
Received October 27, 2020, accepted November 15, 2020, date of publication November 30, 2020,
date of current version December 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3041321

A RESTful Rule Management Framework
for Internet of Things Applications
FEDERICA PAGANELLI 1,2, (Member, IEEE), GEORGIOS MYLONAS 3,4,
AND GIOVANNI CUFFARO5,6
1Department of Computer Science, University of Pisa, 56126 Pisa, Italy
2CNIT, 56127 Pisa, Italy
3Computer Technology Institute and Press ‘‘Diophantus’’, 265 04 Patras, Greece
4Industrial Systems Institute, ‘‘Athena’’ Research Center, 151 25 Patras, Greece
5CNIT, University of Florence Research Unit, 50139 Florence, Italy
6Firlab SRL, 50131 Florence, Italy

Corresponding author: Federica Paganelli (federica.paganelli@unipi.it)

This work was supported in part by the Green Awareness in Action (GAIA) Research Project funded by the European Union (Horizon
2020 Research and Innovation Program) under Grant 696029.

ABSTRACT Web technologies are currently regarded as key enabling factors for the Internet of Things
(IoT), and substantial effort is being dedicated to bringing sensors and data from the real world to
the Web. In addition, rule-based automation mechanisms are expected to play a significant role in the
effective integration of the physical world with the virtual world by leveraging a trigger-action paradigm.
Although several rule engines are already available, limited effort has been devoted to rule-based solutions
that are tailored to the IoT and consider rule configurability and extensibility according to application
requirements. In this work, we propose a RESTful rule management framework for IoT applications that
satisfies these requirements. The framework is centered around a resource-based graph, which enables the
uniform representation of things (e.g., sensors and domain entities) and rules as URI-addressable resources.
We describe the design and implementation choices of the main rule management features (rule scheduling,
activation and RESTful operations for managing rules at various levels of configurability and extensibility).
Finally, we present a case study and performance evaluation results regarding the use of this rule management
framework in a set of school buildings that were part of a real-world IoT deployment that was realized within
the Horizon 2020 GAIA research project, with the objective of promoting energy-saving behaviors in school
communities.

INDEX TERMS Behavior-based energy saving, education, Internet of Things, REST, rule engine, web of
things.

I. INTRODUCTION
The Internet of Things (IoT) is currently producing a very
large amount of raw data via continuous collection by sen-
sors. In this context, it is widely recognized that effective
and efficient techniques are needed for converting this grow-
ing amount of data into usable knowledge [1]. However,
while substantial research and development efforts have been
devoted to device management and IP-based connectivity
technologies, less attention has been given to challenges
that are related to the development of applications for the
emerging ecosystem of IP-enabled devices and objects [2].
In this respect, one of the main challenges is the smooth

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Huei Cheng .

and seamless integration of the virtual and physical worlds
to enable users to manage and access things of interest [3].

Web technologies are considered the main enabling factor
for unleashing ‘‘the potential of the Internet of Things by
making it accessible and programmable by developers that
are not necessarily experts in ubiquitous computing’’ [2].
This also leads to the concept of the Web of Things (WoT),
which is an area of the IoT that focuses on the challenge of
making smart things accessible andmanageable through open
Web technologies [4], [5]. Indeed, due to the adoption of such
standards, the WoT promotes interoperability among sys-
tems and the integration of smart things with the impressive
amount of information resources and services that are already
on the Web [6]. In this context, the Representational State
Transfer (REST) architectural style [7] is widely adopted for

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 217987

https://orcid.org/0000-0002-2931-2804
https://orcid.org/0000-0003-2128-720X
https://orcid.org/0000-0002-1468-6686

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

incorporating sensors and, more generally, smart things into
the Web [8] since it defines a set of principles for distributed
hypermedia application design with scalability, simplicity
and loose-coupling requirements in mind.

Although RESTful Web exposure of physical objects sat-
isfies the basic requirements for making representations of
things accessible to clients through Web standards, in many
cases, mechanisms are needed for automating reactive behav-
iors upon the occurrence of specified conditions (e.g., one
could be interested in being notified if the average temper-
ature at a location exceeds a specified threshold). In this con-
text, rule-based approaches are expected to play a significant
role in the IoT, since, as stated by Perera et al. in [9] ‘‘they
are the easiest and simplest way to model human thinking
and reasoning inmachines’’. More recently, Ghiani et al. [10]
argued that ‘‘adopting a trigger-action paradigm represents
a promising approach because of its compact and intuitive
structure. . .’’ and ‘‘. . .various IoT-based application domains
can benefit from such trigger-action paradigm’’. Typically,
state-of-the-art approaches for implementing rule-based
mechanisms in IoT include: i) ad hoc IoT applications
that are customized for specified application objectives
(such as energy efficiency [11]), ii) rule-based reason-
ing techniques that are integrated with an IoT middleware
(e.g., [3], [12]), and iii) general-purpose rule engines, such as
Jess [13].

To the best of our knowledge, related studies do not address
the design of rule-based solutions that are tailored to the
IoT and consider the requirements of rule configurability and
extensibility to satisfy application requirements. We identi-
fied such requirements based on our practical experiences
in European research projects in the IoT domain, namely,
SmartSantander [14] and, more recently, OrganiCity [15] and
Green Awareness in Action (GAIA) [16]. In these projects,
a similar approach is pursued for the provision by IoT mid-
dleware of uniform web exposure of sensor data that are
collected from multiple sites. These data are made avail-
able to endless applications. Nonetheless, we also observed
that in many application scenarios similar rules should be
replicated and slightly customized depending on the physical
site from where the data originate. For instance, a school
building manager may want to activate a rule to automati-
cally turn off artificial lights when the natural light is suf-
ficient for guaranteeing visual comfort in a classroom. It is
likely that this rule must be replicated in various areas of
a building. Replication may require users to manage low
level technological details, such as identifiers of sensors and
actuators that cover the area of interest, and to set suit-
able threshold values (the visual comfort requirements dif-
fer amomg rooms, such as classrooms, halls, and libraries,
depending on the usage). In some cases, similar rules must
be slightly customized to comply with national regulations
(e.g., penalties for low power factor values). Moreover,
in practical scenarios, end users with basic or no technolog-
ical skills may be required to create, modify and customize
rules during system operation, for example for handling new

regulations, new processes or the availability of newly added
sensors.

Recently, end user development techniques have been
investigated in the IoT and context-aware computing domain,
that leverage a rule-based approach to pursue similar objec-
tives ([10], [17], [18]). Most related studies focus on end
user interaction and provide complete solutions that range
from data acquisition to end user authoring tools; however,
in many cases, it is not clear whether inner components
(e.g., rule-based components) are provided as modular solu-
tions that can be integrated with third-party IoT middleware
and end user applications or whether rule management fea-
tures are exposed through programmatic interfaces.

In this work, we propose a RESTful rule management
framework that enables the creation and modification of rules
and the management of their activation (firing) for IoT appli-
cations. Key requirements of rule configurability and exten-
sibility are mainly addressed through i) a web resource graph
model, which enables the uniform representation of things
and rules as web resources, and ii) the design and develop-
ment of a rule engine that provides rule management features
(scheduling, activation, persistence, and web-based expo-
sure). Here, we present a resource-based graph model, which
is purposely kept minimal to facilitate interoperation with
third-party middleware, and a rule management framework
implementation. We also present a detailed case study on
energy efficiency in school buildings, which was developed
within the Horizon 2020 GAIA research project [16], [19].

This paper extends a prior publication [20] by i) provid-
ing a consolidated resource model and a general-purpose
IoT rule engine implementation, with enhanced features for
rule creation and management, ii) validating the proposed
approach through a case study on IoT for behavior-based
energy efficiency in schools and discussing obstacles and
lessons learnt within the case study, and iii) evaluating the
performance of the rule engine that is used in the case study
with encouraging results in terms of response latency formost
significant operations.

The remainder of this article is organized as follows.
In Section II, we discuss related studies that motivate our
contribution. In Section III, we describe the resource-based
model, and in Section IV, we provide design and implemen-
tation details of the proposed rule management framework.
In Section V, we report on the use of the framework within
the GAIA project for promoting energy savings initiatives in
school buildings, we present performance evaluation results,
and we discuss our work and provide insights into future
work. Finally, Section VI presents the conclusions of the
paper.

II. RELATED WORK
The IoT Reference Model that was proposed by Cisco in [21]
consists of a seven-layered architecture with the objective
of providing guidelines for IoT deployments and promoting
replicability and collaboration. This model highlights the
transition from data in motion (real-time and stream-based

217988 VOLUME 8, 2020

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

data) to data at rest (data that are stored on devices and
available through query-based APIs). In this work, we focus
on data at rest since the proposed rule management frame-
work leverages data abstraction functions that are typically
provided by IoT middleware to expose IoT data as web
resources and, thus, expose REST APIs for managing rules
and related notifications. Hereafter, we comprehensively dis-
cuss the state of the art in this area, which includes stream
and event processing solutions that are typically conceived
for data in motion, middleware and rule-based reasoning for
IoT applications.

