
 

Topological effects in continuum two-dimensional UðNÞ gauge theories
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We study the θ dependence of the continuum limit of 2D UðNÞ gauge theories defined on compact
manifolds, with special emphasis on spherical (g ¼ 0) and toroidal (g ¼ 1) topologies. We find that the
coupling between Uð1Þ and SUðNÞ degrees of freedom survives the continuum limit, leading to observable
deviations of the continuum topological susceptibility from the Uð1Þ behavior, especially for g ¼ 0, in
which case deviations remain even in the large N limit.
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I. INTRODUCTION

It is well known that two-dimensional gauge theories are
analytically muchmore tractable than their four-dimensional
counterparts, and in some cases some exact nonperturbative
expressions can even be obtained. Quite surprisingly, how-
ever, the θ dependence of these two-dimensional models
appears not to have been investigated until very recently.
In the paper [1] we filled this gap, by presenting analytic

results for various aspects of the θ dependence of two-
dimensional UðNÞ gauge theories. By generalizing the
argument presented in [2] (see also [3,4] for different
approaches), the partition function at θ ≠ 0 of the lattice
UðNÞ gauge theory (with Wilson action) was written as
sum over the representations of UðNÞ of some character’s
related coefficients. This expression, although exact, is of
little practical use due to its complexity, so some limit cases
were also investigated: the continuum limit at finite area A,
the thermodynamic limit A → ∞ and the large N limit in
the thermodynamic case (i.e., at A ¼ ∞).
The two main outcomes of this analysis were the

following: the first one is that, in the thermodynamic limit,
the large N behavior of the topological susceptibility is
different in the weak and strong coupling phases identified
by the Gross-Witten-Wadia transition [5,6]. Indeed for ’t
Hooft coupling β < 1=2 the susceptibility diverges in the
large N limit, while for β > 1=2 its value is related to the
expectation value of the determinant of the link variables,
as computed in [7]. The second noteworthy result is a rather

unexpected feature of the continuum limit: against naive
expectations based on continuum intuition, SUðNÞ and
Uð1Þ degrees of freedom (d.o.f.) do not decouple from each
other even in the continuum limit as far as A < ∞.
In this paper we will elaborate more on the second point,

by rewriting the continuum partition function in a form that
makes manifest the interaction of the SUðNÞ d.o.f. with the
instanton sectors of the Uð1Þ theory. We will also discuss
the large N limit at finite area and, in the case of spherical
topology (g ¼ 0), we will present numerical evidence that
the topological susceptibility behaves as an order parameter
for the Douglas-Kazakov transition [8].

II. THE PARTITION FUNCTION IN THE
CONTINUUM LIMIT

In [1] it was shown that, starting from the Wilson action
and the discretization

qðUpÞ ¼ −
i
2π

Tr lnUp; ð1Þ

of the topological charge density (Up is the parallel
transporter around a plaquette), the θ-dependent, finite
area partition function of the continuum UðNÞ model can
be written in the form

ZðgÞ
θ ðN;XÞ ¼

X
fljg

d2−2gfljg e−
X
2N½Cfljgþθ

π

P
j
ljþ N

4π2
θ2�: ð2Þ

Here the N integer numbers fljg (with l1 ≥ l2 ≥ � � � ≥ lN)
label the representations of UðNÞ (see e.g., [9]), g is the
genus of the manifold on which the theory is defined and
X ¼ A=2β is a dimensionless variable, depending on the
area A of the manifold and on the ’t Hooft coupling β. dfljg
and Cfljg denote the dimension and the quadratic Casimir
of the representation identified by fljg, whose explicit
expressions are
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Cfljg ¼
XN
j¼1

ljðlj − 2jþ N þ 1Þ

¼
XN
j¼1

�
lj − jþ N þ 1

2

�
2

−
NðN2 − 1Þ

12
;

dfljg ¼
Y
k>j

�
1 −

lk − lj
k − j

�
: ð3Þ

It is important to note that the expression in Eq. (2) is
consistent with the periodicity in θ of the partition function,
with period 2π. Indeed the exponents appearing in Eq. (2)
can be rewritten in the form

