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ON THE HONEYCOMB CONJECTURE

FOR A CLASS OF MINIMAL CONVEX PARTITIONS

DORIN BUCUR, ILARIA FRAGALÀ, BOZHIDAR VELICHKOV, GIANMARIA VERZINI

Abstract. We prove that the planar hexagonal honeycomb is asymptotically optimal
for a large class of optimal partition problems, in which the cells are assumed to be
convex, and the criterion is to minimize either the sum or the maximum among the
energies of the cells, the cost being a shape functional which satisfies a few assumptions.
They are: monotonicity under inclusions; homogeneity under dilations; a Faber-Krahn
inequality for convex hexagons; a convexity-type inequality for the map which associates
with every n ∈ N the minimizers of F among convex n-gons with given area. In particular,
our result allows to obtain the honeycomb conjecture for the Cheeger constant and for
the logarithmic capacity (still assuming the cells to be convex). Moreover we show that,
in order to get the conjecture also for the first Dirichlet eigenvalue of the Laplacian, it
is sufficient to establish some facts about the behaviour of λ1 among convex pentagons,
hexagons, and heptagons with prescribed area.

1. Introduction

Given an open bounded subset Ω of R2 with a Lipschitz boundary, we consider the problem
of finding an optimal partition {E1, . . . , Ek} of Ω into k convex cells, the energy being
either of additive or of supremal type, i.e.,

k
∑

i=1

F (Ei) or max
i=1,...,k

{

F (Ei)
}

.

The cost functional F is assumed to be homogeneous under dilations, and monotone under
domain inclusion on the class of convex bodies in R

2.
In case F is monotone decreasing, the admissible configurations {E1, . . . , Ek} are convex
k-clusters of Ω, denoted by Ck(Ω) and meant as families of k convex bodies which are
contained into Ω and have mutually disjoint interiors. So our problems read

mk(Ω) = inf
{

k
∑

i=1

F (Ei) : {Ei} ∈ Ck(Ω)
}

,(1)

Mk(Ω) = inf
{

max
i=1,...,k

F (Ei) : {Ei} ∈ Ck(Ω)
}

.(2)

In case F is monotone increasing, to make the minimization nontrivial (namely the infimum
nonzero) we have to consider as admissible configurations {E1, . . . , Ek} only the convex k-
clusters which, loosely speaking, cover the whole of Ω: they are called convex k-partitions
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of Ω, and are denoted by Pk(Ω). Moreover, for increasing functionals we just consider
problems of the supremal type

(3) Mk(Ω) = inf
{

max
i=1,...,k

F (Pi ∩ Ω) : {Pi} ∈ Pk(Ω)
}

.

Actually, for F increasing, the counterpart of problem (1) would become meaningful only
after adding an isoperimetric constraint on the cells which would change dramatically the
nature of the problem (cf. the well-known case solved by Hales in the celebrated paper
[14], when the cost is the total perimeter of the partition, see also [23]).
We are interested in studying for which kind of variational energies F optimal partition
problems of the kind (1), (2), or (3) satisfies the “honeycomb conjecture”. Roughly, it can
be stated as the fact that, in the limit for k very large, an optimal packing will be made
of translations of an identical shape, given precisely by a regular hexagon H. A simple
mathematical formulation can be given as the asymptotic law

(4) lim
k→+∞

1

kγ

( |Ω|
|H|

)γ
mk(Ω) = F (H) ,

and similarly with mk(Ω) replaced by Mk(Ω). Clearly, the exponent γ > 0 appearing in
(4) depends on the homogeneity degree of the energy F under domain dilations.
The original motivation of our work is a conjecture formulated by Caffarelli and Lin in [5].
It predicts the validity of (4) when F is the first Dirichlet eigenvalue λ1 of the Laplacian,
namely when mk(Ω) is given by

(5) mk(Ω) = inf
{

∑

i=1,...,k

λ1(Ei) : Ei ⊆ Ω , |Ei| ∈ (0,+∞) , |Ei ∩Ej | = 0
}

.

As a matter of fact, optimal spectral partitions have received an increasing attention in
the last decade, including also the case when the energy of the partition is the maximal
eigenvalue among the chambers (in particular by Helffer and coauthors); without any
attempt of completeness, let us quote the papers [1, 2, 3, 10, 11, 15, 16, 17, 25]. In
particular, in [17], a similar honeycomb conjecture for the maximal eigenvalue problem is
attributed to Van den Berg.
We emphasize that the substantial difference between problem (5) considered by Caffarelli
and Lin and our problem (1) is that we added the quite stringent constraint that the
cells are, a priori, convex. Clearly, this yields a great simplification, and in this sense
the present work is conceived as a first step towards the complete study of the problem
without the convexity constraint. This kind of approach was inspired by the fact that, for
perimeter minimizing partitions made by convex polygons, the proof of the honeycomb
conjecture is much simpler, and indeed it was given by Fejes Tóth some decades before
Hales’ breakthrough (see [13]).
As a counterpart, we take the freedom to work with very general shape functionals, by
imposing on F very few assumptions.
Our main results are stated in Section 2 below: Theorems 2, 3, and 6 deal respectively
with problems (1), (2) and (3), under suitable hypotheses on a generic shape functional F .
As a consequence, the honeycomb conjecture is obtained for the Cheeger constant and for
logarithmic capacity (see Corollaries 9-10 and 13); moreover, we provide some relatively
simple sufficient conditions for its validity also to the case of the first Dirichlet eigenvalue
(see Proposition 11).
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The proofs of Theorem 2, Theorem 3, Theorem 6, and Proposition 11 are given in the
subsequent sections. The Appendix contains some analytical computations used to obtain
Corollaries 9-10 and 13.

2. Main results

Throughout the paper, unless otherwise specified, we will use the following notation:

• Ω is an open bounded subset of R2 with a Lipschitz boundary;
• H denotes the unit area regular hexagon;
• K2 is the family of convex bodies in R

2 (i.e., convex compact sets in the plane
having a nonempty interior).

We next introduce the class of convex k-clusters.

Definition 1. We denote by Ck(Ω) the class of convex k-clusters of Ω, meant as families
{Ei}{i=1,...,k} of subsets of R2 such that:

- Ei ∈ K2 for every i;

- Ei ⊆ Ω for every i;

- |Ei ∩ Ej | = 0 for every i 6= j.

Our main results on the asymptotic behaviour of optimal partition problems for decreasing
functionals read as follow. We give two distinct statements for the case of additive and
supremal energies because the assumptions we need in the two cases are slightly different
from each other (see Remark 4, which collects our comments on the theorems stated
hereafter).

Theorem 2. Assume that F : K2 → [0,+∞) satisfies the following conditions:

(H1) Domain monotonicity:

Ω1 ⊆ Ω2 ⇒ F (Ω1) ≥ F (Ω2) .

(H2) Homogeneity:

∃α > 0 : F (tΩ) = t−αF (Ω) for every t > 0 .

(H3) Behaviour on polygons: setting

γ(n) := min
{

F (P )|P |α/2 : P n-gon in K2} ∀n ∈ N ,

we have

(i) γ(6) = F (H);

(ii)
1

k

k
∑

i=1

ni ≤ 6 ⇒ 1

k

k
∑

i=1

γ(ni)
2/(α+2) ≥ γ(6)2/(α+2).

Then, in the limit as k → +∞, the optimal partition problem

mk(Ω) = inf
{

k
∑

i=1

F (Ei) : {Ei} ∈ Ck(Ω)
}

is solved by a packing of regular hexagons, namely it holds

(6) lim
k→+∞

|Ω|α/2
k(α+2)/2

mk(Ω) = F (H) .
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Theorem 3. Assume that F : K2 → [0,+∞) satisfies the following conditions:

(H1) Domain monotonicity:

Ω1 ⊆ Ω2 ⇒ F (Ω1) ≥ F (Ω2) .

(H2) Homogeneity:

∃α > 0 : F (tΩ) = t−αF (Ω) for every t > 0 .

(H3) Behaviour on polygons: setting

γ(n) := min
{

F (P )|P |α/2 : P n-gon in K2} ∀n ∈ N ,

we have

(i) γ(6) = F (H);

(ii)
1

k

k
∑

i=1

ni ≤ 6 ⇒ 1

k

k
∑

i=1

γ(ni)
2/α ≥ γ(6)2/α.

Then, in the limit as k → +∞, the optimal partition problem

Mk(Ω) = inf
{

max
i=1,...,k

F (Ei) : {Ei} ∈ Ck(Ω)
}

is solved by a packing of regular hexagons, namely it holds

(7) lim
k→+∞

|Ω|α/2
kα/2

Mk(Ω) = F (H) .

Remark 4. (i) Notice that assumption (H3) (ii) in Theorem 3 is less stringent that
the same assumption in Theorem 2, because the exponent 2/α appearing therein
is strictly larger than its corresponding one 2/(α + 2) .

(ii) If the functional F satisfies a discrete Faber-Krahn inequality with regular polygons
as optimal domains, we can give an easier to handle sufficient condition for the
validity of hypothesis (H3). Namely assume that, for every n ∈ N, the minimum
γ(n) is achieved for the regular n-gon with unit area P ∗

n , that is γ(n) = F (P ∗
n);

this can be equivalently stated in the form of an inequality, to which we refer as
the discrete Faber-Krahn inequality:

F (Pn) ≤ F (P ∗
n), for every n-gon Pn ∈ K2 of unit area.

Then, in order to check (H3), it is enough to show that the following condition
is satisfied (with β = 2/(α + 2) or β = 2/α respectively in case of Theorem 2 or
Theorem 3):

(H3)’ the map n 7→ F (P ∗
n)

β admits a decreasing and convex extension ϕ on [3,+∞).

