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The exactly-solvable Sachdev-Ye-Kitaev (SYK) model has recently received considerable attention
in both condensed matter and high energy physics because it describes quantum matter without
quasiparticles, while being at the same time the holographic dual of a quantum black hole. In
this Letter, we examine SYK-based charging protocols of quantum batteries with N quantum cells.
Extensive numerical calculations based on exact diagonalization for N up to 16 strongly suggest
that the optimal charging power of our SYK quantum batteries displays a super-extensive scaling
with N that stems from genuine quantum mechanical effects. While the complexity of the non-
equilibrium SYK problem involved in the charging dynamics prevents us from an analytical proof,
we believe that this Letter offers the first (to the best of our knowledge) strong numerical evidence
of a quantum advantage occurring due to the maximally-entangling underlying quantum dynamics.

Introduction.—In the era of quantum supremacy for
quantum computing [1, 2], research on the potential use-
fulness of quantum mechanical resources (such as entan-
glement) in energy science has led a consistent number
of authors to introduce and study “quantum batteries”
(QBs). A QB [3, 4] is a system composed of N identi-
cal quantum cells, where energy is stored and from which
work can be extracted.

In 2013, Alicki and Fannes [3] suggested that “en-
tangling unitary controls”, i.e. unitary operations act-
ing globally on the state of the N quantum cells, lead
to better work extraction capabilities from a QB, when
compared to unitary operations acting on each quantum
cell separately. Hovhannisyan et al. [5] were the first
to demonstrate that entanglement generation leads to a
speed-up in the process of work extraction, thereby lead-
ing to larger delivered power. Later on, the authors of
Refs. [6, 7] focussed on the charging (rather than the dis-
charging) procedure and identified two types of charging
schemes: i) the parallel charging scheme in which each
of the N quantum cells is acted upon independently of
the others; and ii) the collective charging scheme, where
global unitary operations (i.e. the entangling unitary con-
trols of Ref. [3]) acting on the full Hilbert space of the N
quantum cells are allowed. They were able to show that,
in the collective charging case and for N ≥ 2, the charg-
ing power of a QB is larger than in the parallel scheme.
This collective speed-up (stemming from entangling op-
erations) during the charging procedure of a QB has been
named “quantum advantage”.

In the quest for such quantum advantage and potential
laboratory implementations of QBs—based, e.g., on cir-
cuit quantum electrodynamics and trapped-ion setups—
the abstract concepts of “quantum cell” and “entan-

t⌧0

FIG. 1. The charging protocol of a QB made of N spin-1/2

units, described by the Ĥ0 in Eq. (1). At time t < 0, the
battery is fully discharged. In the time interval 0 < t <
τ , the interacting charging Hamiltonian Ĥ1 is switched on,
and energy is injected via the quench. Finally, at time τ ,
interactions are switched off and Ĥ0 is switched back on, so
that the stored energy EN (τ) is conserved thereafter.

gling operations” have been recently spelled out more
explicitly [8–27]. Different prototypes of QBs have been
devised: i) Dicke models, where arrays of N qubits
(i.e. the proper battery) are coupled to a harmonic energy
source [9–14]; ii) deterministic spin chains [8, 26, 27]; and
iii) disordered spin chains [16, 17]. These quantum cells
can be charged by switching on either direct [8, 16, 17]
or effective [9–14] interactions between them.

The authors of Refs. [8, 9] proposed two concrete
implementations of the collective charging scheme, and
claimed the existence of a quantum advantage over
the parallel charging procedure. However, Julià-Farré
et al. [27] noticed that the Hamiltonians adopted in
Refs. [8, 9] were not properly defined in the thermo-
dynamic limit, in the sense that their average values
did not display extensivity with N , but, rather, dis-
played a super-linear growth with N . Moreover, the
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same authors were able to derive a rigorous bound for
the charging power, allowing to distinguish between a
genuine entanglement-induced speed-up and spurious ef-
fects, given e.g. by the lack of a well-defined thermody-
namic limit. In agreement with Ref. [26], the conclusion
of Ref. [27] is that all the many-body QB models pro-
posed in the literature so far do not feature any genuine
quantum advantage.

Motivated by this literature, we propose a model of a
QB which i) is properly defined in the thermodynamic
limit and ii) unequivocally presents a genuine quantum
advantage. Our implementation relies on the Sachdev-
Ye-Kitaev (SYK) model [28–31], which has recently at-
tracted a great deal of attention for its exact solvabil-
ity and profound properties. The SYK model describes
quantum matter with no quasiparticles. It displays fast
scrambling [32, 33], has a nonzero entropy density at van-
ishing temperature [34, 35], all its eigenstates exhibit
volume-law entanglement entropy [36, 37], and is holo-
graphically connected to the dynamics of AdS2 horizons
of quantum black holes [29, 30, 38, 39]. Proposals to real-
ize the SYK Hamiltonian have been recently put forward
and rely on ultra-cold atoms [40], graphene flakes with
irregular boundaries [41], and topological superconduc-
tors [42, 43].

Many-body QBs and figures of merit.—Consider a QB
made of N identical quantum cells (for a cartoon, see
Fig. 1), which are governed by the following free and
local Hamiltonian (~ = 1):

Ĥ0 =

N∑

j=1

ĥj . (1)

At time t = 0, the system is prepared in its ground state
|0〉, physically representing the discharged battery. By
suddenly switching on a suitable interaction Hamiltonian
Ĥ1 for a finite amount of time τ (and switching off Ĥ0),
one aims at injecting as much energy as possible into the
quantum cells [6–8]. The time interval τ is called the
charging time of the protocol. The full model Hamilto-
nian can be thus written as

Ĥ(t) = Ĥ0 + λ(t)
(
Ĥ1 − Ĥ0

)
, (2)

where λ(t) is a classical parameter that represents the
external control exerted on the system, and which is as-
sumed to be given by a step function equal to 1 for t ∈
[0, τ ] and zero elsewhere. Such charging protocol is ex-
perimentally feasible, e.g. in cold-atom setups [44], where
implementing sudden quenches is a standard procedure.
Accordingly, denoting by |ψ(t)〉 the state of the system
at time t, its total energy Etot

N (t) = 〈ψ(t)|Ĥ(t)|ψ(t)〉 is
constant for all values of t but t = 0 and t = τ (the
switching points).