A. EVENT PROCESSING
Event processing (EP) techniques are considered key tech-
nologies in the IoT domain since they enable the analysis
of streams of events for the extraction of useful insights into
real-world scenarios [22]. Complex event processing (CEP)
is a subset of EP techniques whose objective is to detect
complex events. CEP techniques are used to correlate or
aggregate events over a time window and to conduct pattern
detection in scenarios that involve multiple events or when it
is necessary to be aware of the state of the workingmemory to
take an action [23].Modern EP techniques operate on streams
of events that are processed as soon as they arrive; such sys-
tems are usually called Stream Processing Engines (SPEs).
SPEs are designed to process incoming messages as they
arrive, without necessarily storing them. Some operations still
require the storage of an internal state; this can be realized
using a conventional or embedded database [24]. SPEs use
specialized primitives and constructs (e.g., time-windows,
aggregation, and filtering) to express stream-oriented pro-
cessing logic and are built for operating with potentially
unbounded streams of data. Open-source stream processing
engines, such as Apache Storm, Apache Stream and Apache
Flink, have been implemented for use in the cloud and are
currently also adopted in IoT environments [25]. Various
studies propose novel stream processing frameworks that
are designed for the IoT environment (e.g., DART [26] and
PESP [27]), while [28] proposes a CEP mechanism that
leverages edge computing for IoT data real-time processing.

B. MIDDLEWARE AND SERVICES FOR IoT APPLICATIONS
IoT middleware and service platforms provide connectivity
to physical things and sensor data through high-level APIs
that hide the heterogeneity of sensor and actuator technolo-
gies from applications. An extensive survey on IoT middle-
ware is conducted in [29]. A review of both proprietary and
open-source IoT platforms is conducted by Mineraud et al.
in [30], which focuses on the ability to meet the expectations
of IoT users, while a more comprehensive and recent survey
is available in [31]. Some of the identified weaknesses of
the state-of-the-art solutions are i) the scarce support that is
offered to application developers beyond basic REST APIs
for accessing sensor data [30] and ii) the need to abstract the
heterogeneity of the resources of IoT systems [31].

A pioneering contribution in the specification and imple-
mentation of REST APIs for the IoT is the study by
Guinard et al. [32]. A REST-based approach is applied by
some of these authors in the AutoWoT project [33] to provide
a toolkit that facilitates the rapid integration of smart devices
into the Web by offering a general strategy for modeling
and automatically generating web resources to represent a
hierarchical structure of devices. WebPlug [34] is a frame-
work for the WoT that enables users to deploy personal
services by composing web resources that represent phys-
ical objects. A framework for supporting the development
of IoT applications is proposed by the authors in a previ-
ous work [6]. The framework consists of a Web resource
information model that is based on aggregation and refer-
ence relations, and middleware and tools for developing,
publishing and composing web resources. Paraimpu [12] is a
Web-based platform that enables the definition of mash-ups
of smart things and includes a JavaScript-based rule engine
for conducting data filtering operations. Yao et al. [3] present
a layered web-based framework for managing and shar-
ing data that are produced by physical things. The system
also includes a rule engine for the automatic management
and control of devices and also offers a GUI for defin-
ing rules and actions. A script-based framework, namely,
ScriptIoT, has been proposed in [35] to enable users with
little or no programming expertise to develop IoT appli-
cations with minimal effort. In [17], the need for higher-
level representation of trigger-action rules for IoT end user
development is advocated and supported by a user study; an
ontology-based model that enables users to define abstract
and technology-independent trigger-action rules in the IoT
is also provided. Our work has a similar objective; how-
ever, while [17] exploits semantic reasoning capabilities to
provide users with differentiated abstraction levels of inter-
action (high-level and medium-level), our system focuses
on rule management and on enabling the composition and
REST-based exposure of rules. Similar to [17], our rule
management framework provides features that facilitate rule
creation by users (e.g., by hiding and resolving on behalf
of users low-level technological details, such as customizing
rules with sensors identifiers), but it does not use a semantic
model. Semantic models might complement our approach
as additional sources of information and mediation between
vocabularies.

‘‘If This Then That’’ (IFTTT) [36] is a service that enables
users to write simple applications that connect web services,
social media sites and physical devices by leveraging the
trigger-action paradigm (e.g., ‘‘If I arrive home then turn
lights on’’), but it is limited in terms of expressiveness since it
does not allow users to createmore structured rules (e.g., rules
that combine multiple events and actions) [37]. In [10],
a set of tools are presented that enable end users to specify
trigger-action rules for the customization ofWeb applications
via a context-driven approach. In [18], these tools are com-
plemented by end user debugging support. MOZART [38]
provides a rule-based composition language and a graphical

VOLUME 8, 2020 217989

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

user interface for specifying an IoT application. It has been
implemented as a set of components on top of Mozilla
WebThings. While such works provide complete end user
solutions that are comprised of a rule authoring editor and
a rule execution engine, our contribution consists of a rule
management framework that offers rule configuration and
composition features and APIs for programmatic access by
third-party applications.

IoT platforms are comprehensively evaluated in [39].
Among industry-driven IoT platforms, AWS IoT [40]
includes a rule engine. The AWS IoT rules define one or
more actions to be performed based on the data in a MQTT
message. Typically, such actions enable the extraction of
data from a message and the routing of them to another
AWS service. Therefore, while the AWS IoT rules are fully
integrated into the AWS IoT platform, our contribution aims
at providing an IoT rule engine that operates at the level of
data at REST and is not tied to an IoT platform.

Finally, hereafter, we briefly discuss application-specific
IoT middleware that apply rule-based reasoning approaches,
and we focus especially on those solutions that aim at
realizing energy savings (similarly to our case study).
Stavropoulos et al. [11] developed an energy saving sys-
tem that was tested in a Greek public university build-
ing. Energy saving policies are enforced by two rule-based
mechanisms that are implemented on top of an IoT mid-
dleware: one that is based on production rules and another
that uses defeasible logics. Mainetti et al. [41] propose
a rule-based semantic architecture for enabling users to
define and enforce automation policies in an IoT context.
SESAME-S [42] is a smart home prototype that lever-
ages ontology-based context management techniques and
rule-based reasoning that is implemented with the JESS
rule engine [13] for enforcing energy-aware environmental
control policies (such as automating the turning on/off of
devices). A smart heating, ventilation and air conditioning
(HVAC) system, which aims at minimizing energy costs
while guaranteeing the thermal comfort of users, is proposed
in [43]. Papaioannou et al. [44] implemented a gamification
approach for improving behavior-based energy savings in
public buildings, which was based on a rule-based game
engine. More recently, an energy efficiency framework for
domestic applications has been proposed in [45]. This frame-
work uses a supervised machine learning classifier to process
data from household sensors to identify abnormalities and
formulate energy-saving recommendations. In comparison,
while solutions in [44] and [45] have been developed for
supporting energy-savings challenges, our rule-engine aims
at supporting general-purpose IoT applications; furthermore,
a case study evaluation has been conducted to evaluate
our approach within an energy-saving case study in school
buildings.

In conclusion, our contribution differs from the literature as
follows. First, while stream and event processing techniques
focus on data in motion, our approach focuses on data at
rest. Thus, our rule management framework can be regarded

as a pluggable service of an IoT middleware. Additionally,
although our contribution is similar to [3] in that our solution
also operates at the service layer abstraction level and enables
users to create new rules via a web interface, it also provides
an original contribution in that it offers rule configurability
and extensibility features and does not depend on any IoT
middleware since it has been conceived as a pluggable mod-
ule that can be used with any IoT middleware that exposes
REST APIs.

III. RULE MANAGEMENT FOR THE IoT
As discussed in the related work section, rule-based mech-
anisms are commonly applied in IoT scenarios to eval-
uate conditions that are expressed in terms of resource
status. However, practical IoT deployments also demand the
following:
• Extensibility: A new type of rules might be created from
scratch (programmatically) or by editing the configura-
tion of already implemented rules (e.g., by customizing
an expression to be evaluated) to address unforeseen
application needs and/or context changes (e.g., new sen-
sors or new recommendation scenarios).

• Configurability: The same type of rule might be applied
to create distinct instances for different areas of a target
IoT environment (e.g., a school building) and related
subareas (e.g., classrooms) with suitable customization
of thresholds, sensors’ identifiers (URIs) and the content
of notification messages.

In addition, the system should offer rule management capa-
bilities to various types of users (e.g., developers, system
administrators, and end users who vary in terms of technical
skills and access roles) and, thus, allow different degrees of
freedom in rule behavior specification and activation. Thus,
various levels of rule customization and specifications must
be supported, from programmatical rule behavior definition,
configuration of threshold values and changes in the condi-
tion expression at runtime, to assistance to end users in rule
creation.