Indeed, part (i) of hypothesis (H3) is clearly true since the Faber-Krahn inequality
for n = 6 yields γ(6) = F (P ∗

6 ) = F (H), whereas part (ii) follows from (H3)’ and
the Jensen’s inequality:

1

k

k
∑

i=1

γ(ni)
β =

1

k

k
∑

i=1

ϕ(ni) ≥ ϕ
(1

k

k
∑

i=1

ni

)

≥ ϕ(6) = γ(6)β .
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(iii) If in addition the discrete Faber-Krahn inequality holds in a quantitative way (see
Remark 19), it is reasonable to expect that, beyond (6)-(7), one can obtain the
convergence of any optimal partition to a hexagonal tiling.

We are now going to state a dual counterpart of Theorem 3 for increasing functionals.
In this case, we have to work with convex partitions which saturate the domain Ω, other-
wise the infimum of the optimal partition problem would become zero (simply by taking
k disjoint balls of infinitesimal radius contained into Ω). Thus we introduce the following

Definition 5. We denote by Pk(Ω) the class of convex k-partitions of Ω, meant as families
{Pi}{i=1,...,k} of subsets of R2 such that:

- Pi is a polygon in K2 for every i;

-
⋃

i

(

Pi ∩ Ω
)

= Ω;

- |Pi ∩ Pj | = 0 for every i 6= j.

Theorem 6. Let Ω be an open bounded convex subset of R
2. Assume that F : K2 →

[0,+∞) satisfies the following conditions:

(H1) Domain monotonicity:

Ω1 ⊆ Ω2 ⇒ F (Ω1) ≤ F (Ω2) .

(H2) Homogeneity:

∃α > 0 : F (tΩ) = tαF (Ω) for every t > 0 .

(H3) Behaviour on polygons: setting

γ(n) := min
{

F (P )|P |−α/2 : P n-gon in K2} ∀n ∈ N ,

(i) γ(6) = F (H);

(ii) it is possible to extend γ to a function defined on [3,+∞) which is continuous
at the point 6 and is such that, for some k0 ∈ N and δ0 > 0,

1

k

k
∑

i=1

ni ≤ 6+ δ , with k ≥ k0 and 0 < δ ≤ δ0 ⇒ 1

k

k
∑

i=1

γ(ni)
−2/α ≤ γ

(

6+ δ
)−2/α

.

Then, in the limit as k → +∞, the optimal partition problem

mk(Ω) = inf
{

max
i=1,...,k

F (Pi ∩Ω) : {Pi} ∈ Pk(Ω)
}

is solved by a packing of regular hexagons, namely it holds

(8) lim
k→+∞

kα/2

|Ω|α/2mk(Ω) = F (H) .

Remark 7. Notice that condition (H3) (ii) in Theorem 6 is a little bit more involved than
the corresponding one in Theorem 3. The reason is that, when passing from decreasing
to increasing functionals, we have to deal with convex k-partitions rather than convex
k-clusters, and consequently a key argument in the proof needs to be adapted and refined
(see Remark 20 for more details). However we emphasize that, when F satisfies a discrete
Faber-Krahn inequality stating that γ(n) = F (P ∗

n) (with P
∗
n the regular n-gon with unit

area), one can still formulate a simpler sufficient condition for the validity of assumption
(H3) in Theorem 6, which in this case reads
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(H3)’ the map n 7→ F (P ∗
n)

−2/α admits an increasing and concave extension ϕ on [3,+∞).

This is readily checked by arguing as in Remark 4.

Remark 8. We point out that Theorem 6 applies in particular to the shape functional
F (Ω) = Per(Ω). Indeed, assumptions (H1) and (H2) are fulfilled because perimeter is
monotone increasing on convex sets under domain inclusion, and positively homogeneous
of degree α = 1. Moreover, since the regular n-gon minimizes perimeter among n-gons
with given area, for the validity of (H3) it is enough to check condition (H3)’, which is
immediate by using the formula

Per(P ∗
n) = 2

√

n tan
(π

n

)

.

We present now the application of Theorems 2, 3 and 6 to some relevant examples of shape
functionals F of variational type.

2.1. The Cheeger constant. Let us recall that the Cheeger constant of Ω is defined by

(9) h(Ω) := inf

{

Per(E,R2)

|E| : E measurable , E ⊆ Ω

}

,

where Per(E,R2) denotes the perimeter of E in the sense of De Giorgi. The minimization
problem (9) is named after J. Cheeger, who introduced it in [8] and proved the inequality
λ1(Ω) ≥ (h(Ω)/2)2. In recent years the Cheeger constant has attracted an increasing
attention: we address the interested reader to the review papers [22, 24] and to the nu-
merous references therein. Let us also mention that optimal partition problems for the
Cheeger constant have been recently considered in [6], under the form (5), and with the aim
of finding bounds for the asymptotics of the same problem for the first Dirichlet eigenvalue.

We claim that Theorems 2 and 3 apply to F (Ω) := h(Ω).
Indeed, it is immediate from its definition that h(Ω) satisfies the monotonicity assumption
(H1) and the homogeneity assumption (H2) (with α = 1).
Concerning assumption (H3) (i), in view of Remark 4 (ii), we recall that the regular n-gon
P ∗
n of unit area minimizes the Cheeger constant h among all polygons of the same area

and same number of sides (even without the convexity constraint). This result has been
recently proved in [4] (incidentally, in the light of Remark 4 (iii), let us also mention that
a quantitative version of such result has appeared in [7]).
In order to check (H3) (ii), it is enough to show that the map n 7→ h(P ∗

n)
β admits a

decreasing convex extension on [3,+∞), where the exponent β equals 2/3 and 2 in case
respectively of Theorems 2 and 3. This is readily done in view of the explicit expression
of h(P ∗

n), which reads (see for instance [4] or [20]):

h(P ∗
n) =

2n sin(π/n) +
√

2πn sin(2π/n)
√

2n sin(2π/n)
.

For completeness, the computations are included in the Appendix, Lemma 26 and Lemma
27. We reassume the results obtained in the discussion above in the following:

Corollary 9. Let

(10) mk(Ω) = inf
{

k
∑

i=1

h(Ei) : {Ei} ∈ Ck(Ω)
}

.
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Then it holds

(11) lim
k→+∞

|Ω|1/2
k3/2

mk(Ω) = h(H) .

Corollary 10. Let

(12) Mk(Ω) = inf
{

max
i=1,...,k

h(Ei) : {Ei} ∈ Ck(Ω)
}

.

Then it holds

(13) lim
k→+∞

|Ω|1/2
k1/2

Mk(Ω) = h(H) .

2.2. The first Dirichlet Laplacian eigenvalue. Let us now consider the case of the first
Dirichlet eigenvalue of the Laplacian, F (Ω) = λ1(Ω). We observe that the monotonicity
and homogeneity assumptions (H1) and (H2) of Theorem 3 are satisfied (with α = 2). On
the other hand, the Faber-Krahn inequality for the fist Dirichlet eigenvalue of polygons is
a long-standing open problem (for a discussion, see for instance [18, Section 3.3]). Thus
we have to work directly on the validity of assumption (H3), handling the function γ(n)
defined by

(14) γ(n) := min
{

λ1(P )|P | : P n-gon in K2
}

.

As a consequence of Theorems 2 and 3, we can assert that the honeycomb conjecture for
λ1 holds true provided one has some piece of information about the behaviour of γ(n) just
for n = 5, 6, 7. Indeed we have the following result:

Proposition 11. Let

mk(Ω) = inf
{

k
∑

i=1

λ1(Ei) : {Ei} ∈ Ck(Ω)
}

(15)

Mk(Ω) = inf
{

max
i=1,...,k

λ1(Ei) : {Ei} ∈ Ck(Ω)
}

,(16)

and assume that the map γ(n) defined by (14) satisfies

γ(6) = λ1(H)(17)

γ(5) ≥ a := 6, 022π and γ(7) ≥ b := 5.82π(18)

Then it holds

lim
k→+∞

|Ω|
k2
mk(Ω) = λ1(H) .(19)

lim
k→+∞

|Ω|
k
Mk(Ω) = λ1(H) .(20)

Remark 12. Let us emphasize that the assumptions made on γ(5) and γ(7) seem much
easier to check than to the assumption γ(6) = F (H). Namely, while the latter corresponds
exactly to prove Faber-Krahn inequality for the principal frequency of convex hexagons
(and as such is quite challenging), for γ(5) and γ(7) we just ask estimates from below,
which are likely more at hand through a numerical proof.
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2.3. The logarithmic capacity. Let us recall that the logarithmic capacity of Ω is de-
fined by

LogCap(Ω) := exp
[

− lim
|x|→+∞

(u(x)− ln |x|)
]

,

where u is the equilibrium potential of Ω, namely the unique solution to the Dirichlet
boundary value problem















∆u = 0 in R
2 \Ω

u = 0 on ∂Ω

u(x) ∼ ln |x| as |x| → +∞ .

It can also be identified with the conformal radius or with the transfinite diameter of Ω,
for more details see for instance [21, 9].
We claim that Theorem 6 applies to F (Ω) := LogCap(Ω). Indeed, it is immediate from
its definition that LogCap(Ω) satisfies assumptions (H1) and (H2) (with α = 1). More-
over, Solynin and Zalgaller have proved in [26] that the regular n-gon with unit area P ∗

n

minimizes LogCap(Ω) among polygons with the same area and number of sides (even with-
out the convexity constraint). Then, recalling Remark 7, in order to check assumption
(H3) it is sufficient to show that the map n 7→ LogCap(P ∗

n)
−2 admits an increasing and

concave extension on [3,+∞). This is readily done in view of the explicit expression of
LogCap(P ∗

n), which reads (see [26])

LogCap(P ∗
n) =

√

n tan
(

π
n

)

Γ
(

1 + 1
n

)

√
π 22/n Γ

(

1
2 + 1

n

) ,

where Γ is the Euler Gamma function (see Lemma 28 in the Appendix).
Thus we have:

Corollary 13. Let

(21) Mk(Ω) = inf
{

max
i=1,...,k

LogCap(Pi ∩ Ω) : {Pi} ∈ Pk(Ω)
}

.

