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Abstract: High-throughput and large-scale measurements of chlorophyll a fluorescence (ChlF) are 

of great interest to investigate the photosynthetic performance of plants in the field. Here, we tested 

the capability to rapidly, precisely, and simultaneously estimate the number of pulse-amplitude-

modulation ChlF parameters commonly calculated from both dark- and light-adapted leaves (an 

operation which usually takes tens of minutes) from the reflectance of hyperspectral data collected 

on light-adapted leaves of date palm seedlings chronically exposed in a FACE facility to three ozone 

(O3) concentrations (ambient air, AA; target 1.5 × AA O3, named as moderate O3, MO; target 2 × AA 

O3, named as elevated O3, EO) for 75 consecutive days. Leaf spectral measurements were paired 

with reference measurements of ChlF, and predictive spectral models were constructed using 

partial least squares regression. Most of the ChlF parameters were well predicted by spectroscopic 

models (average model goodness-of-fit for validation, R2: 0.53–0.82). Furthermore, comparing the 

full-range spectral profiles (i.e., 400–2400 nm), it was possible to distinguish with high accuracy 

(81% of success) plants exposed to the different O3 concentrations, especially those exposed to EO 

from those exposed to MO and AA. This was possible even in the absence of visible foliar injury 

and using a moderately O3-susceptible species like the date palm. The latter view is confirmed by 

the few variations of the ChlF parameters, that occurred only under EO. The results of the current 

study could be applied in several scientific fields, such as precision agriculture and plant 

phenotyping. 

Keywords: Fluorescence quenching; hyperspectral phenotyping; partial least squares regression; 

photosystem II activity; pulse-amplitude-modulation fluorometry; saturation pulse method; 

spectral signature; vegetation index; vegetation spectroscopy 

 

1. Introduction 

No investigation into the photosynthetic performance of plants seems complete without 

chlorophyll a fluorescence (ChlF) data [1]. Thanks to the introduction of a number of highly user-

friendly and portable chlorophyll fluorometers, ChlF—a non-invasive and relatively low-cost 
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measurement of photosystem II (PSII) activity—has become one of the most powerful and used 

techniques available to plant physiologists and ecophysiologists in the last 30 years [1]. The sensitivity 

of PSII activity to abiotic and biotic stressors has made this approach a key technique not only for 

understanding the photosynthetic mechanisms but also as a broader indicator of how plants respond 

to environmental change, although its ineffectiveness has also been reported sometimes [2]. Among 

the available types of chlorophyll fluorometers, the pulse-amplitude-modulation (PAM) fluorometry, 

in conjunction with the saturation pulse method, remains the most utilized approach [2,3]. Briefly, 

this method consists of adapting a leaf to the dark until all the reaction centers are open, and then 

expose the leaf to light. This gives rise (usually for a few seconds) to a progressive closure of PSII 

reaction centers, resulting in an increase in the yield of ChlF. Thereafter, the fluorescence level 

typically starts to fall again through a phenomenon termed “fluorescence quenching”, and explained 

in two ways: (i) an increase in the rate by which electrons are transported away from PSII due to the 

light-induced activation of enzymes involved in carbon metabolism and the opening of stomata (i.e., 

‘photochemical quenching’), and (ii) an increase in the efficiency by which energy is converted to 

heat (i.e., ‘non-photochemical quenching’) [1]. A large number of coefficients have been calculated to 

quantify photochemical and non-photochemical quenching, as reported in excellent reviews (e.g., 

[1,2,4]). 

Collection of both dark- and light-adapted measurements to calculate all ChlF parameters may 

take a minimum of 20 min for each dark-adapted leaf, and other several minutes or much longer (e.g., 

>15 min) to achieve a light-adapted steady-state (starting from a dark-adapted state). As a 

consequence, it is rarely possible to go through an entire quenching protocol, especially in the field 

due to time and weather constraints [2]. For this reason, together with the great interest of field 

physiologists in high-throughput and large-scale measurements of ChlF [2], new less time-

consuming techniques (e.g., imaging fluorescence, long-term monitoring fluorescence, remote 

sensing of ‘passive’ fluorescence) are under continual development, although substantial limitations 

remain in their use (e.g., instrumentation reliability and data interpretation [5–7]). 

Vegetation spectroscopy is a high-throughput sensor technology based on the optical properties 

of living vegetation (e.g., leaf and canopy reflectance) that enables the rapid and non-destructive 

assessment of plant status, along with a simultaneous estimate of several plant traits in the field on a 

large number of plants over multiple time periods [8]. The prediction of these traits from leaf spectra 

is based on the exploitation of the relationships of light with molecular organic bonds, mainly C-H, 

N-H, and O-H, resulting in vibrational excitation at specific wavelengths through the visible (VIS: 

400–700 nm), the near-infrared (NIR: 700–1100 nm) and the short-wave infrared (SWIR: 1100–2400 

nm) spectral regions [9]. Several simple vegetation indices (VIs) based on the ratio of reflected light 

at different wavelengths have been developed because related to various plant traits (e.g., normalized 

difference vegetation index, NDVI [10], or chlorophyll index, CI [11]). Another ever-expanding 

approach regards the use of multivariate methods to directly model commonly used plant traits as a 

function of the spectral profiles. Advances in the sensitivity and portability of hyperspectral 

spectrometers, as well as in computational capacity and chemometric modeling (e.g., using partial 

least squares regression, PLSR [12]), have enabled the use of this approach to estimate a variety of 

commonly investigated plant traits and physiological processes based on foliar optical properties, 

including morphological, physiological, and biochemical parameters (e.g., [13–17]). The model 

calibration is accomplished by pairing leaf spectra, collected using a uniform and stable light source 

in a consistent manner, with independent and reliable reference measurements. Subsequently, the 

model is validated by comparing relationships between observed and predicted values collected on 

other independent samples. This calibration model can then be used to predict the variable of interest 

in unknown samples on the basis of their spectral signature alone [18]. Despite the similarities of 

vegetation spectroscopy and ChlF measurements, and some attempts to evaluate relations between 

some VIs (i.e., using a few wavelengths) and ChlF parameters (e.g., [19,20]), to the best of our 

knowledge, no study has examined the ability of reflectance profiles to directly estimate widely-used 