The energy injected into the N quantum cells can be
expressed in terms of the mean local energy at the end

of the protocol, EN (τ) = 〈ψ(τ)|Ĥ0|ψ(τ)〉. In writing
the previous equation, we have set to zero the ground-
state energy 〈0|Ĥ0|0〉. Other crucial figures of merit are
the average charging power PN (τ) = EN (τ)/τ and its
optimal value

PN (τ∗) = max
τ>0

PN (τ) , (3)

obtained at time τ∗. In the following, we will be mainly
interested in the scaling of the optimal charging power
PN (τ∗) with the number N of quantum cells.

SYK-based charging protocols.—We assume each quan-
tum cell to be a spin-1/2 system. In the absence of
charging operations, the system is described by the non-
interacting Hamiltonian (1), with ĥj = ω0σ̂

y
j /2. Here,

ω0 > 0 represents a magnetic field strength (with units
of energy) and σ̂αj (α = x, y, z) are the Pauli matrices.
The battery energy EN (τ) will be measured in units of
the energy scale ω0. At time t = 0, the quantum cells are
initialized in the ground state of Ĥ0, |0〉 =

⊗N
j=1 |↓(y)〉j ,

where σ̂yj |↓(y)〉j = − |↓(y)〉j .
For the charging Hamiltonian Ĥ1, we use the complex

SYK (c-SYK) [30, 45, 46] model Hamiltonian:

Ĥc-SYK
1 =

N∑

i,j,k,l=1

Ji,j,k,lĉ
†
i ĉ
†
j ĉk ĉl , (4)

where ĉ†j (ĉj) is a spinless fermionic creation (annihila-
tion) operator [47]. This has to be understood in its
spin-1/2 representation, which is obtained by the Jordan-

Wigner (JW) transformation ĉ†j = σ̂+
j

(
Πj−1
m=1σ̂

z
m

)
, where

σ̂±j ≡ (σ̂xj ± iσ̂yj )/2 [48]. The couplings Ji,j,k,l are zero-
mean Gaussian-distributed complex random variables,
with variance 〈〈J2

i,j,k,l〉〉 = J2/N3, satisfying Ji,j,k,l =
J∗k,l,i,j and Ji,j,k,l = −Jj,i,k,l = −Ji,j,l,k. In the following,
we average any quantity of interest O over the distribu-
tion of {Ji,j,k,l}, and denote by 〈〈O〉〉 the averaged value,
i.e. 〈〈O〉〉 ≡

∫
P ({Ji,j,k,l})O({Ji,j,k,l}) d{Ji,j,k,l}.

We emphasize that our choice of battery and charg-
ing Hamiltonians is such that [Ĥ0, Ĥ1] 6= 0, a condition
which ensures energy injection into the QB by the charg-
ing protocol (2). Note, finally, that the Hamiltonian in
Eq. (4) is invariant under particle-hole symmetry (PHS)
in the thermodynamic limit N →∞. Extra terms, how-
ever, need to be added to it in order to enforce PHS at
any finite N [45]:

Ĥc-SYK (PHS)
1 = Ĥc-SYK

1 +
1

2

N∑

i,j,k,l=1

Ji,j,k,l (5)

×
(
δi,k ĉ

†
j ĉl − δi,lĉ†j ĉk − δj,k ĉ†i ĉl + δj,lĉ

†
i ĉk
)
.

Hereafter, we will always use this version of the c-SYK
model. We have however checked that our main findings
do not qualitatively change if PHS is not enforced and
(4), rather than (5), is used as charging Hamiltonian.
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FIG. 2. Dynamics of the dimensionless population pk(τ) of the QB energy levels as a function of time τ (in units of 1/J) and
the level index k for three different charging protocols: c-SYK (a), b-SYK with J̄ = J (b), and parallel with K = J (c). Data
in panels (a) and (b) correspond to a single realization of disorder in the couplings Ji,j,k,l and J̄i,j,k,l.

In the following, we will also consider charging Hamil-
tonians based on a bosonic version of the SYK model
(b-SYK) [45]:

Ĥb-SYK
1 =

N∑

i,j,k,l=1

J̄i,j,k,lb̂
†
i b̂
†
j b̂k b̂l , (6)

where b̂†j (b̂j) creates (annihilates) an hard-core boson.

The following relations are obeyed: {b̂j , b̂†j} = 1 and

[b̂i, b̂j ] = 0 for i 6= j. Hence, b̂†j can be directly written in

its spin representation as b̂†j = σ+
j . Similarly to Ji,j,k,l,

the quantities J̄i,j,k,l in Eq. (6) are random, Gaussian-
distributed variables, with variance 〈〈J̄2

i,j,k,l〉〉 = J2/N3,

satisfying J̄i,j,k,l = J̄∗k,l,i,j and J̄i,j,k,l = J̄j,i,k,l = J̄i,j,l,k
(in order to comply with the bosonic commutation rules
of the model). For PHS to hold, we enforce the site in-
dices i, j, k, l in Eq. (6) to be all different [45]. Note that
the dependence of the variance of the couplings Ji,j,k,l
and J̄i,j,k,l on the inverse third power of N ensures that
all our SYK charging Hamiltonians are well-defined in
the thermodynamic limit. Indeed, their average values
scale extensively with N [49].