Hereafter we introduce the rule management framework
that we developed to satisfy these requirements. The frame-
work consists of the following main components:
• a resource-based graph model, which enables the uni-
form representation of things (including sensors and
domain entities) and rules as URI-addressable resources.
The adoption of this resource model and its exposure
through RESTful APIs in the proposed framework pro-
vides an easy way of conducting Create, Read, Update
and Delete (CRUD) operations on rules at runtime since
conditions are expressed in terms of facts that are related
to REST-based resources;

• a ‘‘rule engine’’, which is a software implementation of
rule management features. This rule engine implements
rule scheduling, activation, persistence, and web-based
exposure features and offers a set of RESTful operations
for creating and modifying rules at various levels of
configurability and extensibility.

217990 VOLUME 8, 2020

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

Finally, the framework has been conceived as a stand-alone
module that offers REST-based APIs and interacts with
third-party IoT/WoT middleware through REST APIs.

A. RESOURCE-BASED GRAPH MODEL
We define a resource-based model as a graph G = (R,E),
where R is a set of resources i, with i ∈ {1, .., |R|} and E is a
set of directed edges (i, j) from resource i to resource j with
i, j ∈ {1, .., |R|}.

A resource is any entity that can be identified through a
URI and can be accessed and manipulated through CRUD
operations (in accordance with the main principles and best
practices of the REST architectural style). A resource can be
assigned an unqualified name and other descriptive attributes.

An edge is a directed link between two resources to which
a meaningful label may be assigned to specify the type of
relationship.

FIGURE 1. UML class diagram [46] of the resource-based graph model.

These are highly general definitions. We define the follow-
ing types of resources, which characterize the IoT domain:
area, sensor, parameter and rule. Fig. 1 presents a UML class
diagram of this resourcemodel [46]. For readability, the edges
in Fig. 1 are not labeled, while the relations between resources
that are represented by edges are highlighted in italics in the
textual description of the model that is reported below.

An area is a resource that represents a physical or symbolic
location/area. It can be further characterized by information
that pertains to the domain of interest (e.g., an area that rep-
resents a school building can be enhanced with information
regarding the number of students, surface, energy consump-
tion, etc.). An area may contain other areas.

A sensor represents a physical or virtual sensor that gathers
measurements that are related to some physical phenomena
and is located in a specified area (the location of the sen-
sor/area in which the measurement is conducted).

A parameter represents a physical phenomenon (e.g., tem-
perature) that is directlymeasured by a sensor or derived from
sensor measurements (e.g., relative humidity).

A rule is a resource whose internal behavior consists of
verifying a condition and, if the condition holds, triggering
an action. A rule condition is a function of a set of parame-
ters. A rule is associated with an area, namely, the verified

condition pertains to the associated area. Although a rule
will typically evaluate parameters in the area to which it is
associated, external parameters might also be considered if
necessary (e.g., external temperature).

The model has been kept as simple as possible (a ‘‘min-
imal’’ resource model) to facilitate interoperation with
third-party middleware. Although minimal, this resource
model enables the representation of significant entities of
the IoT domain and the definition of define rule resources
on top of them. Moreover, a mapping of our model to the
Web of Things (WoT) Thing Description model [47] is being
developed.

Fig. 2 presents a portion of a resource-based graph that
represents symbolic locations, sensors and measurements in
a specified IoT application scenario, namely, a school that
is involved in the experimentation activities of the GAIA
research project [16]). As shown in the figure, a building may
be modeled as a graph, whose nodes represent physical areas
inside the building (e.g., a hall) and deployed sensors and
related rules can be attached to the nodes to detect conditions
of interest (e.g., anomalous energy consumption or power
factor values). More precisely, the root area represents a
School, which contains a Sport Block (e.g., the gymnasium
hall), a Hall and a Teaching Block (not shown in the fig-
ure for clarity), which contains Classrooms and Laboratories.
A Power Factor rule, which checks whether the power factor
is below a specified threshold, is assigned to the Hall area.
A rule (called Natural Light) evaluates the level of luminosity
and the absorbed active power due to the use of artificial light
in the Hall to suggest energy saving actions (e.g., switching
off the light and exploiting the natural light). AComfort Index
rule is assigned to the Sport Block to evaluate the heat index
via the joint evaluation of temperature and relative humidity
measurements.

B. RULE STRUCTURE AND BEHAVIOUR
Our framework offers features for managing condition action
(CA) rules in the form of:

IF some condition THEN some action (1)

In a CA rule pattern, if the condition that is described in
the IF clause is true, then one or more actions are executed.
Reactive rules in the form of the event condition action (ECA)
pattern are not supported by our system since our focus is on
IoT data at rest.

By leveraging an object-oriented model, we define an
abstract Rule class that provides the basic structure and
behavior of a rule. It offers common attributes and the default
implementation of basic operations together with services
that are needed for I/O operations (e.g., invocation of external
web services, log of the events, and notificationmechanisms).
Table 1 lists the main attributes of the Rule class. A rule is
assigned a local name, an identifier and a URI since it is a
web-addressable resource, while fireInterval and fireCron are
optional attributes that are used to configure the frequency of
rule firing occurrences. If the condition is satisfied, the action

VOLUME 8, 2020 217991

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

FIGURE 2. Simplified version of a resource graph that represents a school building area with two subareas (a Hall and a Sport Block). For example,
the Natural Light rule uses the Active Power measurement that is provided by the power meter and the luminosity that is measured by the
environmental sensor in the Hall to determine whether a light can be turned off without compromising user comfort.

TABLE 1. Attributes of the rule class.

is performed if either i) the interval between the latest fire and
the current time exceeds fireInterval or ii) the current time
matches the cron expression in fireCron.

The behavior of a rule is defined through the following list
of methods:
• init(): It executes initialization tasks, which includes rule
validation (it checks if all the required fields are loaded).
This method is invoked when the rule is loaded, and the
rule is discarded if it returns false.

• condition(): Its objective is to determine whether a con-
dition expression is true. This is left as an abstract
method that must be implemented in a subclass.

• fire(): It invokes the action() method if condition() has
returned true.

• action(): It implements an action. A default action can
be specified or left as an abstract method.

Every rule subclass must implement the condition() method,
which defines the condition to be checked, and can customize
its behavior by overriding the default action() method.

Rule subclasses define more specific behaviors, especially
in terms of condition evaluation. Rule subclasses are concrete
classes that can be instantiated (rule instances). A rule sub-
class definition captures a behavior that is common to all its
rule instances, but it provides users with the desired degree of
freedom to further specify the rule behavior and instantiation
(e.g., the specification of the condition, the type of parameters
to be evaluated, and the area to which the instance should
be attached). Rule subclasses can be specified to support
various levels of customizability at the instantiation time (see
Section IV-C for further details).

Rule classes and instances differ in how they refer to the
resource model that is described above. In a rule subclass

definition, conditions can be specified without necessarily
referring to any resource in the model. If necessary, the rule
subclass definition can be enhanced with additional attributes
or annotations that enable reference to resources in the model
when a rule instance is created. For instance, the mini-
mal attribute list in Table 1 can be enhanced with addi-
tional attributes that act as placeholders for condition fields
(e.g., specifying parameters to be evaluated, such as temper-
ature and humidity). This example will be further clarified
by referring to our current rule engine implementation in
Section IV-C. Instead, an instance of a rule subclass is a
resource in the graph-based resource model (it is associated
with an area, and its condition is a function that evaluates
measurements of specified parameters). For instance, in the
example in Fig. 2, a Comfort Index rule instance evaluates
temperature and humidity measurements in the Sport Block
of a school.

Finally, a rule is further specialized as an atomic rule or a
composite rule. An atomic rule is a rule for which the condi-
tion is specified in a self-contained way, while a composite
rule’s condition is defined as a composition of conditions of
other rules (child rules), which can be atomic or compos-
ite rules. We have defined the following main composition
operators:
• AnyCompositeRule: It implements a logical OR opera-
tion, namely, if at least one child condition is true, the
composite rule is triggered.

• AllCompositeRule: It implements a logical AND opera-
tion, namely, the composite rule’s action is triggered if
all child conditions are true.

• RepeatingRule: It is triggered if the condition of a child
rule has been consecutively verified at least n times
(with n configurable) within a specified time interval
(e.g., active power consumption measurements exceed
a specified threshold at least 5 consecutive times during
a one-hour interval).

IV. RULE ENGINE DESIGN AND IMPLEMENTATION
The rule engine logic leverages the resource information
model that is described in Section III and handles correspond-
ing rule instances. It is responsible for periodically checking

217992 VOLUME 8, 2020

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

rule conditions and performing related actions. It also exposes
REST CRUD operations to provide users with various levels
of configurable and extensible rule management.