PAM ChlF parameters by using a multivariate modeling approach on hyperspectral data (i.e., using 

many wavelengths).  
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Date palm (Phoenix dactilyfera L.) is among the first crops domesticated by early human 

civilization, and over 100 million date palms live in the world. This perennial, dioecious plant of the 

Arecaceae family, plays an important nutritional, social, environmental, cultural, and economic role 

for many people living in arid and semiarid regions of North Africa and the middle east. Within the 

last centuries, it has been introduced to Southeastern Asia, Southern Africa, Australia, South 

America, Mexico, and the United States [21,22]. Date palm is exceptional in the sense that it can 

withstand extreme temperatures and drought [23–26], as well as other harsh climatic conditions, such 

as episodes of high tropospheric O3 concentration [27]. Actually, although there is a high interest in 

exploring the responses of date palms to O3 exposure, this experiment and related papers on growth, 

physiological and biochemical responses (e.g., [28]) is the first one to investigate the effects of chronic 

O3 exposure on this species. 

Tropospheric O3 is a major phytotoxic air pollutant produced photochemically by a variety of 

precursors, such as nitrogen oxides and volatile organic compounds, with harmful effects also on 

biota, including plant and animal health [29–31]. Levels of O3 are still elevated in many areas of the 

world such as Europe, North America, and Southeastern Asia, and are predicted to raise further due 

to the occurrence of climatic changes and to anthropogenic pressures [32], especially in hot-spot 

regions such as the Arabian Peninsula and the Mediterranean area [27,33]. However, reductions in 

tropospheric O3 concentrations have also been reported in some Mediterranean sites [34]. Excessive 

O3 uptake by plants induces detrimental effects such as accelerated leaf senescence, reduction of 

photosynthesis and growth, partial stomatal closure, cell dehydration, cell destruction by excessive 

excitation energy, and appearance of chlorotic/necrotic leaf injuries, that overall result in the 

reduction of plant yield both in terms of quantity and quality and huge economic losses [29,35]. 

The use of ChlF as a suitable method for studying the responses of plants to O3 (as well as to 

other abiotic and biotic stress factors) has been reported for long (e.g., [36–38]). In this study, we 

tested the capability to rapidly, precisely, and simultaneously estimate the number of PAM ChlF 

parameters commonly calculated from both dark- and light-adapted leaves from reflectance 

hyperspectral data collected on light-adapted leaves of date palm seedlings chronically exposed to 

three levels of O3 in an O3-Free Air Controlled Exposure (FACE) facility located in the Mediterranean 

environment (i.e., Italy). Furthermore, since spectra themselves are a phenotypic expression of the 

aggregate signals of chemical, morphological and physiological properties of leaves under specific 

environmental conditions [8], we evaluated the potential of full-range (400–2400 nm) hyperspectral 

phenotyping to pre-visually, and accurately detect and classify the environmental pressures induced 

by the gradient of O3 concentrations on date palm, and whether these effects are in accordance with 

O3-induced variations of ChlF parameters, and other VIs estimated from spectra, thus also 

investigating the response of this species to chronic O3 pollution. 

2. Results 

2.1. Predictions of ChlF Parameters 

Various spectral ranges (characterized by specific absorption features known in the literature 

that we thought would directly or indirectly relate to specific traits), and number of components 

(Table S1) were firstly investigated to get best prediction accuracy [i.e., highest model goodness-of-

fit (R2) and lowest bias, root mean square error (RMSE), and percent RMSE of the data range (%RMSE)] 

of the PLSR models developed for the estimation of the ChlF parameters (i.e., F0, Fm, Fv/Fm, Fs, Fm’, F0′, 

ΦPSII, Fv’/Fm’, ETR, qP, qN, NPQ, qL, P, D; see Section 4.2 for parameter descriptions). Most of the final 

models utilized the wavelength range 600–900 nm and included 6–8 components (i.e., F0, Fm, Fv/Fm, 

F0′, ΦPSII, Fv’/Fm’, qP, qN, NPQ, qL, D). The final Fs and Fm’ PLSR models utilized the 400–1200 nm 

spectral region, including four and eight components, respectively. The full range 400–2400 nm was 

utilized in the final PLSR models for predictions of ETR and P, including 12 components for both of 

them (Table 1).  

PLSR models very accurately characterized Fv/Fm, ΦPSII, Fv’/Fm’, ETR, qP, qL, P, and D (R2 and 

%RMSE for validation: 0.77 and 11%, 0.73 and 11%, 0.75 and 11%, 0.82 and 10%, 0.68 and 14%, 0.76 and 
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11%, 0.81 and 10%, 0.76 and 10%, respectively). High prediction performance was also found for F0, 

Fm, Fm’, and qN (R2 and %RMSE for validation: 0.53 and 17%, 0.60 and 12%, 0.65 and 12%, 0.53 and 15%), 

whereas low prediction accuracy was found for Fs, F0′, and NPQ (Table 1 and Figure 1). For both 

calibration and validation, bias was always lower than 0.01. Among the PLSR models with good 

prediction accuracy, fit statistics for external validations were consistent with those registered for the 

validations, except for Fm, Fm’, Fv’/Fm’, and qL that were lower (Table S2). 