Finally, we will also examine a parallel charging pro-
tocol [6, 7] based on the following Hamiltonian

Ĥ‖1 = K

N∑

j=1

σ̂xj . (7)

In this case, each of the N quantum cells is acted upon in-
dependently of the others and no entanglement is gener-

ated [27]. The charging protocol based on Ĥ‖1 will there-
fore serve as reference model, to be compared against
c-SYK and b-SYK charging models.

Microscopy of the charging dynamics in energy
space.—As an indicator of the speed of the dynamics,
we start by looking at the time evolution of the energy-
level occupations. Consider the spectral decomposition

of Hamiltonian (1): Ĥ0 =
∑N
k=0 εk

∑
i |k, i〉 〈k, i|, where

εk = kω0 denote its eigenvalues and the index i accounts
for the degenerate eigenvectors. We are interested in the
dynamics of the populations:

pk(τ) =
∑

i

| 〈k, i|ψ(τ)〉 |2 . (8)

Figure 2 displays pk(τ) for the three charging Hamiltoni-
ans mentioned above: c-SYK (a), b-SYK (b), and parallel
(c). While in the latter two cases the charging protocol
generates a dynamics that is clearly local in energy space,
this is not the case for the c-SYK model. This charg-
ing model generates a non-local population dynamics in
energy space, which manifests as a sudden macroscopic
population of excited levels. Indeed, after an ultrashort
“thermalization” time [50] , a central band of excited
energy levels appears uniformly populated. (Further de-
tails on the thermalization properties of c-SYK QBs are
provided in Ref. [48]). This non-locality is a direct real-
ization of the global charging dynamics envisioned by the
authors of Ref. [6]. Recurrences appearing in the charg-
ing dynamics highlighted in panel (c) witness the inte-
grability of the parallel Hamiltonian in Eq. (7), which is
absent in the SYK models.

Power, bounds, and quantum advantage.—
Quantitative conclusions on the charging performances
of SYK QBs, compared to those of other reference
many-body QBs, can be drawn from the analysis of the
optimal power PN (τ∗) in Eq. (3) and its scaling with
N . Specifically, a rigorous certification of the quantum
origin of the charging advantage of the c-SYK model
can be achieved by considering the following bound [27]:

PN (τ) ≤ 2

√
∆τ Ĥ2

0 ∆τ Ĥ2
1 , (9)

where ∆τ Ĥ2 ≡ (1/τ)
∫ τ
0
dt[〈Ĥ2〉t − (〈Ĥ〉t)2] and 〈Ô〉t ≡

〈ψ(t)|Ô|ψ(t)〉. Here, ∆τ Ĥ2
1 represents the charging speed
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in the Hilbert space: larger values of such quantity corre-
spond to trivial increases of the charging speed. In con-
trast, ∆τ Ĥ2

0 is connected with the distance traveled in
the Hilbert space. An enhancement of it can be linked to
shortcuts in the Hilbert space: starting from a pure state
and going through highly entangled states, it is possible
to reduce the length of the trajectory in such space, con-
sequently enhancing the charging power [27]. This is a
genuine quantum effect, with no classical analogue. Any
increase of the average optimal power linked to ∆τ Ĥ2

0 can
be considered as the smoking gun of a genuine quantum
advantage, unreproducible by classical dynamics. A de-
tailed derivation of the bound (9) is provided in Ref. [48].

If the battery Hamiltonian Ĥ0 is made of a sum of
local terms, as in Eq. (1), it is possible to write ∆τ Ĥ2

0

as: ∆τ Ĥ2
0 = ∆Loc

τ Ĥ2
0 + ∆Ent

τ Ĥ2
0, with [27]

∆Loc
τ Ĥ2

0 ≡
1

τ

∫ τ

0

dt
∑

i

[
〈ĥ2i 〉t − 〈ĥi〉

2

t

]
, (10)

∆Ent
τ Ĥ2

0 ≡
1

τ

∫ τ

0

dt
∑

i6=j

[
〈ĥiĥj〉t − 〈ĥi〉t 〈ĥj〉t

]
.(11)

The quantity (10), being a sum of local terms, scales
linearly with N (i.e. is extensive) by construction. On
the other hand, ∆Ent

τ Ĥ2
0, whose explicit form can be im-

mediately linked to correlations between sites i and j,
may display a super-linear scaling with N . Due to the
non-linearity of the bound (9), which applies to a sin-
gle disorder realization, averaging over disorder is not
straightforward. Through the Cauchy-Schwarz inequal-
ity, though, it is possible to rewrite it as 〈〈PN (τ)〉〉 ≤
2
〈〈√

∆τ Ĥ2
0 ∆τ Ĥ2

1

〉〉
≤ 2

√
〈〈∆τ Ĥ2

0〉〉〈〈∆τ Ĥ2
1〉〉, meaning

that one can separately study the averaged quantities
〈〈∆τ Ĥ2

0〉〉 and 〈〈∆τ Ĥ2
1〉〉. Here we are interested in the

scaling at the optimal time τ∗, thus we focus on

〈〈PN (τ∗)〉〉 ≤ 2

√
〈〈∆τ∗Ĥ2

0〉〉〈〈∆τ∗Ĥ2
1〉〉 . (12)

Since the battery energy is measured in units of ω0

and time in units of 1/J , the averaged charging power
〈〈PN (τ∗)〉〉 is measured in units of ω0J . Given this choice,
we specify the energy scales of the b-SYK and parallel-
charging protocols by setting J̄ = K = J [51].