Since rules are associated with areas and other resources
(e.g., parent areas, sensors, and measurements) that are main-
tained and made accessible by a third-party IoT middleware,
several implementation options for managing such resources
are possible. For instance, copies of these resources may
be maintained by a persistence service local to the rule
engine or they can be directly retrieved from the external
IoT middleware (called hereafter the IoT provider). In our
implementation, almost static data such as areas and related
metadata are stored locally and refreshed if necessary, while
sensor measurements are retrieved from the IoT provider at
each iteration of the execution flow, as detailed below.

In the remainder of this section, we describe the software
architecture of the rule engine, explain the implemented exe-
cution flow and, finally, explain how the proposed system
support users in creating, handling and customizing rules.

A. ARCHITECTURE
The rule engine is implemented as a Java application by
leveraging the Spring Framework [48] and it is composed of
the following main modules (see Fig. 3):

FIGURE 3. Architecture of the rule engine.

• Persistence: It stores rules and the parts of the graph that
represent rules and related areas in a database (DB).

• Rule loader: It interacts with the DB and its main tasks
are traversing the rule tree that is loaded from the DB
and instantiating the corresponding Java classes.

• REST APIs: This module exposes HTTP-based REST
APIs for managing rules and the engine.

• Scheduler: Its main responsibility is to fire rules at the
specified frequency.

• Authentication: It keeps the rule engine authenticated
to external services (e.g., IoT providers) in compliance
with OAuth2 [49].

• Services: They implement common utility features that
can be reused by rule instances.

At runtime, the Rule Loader component loads and pro-
cesses the tree structure of the rules that have been stored
in the DB and it instantiates the corresponding rule class for
each encountered rule. By leveraging the JavaReflectionAPI,
it fills the object attributes with corresponding values that
are retrieved from the DB. The rule structure representation
follows the Composite pattern that allows the mixing of
individual rules and their container objects (areas). Both rule
and area objects implement the ‘‘fire’’ method: areas forward
the method invocation to their children (rules), while rules
implement the condition action (CA) behaviour. A scheduler,
which is implemented by leveraging the Spring Framework
Scheduler, periodically retrieves updated resource informa-
tion and sensor measurements by querying the corresponding
URIs that are handled by the IoT provider and executes the
fire method on the rule tree.

As discussed above, the rule engine also implements ser-
vices that can be reused for the management of rule instances:
• Measurement service: It updates the measurements that
are required by the rules by querying the corresponding
URIs exposed by the IoT provider. It fetches only the
resources that are needed by the instantiated rules; the
measurements are updated at every iteration before fir-
ing the rules. If the IoT provider supports this option, this
service batches the requests to minimize the communi-
cation overhead. All retrieved measurements are cached
for possible reuse by other rule instances.

• Event logger: It logs significant events (e.g., rule firing
events) for reporting and analysis. For instance, when a
rule is fired, it logs the most significant properties of the
rule firing event.

• Notification service: It is used to send real-time notifi-
cations to third-party applications, such as messages via
WebSocket and/or email delivery.

• Building knowledge base: It provides descriptive meta-
data for each area (e.g., type and square meters) and
dynamic information, such as occupancy schedules and
school calendars.

• Web service client: External web services may be
invoked for the retrieval of additional information to be
evaluated in a rule condition (e.g., weather information
or air pollution).

Each rule has a reference to all implemented services;
hence, it uses them to implement the condition() and action()
methods.

The persistence layer has been implemented using Ori-
entDB [50], since it is a hybrid Graph/Document NoSQL
database that offers a persistence model that accommo-
dates well our resource graph-based model. The DB han-
dles every record as a set of key-value entries, which is
called a document, with direct linking between documents
leading to fast retrieval of related data compared to joins
in an RDBMS. Moreover, it supports both schema-less
and schema-full modes, thereby enabling us to follow a
schema-hybrid approach in which classes have a predefined
set of properties, which can be extended with new fields at

VOLUME 8, 2020 217993

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

TABLE 2. Example of a rule instance that is stored in the database.

instantiation time. This feature is necessary for supporting
the specification of additional fields in User-defined Rules,
as described in Section IV-C. Finally, it offers a set of REST
APIs that facilitate access to resources and it comes with
a web GUI that can be used to author the resource model,
including the rule structure and fields.

In our implementation, every Java Rule subclass is mapped
onto a class in the OrientDB schema, which also includes
inheritance relations (every rule inherits from the upper Rule
class in the DB schema, thereby mimicking the applica-
tion model). Once the rule classes have been defined, rule
instances can be added to the database, by defining suitable
relations among rules and areas in a tree structure and specify-
ing the required fields. Table 2 presents an example of infor-
mation that is related to a Rule instance that is maintained in
the DB.

B. EXECUTION FLOW
The execution flow is comprised of the following main
phases: initialization, scheduled execution, and rule firing.

1) INITIALIZATION
The engine loads the resource model from the database and
locally replicates the tree-based rule model by following
the Composite pattern [51]. More specifically, for each rule
resource in the DB, a Java object is instantiated. In practice,
for each vertex that is retrieved from the DB, an instance
of the Java class whose name matches the value of the
@class property is created, and its attributes take the values
of the corresponding fields in the DB. If the init() method
successfully terminates (all required fields are available and
valid), the object is added to the tree of Rule instances. For
simplicity, we refer to the flow of actions that are necessary
for managing one rule tree (e.g., the set of rules that are asso-
ciated with one school building), but in practice additional
rule trees can be managed. The flow of actions is presented
in detail in Sequence 1.

2) SCHEDULED EXECUTION
This step consists of the periodical execution of the following
tasks. First, measurements that are required by the rules are
acquired through suitable requests to specified URIs and
shared among all rule instance. Then, the fire() method is
recursively invoked on the rule tree. The flow of actions is
reported in detail in Sequence 2.

1. Load the rule tree from the database.
2. Traverse the tree and replicate the structure by instanti-

ating the correct Java classes using the@class property
of each vertex that is stored in the database.

3. For each rule:
a) Fill the fields with the values that are stored in the

DB.
b) Initialize the object that is conducting basic vali-

dation.
c) Add the rule to the parent node if the initialization

method returns true.
Sequence 1: Initialization

1. Check if the rule tree needs an update (the update can
be forced by an external request).

2. Update the measurements that are required by the rules.
3. For each rule tree, fire the rules:

a) Obtain the root of the tree.
b) Call recursively the fire method on the composite

structure.
Sequence 2: Scheduled Execution

3) RULE FIRING
Rule firing consists of the execution of the specified action
upon verification of a condition. Each rule activation can
be scheduled at the desired frequency. However, a suitable
bounding must be considered with respect to the overall
IoT system operation (e.g., the firing period should not be
shorter than the sensor’s sampling period). Rule firing is
conducted through the steps that are reported in Sequence 3,
which also include the execution of a default action
method.

1) Check whether the parameters of the rule (fireCron and
fireInterval) allow the rule to be fired. If not, stop here.

2) Evaluate the condition, and, if true, invoke the action
method.

3) Create an entity that is filled with a subset of the rule’s
fields (e.g., measurements and textual suggestion).

4) Send the entity as a notification by email and through
the WebSocket channel.

5) Log the event in the database.

Sequence 3: Rule Firing

217994 VOLUME 8, 2020

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

C. RULE CREATION AND MANAGEMENT
The rule engine offers a set of REST APIs that enable users
to create and modify rules with various levels of configura-
bility and extensibility. With the term user, we refer here to:
i) a developer, namely, either a rule engine developer who
accesses the source code and DB APIs or an application
developer who accesses the engine APIs, and ii) a suitably
trained end user who accesses rule management capabilities
through a GUI.

The engine supports various ways of specifying and mod-
ifying rule subclasses in the system, namely, various extents
to which the rule behavior is programmatically specified or
can be further customized by the end user at runtime through
APIs. In the current implementation, rules can be grouped
into two main categories:
• Built-in rules: The rule behavior is defined program-
matically and, thus, is completely customizable by
developers. Built-in rules are direct subclasses of the
GaiaRule and their behavior in terms of condition() and
action() method implementation is defined programmat-
ically. Nonetheless, the values of various configurable
parameters (e.g., threshold and parameters URI values)
can be customized through the APIs when the rule is
instantiated.

• User-defined Rules: The behavior is only partially pro-
grammatically defined, and is finalized by end users
through the specification of a set of configurable param-
eters and fields. Two main types of user-defined rules
are currently supported:
a) ThresholdRule: Its condition compares a measure-

ment value with a threshold. The measurement,
the threshold and the comparison operator are con-
figurable and can be provided at runtime by users.

b) ExpressionRule: Its condition evaluates an expres-
sion using a customized version of the expr4j1

library notation, which is defined by the end user
and contains references to measurements and other
parameters (URIs in the graph-based resource
model).