Cfljg þ
θ

π

X
j

lj þ
N
4π2

θ2 ¼
XN
j¼1

�
lj þ

θ

2π
− jþ N þ 1

2

�
2

−
NðN2 − 1Þ

12
; ð4Þ

as a consequence θ → θ þ 2π is equivalent to fljg → fl0jg
where l0j ¼ lj þ 1. Since dfl0jg ¼ dfljg the 2π periodicity of

Eq. (2) immediately follows.
The particular case of theUð1Þ gauge theory is obviously

the simplest one: in this case the partition function does not
depend on the genus g of the manifold and it is simply
given by

Zθð1; XÞ ¼
X
n

e−
X
2
ðnþ θ

2πÞ2 ; ð5Þ

a result that can be readily obtained using more conven-
tional methods (see e.g., [10]).
The topological susceptibility χðgÞt ðN; β; AÞ can be com-

puted by using the general relation

χðgÞt ðN; β; AÞ ¼ −
1

A
∂2

∂θ2 logZ
ðgÞ
θ ðN;XÞ ð6Þ

and, to make the notation more compact, it is convenient
to define the (normalized) weights

wðgÞ
fljgðN;XÞ ¼ d2−2gfljg e−

X
2NCfljg ½ZðgÞ

0 ðN;XÞ�−1: ð7Þ

The finite volume continuum limit of the topological
susceptibility (at θ ¼ 0) is then given by

χðgÞt ðN; β; AÞ ¼ 1

8π2β

�
1 − X

X
fljg

wðgÞ
fljg

�X
j

lj
N

�
2
�
; ð8Þ

where the relation

X
fljg

�
wðgÞ
fljg

X
j

lj

�
¼ 0 ð9Þ

was used to simplify the result. This relation holds true
since for each representation fljg the conjugate represen-
tation fl0jg (with l0j ¼ −lNþ1−j) has the same weight of fljg
and

P
j l

0
j ¼ −

P
j lj.

In the infinite volume limit X → ∞ it is easily seen that

wðgÞ
fljg → δfljg;f0g (where f0g denotes the trivial representa-

tion), and in this limit the topological susceptibility does
not depend on the genus g and on the number of colors N,
becoming simply equal to

χtðN; β;∞Þ ¼ 1

8π2β
: ð10Þ

Hence from now on, in order to simplify the notation, we
shall express our results for the topological susceptibility in
terms of the dimensionless ratio

RðgÞðN;XÞ≡ χðgÞt ðN; β; AÞ
χtðN; β;∞Þ : ð11Þ

In some cases it will be useful to study also the derivative of
RðgÞðN;XÞ with respect to the area-related parameter X. An
explicit expression for this quantity is

∂RðgÞðN;XÞ
∂X ¼ X

2N

�X
fljg

wðgÞ
fljgCfljg

�X
j

lj
N

�
2

−
�X

fljg
wðgÞ
fljgCfljg

��X
fljg

wðgÞ
fljg

�X
j

lj
N

�
2
��

−
X
fljg

wðgÞ
fljg

�X
j

lj
N

�
2

: ð12Þ

With the aim of clarifying the interaction between the
SUðNÞ and the Uð1Þ d.o.f., it is convenient to notice that
representations of UðNÞ can be unambiguously obtained
from the representations of SUðNÞ (see e.g., [9]). In order
to better exploit the symmetry between representations and
their conjugates we change the summation index from j to
i, by setting

i ¼ j −
N þ 1

2
; ð13Þ

where j ∈ f1;…; Ng and the (integer or half-integer)
numbers i runs from − 1

2
ðN − 1Þ to 1

2
ðN − 1Þ.

Representations of SUðNÞ can be labeled by the (integer
or half-integer) numbers mi ¼ li − i, with the condition
mi > miþ1 and an additional (conventional) constraint
fixing the value of one of the mi in order to avoid double
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counting (we can for example fix mN−1
2
¼ − N−1

2
, which is

equivalent to the condition lN ¼ 0 used in [9]). The
representations of UðNÞ will then be obtained from those
of SUðNÞ by the substitutions fmig → fmi þ ng, for
all n ∈ Z.
To rewrite the partition function we observe that the

relation between the quadratic Casimir of UðNÞ (denoted
by Cfljg) and the corresponding one of SUðNÞ (denoted by
Cfmig) is