Profiles of standardized coefficients (i.e., centered and scaled) and variable importance to the 

projection (VIP) metrics from PLSR models using the 600–900 nm spectral range (i.e., those for the 

predictions of F0, Fm, Fv/Fm, F0′, ΦPSII, Fv’/Fm’, qP, qN, NPQ, qL, and D) highlighted the 600–750 nm 

wavelengths as particularly important for estimations, especially peaking around 650, 680–690 and 

700–750 nm (Figure 2). Standardized coefficients and VIP values of PLSR models, including the 400–

1200 nm wavelength range (i.e., those for the estimations of Fs and Fm’) highlighted not only 

important spectral wavelengths from 650 to 750 nm, but also those that peaked around 420 and 500–

550 nm. Peaks from 450 to 750 nm were also observed in profiles of standardized coefficients and VIP 

of PLSR models using the full range (i.e., those for the predictions of ETR and P), but here other peaks 

were also observed around 1400, 1700, and 1900–1950 nm. 

Table 1. Range of wavelengths, number of components (Com), model goodness-of-fit (R2), root mean 

square error (RMSE), and percent RMSE of the data range (%RMSE) for calibration (Cal) and validation 

(Val) data generated using 500 random permutations of the data with 80% used for Cal and 20% used 

for the Val for the PLSR models predicting chlorophyll a fluorescence parameters from spectra of date 

palm leaves. Bias outputs are not shown as they were always lower than 0.01 for both Cal and Val. 

Data are shown as mean ± standard deviation. Parameters: F0, minimum fluorescence yield in the 

dark-adapted state; Fm, maximum fluorescence yield in the dark-adapted state; Fv/Fm, maximum 

quantum efficiency of PSII photochemistry; Fs, steady state fluorescence intensity in light-adapted 

state; Fm’, maximum fluorescence intensity in the light-adapted state; F0′, minimum fluorescence 

intensity in the light-adapted state; ΦPSII, PSII operating efficiency in light conditions; Fv’/Fm’, 

maximum efficiency of PSII in light conditions; ETR, electron transport rate (µmol m−2 s−1); qP, 

photochemical quenching; qN, non-photochemical quenching calculated as (Fm − Fm’)/(Fm − F0′); NPQ, 

non-photochemical quenching calculated as (Fm − Fm’)/Fm’; qL, fraction of open PSII centers; P, fraction 

of light absorbed in PSII antennae that is utilized in PSII photochemistry; D, fraction of light absorbed 

in PSII antennae that is dissipated thermally. See Section 4.2 for parameter calculations. 

Parameter 
Range 

(nm) 
Com 

Cal Val 

R2 RMSE %RMSE R2 RMSE %RMSE 

F0 600–900 8 0.69 ± 0.03 0.01 ± 0.00 13 0.53 ± 0.14 0.01 ± 0.00 17 

Fm 600–900 7 0.74 ± 0.03 0.04 ± 0.00 12 0.60 ± 0.15 0.05 ± 0.01 15 

Fv/Fm 600–900 8 0.85 ± 0.02 0.04 ± 0.00 11 0.77 ± 0.08 0.04 ± 0.01 11 

Fs 400–1200 4 0.46 ± 0.04 0.01 ± 0.00 17 0.39 ± 0.18 0.02 ± 0.00 18 

Fm’ 400–1200 8 0.80 ± 0.03 0.03 ± 0.00 9 0.65 ± 0.14 0.04 ± 0.01 12 

F0′ 600–900 7 0.47 ± 0.05 0.01 ± 0.00 17 0.21 ± 0.19 0.01 ± 0.00 21 

ΦPSII 600–900 10 0.87 ± 0.03 0.03 ± 0.00 8 0.73 ± 0.12 0.04 ± 0.01 11 

Fv’/Fm’ 600–900 7 0.84 ± 0.02 0.04 ± 0.00 9 0.75 ± 0.10 0.04 ± 0.01 11 

ETR 400–2400 12 0.93 ± 0.01 2.63 ± 0.15 6 0.82 ± 0.08 4.31 ± 0.68 10 

qP 600–900 11 0.87 ± 0.02 0.02 ± 0.00 9 0.68 ± 0.14 0.04 ± 0.01 14 

qN 600–900 7 0.70 ± 0.04 0.05 ± 0.00 12 0.53 ± 0.17 0.06 ± 0.01 15 

NPQ 600–900 6 0.40 ± 0.05 0.11 ± 0.00 16 0.26 ± 0.19 0.12 ± 0.02 18 

qL 600–900 8 0.86 ± 0.02 0.04 ± 0.00 8 0.76 ± 0.12 0.05 ± 0.01 11 

P 400–2400 12 0.93 ± 0.01 0.02 ± 0.00 6 0.81 ± 0.08 0.04 ± 0.01 10 

D 600–900 7 0.84 ± 0.02 0.04 ± 0.00 7 0.76 ± 0.11 0.04 ± 0.01 10 
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Figure 1. Observed vs. partial least squares regression (PLSR)-predicted values of chlorophyll a 

fluorescence parameters in date palm leaves; error bars for predicted values represent the standard 

deviation generated from 500 simulated models; dashed line is 1:1 relationship; model goodness-fit 

(R2), and root mean square error (RMSE) for validation data generated using 80% of the data for 

calibration and 20% for validation are reported. Bias outputs are not shown as they were always lower 

than 0.01. (a) F0; (b) Fm; (c) Fv/Fm; (d) Fs; (e) Fm’; (f) F0′; (g) ΦPSII; (h) Fv’/Fm’; (i) ETR; (j) qP; (k) qN; (l) 

NPQ; (m) qL ; (n) P; (o) D. See Table 1 caption for the parameter abbreviations.  
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Figure 2. Mean (solid), 5th and 95th percentile (dotted) of standardized coefficients (black) and variable 

importance for projection (VIP, blue) by wavelengths for the PLSR models predicting chlorophyll a 

fluorescence parameters in date palm leaves. (a) F0; (b) Fm; (c) Fv/Fm; (d) Fs; (e) Fm’; (f) F0′; (g) ΦPSII; (h) 

Fv’/Fm’; (i) ETR; (j) qP; (k) qN; (l) NPQ; (m) qL ; (n) P; (o) D. See Table 1 caption for parameter 

abbreviations. 