Figure 3(a) shows the relevant quantities for the
bound (12), for a c-SYK QB. While 〈〈∆τ∗Ĥ2

1〉〉 is exten-
sive in N , we observe that both 〈〈∆τ∗Ĥ2

0〉〉 and 〈〈∆Ent
τ∗ Ĥ2

0〉〉
display a super-linear scaling with N , which is compat-
ible with a quadratic growth. This means that, dur-
ing the time evolution, the c-SYK charging Hamilto-
nian generates the maximum possible non-locality be-
tween the quantum cells, in the form of N -partite en-
tanglement [27]. This, together with Eq. (12), suggests
a super-linear scaling with N of the optimal charging
power,

〈〈PN (τ∗)〉〉 ∼ N1+k , with k > 0 , (13)
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FIG. 3. Panel (a) The relevant quantities for the bound (12),
evaluated at the optimal time τ∗, and averaged over disorder:
time-averaged variances 〈〈∆τ∗Ĥ2

0〉〉 (blue triangles, in units

of ω2
0), 〈〈∆τ∗Ĥ2

1〉〉 (green squares, in units of J2), 〈〈∆Ent
τ∗ Ĥ2

0〉〉
(black circles, in units of ω2

0), as functions of N . Dashed
curves denote linear (green) and quadratic (blue, black) fits
to the numerical results. The four data points corresponding
to the smallest N have been discarded from the fits. Panel
(b) The optimal power (red) 〈〈PN (τ∗)〉〉 and the quantity in
the right-hand-side of Eq. (12) (blue) are plotted as functions
of N , in a log-log scale and in units of ω0J . Dashed lines
correspond to power laws ∼ N1+k (k = 0.5: red; k = 0:
orange) and are plotted as guides to the eye. Data in this
figure refer to the c-SYK QB model, and have been obtained
after averaging over Ndis = 103 (for N = 4, . . . , 10), 5 × 102

(for N = 11, 12), and 102 (for N = 13, . . . , 16) instances of
disorder in the couplings {Ji,j,k,l}.

where k ≈ 0.5. For the first time in the literature on
QB models [8–27], we are thus in a situation where the
power enhancement is linked to ∆τ Ĥ2

0, a fact that hints
at a quantum advantage (i.e. advantage over any classical
battery) displayed by the c-SYK model with respect to
the charging task. Further details on the comparison
between quantum and classical many-body batteries are
given in Ref. [48].

The left- and right-hand-side members of the inequal-
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ity (12) are displayed in Fig. 3(b), red and blue data,
respectively. We clearly see a super-linear scaling with
N (k = 0.5 corresponds to the red dashed straight line).
We have also considered the b-SYK and parallel-charging
models, showing that, in both cases, all the quantities
〈〈∆τ∗Ĥ2

0〉〉, 〈〈∆τ∗Ĥ2
1〉〉, and 〈〈∆Ent

τ∗ Ĥ2
0〉〉 are extensive in

N [48]. In agreement with the results shown in Figs. 2-
3, we thus conclude that these two QB models do not
display any genuine quantum advantage.

We finally recall that optimal charging powers that
scale faster than N have been found in Refs. [8, 9]. Un-
fortunately, such super-linear scalings do not stem from
∆τ Ĥ2

0 but rather from ∆τ Ĥ2
1, and therefore have no

quantum origin [27]. The fact that the Hamiltonians used
in Refs. [8, 9] are not properly defined in the thermody-
namic limit is ultimately at the origin of the spurious
super-extensive scaling of the optimal charging power.
This is explicitly shown in Ref. [48] for Dicke QBs. In this
Letter, we have bypassed this problem by choosing the
appropriate scaling [28–31, 45, 46] with N of the variance
〈〈J2

i,j,k,l〉〉 = J2/N3 of the c-SYK coupling parameters.

Alternatively, another strategy to rule out any spu-
rious effect on the optimal charging power is to use a
“renormalization” approach that consists in dividing the
charging Hamiltonian by its operator norm [48]. This
procedure allows for a fair comparison between different
QB models [7]. In agreement with the results illustrated
above, we have found a clear increase with N of the op-
timal charging power only for the renormalized c-SYK
Hamiltonian [48].

In the future, it will be interesting to study SYK-type
models in the context of heat engines [52, 53], where min-
imizing time scales is also of central importance.
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M. Fanizza, S. Julià-Farré, M. Lewenstein, T. Salamon,
and S. Tirone for useful conversations. D. Rosa wishes
to thank the Simons Center for Geometry and Physics
(Stony Brook University, USA) and the organizers of
the program “Universality and ergodicity in quantum
many-body systems” for their support and warm hos-
pitality. M.C. acknowledges support from the Quant-
EraNet project “Supertop”.

∗ davide.rossini@unipi.it
† gian.andolina@sns.it

[1] M. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[2] F. Arute et al., Nature 574, 505 (2019).
[3] R. Alicki and M. Fannes, Phys. Rev. E 87, 042123 (2013).
[4] For a recent review on QBs see e.g. F. Campaioli,

F.A. Pollock, and S. Vinjanampathy, in Thermody-
namics in the Quantum Regime, F. Binder, L.A. Cor-
rea, C. Gogolin, J. Anders, and G. Adesso (eds.), p.

207-225, (Springer, New York, 2018). Also available as
arXiv:1805.05507.

[5] K.V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and
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Goold, S. Vinjanampathy, and K. Modi, Phys. Rev.
Lett. 118, 150601 (2017).

[8] T.P. Le, J. Levinsen, K. Modi, M.M. Parish, and F.A.
Pollock, Phys. Rev. A 97, 022106 (2018).