Cfmig ¼ Cfljg −
1

N

�XN
j¼1

lj

�
2

; ð14Þ

and, since
P

i mi ¼
P

j lj, we have

1

N
Cfmig ¼

1

N

X
i

m2
i −

�
1

N

X
i

mi

�
2

−
N2 − 1

12
: ð15Þ

Moreover the relation between the dimensions of the
representations is

dfmig ¼
Y
k>i

�
mi −mk

k − i

�
¼ dfljg: ð16Þ

These observations allow us to decompose the summation
on fljg in Eq. (2) into a summation on fmig and a
summation on n: it is easy to show that, by applying the
above decomposition, the partition function may be
expressed as

ZðgÞ
θ ðN;XÞ ¼

X
fmig

d2−2gfmige
− X
2NCfmig

X
n

e−
X
2
ðnþ θ

2πþ1
N

P
i
miÞ2 : ð17Þ

It is now convenient to group the representations of
SUðNÞ according to the value taken by

P
i mi. We then

define the following SUðNÞ-related functions

WðgÞðN;X;MÞ≡ X
fmi;Mg

d2−2gfmige
− X
2NCfmig ; ð18Þ

where the notation fmi;Mgmeans that the sum is restricted
to the representations fmig such that

P
i mi ¼ M. The

heat-kernel partition function of SUðNÞ is then given by

ZðgÞ
SUðN;XÞ ¼

X
M

WðgÞðN;X;MÞ; ð19Þ

while the UðNÞ partition function in Eq. (17) can be
rewritten, using the Uð1Þ partition function equation (5), as

ZðgÞ
θ ðN;XÞ ¼

X
M

WðgÞðN;X;MÞZθþμð1; XÞ; ð20Þ

where we introduced the notation

μ≡ 2πM=N: ð21Þ

We can then exploit the Poisson formula to write
Zθþμð1; XÞ as

X
n

e−
X
2
ðnþθþμ

2π Þ2 ¼
ffiffiffiffiffiffi
2π

X

r X
k

e−
2π2k2

X þikðθþμÞ; ð22Þ

where k labels the k-instanton configuration of the Uð1Þ
vacuum (see e.g., [10]). It is now possible to exchange the
order of summations in Eq. (20) and obtain the represen-
tation

ZðgÞ
θ ðN;XÞ ¼

ffiffiffiffiffiffi
2π

X

r X
k

e−
2π2k2

X þikθW̃ðgÞðN;X; kÞ; ð23Þ

where

W̃ðgÞðN;X; kÞ ¼
X
M

eikμWðgÞðN;X;MÞ ð24Þ

is the Fourier transform of WðgÞðN;X;MÞ and can be
interpreted as the partition function of the SUðNÞ d.o.f. in
the k-instanton Uð1Þ sector.
It is worth noticing that Eq. (23), due to its simple

dependence on θ, leads easily to an alternative formula for
the evaluation of the topological susceptibility, especially
useful for the case in which X is small, since only few k
values contribute significantly to the sum in this case.
The function W̃ðgÞðN;X; kÞ can be exactly computed in

various limits. When X → ∞ the trivial representation
dominates and WðgÞðN;X;MÞ → δM;0; as a consequence
W̃ðgÞðN;X;MÞ → 1 in this limit. When g → ∞ representa-
tions of dimension 1 dominate the sums and again
WðgÞðN;X;MÞ → δM;0 (due to the constraint mN−1

2
¼

− N−1
2
) and W̃ðgÞðN;X;MÞ → 1. In the next section we will

show that the same happens when N → ∞ with genus
g > 1. In all these limits the partition function reduces to
that of the Uð1Þ model, and as a consequence the same
happens to the topological susceptibility. We thus have for
the ratio defined in Eq. (11)

RðgÞðN;XÞ → RðXÞ≡ 1 − X

P
nn

2e−
X
2
n2P

ne
−X

2
n2

; ð25Þ

and the universal function RðXÞ satisfies the duality
property

RðXÞ þ R

�
4π2

X

�
¼ 1; ð26Þ

as can be seen by using the Poisson summation formula.
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As a matter of fact, the convergence to RðXÞ is
exponentially fast in the parameter g, and for g > 1 the
deviation from the above described asymptotic value is
almost irrelevant even for very small values of N, see Fig. 1
for the case of g ¼ 2. The really interesting cases are
therefore the spherical and toroidal topologies of the
manifold, and especially the case g ¼ 0, in which case
(for θ ¼ 0) the system is known to undergo a finite volume
phase transition in the large N limit [8].