2.2. Hyperspectral Phenotyping 

Multiple different spectral ranges were initially investigated to optimize the statistical outputs 

of the permutational analysis of variance (PERMANOVA; Table S1), and the best outputs were finally 

recorded using the full range (i.e., 400–2400 nm). Although no visible symptoms were observed on 

the leaves, PERMANOVA revealed that O3 exposure affected the reflectance profile of the date palm 

(F: 3.92, P: 0.004; Figure 3a), as well shown by Figure 3b, which summarizes the outputs of the 

principal coordinates analysis (PCoA). Best classifications of O3 treatments from the spectra (i.e., 

higher mean Kappa) by partial least squares discriminant analysis (PLS-DA) were found with an 80:20 
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ratio for calibration:validation data, using 13 components: Kappa, and the Accuracy for the validation 

were 0.71 ± 0.20 and 0.81 ± 0.13 (mean ± standard deviation), respectively. Specifically, elevated O3 

(EO) was accurately discriminated from the other O3 treatments, while misclassifications occurred 

between the ambient air (AA) and moderate O3 (MO) treatments (Figure 3b, Table S3). 

 

Figure 3. (a) Average foliar reflectance profiles of date palms exposed to ambient air (AA), moderate 

ozone (MO), and elevated ozone (EO); F- and P-values from permutational analysis of variance 

(PERMANOVA) for the effects of ozone on the full range (400–2400 nm) reflectance profiles of date 

palm leaves are reported in the bottom-right corner of the panel. (b) Scores (mean ± standard error) 

for the first and second principal components from principal coordinates analysis (PCoA) of the 

reflectance data (400–2400 nm) collected from date palm leaves, highlighting the capability of 

spectroscopy to discriminate plants exposed to AA (white circle) vs. plants exposed to MO (gray 

square) and EO (black triangle); average accuracy (Acc.) and Kappa (K) values from partial least 

squares discriminant analysis (PLS-DA) are reported on the bottom-left corner of the panel. 

2.3. Variations of Spectra-Estimated ChlF Parameters and VIs 

The significant effects of O3 on VIs and selected ChlF parameters (i.e., those for whom the PLSR 

models showed R2 ≥ 0.55 for external validation) estimated from the spectra are shown in Figure 4. 

ΦPSII, ETR, P, and photochemical reflectance index (scaled; sPRI) decreased only under elevated ozone 

(EO; −27, −30, −30, and −2% compared with ambient air, AA, respectively), whereas qN increased 

only under EO (+21%). Although D values were higher under EO than under moderate ozone (MO), 

no significant differences were observed among plants exposed to AA and those exposed to higher 

O3 concentrations. No significant O3 effects were observed on Fv/Fm, qP, plant senescence reflectance 

index (scaled; sPSRI), and CI (p > 0.05). 
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Figure 4. Variations of PSII operating efficiency in light conditions, ΦPSII (a); ETR, electron transport 

rate, ETR (b); non-photochemical quenching calculated as (Fm − Fm’)/(Fm − F0′), qN (c); fraction of light 

absorbed in PSII antennae that is utilized in PSII photochemistry, P (d); fraction of light absorbed in 

PSII antennae that is dissipated thermally, D (e); and (scaled) photosynthetic reflectance index, sPRI 

(f) estimated from spectra collected on leaves of date palm under ambient (AA, white), moderate 

(MO, gray) and elevate (EO, black) ozone concentrations. Data are shown as mean ± standard 

deviation. F- and p-values for the effects of ozone from a one-way ANOVA are shown in the top-right 

corner of panels. According to Tukey’s post-hoc test, different letters indicate significant differences 

among means (p: ≤0.05). 

3. Discussion 

This study shows the ability of reflectance spectroscopy to rapidly, accurately, and non-

destructively monitor the sensitivity of PSII efficiency to environmental constraints, specifically to O3 

pollution. By combining hyperspectral reflectance collections, standard PAM ChlF measurements, 

and robust statistical modeling, this study demonstrated the potential to concomitantly predict from 

spectra of light-adapted leaves of date palm a number of ChlF parameters that are commonly 
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collected from measurements of both dark- and light-adapted leaves to investigate the photosynthetic 

performance of plants under abiotic and biotic stressors. 

Standard collections of the whole set of PAM ChlF parameters are often logistically challenging, 

usually requiring several minutes per leaf as the leaf has first to reach the dark-adapted state and 

then come back to the light-adapted state [2]. Spectral approaches have been shown as a valid 

alternative to standard measurements of photosynthetic activity in plants since they are able to 

estimate photosynthetic processes through VIs correlated with photosynthetic processes (e.g., the 

xanthophyll cycle by PRI [39,40]). In addition, specific and commonly used photosynthetic traits such 

as net photosynthesis, stomatal conductance, the maximum rate of carboxylation, and the maximum 

rate of electron transport [17,41–44] could directly be predicted from spectral data. Some attempts to 

evaluate the relations between VIs and a few ChlF parameters have also been reported (e.g., [19,20]). 