D. ASSISTED RULE CREATION
When a user creates a rule instance, information is needed to
suitably characterize the instance (e.g., the associated area,
sensor identifiers and threshold values). Providing this infor-
mation can be error-prone and tedious. To address this issue,
the engine offers an assisted rule creation feature, which,
given the rule class and the area that is associated with the
instance to be created, produces a rule instance proposal into
which suitable values have been filled. The implementation
of this feature requires the storage of default or placeholder
values of parameters for each Rule class, together with meta-
data (a rule ‘‘template’’). More specifically, for each field of
the class, a default value, an optional brief description of the

1http://expr4j.sourceforge.net/

field and a flag that qualifies the field as either mandatory or
optional can be specified. For instance default values can be
provided for threshold values, while they cannot be provided
for fields that are related to URIs since these values depend on
the area to which the rule instance will be attached. To handle
these cases, we use placeholder values that contain hints for
deriving the suitable value according to the rule context. For
instance, the temperature_uri field can be set to a default
value (e.g., a ‘‘Temperature’’ string). When the rule instance
is created, the system will try to find, inside the area to which
the rule must be attached, a URI for gathering temperature
measurements for that area. As an additional mechanism,
if the placeholder value has not been set, the system will
attempt to infer it by parsing the name of the field using sim-
ple rules (e.g., humidity_uri is mapped to a relative humidity
parameter).

Although we have considered examples in which rules
use measurements of parameters that are associated with the
same area, more complex scenarios may arise, for instance,
rule conditions that use measurements from sensors that are
located in areas that differ from the rule’s area, such as a
parent area, the root of the building tree-based representation,
or an external location. We defined three prefixes for field
names to address these cases:
• ext_: the sensor should measure an outdoor parameter
(e.g., external temperature);

• root_ : the system will look for a sensor that is attached
to the root area (the building itself);

• parent_: the required measured parameter is related to
the parent of the area to which the sensor is attached.

This mechanism also assumes that the same taxonomy is
used by the IoT provider to define measured parameter
types, since we rely on a simple syntactical matching. The
adoption of ontologies and annotations in the Rule subclass
definition could improve interoperability with third-party
naming conventions and will be investigated in future
work.

The assisted rule creation service is exposed as a RESTAPI
so that it can be invoked by external end user applications
(e.g., rule authoring tools). Fig. 4 presents an example of a
flow of REST invocations that implement the assisted rule
creation procedure. The end user interacts with a GUI and
starts creating a rule instance by specifying a site (an area
identifier) and the type of rule subclass to be instantiated.
A REST request message for rule creation that contains this
information is sent to the rule engine. The rule engine creates
a rule instance by leveraging user-provided information, the
rule’s default values and information that can be inferred
through the model (URIs for retrieving measurements). The
user may inspect the specifications of the rule instance, mod-
ify it if necessary, and, finally, request the creation of the
rule instance. We chose to implement a partially automated
procedure that requires the user’s confirmation instead of a
completely automated procedure to enable users to check the
results and make modifications if necessary.

VOLUME 8, 2020 217995

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

FIGURE 4. Example of assisted rule creation.

V. CASE STUDY EVALUATION
In this section, we evaluate the effectiveness of the proposed
rule engine via a case study that is implemented in the context
of the GAIA Horizon 2020 European project [19], [52]. First,
we describe the objectives of the project and its real-world
IoT deployment in several school buildings. Then, we report
on how the rule management framework, which is currently
operational and accessible to authorized users, has been fully
integrated into GAIA and we present performance evaluation
results. This evaluation aims at validating the proposed rule
engine framework as a service that can be provided on top
of third-party IoT middleware and accessed through external
end user applications. A performance evaluation is also con-
ducted with this objective, by measuring the latency of a set
of significant operations (operations that require access to IoT
middleware and operations that are suitable for invocation by
end user applications).

A. IoT FOR BEHAVIOUR-BASED ENERGY EFFICIENCY
The GAIA project aimed at promoting energy efficiency
and sustainability awareness in education environments by
focusing on behavioral change to kick-start energy savings.
GAIA implemented a real-world multisite IoT infrastructure
in which sensor measurements are used to enhance edu-
cational experiences to help engage students in every-day
energy-friendly practices. The GAIA monitored sites consist
of 25 school buildings in Greece, Italy and Sweden, which
cover a range of local climatic conditions and educational lev-
els (primary, secondary, high school and university). At each
site, a subset of classrooms, shared spaces and teacher/staff
rooms have been selected for GAIA’s environmental mon-
itoring and the following types of measurements are peri-
odically sampled and acquired: (a) the power consumption
of the whole building and selected rooms/areas, (b) environ-
mental data within individual classes (temperature, humid-
ity, luminosity, noise, and other data such as particulate

matter and CO2 depending on the school deployment),
and (c) weather conditions and air pollution levels. The
GAIA Platform, which is described in [16], is comprised
of over 1200 IoT monitoring endpoints, which were created
using heterogeneous hardware and software technologies
and supports various commercial hardware/sensor vendors
and open-source solutions [53]. This real-world IoT deploy-
ment, which encompasses hundreds ofmonitoring end points,
enables a case study to be conducted at a larger scale com-
pared to similar experimental activities in related studies [11],
[41], [42]. In the GAIA platform, at the end of the first year
(after 6 months of fully operational infrastructure), approx-
imately 250 million tuples had been collected, which cor-
respond to approximately 115 GB of data. The data size of
a message is 100 bytes on average. The acquisition time
interval ranges from 1 second to 5 minutes and varies from
site to site.

The GAIA IoT middleware provides data acquisition, pro-
cessing and storage features. It is composed of modules that
are accessible through REST APIs:
• Measurement repository: It stores all the measurements
and provides aggregates at various granularities; it also
contains the structure of the buildings and metadata of
the sensors (e.g., measuring unit and parameters).

• AAA: It is the Authentication, Authorization and
Accounting service for applications and services that are
used within GAIA.

• Building knowledge base: It provides information about
the school buildings, such as floor plans, room areas,
elevation, and year of construction, along with dynamic
information such as activity calendars of the schools
and the schedules of the classrooms, laboratories, and
conference hall.

• Analytics: It provides on-demand analytics and anomaly
detection analysis of a building’s power consumption
profile.

217996 VOLUME 8, 2020

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

TABLE 3. Built-in rule subclasses that were implemented in the GAIA case study.

The rule management framework that is presented in this
work has been used in GAIA to produce energy-saving rec-
ommendations for the pursuit of energy efficiency goals.
The recommendations primarily provide suggestions for
energy-saving behavior changes (targeting building man-
agers, students and teachers) but can also provide building
managers with suggestions for technical maintenance inter-
ventions or building renewal actions. Given the range of
schools that are involved in the project experimentation activ-
ities, the recommendations have been customized according
to school building characteristics (e.g., geographical location,
internal space allocation, and user habits).

B. RULE DESIGN FOR THE GAIA CASE STUDY
To use the rule engine to produce energy-saving recommen-
dations according to the environmental and energy consump-
tion behaviors of GAIA schools, we defined a set of rule
subclasses, which are called GAIA rules.

GAIA rules are built-in rules that are designed to support
GAIA behavior-based energy saving objectives.We specified
rules’ objectives, related parameters and values (e.g., thresh-
olds) in collaboration with school building managers. First,
we selected a set of recommendation examples from previ-
ous experiences in energy savings in school buildings [54].
Moving from these previously elaborated energy saving tips
we specified a set of scenarios and rules in consideration of
the account number, type and locations of the sensors that are
installed in each school [16], [52].

Then, we prepared a document that describes the rules to
non-technical users (buildingmanagers or teachers/principals
of GAIA schools). For each rule we provided a textual
description, an example of usage in a realistic scenario and
a set of questions that are aimed at: i) determining whether
the rule could be applied in areas of the school; ii) checking
the availability of sensors or other sources of information for
evaluating the rule condition; and iii) establishing meaningful

values for thresholds according to the type of area, its usage,
weekly schedule and, if necessary, a methodology for defin-
ing such values.

The submission of questionnaires to school personnel was
mediated by members of the project team, technical assis-
tance and translation into the native language were provided.
At the end of this step, we had an initial picture of rule-based
recommendations that could be instantiated. Two rule sub-
classes were deleted from the list since they were considered
either noninteresting or unfeasible. We created an initial set
of rule instances (34 rule instances) to bootstrap the usage
of the rule engine, and additional rule instances were added
in the second half of the project (94 rule instances in total).
Table 3 lists the main rule subclasses that were instantiated in
GAIA schools.

End users (students, teachers, and building managers) may
access the latest notifications and query previously triggered
notifications through a building management web application
that was developed within GAIA [55]. Leveraging the REST
APIs that are exposed by the rule engine, this web application
also enables authorized users to create new simple threshold
rules and to instantiate the built-in rules, which are listed
in Table 3. A system administrator can also use a dashboard,
namely, a web application that was developed within GAIA
for navigating the resourcemodel of each school and visualiz-
ing associated rules, and the OrientDB web-based Graphical
User Interface to access, navigate and modify the graph of
instantiated rules.