[9] D. Ferraro, M. Campisi, G.M. Andolina, V. Pellegrini,
and M. Polini, Phys. Rev. Lett. 120, 117702 (2018).

[10] G.M. Andolina, D. Farina, A. Mari, V. Pellegrini, V.
Giovannetti, and M. Polini, Phys. Rev. B 98, 205423
(2018).

[11] G.M. Andolina, M. Keck, A. Mari, M. Campisi, V. Gio-
vannetti, and M. Polini, Phys. Rev. Lett. 122, 047702
(2019).

[12] D. Farina, G.M. Andolina, A. Mari, M. Polini, and V.
Giovannetti, Phys. Rev. B 99, 035421 (2019).

[13] Y.-Y. Zhang, T.-R. Yang, L. Fu, and X. Wang, Phys.
Rev. E 99, 052106 (2019).

[14] X. Zhang and M. Blaauboer, arXiv:1812.10139.
[15] F. Barra, Phys. Rev. Lett. 122, 210601 (2019).
[16] D. Rossini, G.M. Andolina, and M. Polini, Phys. Rev.

B 100, 115142 (2019).
[17] S. Ghosh, T. Chanda, and A. Sen De, Phys. Rev. A 101,

032115 (2020).
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In this Supplemental Material we provide additional information on the way in which the c-SYK model is mapped
onto a spin-1/2 model and include a few details on the procedure adopted for the numerical calculations. We

formally derive the bound in Eq. (9) of the main text, discuss the implications of such bound for quantum and
classical batteries, show explicit numerical evidence for the lack of a quantum advantage in b-SYK and parallel
quantum-battery charging models, and discuss the behavior of the optimal power after rescaling the charging

Hamiltonians with their operator norm. We also show that the SYK model induces a fast thermalization to an
infinite temperature state. Finally, we discuss the lack of a super-linear charging power in a Dicke battery, provided

that thermodynamic consistency is enforced.

On the JW transformation and other details on the
numerical calculations

The c-SYK model [S1] for finite N is best handled nu-
merically after mapping it onto a spin model. This is
accomplished through the JW transformation. For the
sake of clarity, we here report the c-SYK model Hamil-
tonian [cf. Eq. (4) in the main text]:

Ĥc-SYK
1 =

N∑

i,j,k,l=1

Ji,j,k,l ĉ
†
i ĉ
†
j ĉk ĉl . (S1)

Here, ĉ†j (ĉj) creates (annihilates) a complex spinless
fermion and the usual fermionic anticommutation rela-
tions, {c†i , cj} = δi,j , {ci, cj} = 0, hold true. The JW
transformation, which maps spinless fermions into spin-
1/2 degrees of freedom, reads as following:

ĉ†j = σ̂+
j

[
j−1∏

m=1

σ̂zm

]
, ĉj =

[
j−1∏

m=1

σ̂zm

]
σ̂−j , (S2)

where σ̂±j ≡ (σ̂xj ± iσ̂yj )/2.
Applying such transformation to the model in Eq. (S1),

one has to distinguish three cases [S2]:
• All indices are different (i 6= j 6= k 6= l). In this case

ĉ†i ĉ
†
j ĉk ĉl = β

[
ζ2−1∏

ξ=ζ1+1

σ̂zξ

][
ζ4−1∏

ξ′=ζ3+1

σ̂zξ′

]
σ̂+
i σ̂

+
j σ̂
−
k σ̂
−
l ,

(S3)
where {ζ1, ζ2, ζ3, ζ4} = {i, j, k, l} are the four reordered
indices, such that ζ1 < ζ2 < ζ3 < ζ4, and β = sign(i −
j) sign(k − l);

• Two indices are equal (e.g. j = l and i 6= j 6= k). In
this case:

ĉ†i ĉ
†
j ĉj ĉk = σ̂+

i

[
ζ2−1∏

ξ=ζ1

σ̂zξ

]
σ̂+
j σ̂
−
j σ̂
−
k , (S4)

where {ζ1, ζ2} = {i, k} are reordered such that ζ1 < ζ2;
• Indices are equal in pairs (e.g. j = k and i = l). In this
case

ĉ†i ĉ
†
j ĉj ĉi = σ̂+

i σ̂
+
j σ̂
−
j σ̂
−
i . (S5)

As we mentioned in the main text, in order to enforce
PHS, one needs to add extra terms of the form ĉ†i ĉk to
Eq. (S1) [cf. (5) in the main text]. We can again use
the JW transformation in order to write each of these
one-body contributions in terms of spin-1/2 operators:

ĉ†i ĉk = σ̂+
i

[
ζ2−1∏

ξ=ζ1

σ̂zξ

]
σ̂−k , (S6)

where {ζ1, ζ2} = {i, k} are reordered such that ζ1 < ζ2.
Once the Hamiltonian is written in the spin-1/2 repre-

sentation (spin operators do commute on different sites),
one can safely write its matrix representation in the usual
computational basis where the operator σ̂zj is diagonal.
Notice that, for the b-SYK Hamiltonian [Eq. (6)], the
JW string is not required.