However, to our knowledge, this is the first study to document the potential of vegetation 

spectroscopy to directly estimate widely used ChlF parameters. 

We found an excellent prediction performance for most of the PLSR modeled ChlF parameters. 

Fv/Fm, ΦPSII, Fv’/Fm’, ETR, qP, qL, P and D were estimated with very high accuracy (validation R2 0.68–

0.82), and the PLSR prediction approach resulted in more precise data than previous efforts 

performed through relations between VIs and some ChlF parameters (i.e., Fv/Fm and Fv’/Fm’; e.g., [20]). 

Good prediction performance was also found for F0, Fm, Fm’, and qN (validation R2: 0.53–0.65). 

However, we encourage more caution when interpreting results from a narrow range of values of 

these parameters, since the PLSR models we developed may have limitations by discriminating fine 

scale differences. Low accuracies were instead reported only for Fs, F0′, and NPQ. Undoubtedly, a 

novel outcome of these results is the ability to rapidly, precisely, and simultaneously estimate a 

number of ChlF parameters commonly calculated from both dark- and light-adapted leaves from 

reflectance hyperspectral data collected on light-adapted leaves. This was likely possible because 

ChlF parameters that also require dark-adapted leaves, describe PSII mechanisms that are related to 

the foliar properties expressed in the leaf spectrum collected under the light-adapted state. It is also 

interesting to note that none of the ChlF parameters representing punctual fluorescence intensity at 

a specific time and light condition (i.e., F0, Fm, Fm’, Fs, and F0′) was among the parameters estimated 

with high accuracy. This might be due to an inability of leaf spectra to describe a specific fluorescence 

emission, as opposed to their ability to summarize plant features related to the PSII photochemistry 

described by Fv/Fm, ΦPSII, Fv’/Fm’, ETR, qP, qL, P, and D. Another explanation might be found in the 

smaller ranges observed for F0, Fm, Fm’, Fs, and F0′ values compared with other parameters, since PLSR 

models would work better when the calibration is accomplished by pairing spectral data with the 

observed traits having a greater proportion of variation. Furthermore, even if we might have 

expected complexity in the prediction from leaf spectra of a phenomenon like the photoprotective 

thermal dissipation of excess excitation energy (i.e., non-photochemical quenching), the reason for 

differences in the prediction accuracy between qN and NPQ remains an open question. The drop-in 

prediction accuracy observed for the external validation of a few PLSR modeled parameters 

(compared with PLSR validation) was instead likely due to the scarcity of available samples usable 

for external validation. However, this is just one of many points that require further research on the 

topic to be addressed. 

Nevertheless, it is not surprising that best predictions of most of the modeled ChlF parameters 

were obtained using only the wavelengths from 600 to 900 nm (this also means that these parameters 

could be estimable by inexpensive optical instrumentation [9]). The use of narrower ranges, including 

only specific absorption wavelengths for the trait to be estimated, sometimes leads to better 

predictions than using wider ranges, since the incorporation of other spectral regions may reduce the 

prediction ability of trait-specific wavelengths [15,17]. Indeed, the 600–900 nm spectral range finally 

used for estimations of F0, Fm, Fv/Fm, F0′, ΦPSII, Fv’/Fm’, qP, qN, NPQ, qL, and D includes the red 

chlorophyll absorption peaks around 700 nm [45], the whole re-emission ChlF spectrum of a leaf 

ranging from 650 to 800 nm [46], as well as the red-edge at 700–750 nm [47]. The importance of this 

pigment-related spectral region in the assessment of photosynthetic processes has been largely 

shown for several plant species (e.g., [39,41,43,45]). A number of studies have also reported that the 
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shape of the red-edge is dependent on chlorophyll content (e.g., [48,49]) and stress conditions (e.g., 

[9,47]). This supports the importance of wavelengths around 650, 680–690, and 700–750 nm in 

predicting F0, Fm, Fv/Fm, F0′, ΦPSII, Fv’/Fm’, qP, qN, NPQ, qL, and D highlighted by their standardized 

coefficient and VIP profiles. Standardized coefficients and VIP values of Fs and Fm’ PLSR models, 

using the VIS-NIR (i.e., 400–1200 nm) spectral range, also highlighted the importance of including 

wavelengths around 420 and 500–550 nm in the prediction of these parameters, thus also containing 

the blue peaks of chlorophylls as well as of carotenoids [45]. Conversely, since using wider ranges 

means the incorporation of more signals of chemical, morphological, and physiological properties of 

leaves included in the spectra [8], ETR and P values were better predicted using the full range (i.e., 

400–2400 nm), thus including other absorbance features contained outside the pigment-related 

spectral range. Effectively, profiles of standardized coefficients and the VIP of PLSR models of these 

traits also peaked around 1400, 1700, and 1900–1950 nm, which are well-known water and protein 

absorption features [50], suggesting that the variations of these compounds somehow helped the 

estimation of ETR and P from spectra. 

The present study also evidenced that we were able to discriminate with high accuracy (81% of 

success) the effects of O3 exposure on reflectance profiles of the date palm leaves. Specifically, even 

in the absence of visible foliar symptoms, we were able to discriminate plants exposed to the higher 

O3 concentration (i.e., EO) from those exposed to the lower O3 levels, while a certain misclassification 

occurred between samples exposed to AA and MO. This might be due to a moderate O3 susceptibility 

of date palm, but better outputs might be reached by raising the experimental/plant replications 

adopted for the hyperspectral phenotyping (this is especially true under field conditions, usually 

characterized by highly variable growth environments). On the one hand, these results confirm the 

capability of this approach (i.e., hyperspectral phenotyping through the analyses of spectral 

signatures) to detect O3 effects on plants, as previously reported for various other abiotic and for 

biotic stressors (e.g., [8,17,51,52]). On the other hand, the present results confirm that the efficiency of 

this spectral approach is dependent on the sensitivity of the plants/cultivars to O3, as well as to the 

magnitude at which this environmental pressure is imposed on vegetation. 