III. THE LARGE N LIMIT

In this section we want to investigate the large N
behavior of the topological susceptibility and, as previously
anticipated, the most interesting case will be the g ¼ 0 case,
since in [8] a third order phase transition was shown to be
present (for θ ¼ 0) in the large N limit of continuum UðNÞ
gauge theories for g ¼ 0. This Douglas-Kazakov transition
separates a “small-area” region from a “large-area” one,
and it is located at X ¼ π2.
In trying to extend the Douglas-Kazakov approach to the

θ ≠ 0 case, one could think of writing a large N effective
action starting from the partition function in Eq. (2) and
using θ̂ ¼ θ=N as scaling variable (as was done e.g.,
in [1,11] following the original proposal of [12]). This
approach seems however problematic: the contributions of
representations corresponding to flig and fli þ ng [i.e.,
differing just for a Uð1Þ factor] differ in the large N limit
just by subleading terms, but in the thermodynamic limit
the topological susceptibility coincides with that of the
Uð1Þ model, and we cannot expect the Uð1Þ d.o.f. to be
irrelevant. It thus seems more appropriate to construct an
effective action for W̃ðgÞðN;X; kÞ, and then use Eq. (23).
Introducing the continuous variable y ¼ i=N running

from −1=2 to 1=2, and the (decreasing) function mðyÞ ¼
mi=N, we may define the distribution ρðmÞ ¼ −dy=dm
and the large N functional SðgÞeff given by

SðgÞeff ½m;X; k�

≡ − lim
N→∞

1

N2
ln W̃ðgÞðN;X; kÞ

¼ ðg − 1Þ
�Z

ρðmÞρðm0Þ ln jm −m0jdm dm0 þ 3

2

�

þ 1

2
X

�Z
ρðmÞm2dm − m̄2 −

1

12

�
− 2πik̂ m̄; ð27Þ

where we defined

k̂≡ k
N
; m̄≡

Z
mρðmÞdm ð28Þ

in order to simplify the notation. In [8] the integration
domain had to be dynamically defined by the conditionsR
ρðmÞdm ¼ 1 and 0 ≤ ρðmÞ ≤ 1, but now ρðmÞ is in

general complex.
When g > 1 the problem is singular, since for ρðmÞ → 1

the value of SðgÞeff approaches −∞. As a consequence, since
ρðmÞ ¼ 1 corresponds to mðyÞ ¼ −y [the additive constant
being fixed by the constraint mð1=2Þ ¼ −1=2] and thus to
the trivial representation of SUðNÞ, for g > 1 we recover
the previously described trivial limit W̃ðgÞ → 1 and the
decoupling between SUðNÞ and Uð1Þ, a conclusion that is
fully supported by the numerical results shown in Fig. 1.
In the case g ¼ 1 it is known that the large N expansion

of the free energy starts at order N0 for θ ¼ 0 (see [13–15]
and [8]), so the basic assumption used to obtain Eq. (27) is
not true in this case and such an approach can not be
pursued further. One could guess, by continuity in g, that
also in this case the topological susceptibility in the large N
limit coincides with that of the Uð1Þ case. This is strongly
supported by the numerical computations presented in
Fig. 2, where the difference Rð1ÞðN;XÞ − Rð1Þð1; XÞ is
shown [where RðgÞ is the normalized topological suscep-
tibility defined in Eq. (11)]. It is likely that this result could
be obtained directly, starting from Eq. (2) and using the
method developed in [13–15], in which case the OðN−2Þ
corrections of the topological susceptibility could maybe
also be determined.
In the following we will concentrate on the analysis of

the g ¼ 0 case, in which case stationary points of Sð0Þeff are
solutions of the saddle point equation

−P
Z

ρðsÞ
m − s

dsþ 1

2
Xðm − m̄Þ − iπk̂ ¼ 0: ð29Þ

Since we are interested just to the first Oðk̂2Þ correction to
the free energy, following the same approach used in [1] we
now introduce the ansatz