C. EXAMPLE OF A GAIA-ENABLED ENERGY SAVING
THROUGH BEHAVIOURAL CHANGE
We briefly describe an activity that was conducted in a high
school in Italy to provide an example of the possible impact of
the rule engine usage in a school community. Leveraging data
and notifications that were provided by the building manage-
ment web application, students planned and realized a simple

VOLUME 8, 2020 217997

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

FIGURE 5. Power consumption reduction in a school in Prato: comparison of power consumption profiles in 2017
(no GAIA activities) and 2018 (with GAIA activities).

but effective energy saving action plan, which consisted
of actively monitoring the usage of lighting in classrooms
and in common areas and performing simple actions after
receiving notifications from the rule engine (e.g., switching
off lights and engaging janitors in checking and reducing
energy waste situations). As a result of a 2 week-activity,
the power consumption in the central hall was determined
to be approximately 4.9 kW during a typical work day.
Examining indoor luminosity data, sensors indicated that this
consumption was unnecessary, since the illuminance from
natural light was close to 400 lux, which corresponds to
satisfactory indoor lighting conditions. Students determined
that this was a recurring event in this building area and an
‘‘Exploit Natural Light’’ rule instance was created to monitor
the situation and create alerts that were paired with energy
saving recommendations. The behavioral change that was
triggered by these notifications led to significant reductions
in the energy consumption (40%) and maximum power value
(37%) in that area during a 1-week period in 2018 compared
to the same period in the previous year under similar light
conditions (see Fig. 5).

D. PERFORMANCE EVALUATION
Hereafter, we report on testing activities that were conducted
to evaluate the performance of the rule engine that was con-
figured and run for the case study within the GAIA project
(the rule engine managed 94 rule instances and registered
200,000 ca. events by the end of the project). The rule engine
is deployed in a Ubuntu 16.04 Virtual Machine (VM) that
is configured with 4 GB RAM and 2 vCPUs on an Intel(R)
Core(TM) i5-3340 CPU @ 3.10GHz.

The tests aim at measuring the latency in performing a
set of significant operations, although, as discussed above,
the system does not aim at implementing real-time service
behavior. Some of these operations are triggered by an exter-
nal client; the client is located in the same machine as that
on which the rule engine ran so that response time is not
influenced by network latency.

Hereafter, we describe the adopted metrics and test
methodology.

• Scheduled iteration time. This is the time that is needed
to accomplish a scheduled execution flow, as described
in Section IV. The iteration period is configurable and is
set to 5 minutes in the current deployment. We provide
an average value of this metric that has been calculated
over an interval of approximately 24 hours (271 iter-
ations). Measured values also account for delays that
are caused by possible errors (e.g., possible temporary
communication failures with the GAIA platform for
sensor data acquisition).

• Query time for events. This is the response time to a
query regarding registered events. Since this value may
depend on the type of issued query, we defined a set
of representative queries by varying query parameter
values. We specified various values for the maximum
number of events to be returned in the result, possible
filters (e.g., school id and rule class id), and history
intervals (e.g., 1, 5, and 10 days) (see Table 4). For each
type of event query, we created a set of 20 requests.
At each iteration, the rule engine is queried, and the
elapsed time is recorded. The parameters of the query
differ among the iterations: the start and end time ranges
are updated at every iteration so that values need not to
be cached.

• Rule instance proposal retrieval time. We focused on the
first part of the assisted rule creation workflow (Fig. 4),
namely, the retrieval of a rule instance proposal with
values that are filled in by the engine. We considered
26 requests for areas that were mixed between the Power
Factor and Comfort Index rule classes. The availability
of default values for mandatory rule fields had been
prechecked to prevent misleading results.

• Rule creation time. The client sends 30 requests for the
creation of rule instances of the SimpleThresholdRule
class for a demo school building. The client waits 30 sec-
onds after each request.

The results are reported in Table 4. Regarding the sched-
uled iteration, the maximum time per iteration during the
monitored period is 21.8 seconds, while the minimum is
5.4 seconds. The average iteration time is 8.4 seconds with

217998 VOLUME 8, 2020

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

TABLE 4. Performance evaluation of the rule engine in the GAIA case
study.

a standard deviation of 3.2 seconds, because some rules use
cached values, while others must retrieve required data from
the platform or external web services. Therefore, the mea-
sured delay depends on what and how many rules are fired
at each iteration (for instance, rule instance a could be con-
figured to be fired every 2 hours, and rule instance b every
5 minutes). Regarding event queries, latency measurements
strongly depend on the time range and filters that are applied;
indeed, retrieving the latest 100 events that are filtered by a
specified rule class may take more than 1 second, whereas
retrieving 10 events for a specified school in a 5-day temporal
window takes less than 400 ms on average. Regarding the
assisted rule creation operation, both operations (rule instance
proposal retrieval and rule instance creation) require 600 ms
ca. Therefore, the measured response times are within the
range of response time limits that is suggested in [56].

We also conducted tests to evaluate the times that are
needed for loading the resource model from the DB, and
for rule instantiation against the total number of rules (from
100 to 12800 rules). The results, which show a sublinear
relationship with the rule cardinality, have been reported in
a previous study [20].

E. DISCUSSION AND FUTURE WORK
The evaluation results that were gathered from the case study
within the GAIA project support the feasibility of the pro-
posed approach. Our rule engine enabled users to config-
ure and extend rules in the specified IoT application domain;
in addition, various ways of specifying and instantiating rules
were made available to them (built-in and user-defined rule
instances were accessible through a set of web-based appli-
cations). The expressivity of the rule model and rule creation
and configurability levels that were supported by APIs were
sufficiently rich for satisfying the requirements that were
identified in the GAIA trial in schools. However, some of the
rule creation and configuration tasks were performed by the
research project staff (technical and nontechnical personnel),
although this occurred with the collaboration of end users.
The main obstacles that were encountered in the adoption
of the rule engine in this case study are as follows: (i) in
most schools the role of building manager is unfilled and
school principals are not required to have expertise on energy

management or knowledge of critical energy-consuming sit-
uations in school buildings; (ii) only a subset of teachers have
ICT skills (as end users) and technical/scientific background
for guiding students in rule-supported energy saving activ-
ities; and (iii) teachers tend to have little time available to
dedicate to extracurricular activities.

From this experience, the following lessons were learnt in
relation to the use of the rule engine in IoT-enabled educa-
tional environments:
• It is necessary to provide direct and informal support to
users (especially teachers, since they are the gateway to
students) in codesigning tailored activities, including the
configuration of rule instances that support the analysis
of IoT sensor data;

• Engaging material and step-by-step guidelines and
examples should be provided to minimize the additional
time that must be devoted by teachers and students
to the design, configuration and use of rules in their
energy-saving experiments.

• More generally, detailed material should be provided
that explain the objective of each rule class and examples
of how a user can specify a rule instance in a specified
area (e.g., how suitable threshold values could be esti-
mated through experiments).

To consolidate these lessons, further energy-saving and
educational activities are planned in additional schools that
are joining GAIA follow-up activities. A set of educational
materials [57] has been produced within the project for guid-
ing teachers in implementing student activities that target
energy saving by leveraging GAIA tools, which include
energy saving recommendations that are provided by the
rule engine. Additional examples and documentation will be
added to this material as additional activities are completed to
serve as guidelines and inspiring examples for new teachers
and schools. In the future, investigation of the use of the
rule engine for a similar objective (energy saving) in various
contexts (e.g., private homes or organizations) in which users
might directly benefit from energy savings that are realized
through rule-based notifications (e.g., economic benefits)
would also be of interest.

Since the rule management framework APIs have been
designed to be accessed by third-party applications, a subset
of rule management features have been exposed to end users
through theGAIABuildingManagement System application.
Future research directions will include the development of a
rule authoring tool that will enable end users to easily browse
rules, to create and configure new rule instances and to attach
them to areas that represent sensor-monitored sites through
a GUI. This will enable us to conduct a careful evaluation
in terms of end user acceptance of the services that are
offered by the rule engine and of the usability and perceived
usefulness of the companion graphical tool.

The case study that is presented in Section V demon-
strates the correct interaction of the rule engine with a third
party IoT middleware. However, interoperability with exter-
nal IoT middleware should be further evaluated with respect

VOLUME 8, 2020 217999

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

to alternative IoT middleware implementations, as we plan
to do in the future. This could be easily realized if resources
are URI-addressable and the model can be recursively navi-
gated (subresources can be dynamically retrieved from parent
resources). Finally, the generalization of the approach should
be validated by adopting the framework in other IoT applica-
tion domains (e.g., home monitoring and smart cities).