The phytotoxicological outcomes of the analyses of spectral signatures were confirmed by 

variations of the investigated ChlF parameters derived from spectra (again, only parameters from 

best performing PLSR models were used) and VIs, further confirming the potential of vegetation 

spectroscopy in monitoring the responses of plants to O3. Although increased O3 concentrations did 

not induce photoinhibitory damage and early senescence or altered chlorophyll levels (i.e., 

unchanged Fv/Fm, qP, sPSRI and CI), EO caused a reduction of PSII performance (i.e., reduced ΦPSII, 

ETR, and P), together with an activation of the dissipation of the excess excitation energy as heat (i.e., 

increased qN and sPRI; and higher D values under EO than under MO, although no significant 

differences with AA). Although further molecular, biochemical, physiological, and morphological 

investigations are needed to properly investigate the interaction of date palm with O3, the results 

reported in the present study suggest an ability of the date palm to tolerate moderate O3 pollution 

levels, in accordance with previous reports highlighting the high capability of this ancient plant 

species to withstand extreme and harsh climatic conditions (e.g., [23–26]). 

In conclusion, the present study firstly shows that vegetation spectroscopy can be a rapid, non-

destructive, and relatively inexpensive tool to concomitantly and accurately estimate an array of 

widely-used ChlF parameters, using a single spectral measurement. This result suggests that the 

prediction from spectral data can be used in standard reference measurements, thus allowing a 

dramatic increase of ChlF data collection from a larger number of individual genotypes and plants, 

than reference measurements alone. Second, this study confirms that hyperspectral information can 

successfully detect stress conditions in plants exposed to O3, even in the absence of visible foliar 

symptoms and using a moderately O3-susceptible species like the date palm, as suggested by the few 

variations of the investigated ChlF parameters and VIs. It would be interesting to perform further 

investigations and validations of the proposed approach on other species under heterogeneous 

environments. 
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The results presented in the current study could be applied in a number of scientific fields such 

as precision agriculture and high-throughput plant phenotyping and could provide significant 

benefits to increase our knowledge on the intimate mechanisms of oxidative stress in plant cells, so 

to achieve better plant yield and quality. Furthermore, while logistical challenges (e.g., solar angle or 

atmospheric interference) exist, leaf-level spectroscopy, as adopted in the present study, can be 

effectively used as a ground reference or training input for airborne-based platforms, and scaled to 

field and landscape levels [13,53]. 

4. Materials and Methods  

4.1. Plant Material and Experimental Design 

On December 2018, micro-propagated one-year-old plants of P. dactylifera cv Nabut Saif were 

purchased from a commercial nursery (Date Palm Developments Ltd., Sommerset, U.K.) and directly 

planted in 4.5 L pots containing gravel ( 3–6 mm) and commercial planting peat-rich soil (70:30 in 

volume). Pots were kept to overwinter in a phytotron on plastic tablets continuously filled with tap 

water at 1–2 cm height and watered daily with 50 mL tap water per plot. Controlled conditions 

included 25 °C temperature and artificial illumination at around 200 µmol m-2 s-1 with a 16 h of 

photoperiod. On the 1st of May 2019, plants were transferred into 20-L pots containing the same 

substrate and maintained well-irrigated under shaded tunnels under field conditions, and moved to 

full light after one week into the O3-FACE facility of Sesto Fiorentino, Florence, Italy (43°48′59′’ N, 

11°12′01′’ E, 55 m a.s.l.). Here, uniform-sized plants (around 1 m tall) were selected and exposed to 

three levels of O3 (target concentrations: 1.0, 1.5 and 2.0 times the ambient air level) named as ambient 

air (AA), moderate O3 (MO) and elevated O3 (EO); treatments lasted from the 20th of May to the 2nd 

of August 2019, for 75 consecutive days (i.e., around 2.5 months). Three replicated 5 × 5 × 2 m (L × W 

× H) plots were assigned to each O3 treatment, with five plants per each plot. Each pot was fertilized 

once a month with NPK 20:10:20 with micronutrients (Soluplant 20.10.20, Haifa, Bologna, Italy). Each 

pot was watered daily by a drip system with 200 mL of tap water (i.e., 90% of field capacity). A 

detailed description of the facility and of O3 exposure methodology is reported in Paoletti et al. [54]. 

The maximum hourly O3 concentrations throughout the whole experimental period were 110.2 ppb 

in AA, 169.4 ppb in MO and 183.2 ppb in EO, respectively; while the Accumulated exposure Over 

Threshold of 40 ppb (AOT40) values resulted of 16.1 ppm h, 36.9 ppm h and 50.1 ppm h, respectively. 

The collection of ChlF measurements and leaf spectra was performed from the 30th of July to the 

2nd of August 2019 (i.e., four consecutive days). The youngest mature leaves (the 4th or the 5th counting 

from the top) of each plant were selected, and measurements were performed on the 4th leaflets 

(counting from the apex of the leaf) located on the right side of the rachis, looking at the adaxial leaf 

surface. Every day, around 25 plants, randomly distributed across O3 treatments, and the experimetal 

plots were measured from 9.00 to 16.00, with a total of 102 samples collected. These combined spectral 

and standard measurements were used to build multivariate methods to predict ChlF parameters 

from spectral data (see below). Furthermore, on the last day of measurements, eight plants per O3 

treatment were randomly selected, and consecutively measured only for leaf reflectance within the 

shortest possible time (i.e., around 20 min). These reflectance measurements were used for the 

analyses of spectral signatures (i.e., hyperspectral phenotyping), and for the final estimations of 

vegetation indexes and other leaf traits by the PLSR models developed in this study (see below). 