Then it holds

(22) lim
k→+∞

|Ω|1/2
k1/2

Mk(Ω) = LogCap(H) .

3. Proof of Theorems 2 and 3

The proofs of Theorems 2 and 3 are obtained by combining the next two lemmas.

Definition 14. Let (Hi)i∈I denote a tiling of R
2 made by copies Hi of the unit area

regular hexagon H. By k-hexagonal structure, we mean a connected set obtained as the
union of k hexagons lying in the family (Hi).

Lemma 15. Let Ωk denote a generic k-hexagonal structure.

(i) If F satisfies the assumptions of Theorem 2, and

(23) mk(Ωk) = kF (H) ∀k ∈ N ,

then the conclusion (6) of Theorem 2 holds true.



9

(ii) If F satisfies the assumptions of Theorem 3, and

(24) Mk(Ωk) = F (H) ∀k ∈ N ,

then the conclusion (7) of Theorem 3 holds true.

Lemma 16. Let Ωk denote a generic k-hexagonal structure.

(i) If F satisfies the assumptions of Theorem 2, then (23) holds true.

(ii) If F satisfies the assumptions of Theorem 3, then (24) holds true.

Proof of Lemma 15. The argument of the proof is inspired from and quite close to the one
from [2, Section 4]. However for convenience of the reader we report the detailed proof
below.
Let (Hi)i∈I denote a tiling of R2 made by copies Hi of the unit area regular hexagon H.
For any positive factor of dilation ρ, we set ρΩ := {ρx : x ∈ Ω}, and we introduce the
following families of indices:

I int(ρ,Ω) :=
{

i ∈ I : Hi ⊂ (ρΩ)
}

,

Iext(ρ,Ω) := I int(ρ,Ω) ∪
{

i ∈ I : Hi ∩ ∂(ρΩ) 6= ∅
}

.

Then, for every k ∈ N, we set

ρint(k,Ω) := inf
{

ρ > 0 : ♯I int(ρ,Ω) ≥ k
}

,

ρext(k,Ω) := sup
{

ρ > 0 : ♯Iext(ρ,Ω) ≤ k
}

.

Since

♯I int(ρ,Ω) ∼ ♯Iext(ρ,Ω) ∼ |Ω|
|H|ρ

2 = |Ω|ρ2 as ρ→ +∞ ,

it holds

(25) lim
k→+∞

ρint(k,Ω)√
k

= lim
k→+∞

ρext(k,Ω)√
k

=

√

|H|
√

|Ω|
=

1
√

|Ω|
.

We observe that, since F satisfies assumption (H2), the map Ω 7→ mk(Ω) is homogeneous
of degree −α under dilations. Moreover, it is monotone decreasing under inclusions, as

Ω ⊆ Ω′ ⇒ Ck(Ω) ⊆ Ck(Ω′) .

Now we proceed to prove separately statements (i) and (ii), though the two cases are quite
similar to each other.

Proof of statement (i). We deduce the statement by combining an upper bound and a
lower bound for mk(Ω).

– Upper bound formk(Ω). We take ρ = ρint(k,Ω). By definition ofmk(·) it holdsmk(ρΩ) ≤
kF (H). Then, by using the homogeneity of mk(·), we get

mk(Ω) = ραmk(ρΩ) ≤ ραkF (H) .

We infer that

(26) lim sup
k→+∞

mk(Ω)

k(α+2)/2
≤ lim sup

k→+∞

(

ρint(k,Ω)
)α

k(α+2)/2
kF (H) =

1

|Ω|α/2F (H) ,

where the last equality follows from (25).
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– Lower bound for mk(Ω). We take ρ = ρext(k,Ω). By using the homogeneity and
decreasing monotonicity of mk(·), and the hypothesis (23), we get

mk(Ω) = ραmk(ρΩ) ≥ ραmk(Ωk) = ραkF (H) .

We infer that

(27) lim inf
k→+∞

mk(Ω)

k(α+2)/2
≥ lim inf

k→+∞

(

ρext(k,Ω)
)α

k(α+2)/2
kF (H) =

1

|Ω|α/2F (H) ,

where again the last equality follows from (25).

The proof is achieved by combining (26) and (27).

Proof of statement (ii). Similarly as above, we deduce the statement by combining an
upper bound and a lower bound for Mk(Ω).

– Upper bound for Mk(Ω). We take ρ = ρint(k,Ω). By definition of Mk(·) it holds
Mk(ρΩ) ≤ F (H). Then, by using the homogeneity of Mk(·), we get

Mk(Ω) = ραMk(ρΩ) ≤ ραF (H) .

We infer that

(28) lim sup
k→+∞

Mk(Ω)

kα/2
≤ lim sup

k→+∞

(

ρint(k,Ω)
)α

kα/2
F (H) =

1

|Ω|α/2F (H) ,

where the last equality follows from (25).

– Lower bound for Mk(Ω). We take ρ = ρext(k,Ω). By using the homogeneity and
decreasing monotonicity of Mk(·), and the hypothesis (24), we get

Mk(Ω) = ραMk(ρΩ) ≥ ραMk(Ωk) = ραF (H) .

We infer that

(29) lim inf
k→+∞

Mk(Ω)

kα/2
≥ lim inf

k→+∞

(

ρext(k,Ω)
)α

kα/2
F (H) =

1

|Ω|α/2F (H) ,

where again the last equality follows from (25).

The proof is achieved by combining (28) and (29). �

In order to prove Lemma 16, we need some preliminaries.

Definition 17. We say that a k-hexagonal structure is a k-triangle if it has the shape of
an equilateral triangle (see Figure 3 (a) below). In particular, the number of cells k is of
the form k = l(l + 1)/2, where l is the number of cells on one of the sides of the triangle.
The boundary of the k-triangle is composed of three sets B1, B2 and B3, each of the sets
being composed of these sides whose exterior normal has positive scalar product with the
vector ν1, ν2 and ν3, respectively.

Lemma 18. Let Ωk be a k-triangle, and let {Ei} be a convex k-cluster of Ωk. Consider
the optimization problem

max
{

k
∑

i=1

|Ci| : {Ci} convex k-cluster of Ωk, Ci ⊇ Ei ∀i = 1, . . . , k
}

.

Then:
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ν3

ν
1

ν 2

(a) A 15-triangle.

Pi

(b) An example of convex
polygon Pi touching only one
side of the k-triangle.

Pi

(c) An example of convex
polygon Pi touching two
sides of the k-triangle.

(i) A solution {Copt
i } exists, and each Copt

i is a convex polygon Pi with a finite number
of sides.

(ii) Every side of Pi intersects in its relative interior ∪j 6=i∂Pj ∪ ∂Ωk.

(iii) If ni denotes the number of sides of Pi, it holds

1

k

k
∑

i=1

ni ≤ 6 .

Proof. (i) The existence is straightforward since, if we endow the class of convex k-clusters
with the Hausdorff topology, we are maximizing a continuous functional on a compact set
under the closed constraint Ci ⊇ Ei.
Since every Copt

i is a convex set, to prove that it is a polygon it is enough to show that

the portions of ∂Copt
i which are free, meaning that they do not lie neither on ∂Copt

j for

any j 6= i, nor on ∂Ωk, are line segments (possibly degenerated into a point). Let Γ
be any such portion, and assume by contradiction it is not a line segment. Then there
are two distinct points p, q on Γ such that the tangent lines to Γ through p and q are not
parallel; consequently, it is possible to construct a convex set, contained into Ωk\

⋃

j 6=iC
opt
j ,

containing Ei, and having a strictly larger area than Copt
i , contradicting the maximality

of
∑k

i=1 |C
opt
i |.

Notice finally that the number of sides of each Pi is necessarily finite in view of the
convexity of the polygons, which ensure that the contact set ∂Pi ∩ ∂Pj of the polygons Pi

and Pj is connected (and hence that the number of contacts is finite).

(ii) Assume by contradiction that there is a side S of Pi which does not intersect in its
relative interior ∪j 6=i∂Pj ∪ ∂Ωk. Then by adding to Pi a small triangle with basis S, we
would find a convex set, contained into Ωk \

⋃

j 6=i Pj , containing Ei, and having a strictly

larger area than Pi. This contradicts the maximality of
∑k

i=1 |Pi|.
(iii) Denote by P0 the unbounded connected component of R

2 \ ⋃k
i=1 Pi. In order to

compute the sum
∑k

i=1 ni, we construct a suitable planar graph associated with the family
of polygons {P0, . . . , Pk}.
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For every i = 0, 1, . . . , k, we associate with the polygon Pi a vertex.
Before we construct the edges of the graph, we make some preliminary observations:

• For j and i in {1, . . . , k}, the intersection ∂Pi ∩ ∂Pj may be either empty, or a
segment with strictly positive H1 measure, or a point;

• For j = 0 and i in {1, . . . , k}, the intersection ∂P0 ∩ ∂Pi may be either empty, or
a set with strictly positive H1 measure, or a finite number of points. Notice in
particular that ∂P0 ∩ ∂Pi may be disconnected.