ρðmÞ ¼ ρ0ðmÞ þ ik̂ρ1ðmÞ; ð30Þ
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0
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0.01

0.015
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0.025

R
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) (1
,X
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- 
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) (N
,X

)
N=2

N=3

N=4

N=5

N=6

FIG. 1. Large N behavior of the topological susceptibility for
g ¼ 2: deviations of Rð2ÞðN;XÞ from Rð2Þð1; XÞ are shown for N
up to 6.
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where ρ0ðmÞ is a real even function ofm and ρ1ðmÞ is a real
odd function ofm. The conditions

R
ρ0ðmÞdm ¼ 1 and 0 ≤

ρ0ðmÞ ≤ 1 now determine the integration domain of ρ0ðmÞ
and, since we are interested to the leading order in k̂,
we can assume ρ1ðmÞ to have the same support of ρ0ðmÞ.
The saddle-point equation (29) thus gives for ρ0 and ρ1 the
equations

P
Z

ρ0ðsÞ
m − s

ds ¼ 1

2
Xm; ð31Þ

P
Z

ρ1ðsÞ
m − s

ds ¼ −
1

2
X
Z

sρ1ðsÞds − π: ð32Þ

For X ≤ π2 the solution of Eq. (31) is the Wigner
semicircle law

ρ0ðmÞ ¼ X
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 −m2

q
; m0 ¼

2ffiffiffiffi
X

p ; ð33Þ

which fixes the integration domain to be ½−m0; m0�. For
X > π2 the semicircle law would predict ρ0ð0Þ > 1 and the
saddle point equation Eq. (31) has to be modified, in order
to make it compatible with an ansatz of the form

ρ0ðmÞ ¼
�
1 for jmj ≤ b

ρ̃0ðmÞ for jmj > b
; ð34Þ

where b has to be determined self-consistently, see [8] for a
complete discussion.
When X ≤ π2 the domain of integration to be used in

Eq. (32) is thus ½−m0; m0� and this equation can be
conveniently rewritten in the form

P
Z

m0

−m0

ρ1ðsÞ
m − s

ds ¼ C; C ¼ −
1

2
X
Z

m0

−m0

sρ1ðsÞds − π:

ð35Þ

If we introduce as usual [16] the resolvent FðzÞ ¼ R ρ1ðsÞ
z−s ds

it is simple to show that the resolvent corresponding to the
first equation is1

FðzÞ ¼ C

�
1 −

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 −m2

0

p
�

ð36Þ

from which it follows that

ρ1ðmÞ ¼ −
C
π

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

0

p : ð37Þ

We can now substitute this expression in the second
equation in Eq. (35) to fix C, however it is simple to show
that (since m2

0X=4 ¼ 1) the resulting equation has no
solution. We thus conclude that for g ¼ 0 and X ≤ π2

the saddle point equation (32) has no solution, and we take
this fact as an indication that the topological susceptibility
vanishes in the large N limit (since a nontrivial solution for
ρ1 would give a susceptibility of order N0).
For X > π2 the saddle point equation for ρ0 has to be

modified in order for its solution to satisfy the requirement
ρ0ðmÞ ≤ 1 [8], but it is not clear if the equation for ρ1 has
also to be modified (and eventually how). In absence of a
clear theoretical understanding of this point, the following
analysis will be based exclusively on numerical evidence.

0 5 10 15 20

X

0

0.02

0.04

0.06

0.08
R

(1
) (1

,X
) 

- 
R

(1
) (N

,X
)

N=2

N=3

N=4

N=5

N=6

N=7
N=8

FIG. 2. Large N behavior of the topological susceptibility for
g ¼ 1: deviations of Rð1ÞðN;XÞ from Rð1Þð1; XÞ are shown for N
up to 8.
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N=8 N=10

N=1
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FIG. 3. Large N behavior of the topological susceptibility for
g ¼ 0. The vertical line at X ¼ π2 denotes the position of the
Douglas-Kazakov transition. For 10 ≤ X ≤ 11 the N → ∞
extrapolation of Rð0ÞðN;XÞ is also shown, which is obtained
from the results of Monte-Carlo simulations performed at
N ≥ 30, see the text for more details.