4.2. Chlorophyll a Fluorescence 

Chlorophyll a fluorescence measurements were collected using a PAM-2000 fluorometer (Walz, 

Effeltrich, Germany). The minimum and maximum fluorescence yield in the dark-adapted state (F0 

and Fm, respectively) were determined immediately before and after the application of a 0.8 s 

saturating light pulse at 8,000 µmol m−2 s−1 in 40 min dark-adapted leaves. An actinic light at around 

270 µmol m−2 s−1 was then turned on, and maximum fluorescence intensity in the light-adapted state 

(Fm’) was determined applying saturating light pulses every 20 s, whereas minimum fluorescence 

intensity in the light-adapted state (F0′) was determined immediately after turning off the actinic 
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source in the presence of a far-red (>710 nm) background for 3 s to ensure maximal oxidation of PSII 

electron acceptors. Both Fm’ and F0′ were recorded 10 min after the turning on of the actinic light, 

when fluorescence reached a steady-state intensity in a light-adapted state (Fs). 

The maximum quantum efficiency of PSII photochemistry was calculated as Fv/Fm = (Fm − F0)/Fm, 

whereas the PSII operating efficiency in light conditions was calculated as ΦPSII = (Fm’ − Fs)/Fm’ [55]. 

The maximum efficiency of PSII in light conditions was calculated as Fv’/Fm’ = (Fm’ − F0′)/Fm’ [56]. The 

electron transport rate was calculated as ETR = ΦPSII × photosynthetic photon flux density (PPFD) × 

0.5 × 0.84, where 0.5 is the partitioning of absorbed quanta between PSII and photosystem I (PSI) and 

0.84 is the absorption coefficient of an average leaf [57]. The photochemical quenching was calculated 

as qP = (Fm’ − Fs)/(Fm’ − F0′), whereas the non-photochemical quenching was calculated as qN = (Fm − 

Fm’)/(Fm − F0′) and as NPQ = (Fm − Fm’)/Fm’ [58]. The fraction of open PSII centers was estimated as qL 

= qP × (F0′/Fs) [59]. The fraction of light absorbed in the PSII antennae that is utilized in the PSII 

photochemistry was estimated as P = (Fv’/Fm’) × qP, whereas the fraction of light absorbed in the PSII 

antennae that is dissipated thermally was estimated as D = 1 − Fv’/Fm’ [56]. Further details about the 

ChlF parameters are reported in several reviews (e.g., [2–4]). 

4.3. Hyperspectral Reflectance 

The full range (350–2500 nm) leaf reflectance profiles were collected by an ASD FieldSpec 4 

spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA), using a leaf clip with an internal 

halogen light source attached to a plant probe. The measurements were acquired on four areas 

(randomly selected,  1 cm) of the adaxial surface of each leaf, with one measurement per area, and 

the collections were combined to produce an average leaf spectrum. The relative reflectance of each 

leaf was determined from the measurement of the leaf radiance divided by the radiance of a white 

reference panel included in the leaf clip, measured before each plant (i.e., four spectral collections) 

when collecting spectra for modeling, or every four plants (i.e., 16 spectral collections) when 

collecting spectra for hyperspectral phenotyping. 

4.4. PLSR-model Calibration and Validations 

The above-mentioned ChlF parameters (i.e., F0, Fm, Fv/Fm, Fs, Fm’, F0′, ΦPSII, Fv’/Fm’, ETR, qP, qN, 

NPQ, qL, P, D) were predicted from spectra using a PLSR [12] modeling approach, using 

untransformed reflectance profiles (only spectral jump correction and data interpolation were 

performed). This “spectra-trait” modeling was performed using ca. 80% of the whole dataset, in order 

to also allow for an external validation of the developed PLSR models (see below). PLSR modeling 

has become the favorite chemometric approach (e.g., [14–16,60]) because, conversely to classical 

regression techniques, it reduces a large number of collinear predictor variables (as in the case of 

hyperspectral data) to relatively few, uncorrelated latent variables, avoiding the risk of producing 

unreliable coefficients and error estimates [61]. To avoid potential model overfitting, the numbers of 

the latent variables used were selected based on the reduction of the predicted residual sum of 

squares (PRESS) statistics [62] by leave-one-out cross-validation. Finally, the selected sets of extracted 

components were combined with linear models predicting ChlF parameters from leaf reflectance 

profiles. 

The model performance was assessed by running 500 randomized permutations of the datasets 

using 80% of the data for calibration and the remaining 20% for validation (i.e., internal validation). 

The R2, RMSE, bias, and %RMSE of both the calibration and the validation datasets were calculated 

to assess model performance. These randomized investigations generated a distribution of fit 

statistics allowing for the evaluation of model stability, as well as uncertainty in the model 

predictions. The strength contribution of PLSR loadings by individual wavelengths was also assessed 

using the VIP selection statistics, which highlight the importance of individual wavelengths in 

explaining the variation in both the response and predictor variables: larger weightings confer higher 

value to the contribution of individual wavelengths to the predictive model [12,63]. The modeling 

approach and the data analyses were run using the ‘pls’ package in R (www.r-project.org; [64]). 
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Before developing the final modeling, we investigated preliminary models to identify poorly 

predicted outliers. Prediction residuals were explored to identify potential outliers [14]. Spectral 

profiles of outliers were further examined for errors (e.g., elevated reflectance in the VIS wavelengths, 

spectral jumps produced by misaligned detector splicing, concave spectral shape at the red-edge 

peak) all likely due to the operational errors during spectral measurements (in reference or target 

collections). The standard measurements of the outliers were also examined for extremes in the data 

distribution. The outliers removed accounted for approximately 10% of the initial data, which was in 

agreement with previous studies (e.g., [14,17]). 