Then we give the following rule:

• for j and i in {1, . . . , k}, we connect the vertices corresponding to Pj and Pi with
one edge if and only if ∂Pi ∩ ∂Pj is either a line segment with a strictly positive
H1 measure, or a point lying in the interior of a side of Pi or Pj ;

• for j = 0 and i in {1, . . . , k}, we connect the vertices corresponding to P0 and Pi

if and only if ∂Pi ∩ ∂P0 contains a side of Pi (that is a side that has an interior
contact point with ∂Ωk, but not with any of the convex polygons Pj , for j ≥ 1 and
j 6= i). In this case, we connect the vertices corresponding to P0 and Pi exactly
with one edge for each connected component of ∂Pi ∩ ∂P0 containing a side of Pi.

Note that it is possible to perform the above construction in such a way that different
edges do not intersect outside the vertices, so that the graph thus constructed is planar
(in order to construct a representation of the graph in the plane it is sufficient to associate
to each polygon Pi a point Xi in its interior and then connect the points Xi and Xj by a
curve passing through ∂Pi ∩ ∂Pj).
We notice that this planar graph may admit multiple edges connecting P0 to one of the
convex polygons Pi. On the other hand, by construction, we have that each face of the
graph has at least three edges. In fact if two edges e1 and e2, both connecting Pi to P0,
determine one face of the graph, then the intersections of these edges with ∂Pi are on the
same connected component of ∂Pi∩∂P0, which is impossible by construction since to each
connected component of ∂Pi ∩ ∂P0 is associated at most one edge.
The Euler formula on R

2 gives
V − E + F = 2 ,

being V , E, and F respectively the number of vertices, edges, and faces of the graph.
On the numbers V,E, F we know the following facts: the number V of vertices equals
k+1 (because we have added the exterior polygon P0 to the initial family of k polygons);
moreover, the number F of faces can be bounded in terms of the number E of edges
through the elementary inequality 3F ≤ 2E (because, since k ≥ 2, every face has at least
3 edges and every edge is on 2 faces). Thus, from the Euler formula we infer

(30) 3k − 3 ≥ E .

The family E of all edges of the graph is the union of two disjoint subfamilies: the subfamily
Ein of the edges which connect a pair of polygons Pi and Pj in {P1, . . . , Pk}, and the
subfamily Eout of the edges which connects P0 with a polygon in {P1, . . . , Pk}. Thus,
denoting respectively by Ein and Eout the cardinalities of such subfamilies, we have

(31) E = Ein + Eout .

We are going to estimate separately Ein and Eout in terms of the numbers

Nin:= total number of sides of polygons Pi (i = 1, . . . , k), which intersect

the boundary of another polygon Pj (j = 1, . . . , k) in their relative interior

Nout:= the remaining sides of P1, . . . , Pk.
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We first consider the edges in the subfamily Ein. Let eij be any such edge, connecting the
vertices which correspond to Pi and Pj . If the intersection ∂Pi∩∂Pj occurs in the relative
interior of a side of Pi (resp., such a side of Pj), we associate with eij such a side of Pi

(resp. a side of Pj). In this way, the number of sides which are associated with an edge is
at most 2. Notice also that the same side can be associated with more than one edge, if
it contains more than one intersection between different polygons.
Therefore, we have:

(32) 2Ein ≥ Nin .

From (30), (31), and (32), we deduce that

6k − 6 ≥ 2E = 2
(

Ein + Eout

)

≥ Nin + 2Eout .

Therefore, to achieve the proof of statement (iii), it is enough to show that

(33) 2Eout + 6 ≥ Nout .

We notice that, according to Lemma 18 (ii), every side of P1, . . . , Pk which touches only
∂Ωk (in its relative interior) is associated to some edge in Eout. Let’s count the total
number Nout of such sides.
Let ei be an edge in Eout, connecting the vertices which correspond to Pi and P0, through
a certain connected component of ∂Pi ∩ ∂P0 containing a side of Pi. Let S1, . . . , Sm be
the (consecutive) sides of Pi corresponding to the edge ei.
We distinguish three cases:

• Suppose that the chain S1, . . . , Sm touches ∂Ωk only in points of the side B1 of
the k-triangle Ωk (see Figure 3 (c)). Then, by the convexity of Pi, the number of
sides associated to the edge ei in Eout is at most 2 that is, m = 1 or m = 2.

• Suppose that the chain S1, . . . , Sm touches two of the sides of the k-triangle, say
B1 and B2 (see Figure 3 (b)). Then, there can be at most two sides of Pi for each
side of the k-triangle. Thus, m ≤ 4. Moreover, we can suppose that there is at
most one convex polygon Pi touching both B1 and B2 with a connected chain of
the form S1, . . . , Sm. In fact, let U12 be the connected of Ωk \ Pi whose boundary
contains the vertex B1 ∩ B2. Then, there are no polygons in U12. In fact, if this
is not the case, then we could translate all these polygons in the direction ν3 until
one of these polygons touches Pi. Now, in this new (still optimal) configuration,
the chain S1, . . . , Sm is disconnected. As a conclusion, there are at most three
polygons touching two sides of the k-triangle with a connected chain of sides; each
of these chains contains at most 4 segments.

• The last case is that the chain S1, . . . , Sm touches all the three sides of the k-
triangle. This case is outruled by performing the same translation as above.

In conclusion, we have that each edge ei connecting Pi to P0 contains at most two sides
of Pi. As an exception, there might be at most three other polygons for which one of
the edges has an extra contribution of 2 more sides, so that the extra-contribution of all
polygons is at most 3 · 2 = 6, which concludes the proof of (33). �

Proof of Lemma 16. Let us prove separately statements (i) and (ii).

Proof of statement (i). Let us show that, if {Ei} is any convex k-cluster of Ωk, it holds

(34)
k
∑

i=1

F (Ei) ≥ kF (H) .
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Claim: To prove the above property we may assume without loss of generality that Ωk is
a k-triangle.
Indeed, assume that we can prove the inequality (34) for convex k-clusters contained into
a k-triangle (for arbitrary large k ∈ N). Let now Ωk be any given k-hexagonal structure,
and let {Ei} be a convex k-cluster of Ωk.
We observe that Ωk can be embedded into a larger k′-hexagonal structure Ωk′ , Ωk′ ⊃ Ωk,
such that Ωk′ is a k

′-triangle.
We consider the convex k′-cluster {E′

i} of Ωk′ obtained by adding to the family {Ei} a
number of (k′ − k) copies of H, namely E′

i equals Ei for 1 ≤ i ≤ k, and E′
i equals a copy

of H for k + 1 ≤ i ≤ k′.
By assumption, we have

k′
∑

i=1

F (E′
i) ≥ k′F (H) .

Since
k′
∑

i=1

F (E′
i) =

k
∑

i=1

F (Ei) + (k′ − k)F (H) ,

we infer that
k
∑

i=1

F (Ei) ≥ kF (H) .

Let us now prove that inequality (34) for any k-cluster {Ei} contained into a k-triangle.
Let {Pi} be a family of polygons associated with {Ei} according to Lemma 18.

Since
∑k

i=1 |Pi| ≤ k, and F (Pi)|Pi|α/2 ≥ γ(ni) for every i = 1, . . . , k, we have

(35) kα/2
k
∑

i=1

F (Pi) ≥
(

k
∑

i=1

|Pi|
)α/2(

k
∑

i=1

γ(ni)

|Pi|α/2
)

.

By applying the Hölder inequality
∑

i |xiyi| ≤ (
∑

i |xi|p)1/p(
∑

i |yi|p
′

)1/p
′

with

p =
α+ 2

2
, q =

α+ 2

α
, xi :=

γ(ni)
2/(α+2)

|Pi|α/(α+2)
, yi = |Pi|α/(α+2) ,

we infer from (35) that

kα/2
k
∑

i=1

F (Pi) ≥
(

k
∑

i=1

γ(ni)
2/(α+2)

)(α+2)/2
.

By virtue of Lemma 18 (iii) and assumption (H3) (ii), we deduce that

kα/2
k
∑

i=1

F (Pi) ≥ k(α+2)/2γ(6) ,

and, in turn, that

k
∑

i=1

F (Ei) ≥
k
∑

i=1

F (Pi) ≥ kγ(6) .
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Proof of statement (ii). In order to prove the equality Mk(Ωk) = F (H) we are going to
show that, if {Ei} is a convex k-cluster of Ωk such that

(36) max
i=1,...,k

F (Ei) ≤ F (H)

it holds necessarily

(37) max
i=1,...,k

F (Ei) = F (H) .

Claim: To prove the above implication we may assume without loss of generality that Ωk

is a k-triangle.
Indeed, assume that we can prove the implication (36) ⇒ (37) for k-triangle. Let now Ωk

be any given k-hexagonal structure, let {Ei} be a convex k-cluster of Ωk satisfying (36),
and let us show that it satisfies (37).
We observe that, for some k′ ≥ k, Ωk can be embedded into a larger k′-triangle Ωk′, that
is Ωk′ ⊃ Ωk. We consider the convex k′-cluster {E′

i} of Ωk′ obtained by adding to the
family {Ei} a number of (k′ − k) copies of H, namely E′

i equals Ei for 1 ≤ i ≤ k, and E′
i

equals a copy of H for k + 1 ≤ i ≤ k′.
By construction, the convex k′-cluster {E′

i} still satisfies the condition

max
i=1,...,k′

F (E′
i) ≤ F (H) .

Since we are assuming that the implication (36) ⇒ (37) holds true for Ωk′ , we have

max
i=1,...,k′

F (E′
i) ≤ F (H) ,

which in turn implies (37).
Let us now prove the implication (36) ⇒ (37) for k-triangles. Let Ωk be a k-triangle, and
let {Ei} be a convex k-cluster of Ωk satisfying (36). Let {Pi} be a family of polygons
associated with {Ei} according to Lemma 18.
By using (36), the monotonicity hypothesis (H1) made on F , and assumption (H3) (i), we
see that

(38) F (Pi) ≤ F (Ei) ≤ F (H) ∀i = 1, . . . , k ;

so we are done if we show that

(39) F (Pi) ≥ F (H) ∀i = 1, . . . , k .

