20 5 0.25 64.50 0.01 66.31 0.00 29.47 0.01 29.48 0.00 29.30 0.00
20 10 0.25 163.12 0.01 166.21 0.00 19.31 0.02 19.32 0.01 11.94 0.00
20 3 0.50 68.66 0.01 70.94 0.00 31.59 0.01 31.63 0.00 31.63 0.00
20 5 0.50 126.35 0.01 129.41 0.00 29.31 0.01 29.32 0.01 28.05 0.00
20 10 0.50 265.74 0.01 270.76 0.01 24.72 0.02 24.72 0.01 16.72 0.00
20 3 0.75 90.80 0.01 95.75 0.00 28.76 0.01 28.77 0.01 28.77 0.00
20 5 0.75 156.59 0.01 163.41 0.00 24.26 0.02 24.26 0.01 23.67 0.01
20 10 0.75 310.87 0.01 322.10 0.01 19.36 0.02 19.37 0.01 12.06 0.01

Avg 142.71 0.01 147.12 0.00 26.29 0.01 26.30 0.01 23.55 0.00
25 3 0.25 41.19 0.01 42.97 0.00 36.28 0.02 36.28 0.00 36.28 0.00
25 5 0.25 65.55 0.01 67.69 0.00 33.27 0.02 33.27 0.01 33.27 0.00
25 10 0.25 138.13 0.02 141.35 0.01 24.82 0.04 24.85 0.01 19.86 0.01
25 3 0.50 78.55 0.01 81.90 0.00 40.42 0.02 40.49 0.01 40.49 0.01
25 5 0.50 132.64 0.01 137.10 0.01 33.33 0.03 33.34 0.01 33.34 0.01
25 10 0.50 263.46 0.02 270.41 0.01 27.69 0.04 27.74 0.02 20.17 0.01
25 3 0.75 93.43 0.01 97.98 0.00 34.57 0.02 34.59 0.01 34.59 0.01
25 5 0.75 163.96 0.01 170.19 0.01 30.60 0.03 30.60 0.01 30.60 0.01
25 10 0.75 310.82 0.02 320.75 0.01 23.95 0.05 23.98 0.02 20.03 0.01

Avg 143.08 0.01 147.81 0.00 31.66 0.03 31.68 0.01 29.85 0.01
30 3 0.25 43.53 0.01 45.56 0.00 39.37 0.02 39.37 0.01 39.37 0.00
30 5 0.25 69.84 0.02 72.27 0.00 39.87 0.03 39.91 0.01 39.91 0.01
30 10 0.25 135.77 0.03 139.28 0.01 28.45 0.07 28.53 0.02 24.19 0.01
30 3 0.50 77.83 0.01 82.43 0.00 47.04 0.03 47.10 0.01 47.10 0.01
30 5 0.50 125.58 0.02 131.49 0.01 37.88 0.04 37.88 0.01 37.88 0.01
30 10 0.50 250.12 0.03 259.62 0.01 29.97 0.07 30.01 0.02 26.12 0.02
30 3 0.75 104.83 0.02 110.95 0.00 36.65 0.04 36.65 0.01 36.65 0.01
30 5 0.75 175.09 0.02 183.45 0.01 28.54 0.05 28.54 0.02 28.54 0.01
30 10 0.75 348.85 0.04 362.68 0.01 26.20 0.08 26.20 0.03 20.71 0.02