We also performed an external validation by applying PLSR coefficients on a dataset 

independent from the one used for calibration and validation (ca. 20% of the whole dataset). Relations 

between predicted and observed values were tested by regression analysis, and fit statistics (i.e., R2, 

RMSE, bias) were investigated to assess the model estimation accuracy. 

4.5. Estimation of Leaf Traits by Vegetation Indices and PLSR Models 

Three common VIs were calculated from spectra: the PRI = (R531 − R570)/(R531 + R570) [39], scaled as 

sPRI = (PRI + 1)/2 to avoid negative values, was determined to assess any potential effect on the 

photochemical system; the PSRI = (R678 − R500)/R750 [65], scaled as sPSRI = (PSRI + 1)/2 to avoid negative 

values, was determined to evaluate the occurrence of any potential senescence process; and the CI = 

(R750 − R705)/(R750 + R705) [11] was determined to investigate any potential variation in chlorophyll 

content. Rx indicates the reflectance at x nm wavelength.  

Chlorophyll a fluorescence parameters were estimated from spectra by using the best 

performing PLSR models. As stated above, vegetation indices and spectra-derived ChlF parameters 

were calculated from the spectra averaged per plant. 

4.6. Statistical Analyses for the Effects of Ozone on Leaf Traits Derived from Spectra, and on the Leaf 

Spectral Signatures (i.e., Hyperspectral Phenotyping) 

The Shapiro–Wilk test was first used to assess the normal distribution of spectral indices and 

ChlF parameters derived from the spectra by the PLSR-models. The effect of O3 on these leaf traits 

(the statistical unit was the single plant) was then investigated by a one-way repeated measure 

analysis of variance (ANOVA). Tukey’s test was used as post-hoc test. Statistically significant effects 

were considered for p < 0.05. Univariate statistical analyses were run in JMP 13.2.0 (SAS Institute Inc., 

Cary, NC, USA). 

The effects of O3 on the untransformed reflectance profiles (averaged per plant) were assessed 

by PERMANOVA [66], employing Euclidian measurements of dissimilarity and 10,000 permutations; 

and PCoA was used on these spectral data to visualize the spectral responses to O3, always using 

Euclidean distances through the ‘vegan’ package in R (www.r-project.org; [67]). Finally, the 

capability of spectroscopy to classify O3 treatments was further determined by PLS-DA [8,68]. The 

analyses were run 500 times by splitting observations into different groups of calibration (training) 

and validation (testing) sets, and the number of correct classifications both in the calibration and in 

the validation sets across the 500 iterations was used to determine the accuracy of the tested model. 

The calibration:validation data ratio and the number of components used to get the models that 

would give the best fit to the data were determined by iteratively running the PLS-DA models with 

different calibration:validation data ratios (i.e., 50:50, 70:30, 80:20), and the numbers of components, 

and were based on the highest kappa values returned for the validation models. Partial least squares-

discriminant analysis was run with the ‘caret’ and ‘vegan’ packages in R (www.r-project.org; [67,69]). 
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Abbreviations 

AA Ambient air 

ANOVA Analysis of variance 

AOT40 Accumulated exposure over a threshold of 40 ppb 

ChlF Chlorophyll a fluorescence 

CI Chlorophyll index 

D Fraction of light absorbed in PSII antennae that is dissipated thermally 

EO Elevated ozone 

ETR Electron transport rate 

F0 Minimum fluorescence yield in the dark-adapted state 

F0′ Minimum fluorescence intensity in the light-adapted state 

Fm Maximum fluorescence yield in the dark-adapted state 

Fm’ Maximum fluorescence intensity in the light-adapted state 

Fs Steady state fluorescence intensity in light-adapted state 

Fv/Fm Maximum quantum efficiency of PSII photochemistry 

Fv’/Fm’ Maximum efficiency of PSII in light conditions 

FACE Free air controlled exposure 

MO Moderate ozone 

NDVI Normalized difference vegetation index 

NIR Near-infrared spectral region 

NPQ Non-photochemical quenching calculated as (Fm-Fm’)/Fm’ 

O3 Ozone 

P Fraction of light absorbed in PSII antennae that is utilized in PSII photochemistry 

PAM Pulse-amplitude-modulation 

PCoA Principal coordinates analysis 

PERMANOVA Permutational analysis of variance 

PLS-DA Partial least squares discriminant analysis 

PLSR Partial least squares regression 

PRESS Predicted residual sum of squares 

PRI Photochemical reflectance index 

PSI Photosystem I 

PSII Photosystem II 

PSRI Plant senescence reflectance index 

qL Fraction of open PSII centers 

qN Non-photochemical quenching calculated as (Fm-Fm’)/(Fm-F0′) 

qP Photochemical quenching 

R2 Model goodness-of-fit 

RMSE Root mean square error 

sPRI Scaled photochemical reflectance index 

sPSRI Scaled plant senescence reflectance index 

SWIR Short-wave infrared spectral region 

VIs Vegetation indices 

VIP Variable importance to the projection  

VIS Visible spectral region 

ΦPSII PSII operating efficiency in light conditions 
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%RMSE Percent root mean square error of the data range 
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