Let us denote by ni the number of sides of the convex polygon Pi.
By using (38), assumption (H3) (i), and the definition of γ(ni), we have

γ(6)|Pi|α/2 ≥ F (Pi)|Pi|α/2 ≥ γ(ni) ∀i = 1, . . . , k .

We deduce that

(40) F (Pi) ≥
γ(ni)

|Pi|α/2
∀i = 1, . . . , k

and

(41) |Pi| ≥
(γ(ni)

γ(6)

)2/α
∀i = 1, . . . , k .

Using (41), summed over k, Lemma 18 (iii), and assumption (H3) (ii), we get

(42) k ≥
k
∑

i=1

|Pi| ≥
k
∑

i=1

(γ(ni)

γ(6)

)2/α
≥ k .
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We deduce that all the inequalities (41) hold as equalities, and then from (40) we obtain

(43) F (Pi) ≥ γ(6) ∀i = 1, . . . , k .;

finally, in view of assumption (H3) (i), we obtain the required inequalities (39).

Remark 19. Note that, in case F satisfies a quantitative Faber-Krahn inequality of the
kind

F (P/|P |) ≥ γ(n) + δn(P/|P |, P ∗
n ) for every n-gon P,

where the non-negative function δn vanishes if and only if P is regular, then one can modify
the above proofs in order to show that not onlymk(Ωk) = kF (H) (resp.,Mk(Ωk) = F (H)),
but also that actually the unique optimal partition consists of regular hexagons.

4. Proof of Theorem 6

Remark 20. Before entering into the proof let us stress that, in the setting of Theorem
6, the assertion mk(Ωk) = F (H) for every k-hexagonal structure Ωk seems to be too
strong. In particular, if one tries to prove it by adapting the arguments used in the proof
of Lemma 16, one gets troubles in order to pass from the case of a triangular hexagonal
structure to the case of a generic hexagonal structure. Indeed, embedding a given k-
hexagonal structure Ωk into a k′-triangle (with k′ > k), it is not true that for every convex
k-partition {Pi} of Ωk it is possible to find a convex k′-partition {P ′

i} of Ωk′ such that
P ′
i ∩ Ωk′ equals Pi ∩ Ωk for 1 ≤ i ≤ k and P ′

i ∩ Ωk′ equals a copy of H for k + 1 ≤ i ≤ k′.

The proof of Theorem 6 needs some preliminary lemmas.

Lemma 21. Let Q be a convex polygon with nQ sides; let {Pi}{i=1,...,k} be a convex k-
partition of Q, and let ni denote the number of sides of Pi ∩Q. Then

1

k

k
∑

i=1

ni ≤ 6 +
nQ − 6

k
.

Proof. Throughout the proof, we denote for brevity by Pi the polygon Pi ∩ Q, for i =
1, . . . , k. Moreover, we denote by P0 the complement of Q in R

2.
Let us assume without loss of generality that k ≥ 2 (otherwise the statement is immediately
satisfied).

In order to compute the sum
∑k

i=1 ni, we construct a suitable graph associated with the
family of polygons {P0, . . . , Pk}.
More precisely, for every i = 0, 1, . . . , k, we associate with the polygon Pi a vertex.
We denote by I the family of indices i ∈ {1, . . . , k} such that ∂Pi ∩ ∂Q has a strictly
positive H1 measure. For i ∈ I, some polygon Pi may disconnect Q (meaning that the
complement in Q of the interior of Pi may be disconnected). Then, for i ∈ I, we denote by
m(i) the number of connected components of ∂Pi∩∂Q having strictly positiveH1-measure.
Then we give the following rule:

• for j and i in {1, . . . , k}, we connect the vertices corresponding to Pj and Pi if and
only if their common boundary ∂Pi ∩ ∂Pj has a strictly positive H1 measure;

• for j = 0 and i in {1, . . . , k}, we connect the vertices corresponding to P0 and Pi if
and only if ∂Pi∩∂Q has a strictly positive H1 measure, and in this case we connect
such vertices exactly with m(i) edges (one edge for each connected component of
∂Pi ∩ ∂Q having strictly positive H1 measure).
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For the planar graph thus constructed, the Euler formula on R
2 gives

V − E + F = 2 ,

being V , E, and F respectively the number of vertices, edges, and faces of the graph.
On the numbers V,E, F we know the following facts: the number V of vertices equals
k+1 (because we have added the exterior polygon P0 to the initial family of k polygons);
moreover, reasoning as in the proof of Lemma 18, the number F of faces can be bounded
in terms of the number E of edges through the elementary inequality 3F ≤ 2E (since we
can construct a planar graph with the same number of faces and edges, which does not
contain multiple edges). Thus, from the Euler formula we infer

(44) 3k − 3 ≥ E .

The family E of all edges of the graph is the union of two disjoint subfamilies: the subfamily
Ein of the edges connecting a pair of polygons Pi and Pj in {P1, . . . , Pk}, and the subfamily
Eout of the edges connecting P0 with a polygon in {P1, . . . , Pk}. Thus, denoting respectively
by Ein and Eout the cardinalities of such subfamilies, we have

(45) E = Ein + Eout .

We are going to estimate separately Ein and Eout in terms of the numbers

Nin:= total number of sides of P1, . . . , Pk which do not lie on ∂Q

Nout:= total number of sides of P1, . . . , Pk which lie on ∂Q.

Since each edge of the graph in the subfamily Ein appears at least twice when counting
the number of sides of P1, . . . , Pk which do not lie on ∂Q, we have

(46) 2Ein ≥ Nin .

On the other hand, by construction, we have

(47) Eout =
∑

i∈I
m(i) ;

moreover, in the counting of Nout, each connected component of ∂Pi ∩ ∂Q (for i ∈ I) of
strictly positive H1 measure gives a contribution of at most 2 extra sides other than the
initial sides of Q, so that

(48) Nout − nQ ≤ 2
∑

i∈I
m(i).

By (44), (45), (46), (47), and (48), we conclude that

6k−6+nQ ≥ 2E+nQ = 2
(

Ein+Eout

)

+nQ ≥ Nin+2
∑

i∈I
m(i)+nQ ≥ Nin+Nout =

k
∑

i=1

ni .

�

Lemma 22. Under the assumptions of Theorem 6, let Qk be a family of convex polygons
with at most C

√
k sides, where C is a positive constant (independent of k). Then there

exists k (depending on C and on the constants k0 and δ0 appearing in assumption (H2)
(ii)) such that

mk(Qk) ≥
|Qk|α/2
kα/2

γ
(

6 +
C√
k

)

∀k ≥ k .
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Proof. Let ρk = k1/2

|Qk|1/2
, so that |ρkQk| = k. By homogeneity of mk(·), we have

mk(Qk) = ρ−α
k mk(ρkQk) =

k−α/2

|Qk|−α/2
mk(ρkQk) .

Thus we are reduced to prove that there exists k such that

mk(ρkQk) ≥ γ
(

6 +
C√
k

)

∀k ≥ k .

In the remaining of the proof we assume with no loss of generality that ρk = 1 and
|Qk| = k.
Let us show that there exists k ∈ N such that, if k ≥ k and {Pi} is a convex k-partition
of Qk satisfying

(49) max
i=1,...,k

F (Pi ∩Qk) ≤ γ
(

6 +
C√
k

)

,

it holds necessarily

(50) max
i=1,...,k

F (Pi ∩Qk) = γ
(

6 +
C√
k

)

.

Let us denote by nki the number of sides of the polygon Pi ∩Qk.

We observe that, by Lemma 21, and since the number of sides nQk
of Qk is at most C

√
k,

it holds

(51)
1

k

k
∑

i=1

nki ≤ 6 +
nQk

− 6

k
≤ 6 +

C
√
k − 6

k
≤ 6 +

C√
k
.

By using (49) and the definition of γ(nki ), we have

γ
(

6 +
C√
k

)

|Pi ∩Qk|−α/2 ≥ F (Pi ∩Qk)|Pi ∩Qk|−α/2 ≥ γ(nki ) ∀i = 1, . . . , k .

We deduce that

(52) F (Pi ∩Qk) ≥ γ(nki )|Pi ∩Qk|α/2 ∀i = 1, . . . , k

and

(53) |Pi ∩Qk| ≤
γ(nki )

−2/α

γ
(

6 + C√
k

)−2/α
∀i = 1, . . . , k .

Now we sum the inequalities (53) over i = 1, . . . , k. We get

k =

k
∑

i=1

|Pi ∩Qk| ≤
k
∑

i=1

γ(nki )
−2/α

γ
(

6 + C√
k

)−2/α
≤ k .

where the last inequality holds true thanks to (51) and assumption (H2) (ii), provided k is

sufficiently large. More precisely it must be k ≥ k0 and C/
√
k ≤ δ0, with k0 and δ0 given

by assumption (H2) (ii), so it is enough to take k ≥ k := max{k0, C2/δ20}.
We deduce that, for k ≥ k, all the inequalities (53) hold as equalities, and then from (52)
we obtain

(54) F (Pi ∩Qk) ≥ γ
(

6 +
C√
k

)

∀i = 1, . . . , k ,
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which achieves the proof of (50).
�

To state next lemma, we need to introduce a definition. Given an open bounded and
convex domain Ω, and a tiling (Hi)i∈I of R2 made by copies Hi of the unit area regular
hexagon H, as done in the proof of Theorem 3, we set

I int(ρ,Ω) :=
{

i ∈ I : Hi ⊂ (ρΩ)
}

,

ρint(k,Ω) := inf
{

ρ > 0 : ♯I int(ρ,Ω) ≥ k
}

(for any positive ρ, ρΩ denotes the dilation of Ω of factor ρ).
Since Ω is fixed, hereafter we shorten the notation into ρk = ρint(k,Ω), and I int(ρ) =
I int(ρ,Ω).
We observe that, setting

I int∂Ω(ρ) :=
{

i ∈ I int(ρ) : Hi ∩ ∂(ρΩ) 6= ∅
}

,

it holds

(55) ♯I int(ρk)− ♯I int∂Ω(ρk) < k .