Avg 147.94 0.02 154.19 0.01 34.89 0.05 34.91 0.02 33.39 0.01
35 3 0.25 50.01 0.02 53.32 0.00 43.19 0.04 43.19 0.01 43.19 0.01
35 5 0.25 77.38 0.02 81.28 0.01 44.89 0.05 44.90 0.02 44.90 0.01
35 10 0.25 137.54 0.04 142.89 0.01 31.79 0.09 31.79 0.03 29.81 0.01
35 3 0.50 82.83 0.02 87.35 0.00 49.75 0.04 49.79 0.02 49.79 0.01
35 5 0.50 135.69 0.03 141.55 0.01 42.82 0.05 42.85 0.02 42.85 0.01
35 10 0.50 248.47 0.05 257.14 0.01 30.51 0.09 30.51 0.03 28.35 0.02
35 3 0.75 101.86 0.02 108.36 0.01 36.15 0.06 36.16 0.02 36.16 0.02
35 5 0.75 178.30 0.03 187.29 0.01 32.10 0.07 32.10 0.02 32.10 0.02
35 10 0.75 345.25 0.05 360.17 0.01 24.95 0.11 24.95 0.04 23.37 0.04

Avg 150.81 0.03 157.70 0.01 37.35 0.07 37.36 0.02 36.72 0.02
Ov.Avg 146.14 0.02 151.71 0.01 32.55 0.04 32.56 0.01 30.88 0.01

Table 2: Upper bounds computed through LP relaxation of the linear formulations. Av-
erage percentage optimality gap and CPU time over 5 instances.

• %gap = average percentage optimality gap of the upper bound u obtained within one
CPU hour with respect to the best known solution value z, computed as 100 (u −
z)/z. The value of z is optimal for 179 instances out of 180: 178 were provided by
Bergman [2], one more was found by the Level 1 RLT models (see the comments on
Table 1);

• t(s) = average CPU time expressed in seconds.

We have seen in Table 1 that the linear models (DRLT1 in particular) can provide good
solutions for instances of limited size. Table 2 shows that the CPU times for computing
their LP relaxations are very small, but the quality of the upper bounds they provide
is poor, especially for what concerns GLOV and FGW. The performances of RLT1 and
DRLT1 are very similar to each other. Although the continuous relaxation of DRLT1
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is weaker than that of RLT1 (as observed in Section 2.2.1), the quality of the bounds
they produce is practically the same, while DRLT1 is faster. The best performance was
obtained by MDRLT1. In particular: (i) for m = 10, MDRLT1 produced the smallest
percentage gaps, thanks to the addition of constraints (39); (ii) MDRLT1 was slightly
faster than DRLT1, probably due to the use of sets Rik and Sik.

In any case, the results of Table 2 indicate that the LP relaxations are inadequate to
be embedded in an enumerative approach. We next show that much better results can be
obtained from Lagrangian relaxations.

In Table 3 we analyze the quality of the upper bounds obtained by the surrogate and
Lagrangian relaxations studied in Sections 3-4. For the surrogate relaxations, the optimal
multipliers are known (see Proposition 4). For the Lagrangian relaxations, the search
of the best multipliers was always performed via the proximal bundle method [9]. The

instance Srg CPLEX Srg Qknap Lgr QP CPLEX S-Lgr QP CPLEX S-Lgr QP Qknap S-Lgr QPL CPLEX D-Lgr DRLT1 CPLEX D-Lgr DRLT1 MT1R

n m d %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s)
20 3 25 34.45 0.01 34.45 0.00 0.24 1.37 0.24 0.71 0.24 0.38 0.24 0.64 26.04 5.29 26.04 1.58
20 5 25 59.80 0.01 59.80 0.00 0.09 2.11 0.09 1.12 0.09 0.45 0.09 1.05 18.90 13.09 18.90 2.46
20 10 25 156.18 0.01 156.18 0.00 0.00 1.78 0.00 0.81 0.00 0.43 0.00 0.74 3.89 4.35 3.89 1.50
20 3 50 62.53 0.03 62.53 0.00 0.44 5.80 0.44 1.73 0.44 0.45 0.44 1.81 25.24 33.06 25.24 6.67
20 5 50 119.77 0.02 119.77 0.00 0.02 13.90 0.02 1.73 0.02 0.46 0.02 1.77 18.18 34.55 18.18 7.27
20 10 50 253.45 0.02 253.45 0.00 0.47 2.43 0.47 1.24 0.47 0.40 0.47 0.90 8.74 16.02 8.74 2.61
20 3 75 85.14 0.04 85.14 0.00 1.07 7.20 1.07 3.14 1.07 0.49 1.07 2.86 22.51 48.52 22.51 9.16
20 5 75 149.76 0.02 149.76 0.00 0.52 10.44 0.52 2.09 0.52 0.45 0.52 1.87 14.42 52.50 14.42 9.87
20 10 75 297.79 0.04 297.79 0.00 0.00 3.68 0.00 1.39 0.00 0.44 0.00 0.91 5.31 21.50 5.31 3.94