VI. CONCLUSION
Bridging the physical and the digital world through the use
of standard Web technologies is one of the main directions
that have been taken by the IoT community. Rule-based
approaches can substantially simplify the ways in which we
define the interaction between these two domains and there
is often substantial overlap of such definitions in real-life
applications; thus, web-based rule management frameworks
have a role to play in this domain.

In this work, we proposed a framework and a reference
rule engine implementation that extend a minimal web-of-
things graph representation with rule-based data processing
capabilities. By leveraging the graph abstraction and REST
guidelines, such processing capabilities are uniformly treated
as URI-addressable resources, while their positions in the
graph and the relations with other resources (e.g., sensors
and locations) are essential for the meaningful specifica-
tion of rules and their relations with the physical environ-
ment. We described the rule management capabilities that are
offered and their provision to users of facilities for configur-
ing and extending rules and managing rule instances.

We presented a case study in which the proposed rule
engine was used to support a set of energy saving and
educational activities in a few European school buildings
that were involved in the GAIA project. In the case study,
we experimentally implemented the rule engine in a practi-
cal scenario with nontechnical users (students, teachers and
school staff). We also evaluated the performance of the rule
engine instance that was used in the case study, with encour-
aging results in terms of the required latency for performing
significant internal operations (the required latency for the
periodic execution of measurement updates and checking of
rule conditions) and operations that were triggered from an
external client (e.g., rule creation and query response time).
Then, we discussed the obtained results and highlighted the
beneficial effects in energy saving activities and the encoun-
tered obstacles. Finally, we presented the lessons that were
learnt and discussed directions for future investigation.

REFERENCES
[1] J. A. Stankovic, ‘‘Research directions for the Internet of Things,’’ IEEE

Internet Things J., vol. 1, no. 1, pp. 3–9, Feb. 2014.
[2] Services in the Future Internet, FP8 Expert Group, Eur. Commission,

Brussels, Belgium, Feb. 2011.
[3] L. Yao, Q. Z. Sheng, and S. Dustdar, ‘‘Web-based management of the

Internet of Things,’’ IEEE Internet Comput., vol. 19, no. 4, pp. 60–67,
Jul. 2015.

[4] H. Elazhary, ‘‘Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT,
IoT cloud, fog, mobile edge, and edge emerging computing paradigms:
Disambiguation and research directions,’’ J. Netw. Comput. Appl., vol. 128,
pp. 105–140, Feb. 2019.

[5] M. Tang, Y. Xia, B. Tang, Y. Zhou, B. Cao, and R. Hu, ‘‘Mining collabora-
tion patterns between APIs for mashup creation in Web of Things,’’ IEEE
Access, vol. 7, pp. 14206–14215, 2019.

[6] F. Paganelli, S. Turchi, and D. Giuli, ‘‘A Web of things framework for
RESTful applications and its experimentation in a smart city,’’ IEEE Syst.
J., vol. 10, no. 4, pp. 1412–1423, Dec. 2016.

[7] R. T. Fielding and R. N. Taylor, ‘‘Principled design of the modern Web
architecture,’’ ACM Trans. Internet Technol., vol. 2, no. 2, pp. 115–150,
May 2002.

[8] D. Guinard, V. Trifa, and E. Wilde, ‘‘A resource oriented architecture for
the Web of things,’’ in Proc. Internet Things (IOT), Nov. 2010, pp. 1–8.

[9] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, ‘‘Context
aware computing for the Internet of Things: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 16, no. 1, pp. 414–454, 1st Quart., 2014.

[10] G. Ghiani, M. Manca, F. Paternò, and C. Santoro, ‘‘Personalization of
context-dependent applications through trigger-action rules,’’ ACM Trans.
Comput.-Hum. Interact., vol. 24, no. 2, pp. 14:1–14:33, Apr. 2017.

[11] T. G. Stavropoulos, E. Kontopoulos, N. Bassiliades, J. Argyriou,
A. Bikakis, D. Vrakas, and I. Vlahavas, ‘‘Rule-based approaches for
energy savings in an ambient intelligence environment,’’ Pervas. Mobile
Comput., vol. 19, pp. 1–23, May 2015.

[12] A. Pintus, D. Carboni, and A. Piras, ‘‘Paraimpu: A platform for a social
Web of things,’’ in Proc. 21st Int. Conf. World Wide Web (WWW),
New York, NY, USA, 2012, pp. 401–404.

[13] E. Friedman-Hill, Jess in Action: Java Rule-Based Systems. Shelter Island,
NY, USA: J, Manning Publications Company, 2003.

[14] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutierrez,
R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, and D. Pfisterer,
‘‘SmartSantander: IoT experimentation over a smart city testbed,’’Comput.
Netw., vol. 61, pp. 217–238, Mar. 2014.

[15] V. Gutierrez, D. Amaxilatis, G. Mylonas, and L. Munoz, ‘‘Empowering
citizens toward the co-creation of sustainable cities,’’ IEEE Internet Things
J., vol. 5, no. 2, pp. 668–676, Apr. 2018.

[16] D. Amaxilatis, O. Akrivopoulos, G. Mylonas, and I. Chatzigiannakis,
‘‘An IoT-based solution for monitoring a fleet of educational buildings
focusing on energy efficiency,’’ Sensors, vol. 17, no. 10, p. 2296, Oct. 2017.

[17] F. Corno, L. De Russis, and A. Monge Roffarello, ‘‘A high-level semantic
approach to end-user development in the Internet of Things,’’ Int. J. Hum.-
Comput. Stud., vol. 125, pp. 41–54, May 2019.

[18] M. Manca, F. Paternò, C. Santoro, and L. Corcella, ‘‘Supporting end-
user debugging of trigger-action rules for IoT applications,’’ Int. J. Hum.-
Comput. Stud., vol. 123, pp. 56–69, 2019.

[19] GAIA Project Consortium. GAIA H2020 Project Website. Accessed:
Mar. 5, 2020. [Online]. Available: http://gaia-project.eu

[20] G. Cuffaro, F. Paganelli, and G. Mylonas, ‘‘A resource-based rule engine
for energy savings recommendations in educational buildings,’’ in Proc.
Global Internet Things Summit (GIoTS), Jun. 2017, pp. 1–6.

[21] Cisco. (2014). The Internet of Things Reference Model. Accessed:
Apr. 16, 2020. [Online]. Available: http://cdn.iotwf.com/resources/71/
IoT_Reference_Model_White_Paper_June_4_2014.pdf

[22] M. Dayarathna and S. Perera, ‘‘Recent advancements in event processing,’’
ACM Comput. Surv., vol. 51, no. 2, pp. 33:1–33:36, Feb. 2018.

[23] D. Luckham, The Power of Events, vol. 204. Reading, MA, USA:
Addison-Wesley, 2002.

[24] T. Bass, ‘‘Mythbusters: Event stream processing versus complex event
processing,’’ inProc. Inaugural Int. Conf. Distrib. Event-Based Syst., 2007,
p. 1.

[25] S. Yang, ‘‘IoT stream processing and analytics in the fog,’’ IEEE Commun.
Mag., vol. 55, no. 8, pp. 21–27, Aug. 2017.

[26] J.-H. Choi, J. Park, H. D. Park, and O.-G. Min, ‘‘DART: Fast and efficient
distributed stream processing framework for Internet of Things,’’ ETRI J.,
vol. 39, no. 2, pp. 202–212, 2017.

[27] C. Hochreiner, M. Vogler, S. Schulte, and S. Dustdar, ‘‘Elastic stream
processing for the Internet of Things,’’ in Proc. IEEE 9th Int. Conf. Cloud
Comput. (CLOUD), Jun. 2016, pp. 100–107.

[28] L. Lan, R. Shi, B. Wang, L. Zhang, and N. Jiang, ‘‘A universal complex
event processing mechanism based on edge computing for Internet of
Things real-time monitoring,’’ IEEE Access, vol. 7, pp. 101865–101878,
2019.

[29] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, ‘‘Middle-
ware for Internet of Things: A survey,’’ IEEE Internet Things J., vol. 3,
no. 1, pp. 70–95, Feb. 2016.

218000 VOLUME 8, 2020

F. Paganelli et al.: RESTful Rule Management Framework for Internet of Things Applications

[30] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, ‘‘A gap analysis of
Internet-of-Things platforms,’’ Comput. Commun., vols. 89–90, pp. 5–16,
Sep. 2016.

[31] W. Kassab and K. A. Darabkh, ‘‘A–Z survey of Internet of Things:
Architectures, protocols, applications, recent advances, future directions
and recommendations,’’ J. Netw. Comput. Appl., vol. 163, Aug. 2020,
Art. no. 102663.

[32] D. Guinard, V. Trifa, T. Pham, and O. Liechti, ‘‘Towards physical mashups
in the Web of things,’’ in Proc. 6th Int. Conf. Netw. Sens. Syst. (INSS),
Jun. 2009, pp. 1–4.