Indeed, otherwise ρkΩ would contain at least k hexagons (not touching ∂(ρkΩ)), contra-
dicting the minimality of ρk among the radii ρ such that ♯I int(ρ) ≥ k.
Then we can remove from the family of all the hexagons covered by ρkΩ some ones, all of
them touching ∂(ρkΩ), in such a way that the remaining number is exactly k. Notice that
the choice of the hexagons touching ∂(ρkΩ) which can be removed is possibly not unique,
but thanks to (55) there is at least one.
Keeping the above notation, we give the following

Definition 23. We call an inner k-hexagonal structure of Ω any k-hexagonal structure
contained into ρkΩ obtained as described above, i.e., by removing some hexagons touching
∂(ρkΩ) from the family of all hexagons contained into ρkΩ.

Lemma 24. Let Hk(Ω) be an inner k-hexagonal structure of Ω, and let conv(Hk(Ω))
denote its convex envelope. Then

(i) the number of sides of conv(Hk(Ω)) does not exceed C
√
k, being C a positive

constant depending only on Ω;

(ii) it holds

lim
k→+∞

∣

∣conv(Hk(Ω))
∣

∣

|ρkΩ|
= 1

Proof. (i) We denote by p the number of hexagons in Hk(Ω) having a free side, meaning a
side which is not in common with another hexagon in Hk(Ω). Clearly the number of sides
of conv(Hk(Ω)) is not larger than 6p. So we are going to estimate p. We observe that, if
h is a copy of H lying in Hk(Ω) and having a free edge, it holds necessarily

(56) h ⊆ ∂(ρkΩ)⊕B4 :=
{

x ∈ R
2 : dist(x, ∂(ρkΩ)) ≤ 4

}

.

Indeed, if h′ is a copy of H lying outside Hk(Ω) and having a side in common with h,
by construction h′ cannot be entirely contained into ρkΩ (because otherwise h′ will be
an hexagon in Hk(Ω)). Therefore any such hexagon h′ meets necessarily the boundary of
ρkΩ, and the inclusion (56) follows, since the diameter of H is less than 2.
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In view of (56), and since any hexagon with a free edge has unit area, we have

p ≤ |∂(ρkΩ)⊕B4| .
Now we observe that

|∂(ρkΩ)⊕B4| = ρ2k|∂Ω ⊕B4/ρk | ≤ ρ2kM
4

ρk
H1(∂Ω) = 4MH1(∂(ρkΩ)) ,

where the last inequality holds for some positive constant M = M(Ω) independent of k.
Indeed, by the Lipschitz regularity assumed on ∂Ω, the perimeter H1(∂Ω) agrees with the
so-called Minkowski content of ∂Ω, namely with limε→0(2ε)

−1|∂Ω ⊕Bε|.
We deduce that

p ≤ 4MH1(∂Ω)ρk ≤ C
√
k ,

where the last equality holds for some positive constant C = C(Ω) since ρk ∼
√
k as

k → +∞ (cf. the proof of Theorem 3).

(ii) Let us denote for brevity Qk := conv(Hk(Ω)). Since Qk ⊆ ρkΩ, we have immediately

lim sup
k→+∞

|Qk|
|ρkΩ|

≤ 1 .

We have to prove that also the converse estimate holds true. Since (56) is satisfied for
every h ∈ Hk(Ω) having a free edge, it holds

ρkΩ ⊆ Hk(Ω) ∪
[

∂(ρkΩ)⊕B4

]

,

so that

|ρkΩ| ≤ |Hk(Ω)|+ |∂(ρkΩ)⊕B4| ≤ |Qk|+ |∂(ρkΩ)⊕B4| .
We have already shown in part (i) of the proof that

|∂(ρkΩ)⊕B4| ≤ 4MH1(∂(ρkΩ)) ,

for some positive constant M =M(Ω) independent of k. Therefore we have

lim inf
k→+∞

|Qk|
|ρkΩ|

≥ lim inf
k→+∞

|ρkΩ| − |∂(ρkΩ)⊕B4|
|ρkΩ|

≥ lim inf
k→+∞

(

1− 4MH1(∂(ρkΩ))

|ρkΩ|
)

= lim inf
k→+∞

(

1− 4MρkH1(∂Ω)

ρ2k|Ω|
)

= 1 ,

where the last equality holds since ρk ∼
√
k as k → +∞.

�

Proof of Theorem 6.
Let (Hi)i∈I denote a tiling of R2 made by copies Hi of the unit area regular hexagon H.
In the same way as in the proof of Lemma 15, for any positive factor of dilation ρ, we
introduce the families of indices I int(ρ,Ω) and Iext(ρ,Ω); moreover, for every k ∈ N, we
define the radii ρint(k,Ω) and ρext(k,Ω), and we recall that they behave asymptotically as√

k√
|Ω|

as k → +∞ (cf. (25)).
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We observe that, since F satisfies assumption (H2), the map Ω 7→ mk(Ω) is homogeneous
of degree α under dilations. Moreover, if Ω ⊆ Ω′, it holds Pk(Ω

′) ⊆ Pk(Ω) and, since F
satisfies assumption (H1), we have

Ω ⊆ Ω′ ⇒ F (Pi ∩ Ω) ≤ F (Pi ∩ Ω′) ∀ {Pi} ∈ Pk(Ω
′) .

Consequently, the map Ω 7→ mk(Ω) is monotone increasing under inclusions.
We are ready to give an upper and lower bound for mk(Ω).

Upper bound. We take ρ = ρext(k,Ω).
By using the homogeneity and increasing monotonicity of mk(·), we get

mk(Ω) = ρ−αmk(ρΩ) ≤ ρ−αmk(Ωk) ,

where Ωk denotes a k-hexagonal structure; moreover, since there exists a convex k-partition
{Pi} ∈ Pk(Ωk) having among its elements a convex polygon whose intersection with Ωk is
a copy of H, we have mk(Ωk) ≤ F (H). We infer that

(57) lim sup
k→+∞

kα/2mk(Ω) ≤ lim sup
k→+∞

kα/2
(

ρext(k,Ω)
)−α

F (H) = |Ω|α/2F (H) ,

where in the last equality we have exploited the fact that ρext(k,Ω) ∼
√
k√
|Ω|

as k → +∞.

Lower bound. We take ρ = ρint(k,Ω), and we choose an inner k-hexagonal structure
Hk(Ω) according to Definition 23. We set Qk := conv(Hk(Ω)). Since ρΩ ⊇ Qk (because
ρΩ ⊇ Hk(Ω) and we assumed Ω convex), by homogeneity and increasing monotonicity of
mk(·), we have

mk(Ω) = ρ−αmk(ρΩ) ≥ ρ−αmk(Qk) .

By Lemma 24 (i), the number of sides of Qk is not larger than C
√
k, for a positive constant

C = C(Ω). Then, by Lemma 22, there exists k such that

mk(Qk) ≥
|Qk|α/2
kα/2

γ
(

6 +
C√
k

)

∀k ≥ k .

Thus we have

kα/2mk(Ω) ≥ kα/2
(

ρint(k,Ω)
)−α

mk(Qk) ≥
(

ρint(k,Ω)
)−α|Qk|α/2γ

(

6 +
C√
k

)

Now, we pass to the liminf as k → +∞ in the above inequality. By applying Lemma 24
(ii), and recalling the assumption that γ is continuous at 6 with γ(6) = F (H), we conclude
that

(58) lim inf
k→+∞

kα/2mk(Ω) ≥ |Ω|α/2 lim inf
k→+∞

γ
(

6 +
C√
k

)

= |Ω|α/2F (H) .

The proof is archived by combining (57) and (58). �

5. Proof of Proposition 11

The functional F (Ω) = λ1(Ω) satisfies the hypotheses (H1) and (H2) of both Theorems
2 and 3. Assumption (17) corresponds to the hypothesis (H3) (i) of those theorems.
Next lemma shows that assumptions (17)-(18) ensure the validity of hypothesis (H3) (ii).
Consequently, Proposition 11 follows.
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Lemma 25. Under the assumptions (17)-(18), the map n 7→ γ(n) defined by (14) satisfies

(59)
1

k

k
∑

i=1

ni ≤ 6 ⇒ 1

k

k
∑

i=1

γ
1

2 (ni) ≥ γ
1

2 (6) .

Before proving this lemma, let us observe that if (59) holds, then one also gets

(60)
1

k

k
∑

i=1

ni ≤ 6 ⇒ 1

k

k
∑

i=1

γ(ni) ≥ γ(6)

as a direct consequence of Cauchy-Schwartz inequality. It is important to notice that (60)
may be proved to hold even in the absence of (59). This could occur in the case in which
the estimates on the values a, b in (18) are not fine enough for (59), but good for (60).
The proof of (60) follows step by step Lemma 25.
The assumptions a = 6.022π and b = 5.82π in (18) are good enough to prove Lemma 25,
but there is some flexibility. The precise requirements for a and b will naturally follow
from the proof.
We refer the reader to [19] for a precise computation of the eigenvalues.

Proof. We prove the statement by induction over k.
Assume k = 1. We have to show that n ≤ 6 ⇒ γ(n) ≥ γ(6). This is straightforward, since

for every n ≤ 6 an optimal polygon P opt
n for the minimization problem which defines γ(n)

can be approximated in Hausdorff distance by a sequence {Hj} of convex hexagons, so
that

γ(n) = λ1(P
opt
n )|P opt

n | = lim
j
λ1(Hj)|Hj | ≥ γ(6) .