Avg 135.43 0.02 135.43 0.00 0.32 5.41 0.32 1.55 0.32 0.44 0.32 1.39 15.91 25.43 15.91 5.01
25 3 25 38.84 0.01 38.84 0.00 0.41 5.16 0.41 1.89 0.41 0.63 0.41 1.86 34.23 7.80 34.23 3.20
25 5 25 63.01 0.01 63.01 0.00 0.24 7.91 0.24 1.62 0.24 0.73 0.24 1.68 23.59 35.99 23.59 7.24
25 10 25 134.29 0.01 134.29 0.00 0.19 4.49 0.19 1.42 0.19 0.66 0.19 1.15 10.66 20.27 10.66 4.00
25 3 50 74.39 0.03 74.39 0.00 0.45 12.67 0.45 6.58 0.45 0.81 0.45 7.18 35.72 52.57 35.71 14.37
25 5 50 127.88 0.02 127.88 0.00 0.31 12.38 0.31 3.51 0.31 0.71 0.31 3.60 25.06 85.20 25.08 20.13
25 10 50 256.45 0.02 256.45 0.00 0.00 11.24 0.00 1.75 0.00 0.73 0.00 1.23 10.98 60.98 10.99 17.12
25 3 75 87.19 0.07 87.19 0.00 0.46 54.57 0.46 42.07 0.46 0.88 0.46 21.49 30.31 80.56 30.31 22.51
25 5 75 155.37 0.06 155.37 0.00 0.86 22.97 0.86 7.86 0.86 0.70 0.86 6.98 22.93 122.87 22.93 31.31
25 10 75 298.84 0.05 298.84 0.00 0.28 42.17 0.28 1.93 0.28 0.78 0.28 1.61 11.07 91.47 11.12 31.12

Avg 137.36 0.03 137.36 0.00 0.36 19.29 0.36 7.63 0.36 0.74 0.36 5.20 22.73 61.97 22.74 16.78
30 3 25 41.91 0.03 41.91 0.00 0.19 12.16 0.19 4.13 0.19 1.23 0.19 4.50 37.40 16.90 37.40 7.46
30 5 25 68.10 0.04 68.10 0.00 0.20 20.86 0.20 3.31 0.20 1.01 0.20 3.49 33.05 55.19 33.04 15.61
30 10 25 133.05 0.04 133.05 0.00 0.16 20.25 0.16 1.75 0.16 1.01 0.16 1.53 14.09 65.79 14.10 17.79
30 3 50 73.90 0.04 73.90 0.01 0.73 64.11 0.73 50.42 0.74 1.75 0.73 39.86 43.55 83.00 43.56 30.48
30 5 50 120.64 0.05 120.64 0.00 0.04 27.11 0.04 11.32 0.04 1.17 0.04 10.93 31.42 163.19 31.38 60.97
30 10 50 242.59 0.05 242.59 0.00 0.05 47.13 0.05 3.28 0.06 1.05 0.05 2.70 17.37 179.19 17.30 87.92
30 3 75 98.86 0.12 98.86 0.01 1.07 496.64 1.07 456.88 1.11 1.96 1.07 138.98 33.45 143.83 33.44 53.25
30 5 75 167.51 0.08 167.51 0.00 0.25 74.82 0.25 58.34 0.26 1.05 0.25 17.79 23.53 223.65 23.53 79.20
30 10 75 337.06 0.09 337.06 0.01 0.23 32.14 0.23 4.56 0.23 0.84 0.23 3.09 13.53 221.99 13.56 104.73