In order to evaluate the properties of the time-evolved
state during our charging protocol (~ = 1),

|ψ(τ)〉 = e−iĤ1τ

( N⊗

j=1

|↓(y)〉j
)
, (S7)
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FIG. S1. Panels (a,b) The relevant quantities for the bound (12) in the main text, evaluated at the optimal time τ∗ and averaged

over disorder: time-averaged variances 〈〈∆τ∗Ĥ2
0〉〉 (blue triangles), 〈〈∆τ∗Ĥ2

1〉〉 (green squares), 〈〈∆Ent
τ∗ Ĥ2

0〉〉 (black circles), as
functions of N . Dashed lines denote linear fits to the numerical results. The four data points corresponding to the smallest N
have been always eliminated from the fits. Panels (c,d) The optimal power (red) 〈〈PN (τ∗)〉〉 and the quantity in the right-hand-
side of the bound (12) (blue) are plotted as functions of N , in a log-log scale. Dashed lines correspond to power laws ∼ N1+k

(k = 0.5: red; k = 0: orange) and are plotted as guides to the eye. Data in panels (a,c) refer to the b-SYK QB model. Data

in panels (b,d), instead, refer to the parallel QB model.In panels (a,b), 〈〈∆τ∗Ĥ2
0〉〉 and 〈〈∆Ent

τ∗ Ĥ2
0〉〉 are measured in units of ω2

0 ,

while 〈〈∆τ∗Ĥ2
1〉〉 is measured in units of J2 for both b-SYK and parallel-charging protocols. Data in panels (c,d) are in units of

ω0J for both b-SYK and parallel-charging protocols. This implies that choices need to be made for the parameters J̄ and K,
in units of J : data in this figure have been obtained by setting J̄ = J and K = J . Here and in Fig. S2, data for both types
of SYK models have been obtained after averaging over Ndis = 103 (for N = 4, . . . , 10), 5× 102 (for N = 11, 12), and 102 (for
N = 13, . . . , 16) instances of disorder in the couplings {Ji,j,k,l} and {J̄i,j,k,l}.

we numerically integrated the equation of motion for
|ψ(τ)〉 using a fixed-stepsize fourth-order Runge-Kutta
method. To ensure convergence, typical integration time
steps of order δt ≈ 10−3 (in units of 1/J) were used.
We checked that our choice of δt is always conservative
(i.e., it guarantees convergence in time of all our results,
within an error bar that is negligible on the scale of the
figures).

Derivation of Eq. (9) in the main text

From the Heisenberg equation of motion for 0 ≤ t ≤ τ
we get:

(
dEN (t)

dt

)2

=
∣∣ 〈[Ĥ0, Ĥ1]〉t

∣∣2 . (S8)

The Schrödinger-Robertson (SR) inequality [S3] yields:
| 〈[Ĥ0, Ĥ1]〉t |2 ≤ 4 (δtĤ2

0) (δtĤ2
1), where δtĤ2 ≡ 〈Ĥ2〉t −

〈Ĥ〉2t . Taking the square root of Eq. (S8), using the SR
inequality, applying the integral

∫ τ
0
dt/τ to both mem-

bers of Eq. (S8), and using EN (0) = 0, we finally get the
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inequality:

PN (τ) ≡ EN (τ)

τ
≤ 2

∫ τ

0

dt

τ

√
(δtĤ2

0) (δtĤ2
1) . (S9)

Using the Cauchy-Schwarz inequality with respect to the
scalar product induced by

∫ τ
0
dt/τ , we finally get Eq. (9)

in the main text, i.e.

PN (τ) ≤ 2

√
∆τ Ĥ2

0 ∆τ Ĥ2
1 . (S10)

Since the evolution is generated by the charging Hamil-
tonian Ĥ1 itself, the time-average

∫ τ
0
dt/τ involved in the

second term in the r.h.s of Eq. (S10) can be computed
trivially as

∆τ Ĥ2
1 = 〈Ĥ2

1〉 − 〈Ĥ1〉2. (S11)

Comparison between quantum and classical
many-body batteries

Consider the bound in Eq. (S10) [Eq. (9) in the main
text]. In order to ensure thermodynamic consistency, the
average value of the charging Hamiltonian is required to
be extensive, 〈Ĥ1〉 ∼ N , while its standard deviation,[
〈Ĥ2

1〉 − 〈Ĥ1〉2
]1/2

should scale as
√
N . This ensures that

relative fluctuations, 〈Ĥ1〉 /
[
〈Ĥ2

1〉 − 〈Ĥ1〉2
]1/2

, drop to
zero as N goes to infinity, implying the equivalence of all
the thermodynamic ensembles (microcanonical, canoni-
cal, and grand canonical). This constraint forces ∆τ Ĥ2

1

to scale at most linearly with N . In the main text, we
have ensured thermodynamic consistency of the SYK QB
by choosing the appropriate scaling [S1] with N of the
variance 〈〈J2

i,j,k,l〉〉 = J2/N3 of the coupling parameters.

Exploiting the locality of Ĥ0 =
∑
j ĥj , with ĥj =

ω0σ̂
y
j /2, the first term in the r.h.s. of Eq. (S10) can

be written as the sum of two contributions: ∆τ Ĥ2
0 =

∆Loc
τ Ĥ2

0 + ∆Ent
τ Ĥ2

0, see Eqs. (10, 11) in the main text,

∆Loc
τ Ĥ2

0 ≡
1

τ

∫ τ

0

dt
∑

i

[
〈ĥ2i 〉t − 〈ĥi〉

2

t

]
, (S12)

∆Ent
τ Ĥ2

0 ≡
1

τ

∫ τ

0

dt
∑

i6=j

[
〈ĥiĥj〉t − 〈ĥi〉t 〈ĥj〉t

]
, (S13)

where averages 〈 · 〉t are done on the state |ψ(t)〉 at time
t. The first term, being a sum of N factors, is extensive
with N by construction. The second term can, in prin-
ciple, scale quadratically with N if correlations between
different sites are established during the dynamics. Here
we argue that such correlations have a quantum origin.