[33] S. Mayer, D. Guinard, and V. Trifa, ‘‘Facilitating the integration and
interaction of real-world services for the Web of things,’’ Proc. Urban
Internet Things–Towards Program. Real-Time Cities (UrbanIOT), 2010.

[34] B. Ostermaier, F. Schlup, and K. Römer, ‘‘WebPlug: A framework for the
Web of things,’’ in Proc. 8th IEEE Int. Conf. Pervas. Comput. Commun.
Workshops (PERCOM Workshops), Mar. 2010, pp. 690–695.

[35] H.-C. Hsieh, K.-D. Chang, L.-F. Wang, J.-L. Chen, and H.-C. Chao,
‘‘ScriptIoT: A script framework for and Internet-of-Things applications,’’
IEEE Internet Things J., vol. 3, no. 4, pp. 628–636, Aug. 2016.

[36] S. Ovadia, ‘‘Automate the Internet with ‘if this then that’ (IFTTT),’’ Behav.
Social Sci. Librarian, vol. 33, no. 4, pp. 208–211, Oct. 2014.

[37] B. Ur,M. P. Y.Ho, S. Brawner, J. Lee, S.Mennicken, N. Picard, D. Schulze,
and M. L. Littman, ‘‘Trigger-action programming in the wild: An analysis
of 200,000 IFTTT recipes,’’ in Proc. CHI Conf. Hum. Factors Comput.
Syst., 2016, pp. 3227–3231.

[38] A. Krishna, M. L. Pallec, A. Martinez, R. Mateescu, and G. Salaün,
‘‘MOZART: Design and deployment of advanced IoT applications,’’ in
Proc. Companion Proc. Web Conf., Apr. 2020, pp. 163–166.

[39] J. Guth, U. Breitenbücher, M. Falkenthal, P. Fremantle, O. Kopp,
F. Leymann, and L. Reinfurt, ‘‘A detailed analysis of IoT platform archi-
tectures: Concepts, similarities, and differences,’’ in Internet of Everything.
Singapore: Springer, 2018, pp. 81–101, doi: 10.1007/978-981-10-5861-
5_4.

[40] AWS IoT. Accessed: Sep. 25, 2020. [Online]. Available:
https://docs.aws.amazon.com/iot/

[41] L. Mainetti, V. Mighali, L. Patrono, and P. Rametta, ‘‘A novel rule-based
semantic architecture for IoT building automation systems,’’ in Proc. 23rd
Int. Conf. Softw., Telecommun. Comput. Netw. (SoftCOM), Sep. 2015,
pp. 124–131.

[42] A. Fensel, S. Tomic, V. Kumar, M. Stefanovic, S. V. Aleshin, and
D. O. Novikov, ‘‘SESAME-S: Semantic smart home system for energy
efficiency,’’ Informatik-Spektrum, vol. 36, no. 1, pp. 46–57, Feb. 2013, doi:
10.1007/s00287-012-0665-9.

[43] C. Marche, M. Nitti, and V. Pilloni, ‘‘Energy efficiency in smart building:
A comfort aware approach based on social Internet of Things,’’ in Proc.
Global Internet Things Summit (GIoTS), Jun. 2017, pp. 1–6.

[44] T. G. Papaioannou, K. Vasilakis, N. Dimitriou, A. Garbi, and A. Schoofs,
‘‘A sensor-enabled rule engine for changing energy-wasting behaviours
in public buildings,’’ in Proc. IEEE Int. Energy Conf. (ENERGYCON),
Jun. 2018, pp. 1–6.

[45] A. Alsalemi, Y. Himeur, F. Bensaali, A. Amira, C. Sardianos, I. Varlamis,
and G. Dimitrakopoulos, ‘‘Achieving domestic energy efficiency using
micro-moments and intelligent recommendations,’’ IEEE Access, vol. 8,
pp. 15047–15055, 2020.

[46] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Develop-
ment Process. Reading, MA, USA: Addison-Wesley, 1999.

[47] M. Kovatsch, T. Kamiya, M. McCool, V. Charpenay, and S. Käbisch.
Web of things (WoT) thing description. W3C Recommendation,
Apr. 2020. [Online]. Available: https://www.w3.org/TR/2020/REC-wot-
thing-description-20200409/.

[48] R. Johnson et al. The Spring Framework—Reference Documentation.
Accessed: Dec. 4, 2020. [Online]. Available: https://docs.spring.io/spring-
framework/docs/4.2.x/spring-framework-reference/html/index.html

[49] D. Hardt, The Oauth 2.0 Authorization Framework, document RFC 6749,
IETF, Internet Requests for Comments, Oct. 2012. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6749.txt.

[50] Orientdb Official Web Site. Accessed: Mar. 1, 2020. [Online]. Available:
https://orientdb.com/

[51] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, Design Patterns:
Elements of Reusable Object-Oriented Software, vol. 49, no. 120. Reading,
MA, USA: Addison-Wesley, 1995, p. 11.

[52] G. Mylonas, D. Amaxilatis, I. Chatzigiannakis, A. Anagnostopoulos, and
F. Paganelli, ‘‘Enabling sustainability and energy awareness in schools
based on IoT and real-world data,’’ IEEE Pervas. Comput., vol. 17, no. 4,
pp. 53–63, Oct. 2018, doi: 10.1109/MPRV.2018.2873855.

[53] L. Pocero, D. Amaxilatis, G. Mylonas, and I. Chatzigiannakis, ‘‘Open
source IoT meter devices for smart and energy-efficient school buildings,’’
HardwareX, vol. 1, pp. 54–67, Apr. 2017.

[54] A. Galata, F. Di Gennaro, G. Pedone, Y. Roderick, M. Brogan,
and A. Sretenovic, ‘‘A catalogue of optimization scenarios-to enhance
decision-making in establishing an efficient energy management pro-
gramme,’’ in eWork and eBusiness in Architecture, Engineering and Con-
struction: ECPPM. Vienna, Austria: CRC Press, 2014, p. 383.

[55] G. Mylonas, D. Amaxilatis, H. Leligou, T. Zahariadis, E. Zacharioudakis,
J. Hofstaetter, A. Friedl, F. Paganelli, G. Cuffaro, and J. Lerch, ‘‘Addressing
behavioral change towards energy efficiency in European educational
buildings,’’ in Proc. Global Internet Things Summit (GIoTS), Jun. 2017,
pp. 1–6.

[56] J. Nielsen. Website Response Times. Accessed: Mar. 28, 2020. [Online].
Available: https://www.nngroup.com/articles/website-response-times/

[57] GAIA Project Consortium. GAIA Educational Material.
Accessed: Sep. 5, 2020. [Online]. Available: http://gaia-project.
eu/index.php/en/educational-material/

FEDERICA PAGANELLI (Member, IEEE)
received the Ph.D. degree in telematics and infor-
mation society from the University of Florence,
Italy, in 2004.

From 2006 to 2018, she was a Researcher with
CNIT, Italy. She is currently an Assistant Professor
with theDepartment of Computer Science, Univer-
sity of Pisa. Her research interests include resource
management in software-defined network infras-
tructures, network virtualization, and protocols

and services for the Internet of Things. She has cochaired several editions
of the Workshop on Orchestration for Software-Defined Infrastructures
(O4SDI) and serves as an Associate Editor for IEEE TRANSACTIONS ON

NETWORK AND SERVICE MANAGEMENT and Future Internet. She contributed to
the standardization activities of the IEEE NGSON Working Group.

GEORGIOS MYLONAS received the diploma,
M.Sc., and Ph.D. degrees from the Department of
Computer Engineering and Informatics, Univer-
sity of Patras, Greece. He is currently a Senior
Researcher with the Industrial Systems Institute,
Patras, and the Computer Technology Institute and
Press ‘‘Diophantus’’, Patras. His research inter-
ests include the IoT, wireless sensor networks,
distributed systems, and pervasive games. He has
been involved in the AEOLUS,WISEBED, Smart-

Santander, and AUDIS and OrganiCity projects, and has focused on algo-
rithmic and software issues of wireless sensor networks. He coordinated the
Green Awareness in Action (GAIA) H2020 Project.

GIOVANNI CUFFARO received the M.S. degree
in computer engineering from the University of
Florence, Italy, in 2018.

He was with the National Interuniversity
Consortium for Telecommunications, Italy, from
2016 to 2019, where he was involved in the GAIA
project and in experiments within the 5GINFIRE
and Fed4FIRE+ projects. He is currently work-
ing as a Full Stack Developer with FirLab s.r.l.,
Firenze. His current research interests include dis-

tributed and cloud computing, network and service management, and Web
and mobile applications.

VOLUME 8, 2020 218001

http://dx.doi.org/10.1007/978-981-10-5861-5_4
http://dx.doi.org/10.1007/978-981-10-5861-5_4
http://dx.doi.org/10.1007/s00287-012-0665-9
http://dx.doi.org/10.1109/MPRV.2018.2873855