Avg 142.63 0.06 142.63 0.00 0.32 88.36 0.32 66.00 0.33 1.23 0.32 24.76 27.49 128.08 27.48 50.82
35 3 25 47.94 0.09 47.94 0.01 0.51 20.84 0.51 10.30 0.51 3.30 0.51 11.41 41.86 32.58 41.86 17.53
35 5 25 75.42 0.06 75.42 0.01 0.23 23.08 0.23 7.07 0.24 1.40 0.23 8.05 39.50 87.92 39.50 31.58
35 10 25 135.16 0.03 135.16 0.01 0.16 54.57 0.16 2.86 0.16 1.11 0.16 2.93 18.14 144.62 18.13 57.52
35 3 50 81.15 0.04 81.15 0.01 0.49 377.56 0.49 342.35 0.49 4.61 0.49 261.28 46.65 143.11 46.66 67.96
35 5 50 133.57 0.04 133.57 0.01 0.36 149.04 0.36 119.59 0.36 1.59 0.36 63.66 37.17 266.52 37.16 125.57
35 10 50 245.30 0.04 245.30 0.01 0.15 47.62 0.15 6.74 0.15 1.02 0.15 5.73 21.11 331.66 21.10 167.77
35 3 75 98.13 0.16 98.13 0.01 0.54 2192.90 0.50 2023.31 0.50 3.97 0.50 381.58 33.66 268.22 33.66 137.15
35 5 75 173.40 0.14 173.40 0.01 0.30 792.43 0.30 689.64 0.31 1.93 0.30 134.80 28.10 401.31 28.07 182.57
35 10 75 335.82 0.13 335.82 0.01 0.36 103.01 0.36 21.78 0.36489 1.254 0.36 13.03 17.41 495.15 17.24 293.53

Avg 147.32 0.08 147.32 0.01 0.35 417.89 0.34 358.18 0.34 2.24 0.34 98.05 31.51 241.23 31.49 120.13
Ov.Avg 140.68 0.05 140.68 0.00 0.34 132.74 0.33 108.34 0.34 1.16 0.33 32.35 24.41 114.18 24.40 48.18

Table 3: Upper bounds computed through surrogate and Lagrangian relaxations. Average
percentage gap and CPU time over 5 instances.
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columns provide information on the different ways we solved the relaxed subproblems
(either CPLEX, or Quadknap [5], or MT1R [22]). We also consider both the case where
separability due to equal capacities is exploited (see Section 4.1) and where it is not. The
eight groups, of two columns each, refer to:

• Srg CPLEX: surrogate bound S(π) (Section 3) solved through CPLEX;

• Srg Qknap: surrogate bound S(π) (Section 3) solved through quadknap [5];

• Lgr QP CPLEX: Lagrangian bound LQ(λ) (Section 4.1) solved through CPLEX;

• S-Lgr QP CPLEX: Lagrangian bound LQ(λ) exploiting separability, with the single
QKP solved through CPLEX;

• S-Lgr QP Qknap: Lagrangian bound LQ(λ) exploiting separability, with the single
QKP solved through quadknap [5]. Note that quadknap works with non-negative
pairwise profits pij (which holds in our formulation) and integer coefficients. Since
our Lagrangian linear profits pi − λi (i ∈ N) can assume non-integer values, we
multiplied all profits by 100, rounded each resulting value a to dae, and correspond-
ingly divided the solution value by 100 (thus obtaining a valid upper bound on the
optimal QKP solution);

• S-Lgr QPL CPLEX: Lagrangian bound LQ(λ) exploiting separability, with the single
QKP linearized through the MDRLT1 formulation with m = 1 and solved through
CPLEX;

• D-Lgr DRLT1 CPLEX: Lagrangian bound LR(λ) exploiting the decomposable struc-
ture (see (i)-(ii) of Section 4.2) with single KPs solved through CPLEX;

• D-Lgr DRLT1 MT1R: Lagrangian bound LR(λ) exploiting the decomposable structure
(see (i)-(ii) of Section 4.2) with single KPs solved through MT1R [22].