We now assume that (59) holds true for a certain k ∈ N, and we deduce it for k + 1.
Given n1, . . . , nk+1 satisfying

(61)
1

k + 1

k+1
∑

i=1

ni ≤ 6 ,

let us show that

(62)
1

k + 1

k+1
∑

i=1

γ
1

2 (ni) ≥ γ
1

2 (6) .

Without loss of generality, we assume that

max
i=1,...,k+1

ni = n1 and min
i=1,...,k+1

ni = n2 .

The idea is to use an exact estimate for a small number of integers, including n1 and
n2, which have average at least 6, and to use the induction argument for the remaining
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integers. For convenience, let us list below the inequalities we are going to exploit:

γ
1

2 (3) = λ
1

2

1 (P
∗
3 ) =

(4π2√
3

)
1

2 ≥ 2.693π
1

2(63)

γ
1

2 (4) = λ
1

2

1 (P
∗
4 ) =

√
2π ≥ 2.506π

1

2(64)

γ
1

2 (5) ≥ a
1

2 ≥ 2.4539π
1

2(65)

γ
1

2 (6) = λ
1

2

1 (P
∗
6 ) ≤ 2.433π

1

2(66)

γ
1

2 (7) ≥ b
1

2 ≥ 2.4124π
1

2 .(67)

λ
1

2

1 (B) ≥ 2, 404π
1

2 .(68)

Above, B is the ball of unit area whose value is explicitly known in term of the Bessel
function J0 and is larger than 5.783π. Notice that (63)-(64) hold true since the regular
triangle P ∗

3 and the square P ∗
4 minimize λ1 among triangles and quadrilaterals of given

area (the proof by Steiner symmetrization can be found for instance in [18, Section 3]); on
the other hand, (65)-(67) are exactly our assumption (18). Inequality (66) is a consequence
of hypothesis (17) associated to a numerical estimate from above of the eigenvalue on the
regular hexagon.
We are going to distinguish the three cases n1 ≥ 9, n1 = 8, and n1 = 7.

• Case 1: n1 ≥ 9.

Clearly n2 < 6, and we distinguish the three subcases n2 = 3, 4, 5.

– Subcase (1a): n2 = 3.

Since n1 + n2 ≥ 12, by (61) we have
∑k+1

i=3 ni ≤ (k − 1)6; hence, from the induction

hypothesis, we infer that
∑k+1

i=3 γ
1

2 (ni) ≥ (k − 1)γ
1

2 (6). The thesis follows by adding to
the previous inequality the following one:

(69) γ
1

2 (n1) + γ
1

2 (n2) ≥ λ1(B) + γ
1

2 (3) ≥ 2, 404π
1

2 + 2.693π
1

2 ≥ 2γ
1

2 (6) .

Here we have used (63) to estimate γ(n2), and the Faber Krahn inequality in order to
bound from below γ(n1) with the first Dirichlet eigenvalue of the ball B of unit area. The
last inequality in (69) follows from (66).

– Subcase (1b): n2 = 4.
We repeat the same argument as in Subcase (1a), with the inequality (69) replaced by the
following one, obtained from (64):

(70) γ
1

2 (n1) + γ
1

2 (n2) ≥ λ
1

2

1 (B) + γ
1

2 (4) ≥ 2, 404π
1

2 + 2.506π
1

2 ≥ 2γ
1

2 (6) .

– Subcase (1c): n2 = 5.
By the definition of n2 we have that, for every i ≥ 2, ni < 6 implies ni = 5. Moreover,
since the average of the ni’s does not exceed 6, and n1 ≥ 9, there exist at least another
integer, say n3, such that n3 = 5.
Since n1 + n2 + n3 ≥ 9 + 5 + 5 > 18, by (61) and the induction hypothesis we have
∑k+1

i=4 γ
1

2 (ni) ≥ (k − 2)γ
1

2 (6).
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We conclude by adding to the previous inequality the following one:

γ
1

2 (n1) + γ
1

2 (n2) + γ
1

2 (n3) ≥ λ
1

2

1 (B) + 2γ
1

2 (5) ≥ 2, 404π
1

2 + 2a
1

2(71)

≥ 2, 404π
1

2 + 2 · 2.4539π 1

2 ≥ 3γ
1

2 (6) .

Here we have used the Faber-Krahn inequality, the assumption (18) made on γ(5), and
(66).

• Case 2: n1 = 8.

– Subcase (2a): n2 = 4.
Since n1 + n2 ≥ 12, we proceed as in cases (1a) and (1b). Indeed, the same inequality
as in (70) holds, and the thesis follows as usual by addition and exploiting the induction
hypothesis.

– Subcase (2b): n2 = 5.
By arguing as done as in case (1c), we see that there exists at least another integer, say
n3, such that n3 = 5. We have n1 + n2 + n3 = 18. Then we can conclude as done in case

(1c), since
∑k+1

i=4 γ
1

2 (ni) ≥ (k− 2)γ
1

2 (6), and the the same inequality as in (71) is in force.

– Subcase (2c): n2 = 3.
We distinguish two further subcases:
(i) If in the family {n3, . . . , nk+1} there exists at least an integer, say n3, such that n3 ∈
{7, 8}, then we have n1+n2+n3 ≥ 8+3+7 = 18. Then the induction hypothesis ensures

that
∑k+1

i=4 γ
1

2 (ni) ≥ (k − 2)γ
1

2 (6), and we conclude by adding the inequality

γ
1

2 (n1) + γ
1

2 (n2) + γ
1

2 (n3) ≥ λ
1

2

1 (B) + γ
1

2 (3) + λ
1

2

1 (B) ≥ 3γ
1

2 (6) .

(ii) If ni ≤ 6 for every i ∈ {3, . . . , k+1}, by (63)-(64)-(65) we have γ(ni) ≥ γ(6) for every

i ∈ {3, . . . , k + 1}. Then the inequality
∑k+1

i=3 γ
1

2 (ni) ≥ (k − 2)γ
1

2 (6) holds true, and the
thesis follows by adding the inequality

γ
1

2 (n1) + γ
1

2 (n2) ≥ λ
1

2

1 (B) + γ
1

2 (3) ≥ 2γ
1

2 (6) .

• Case 3: n1 = 7.

– Subcase (3a): n2 = 5.
Since n1 + n2 = 12, we proceed as in cases (1a), (1b), and (2a). Namely, by (61), we have
∑k+1

i=3 ni ≤ (k−1)6; hence, by induction hypothesis, we have
∑k+1

i=3 γ
1

2 (ni) ≥ (k−2)γ
1

2 (6).
The thesis follows by adding the inequality

γ
1

2 (n1) + γ
1

2 (n2) = γ
1

2 (7) + γ
1

2 (5) ≥ a
1

2 + b
1

2 ≥ 2.4539π
1

2 + 2.4124π
1

2 ≥ 2γ
1

2 (6) ,

which follows from our assumptions (17)-(18).

– Subcase (3b): n2 = 4.
We distinguish two further subcases:
(i) If in the family {n3, . . . , nk+1} there exists at least an integer, say n3, such that n3 = 7,
then we have n1 + n2 + n3 ≥ 7 + 4 + 7 = 18. Then by induction hypothesis we have
∑k+1

i=4 γ
1

2 (ni) ≥ (k − 2)γ
1

2 (6), and we conclude by adding the inequality

γ
1

2 (n1) + γ
1

2 (n2) + γ
1

2 (n3) = 2γ
1

2 (7) + γ
1

2 (4) ≥ 2b
1

2 + 2.506π
1

2 ≥
2 · 2.4124π 1

2 + 2.506π
1

2 ≥ 3γ
1

2 (6) .
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(ii) If ni ≤ 6 for every i ∈ {3, . . . , k+1}, by (63)-(64)-(65) we have γ(ni) ≥ γ(6) for every

i ∈ {3, . . . , k + 1}. Then the thesis follows by adding the two inequalities
∑k+1

i=3 γ
1

2 (ni) ≥
(k − 2)γ

1

2 (6) and

γ
1

2 (n1) + γ
1

2 (n2) = γ
1

2 (7) + γ
1

2 (4) ≥ b
1

2 + 2.506π
1

2 ≥
2.4124π

1

2 + 2.506π
1

2 ≥ 2γ
1

2 (6) .

– Subcase (3c): n2 = 3.
We have to distinguish three subcases:
(i) Assume that in the family {n3, . . . , nk+1} there exists at least two integers, say n3
and n4, such that n3 = n4 = 7. Then we have n1 + n2 + n3 + n4 = 24. By (61) we

have
∑k+1

i=5 ni ≤ (k − 4)6; hence, from the induction hypothesis, it holds
∑k+1

i=5 γ
1

2 (ni) ≥
(k − 4)γ

1

2 (6). We conclude by adding the estimate

γ
1

2 (n1) + γ
1

2 (n2) + γ
1

2 (n3) + γ
1

2 (n4) ≥ 3γ
1

2 (7) + γ
1

2 (3) ≥ 3b
1

2 + γ
1

2 (3) ≥
3 · 2.4124π 1

2 + 2.693π
1

2 ≥ 4γ
1

2 (6) .

(ii) Assume that in the family {n3, . . . , nk+1} there exists one integer, say n3, such that
n3 = 7, while ni ≤ 6 for all i ∈ {4, . . . , k + 1}. Since we have already seen in subcase

(i) of case (3b) that 2γ
1

2 (7) + γ
1

2 (4) ≥ 3γ
1

2 (6), and since γ(3) > γ(4), a fortiori we

have 2γ
1

2 (7) + γ
1

2 (3) ≥ 3γ
1

2 (6). Then the thesis follows by adding the two inequalities
∑k+1

i=4 γ
1

2 (ni) ≥ (k − 3)γ
1

2 (6) and

γ
1

2 (n1) + γ
1

2 (n2) + γ
1

2 (n3) = 2γ
1

2 (7) + γ
1

2 (3) ≥ 3γ
1

2 (6) .