1ρ1ðsÞ is an odd function, so FðzÞ has to vanish as z−2 for large
values of jzj.
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In Fig. 3 we report the behavior of the normalized
topological susceptibility Rð0ÞðN;XÞ [defined in Eq. (11)]
for some values of N, up to N ¼ 10. It is clear that lines
corresponding to increasing N values are not converging to
the N ¼ 1 curve. For X smaller than π2 the values of
Rð0ÞðN;XÞ seem to approach zero as N grows, while for X
larger than π2 they seem to converge to nonzero values in
the same limit. Around π2 a transition region is present, in
which the behavior of Rð0ÞðN;XÞ rapidly changes.
These results have been obtained by explicitly perform-

ing the sums over fmig up to a prescribed relative accuracy
of 10−6 (the sum on n can be rewritten in term of Jacobi θ
functions), however, in order to reach larger values of N,
we found computationally much more efficient to estimate
average values using a Monte-Carlo sampling of the
distribution in Eq. (7). Using this approach we obtained
the data shown in Fig. 4, where the large N behavior of
Rð0ÞðN;XÞ is scrutinized for two values of X close to π2 ≈
9.8696 (X ¼ 9.7 and X ¼ 10) using values of N up to 200,
and for larger X values using 30 ≤ N ≤ 70. The large N
behavior of the topological susceptibility is consistent with
the one guessed from the results obtained using N ≤ 10,
however values of N larger than 50 are needed to clearly
appreciate this behavior for the two X values closer to
π2. From these data we extracted the large N limit of
Rð0ÞðN;XÞ shown in Fig. 3 for 10 ≤ X ≤ 11.
Data presented so far indicate that for g ¼ 0 manifolds

the large N topological susceptibility vanishes for X < π2

while it is nonzero for larger values of X, approaching the
Uð1Þ values as X ≫ 1. From Figs. 3–4 we can see that the
transition between the two regimes is quite abrupt, but we
have no real hints on what happens at X ¼ π2. To further
investigate the region X ≃ π2 it is convenient to study
∂Rð0ÞðN;XÞ=∂X [see Eq. (12) for the explicit expression of
this quantity], in order to understand if this observable
develops a singularity at X ¼ π2 as N gets larger.

In Fig. 5 the profile of ∂Rð0ÞðN;XÞ=∂X is shown for
some N values up to N ¼ 10, and a singularity at X ¼ π2

indeed seems to emerge. In order to reach larger N values
and better investigate this “might be” singular behavior we
again resorted to Monte Carlo simulations, and the results
obtained in this way are shown in Fig. 6. By looking just at
data corresponding to N ≲ 25 one could guess that the
position of the peak of ∂Rð0ÞðN;XÞ=∂X approaches π2,
however data at larger N show that the peak crosses the
Douglas-Kazakov transition, going into the large-area
regime. This is consistent with a continuous behavior of
∂Rð0ÞðN;XÞ=∂X at the transition at X ¼ π2. Note however
that this behavior is formally continuous but nonetheless
very abrupt, indeed for X ≲ 35 the peak value of
∂Rð0ÞðN;XÞ=∂X is still growing almost linearly in N and
its location is still very close to that of the Douglas-
Kazakov transition.
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FIG. 4. Large N behavior of the topological susceptibility for
g ¼ 0 and several X values.

0 5 10 15 20

X

0

0.05

0.1

0.15

0.2

0.25

∂R
(0

) (N
,X

)/
∂X N=2

N=4

N=6

N=8

N=10
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IV. CONCLUSIONS

In this paper we investigated the finite volume θ
dependence of continuum two-dimensional UðNÞ gauge
theories. We previously noted in [1] that at finite volume
the Uð1Þ d.o.f. do not factorize in the partition function
of 2D UðNÞ gauge theories, even in the continuum limit.
The continuum partition function was however written in a
way that made the form of the interaction between theUð1Þ
and the SUðNÞ d.o.f. not completely clear.
In the present work we showed that the θ-dependent

continuum partition function can be rewritten in the more
transparent form in Eq. (23). In this new form θ couples
only to the Uð1Þ instanton number, but the effective action
of the SUðNÞ d.o.f. generically depends on the topological
charge of the background Uð1Þ field. In some specific
limits, like in the thermodynamical limit (X → ∞) or in the
large genus limit (g → ∞), this dependence disappears;
only in these cases the θ dependence of the continuum 2D
UðNÞ theory reduces to that of the continuum Uð1Þ theory.
We then investigated the large N behavior of the