Preliminary computational experiments showed that the exact solution of the linear
pseudo-MKP (point (ii) in Section 4.2), performed at each iteration of the bundle pro-
cedure, takes a large computing time, so we replaced it with its LP relaxation (solved
through CPLEX). The entries in the table are the same as for Table 2. The results
indicate that:

• despite using optimal multipliers, the surrogate relaxation is very weak: it takes
very short CPU times, but the upper bounds are extremely loose;

• all Lagrangian relaxations provide much better bounds, although LR(λ) is consid-
erably weaker than LQ(λ) (with D-Lgr DRLT1 MT1R requiring much smaller CPU
times than D-Lgr DRLT1 CPLEX);

• all versions of LQ(λ) are by far the best approaches:

– they produce an average gap of 0.34%, with individual gaps rarely exceeding
1%;
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– their gaps are identical, with the only exception of S-Lgr QP Qknap due to the
non-optimal solution of the Lagrangian subproblems imposed by quadknap,
which can result in a suboptimal Lagrangian dual (for 7 instances out of 180,
its value is higher by one unit);

– Lgr QP CPLEX, which does not exploit separability, has the highest CPU times;

– the second highest times are those of S-Lgr QP CPLEX, which solves the single
QKP Lagrangian subproblem through CPLEX on the standard quadratic for-
mulation. By linearizing the QKP through the MDRLT1 formulation, S-Lgr
QPL CPLEX reduces the computational effort by two thirds;

– the best approach is by far S-Lgr QP Qknap, which directly solves the QKP
through quadknap. It provides very tight upper bounds in short CPU times,
with a much smaller growth rate with respect to n than that of the other LQ(λ)
methods;

– by comparing the obtained upper bounds with the optimal solution values, it
turns out that they are frequently identical: it happens for 94 instances out of
180 (92 instances for S-Lgr QP Qknap).

6 Conclusions

Over the last 15 years, the quadratic multiple knapsack problem has received increasing
attention from the literature, dealing almost exclusively with meta-heuristics. Although
in 2019 Bergman [2] presented the first (and only) specialized Branch-and-Price algo-
rithm, the problem has never been studied from a broader mathematical perspective. We
attempted to fill this gap, by focusing on classical reformulations and relaxations and
analyzing their properties, in order to gain insight into the strengths and weaknesses of
such methods. Currently, Bergman’s algorithm can solve instances up to 10 knapsacks
and 35 items. Yet, the original benchmark instances considered in the literature (for
heuristic solutions) are one order of magnitude larger, involving up to 30 knapsacks and
300 items. We believe our results have implications for the development of future exact
algorithms capable of tackling larger instances. Indeed, in an enumerative algorithm, a
trade-off must be made between the quality of the upper bound and the time taken to
compute it. Our results suggest that, among the different possible approaches, the most
promising is the one based on the Lagrangian relaxation of the cardinality constraints of
the 0-1 quadratic model, both in terms of bound quality and CPU time. In particular,
the convergence of the proximal bundle method to solve the Lagrangian dual problem ap-
pears to be very fast. Another interesting observation is that the adoption of non-optimal
solutions of the Lagrangian subproblems speeds up the computation of each bundle iter-
ation without deteriorating the bounds significantly. This turns out to be true for both
Lagrangian relaxations we have considered. Our experiments also show that the use of
specialized methods to solve the subproblems can be crucial to reduce the computing
time, and should always be preferred, when possible, to general purpose MIP solvers.
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