(ii) Eventually, assume that ni ≤ 6 for every i ∈ {3, . . . , k+1}. Since we have already seen

in subcase (ii) of case (3b) that γ
1

2 (7) + γ
1

2 (4) ≥ 2γ
1

2 (6), and since γ(3) > γ(4), a fortiori

we have γ
1

2 (7) + γ
1

2 (3) ≥ 2γ
1

2 (6). Then the thesis follows by adding the two inequalities
∑k+1

i=3 γ
1

2 (ni) ≥ (k − 2)γ
1

2 (6) and

γ
1

2 (n1) + γ
1

2 (n2) = γ
1

2 (7) + γ
1

2 (3) ≥ 2γ
1

2 (6) .

�

6. Appendix

Lemma 26. The function

ψ(t) =

(

2t sin(π/t) +
√

2πt sin(2π/t)
√

2t sin(2π/t)

)2/3

is decreasing and strictly convex on [3,+∞).

Proof. Writing

g(s) =
tan s

s
, h(s) = 1 +

√

g(s),

we obtain that

ψ(t) =
(

√

t tan(π/t) +
√
π
)2/3

= π1/3 [h(s(t))]2/3,
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where

s = s(t) =
π

t
∈
(

0,
π

3

]

, s′ = − π

t2
= −s

2

π
< 0, s′′ =

2π

t3
=

2s3

π2
> 0.

Direct calculations show that, for s ∈ (0, π/3],

g′(s) =
1

s cos2 s
− tan s

s2
=

2s− sin 2s

2s2 cos2 s
> 0,

g′′(s) =
2 sin s

s cos3 s
− 2

s2 cos2 s
+

2 tan s

s3
= 2

s2 sin s− s cos s+ sin s cos2 s

s3 cos3 s
.

Since

h′(s) =
g′(s)

2
√

g(s)
> 0, h′′(s) =

g′′(s)

2
√

g(s)
− [g′(s)]2

4[g(s)]3/2
4[g(s)]3/2,

on the considered interval, on the one hand we infer

π−1/3ψ′(t) =
2

3
[h(s(t))]−1/3h′(s(t)) · s′(t) < 0,

so that ψ is decreasing. On the other hand, we are going to show the positivity of

3π−1/3

2
ψ′′(t) = −1

3
[h(s)]−4/3[h′(s) · s′]2 + [h(s)]−1/3h′′(s) · [s′]2 + [h(s)]−1/3h′(s) · s′′

>
1

3
h−4/3[s′]2

{

3h · h′′ − [h′]2
}

=
1

3
h−4/3[s′]2

{

3 (1 +
√
g) · 2g · g

′′ − [g′]2

4g3/2
− [g′]2

4g

}

>
1

3
h−4/3[s′]2

1 +
√
g

g3/2

{

3

2
g · g′′ − [g′]2

}

,

where

3

2
g · g′′ − [g′]2 =

3 sin s(s2 sin s− s cos s+ sin s cos2 s)− (s − sin s cos s)2

s4 cos4 s

=
3s2 sin2 s− s sin s cos s+ 2 sin2 s cos2 s− s2

s4 cos4 s

=
1
2s

2 − 3
2s

2 cos 2s− 1
2s sin 2s+

1
4 − 1

4 cos 4s

s4 cos4 s
=:

k(s)

s4 cos4 s
.

By direct calculations we infer k(0) = k′(0) = 0 and, for s ∈ (0, π/4],

k′′(s) = 1 + (−5 + 6s2) cos 2s + 14s sin 2s+ 4cos 4s ≥ 1− 5 cos 2s+ 7 sin2 2s+ 4cos 4s

=
9

2
− 5 cos 2s+

1

2
cos 4s ≥ 9

2
− 5

(

1− (2s)2

2
+

(2s)4

4!

)

+
1

2

(

1− (4s)2

2

)

= 6s2 − 10

3
s4 > 0;

Finally, also when s ∈ [π/4, π/3]

k′′(s) ≥ 1− 1

2

(

−5 + 6
π2

9

)

+ 7π
√
3− 4 > 0,

and also the convexity of ψ follows. �
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Lemma 27. The function

ϕ(t) =

(

2t sin(π/t) +
√

2πt sin(2π/t)
√

2t sin(2π/t)

)2

is decreasing and strictly convex on [3,+∞).

Proof. The proof is a direct consequence of Lemma 26. Indeed, keeping the corresponding
notation, we have

ϕ(t) = [ψ(t)]3,

ϕ′(t) = 3[ψ(t)]2ψ′(t) < 0,

ϕ′′(t) = 6ψ(t)[ψ′(t)]2 + 3[ψ(t)]2ψ′′(t) > 0,

as long as t ≥ 3. �

Lemma 28. The function

ϕ(t) =
π 24/t Γ2

(

1
2 +

1
t

)

t tan
(

π
t

)

Γ2
(

1 + 1
t

)

is increasing and concave on [3,+∞).

Proof. The first step consists in writing ϕ(t) as a product of Gamma functions. This
can be done by recalling the well known identity zΓ(z) = Γ(1 + z), together with Euler’s
reflection formula

Γ(z)Γ(1 − z) =
π

sin(πz)
, Γ

(

1

2
+ z

)

Γ

(

1

2
− z

)

=
π

cos(πz)
,

and Legendre’s duplication formula

Γ (2z) =
22z

2
√
π
Γ (z) Γ

(

1

2
+ z

)

(see [12]). Writing α = 1/t ∈ (0, 1/3], we obtain

1

π
ϕ

(

1

α

)

=
22α Γ

(

1
2 + α

)

· cos(πα)Γ
(

1
2 + α

)

2−2α Γ (1 + α) · sin(πα)Γ (α)
=

2
√
π Γ(2α)

Γ(α) · π
Γ( 1

2
−α)

2−2α Γ (1 + α) · π
Γ(1−α)

=
2
√
π

2−2αΓ
(

1
2 − α

) · Γ (2α)

Γ (α)
· Γ (1− α)

Γ (1 + α)
= − Γ (−α)

Γ (−2α)
· Γ (2α)

Γ (α)
· Γ (−α)

Γ (α)

= exp (g(α)) ,

where

g(α) = log

[

−Γ (2α) Γ2 (−α)
Γ (−2α) Γ2 (α)

]

.

Since

1

π
ϕ′ (t) = ϕ (t) ·

[

− 1

t2
g′
(

1

t

)]

,
1

π
ϕ′′ (t) = ϕ (t) ·

[

1

t4
g′
(

1

t

)2

+
2

t3
g′
(

1

t

)

+
1

t4
g′′
(

1

t

)

]

,

the lemma will follow once we show that, whenever 0 < α ≤ 1/3,

(72) g′(α) < 0, α4g′ (α)2 + 2α3g′ (α) + α4g′′ (α) < 0.
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To this aim we notice that the derivatives of g can be evaluated in terms of the digamma
function ψ, given by

ψ(z) :=
d

dz
log Γ(z) = −γ − 1

z
−

∞
∑

n=1

(

1

n+ z
− 1

n

)

.

Since the series above (and that of its derivatives) converges uniformly in {|z| ≤ 3/4} we
obtain

g′(α) = 2 [ψ(2α) + ψ(−2α) − ψ(α) − ψ(−α)]

= 2
∞
∑

n=1

(

1

n+ α
+

1

n− α
− 1

n+ 2α
− 1

n− 2α

)

= −
∞
∑

n=1

12α2n

(n2 − α2)(n2 − 4α2)
,

and the first inequality in (72) follows. Furthermore, let us introduce the function

h(x) =
12α2x

(x2 − α2)(x2 − 4α2)
.

Through direct inspection we infer that, if α is in the desired interval and x ≥ 1, it holds

h(x) > 0, h′(x) =
12α2(−3x4 + 5α2x2 + 4α4)

(x2 − α2)2(x2 − 4α2)2
≤ 12α2(−3 + 5α2 + 4α4)

(x2 − α2)2(x2 − 4α2)2
< 0;

this allows to use the elementary inequality

h(1) + h(2) <

∞
∑

n=1

h(n) < h(1) +

∫ ∞

1
h(x) dx

in order to estimate

−g′(α) < 12α2

(1− α2)(1− 4α2)
+ 2

[

log
x2 − 4α2

x2 − α2

]x=∞

x=1

≤ 12α2 · 9
8
· 9
5
+ 2 log

1− α2

1− 4α2

≤ 243

10
α2 + 2

(

1− α2

1− 4α2
− 1

)

≤ 243

10
α2 + 6α2 · 9

5
< 36α2

(73)

and

(74) − g′(α) >
12α2

(1− α2)(1− 4α2)
+

24α2

(4− α2)(4− 4α2)
> 12α2 +

3

2
α2 > 13α2.

Analogously, we have

−g′′(α) =
∞
∑

n=1

∂

∂α

12α2n

(n2 − α2)(n2 − 4α2)
= 12

∞
∑

n=1

2αn5 − 8α5n

(n2 − α2)2(n2 − 4α2)2

> 12
2α − 8α5

(1 − α2)2(1− 4α2)2
≥ 12

(

2− 8

81

)

α > 22α

(75)

(also this series has positive terms). Taking into account equations (73), (74) and (75) we
finally deduce

α4g′ (α)2 + 2α3g′ (α) + α4g′′ (α) < 362α8 − 26α5 − 22α5 ≤ α5

(

362 · 1

27
− 48

)

= 0,

and also the second inequality in (72) follows. �
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