topological susceptibility, mainly by means of numerical
simulations. We found that, in the large N limit and for
fixed area of the manifold, the topological susceptibility

converges to itsUð1Þ value only if the genus of the manifold
is larger than zero.
In the case of a manifold with the topology of the sphere,

the large N topological susceptibility turned out to be an
order parameter for the Douglas-Kazakov transition at
θ ¼ 0 [8]: the large N limit of the topological susceptibility
vanishes in the small-area phase X < π2 and it is different
from zero in the large-area phase. Moreover the derivative
with respect to the area of the topological susceptibility is
continuous across the transition.
This behavior is the analogous, in the continuum finite

area case, of the one previously found in [1], where the
large N behavior of the topological susceptibility was
shown to be different in the two phases of the Gross-
Witten-Wadia transition. However for the case studied in
[1] an explicit analytic expression for the large N topo-
logical susceptibility was found, while in the present case
we had to rely mostly on numerics.

ACKNOWLEDGMENTS

Numerical computations have been performed by using
resources provided by the Scientific Computing Center at
INFN-PISA.

[1] C. Bonati and P. Rossi, Phys. Rev. D 99, 054503 (2019).
[2] B. E. Rusakov, Mod. Phys. Lett. A 05, 693 (1990).
[3] E. Witten, Commun. Math. Phys. 141, 153 (1991).
[4] J. Kiskis, R. Narayanan, and D. Sigdel, Phys. Rev. D 89,

085031 (2014).
[5] D. J. Gross and E. Witten, Phys. Rev. D 21, 446 (1980).
[6] S. R. Wadia, Phys. Lett. 93B, 403 (1980).
[7] P. Rossi, Phys. Lett. 117B, 72 (1982).
[8] M. R. Douglas and V. A. Kazakov, Phys. Lett. B 319, 219

(1993).

[9] J. M. Drouffe and J. B. Zuber, Phys. Rep. 102, 1 (1983).
[10] C. Cao, M. van Caspel, and A. R. Zhitnitsky, Phys. Rev. D

87, 105012 (2013).
[11] P. Rossi, Phys. Rev. D 94, 045013 (2016).
[12] E. Witten, Ann. Phys. (N.Y.) 128, 363 (1980).
[13] D. J. Gross, Nucl. Phys. B400, 161 (1993).
[14] D. J. Gross and W. Taylor, Nucl. Phys. B400, 181 (1993).
[15] D. J. Gross and W. Taylor, Nucl. Phys. B403, 395 (1993).
[16] E. Brezin, C. Itzykson, G. Parisi, and J. B. Zuber, Commun.

Math. Phys. 59, 35 (1978).

TOPOLOGICAL EFFECTS IN CONTINUUM TWO-DIMENSIONAL … PHYS. REV. D 100, 054502 (2019)

054502-7

https://doi.org/10.1103/PhysRevD.99.054503
https://doi.org/10.1142/S0217732390000780
https://doi.org/10.1007/BF02100009
https://doi.org/10.1103/PhysRevD.89.085031
https://doi.org/10.1103/PhysRevD.89.085031
https://doi.org/10.1103/PhysRevD.21.446
https://doi.org/10.1016/0370-2693(80)90353-6
https://doi.org/10.1016/0370-2693(82)90876-0
https://doi.org/10.1016/0370-2693(93)90806-S
https://doi.org/10.1016/0370-2693(93)90806-S
https://doi.org/10.1016/0370-1573(83)90034-0
https://doi.org/10.1103/PhysRevD.87.105012
https://doi.org/10.1103/PhysRevD.87.105012
https://doi.org/10.1103/PhysRevD.94.045013
https://doi.org/10.1016/0003-4916(80)90325-5
https://doi.org/10.1016/0550-3213(93)90402-B
https://doi.org/10.1016/0550-3213(93)90403-C
https://doi.org/10.1016/0550-3213(93)90042-N
https://doi.org/10.1007/BF01614153
https://doi.org/10.1007/BF01614153