Indeed, consider the correlation term

Cφ =
∑

i 6=j

[
〈ĥiĥj〉φ − 〈ĥi〉φ 〈ĥj〉φ

]
(S14)

inside the integral in Eq. (S13), where averages 〈 · 〉φ
are done over a given state |φ〉. Evaluating it on the
highly nonclassical Greenberger-Horne-Zeilinger (GHZ)
state [S4],

|GHZ〉 =
1√
2

( N⊗

j=1

|↓(y)〉j +

N⊗

j=1

|↑(y)〉j
)
, (S15)

would result in a quadratic scaling with N , i.e., CGHZ =
N(N−1)ω2

0 . Conversely such correlation term evaluated

over a separable state, |φ〉 =
⊗N

j=1 |ϕ〉j (|ϕ〉j being an ar-
bitrary local state), would trivially vanish. This means
that, in order to have a super-linear scaling in the contri-
bution ∆Ent

τ∗ Ĥ2
0, the system has to evolve through highly

nonlocal states, as the GHZ state, during the dynamics.
By definition, classical systems do not build up any en-
tanglement during the charging dynamics, therefore dif-
ferent battery units are uncorrelated 〈ĥiĥj〉t = 〈ĥi〉t 〈ĥj〉t
and ∆Ent

τ∗ Ĥ2
0 = 0, meaning that the power scales linearly

with N .
In conclusion, in classical many-body batteries the

term ∆τ∗Ĥ2
0 scales at most linearly with N , while the

term ∆τ∗Ĥ2
1 is constrained to scale linearly by thermo-

dynamic consistency. On the other hand, in quantum
many-body batteries the entanglement production en-
ables ∆τ Ĥ2

0 to scale quadratically with N , which in turn
implies that the power may scale at most as N3/2.

A more detailed analysis of the relation between power
and entanglement is given in Ref. [S9], which shows that
a finite fraction of quantum cells are required to be en-
tangled in a GHZ-like state in order to imply a superex-
tensive charging power.

Power and bounds for the b-SYK and the
parallel-charging models

In the main text it has been shown that a QB charged
through the c-SYK model is able to outperform any clas-
sical battery, since both 〈〈∆τ∗Ĥ2

0〉〉 and 〈〈∆Ent
τ∗ Ĥ2

0〉〉 grow
quadratically with N (see Fig. 3 in the main text). Time
fluctuations of Ĥ0 are thus super-extensive. On the other
hand, as expected, 〈〈∆τ∗Ĥ2

1〉〉 is extensive in N . This sug-
gests that the bound (12), as well as the optimal power,
scale as N3/2:

〈〈PN (τ∗)〉〉 ∼ N1+ 1
2 (for the c-SYK model) , (S16)

a fact that is fully confirmed by our numerical calcula-
tions. In Fig. S1, we show the same quantities for the
b-SYK model [panels (a)-(c)] and for the parallel model
[panels (b)-(d)]. It is evident that, in both cases, all of
the above mentioned time-averaged variances, as well as
the optimal charging power, grow linearly in N ,

〈〈PN (τ∗)〉〉 ∼ N (for the b-SYK & parallel models) .
(S17)
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This rules out the possibility to have a genuine quantum
speed-up in the charging process, by using the b-SYK
and parallel-charging Hamiltonians.

Comparison between the c-SYK, b-SYK and the
parallel-charging models using renormalized

Hamiltonians

The charging performances of the various quantum
batteries (QBs) can be tested by analyzing the scaling of
the optimal power PN (τ∗) with the number N of cells [see
Eq. (3) in the main text]. Comparisons between the dif-
ferent models need to be made with great care. We note
that the time-evolution operator is Û(t) ≡ exp (−iĤ1t).
The charging Hamiltonian Ĥ1 contains an energy scale,
i.e. J (J̄) for the c-SYK (b-SYK) model and K for the
parallel-charging model. Here it is important to (i) rule
out trivial power enhancements determined by an in-
crease in the energy scale, i.e. obtained by multiplying
the energy couplings by a factor α > 1, and (ii) compare
the three models in a fair manner—“fair” in the sense
that, trivially, a parallel charging protocol with K ≥ J, J̄ ,
for example, may outperform c-SYK and b-SYK charging
protocols, and we want to avoid that.

To rule out these spurious effects, we consider the
rescaled charging Hamiltonians [S5, S6],

Ĥ1 ≡
Ĥ1

‖Ĥ1‖
, (S18)

where ‖Ô‖ = µÔ defines the norm of the operator Ô, µÔ
being its highest singular value. For the sake of conve-
nience and without loss of generality, we also set to zero
the ground-state energy ε0 of all Hamiltonian operators
Ĥ, by adding a suitable constant. The charging Hamil-
tonian (S18) allows a fair comparison between different
QB models. In Fig. S2, we report the optimal charging
power 〈〈PN (τ∗)〉〉 as a function of N , calculated for the
c-SYK, b-SYK, and parallel rescaled charging Hamiltoni-
ans. For the case of the c-SYK and b-SYK models, data
have been obtained after averaging over many disorder
realizations. Results in this figure are independent of the
microscopic energy scale appearing in Ĥ1.

We see that the c-SYK is the only model for which
〈〈PN (τ∗)〉〉 clearly increases with N , thereby presenting
a qualitative advantage over the b-SYK and parallel-
charging QBs. Concerning the b-SYK QB, its poor per-
formance with respect to its fermionic cousin, the c-SYK
QB, indicates that random pair hopping, which both
models share, is not enough to guarantee a quantum ad-
vantage. The non-local JW strings for fermions are cru-
cial, as they maximize entanglement production during
the time evolution and therefore correlations between the
N quantum cells. Note that there is no contradiction be-
tween the scaling of the optimal charging power shown in

4 8 12 16
N

0.2

0.4

0.6

0.8

1

〈〈P
N

(τ
∗ )
〉〉

c-SYK

b-SYK

Parallel

FIG. S2. The dependence of the averaged optimal charging
power 〈〈PN (τ∗)〉〉 on the number N of quantum cells, using the
rescaled Hamiltonian (S18). The averaged optimal charging
power shown in this plot is thus measured in units of ω0.
In red, we show the optimal power calculated for the c-SYK
model with PHS. In blue (black) we show the same quantity
for the b-SYK (parallel) model.

Fig. S2 for the c-SYK charging protocol and the ∼ N3/2

scaling seen in Fig. 3(b) in the main text. The point is
that, in the former, the rescaled Hamiltonian (S18) was
used. We have checked that the ratio between the two
optimal charging powers yields the correct bandwidth of
the c-SYK model, which scales linearly with N .

Asymptotic dynamics of the SYK model and
random states

The SYK model is known to exhibit peculiar properties
such as non-integrability, the absence of any local con-
served quantity, and quantum chaos [S7, S8]. Such prop-
erties imply that any time-evolved state at long times can
be locally approximated by a suitable thermal state. We
therefore expect that in the c-SYK QB charging protocol,
after an initial transient time, the population pk(τ) of the
energy levels of the Hamiltonian Ĥ0 becomes indepen-
dent of τ . More precisely, we expect it to be well approx-
imated by that of a random state in the 2N -dimensional
Hilbert space. In fact, such time independence of pk for
the c-SYK model is clearly visible in Fig. 2(a) of the main
text, already for τ & 1 (in units of 1/J). Panel (b) of
the same figure suggests that a similar situation may also
occur for the b-SYK model as well, but at comparatively
longer times.

This is quantitatively analyzed in Fig. S3, where we
report the same data of Fig. 2(a), once the time is fixed
to τ = 4, in units of 1/J (blue triangles). One can imme-
diately recognize that such distribution of energy levels
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FIG. S3. The energy-level population (blue triangles) pk as a
function of k, for the c-SYK model, evaluated numerically at
τ = 4 (in units of 1/J). These numerical results are compared
against the analytical result in Eq. (S19) (red squares) and
the prediction based on a random state (green circles). The
two latter outcomes (red and green symbols) turn out to be
indistinguishable from the numerically obtained data (blue
symbols).

agrees nearly perfectly with the one corresponding to a
completely mixed state, ρ(r) = 1/2N (red squares), The
latter is simply given by a binomial distribution

p
(r)
k =

1

2N

(
N

k

)
. (S19)

A very similar result can be obtained if a random pure
state, |ψ(r)〉 =

∑
n cn|n〉, is taken, cn being complex num-

bers with randomly distributed amplitude and variance
and satisfying

∑
n |cn|2 = 1 (green circles).

This reasoning hints at a fast thermalization of the
c-SYK model to an infinite temperature state.

Charging power of a Dicke battery

Unlike for the c-SYK battery, the power of a Dicke
battery [S10] does not exhibit a super-linear scaling, pro-
vided consistency with the thermodynamic limit is cor-
rectly enforced [S9]. Dicke batteries are unitarily charged
via a protocol that is slightly different from the one de-
scribed in Eq. (2) of the main text. In fact, both the
charging system A and the battery B are quantum me-
chanically described by the time-dependent Hamiltonian

Ĥ(t) = ĤA + ĤB + λ(t)Ĥint . (S20)

where ĤA (ĤB) is the free Hamiltonian acting on the sys-
tem A (B), λ(t) is a classical control parameter, which
is assumed to be equal to one if t ∈ [0, τ ] and zero else-
where, and Ĥint is an interaction Hamiltonian which cou-
ples the charging system and the battery, thus enabling
the charging process to occur. A Dicke battery is made

by N qubits (the battery cells) charged by a cavity mode.
The Hamiltonian terms in Eq. (S20) are given by

ĤA = ω0â
†â , (S21)

ĤB =
ω0

2

( N∑

i=1

σ̂zi +
N

2

)
, (S22)

Ĥint =
g√
N

(
â† + â

) N∑

i=1

σ̂xi , (S23)

where â (â†) is a bosonic annihilation (creation) operator,
ω0 is the characteristic frequency of both subsystems, and
g the coupling strength. The prefactor 1/

√
N ensures

the thermodynamic consistency of the model [S9]. As a
matter of fact, the interaction Hamiltonian Ĥint can be
derived from a dipole light-matter interaction of the form∑N
i=1 d̂i · Êi, where d̂i is the dipole operator acting on

the i-th cell and Êi is the cavity electric field evaluated
at the position i. While each dipole operator d̂i does not
carry any scaling with N , the electric field inside a cavity
with volume V scales like 1/

√
V . In a cavity system,

the correct thermodynamic limit consists in considering
N → ∞, V → ∞, with N/V → const. This means that
V ∼ N . Thus 1/

√
N is the correct prefactor to enforce a

well-defined thermodynamic limit.
At time t = 0, the charger is prepared in a N -photon

Fock state, while the qubits are prepared in their ground
state, namely

|ψ(0)〉 = |N〉A ⊗ |0〉B . (S24)

The energy injected in the N cells of the Dicke battery
and the corresponding average power are defined as

EN (τ) ≡ tr
[
ĤB ρB(τ)

]
, (S25)

PN (τ) ≡ EN (τ)

τ
. (S26)
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FIG. S4. The optimal charging power PN (τ∗), in units of
NP1(τ∗), as a function of N . Different symbols and colors
refer to various values of the coupling strengh: g/ω0 = 0.05
(red circles), g/ω0 = 0.5 (blue triangles), g/ω0 = 2 (green
squares).
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The optimal charging time τ∗ is defined as in Eq. (3)
in the main text, PN (τ∗) = maxτ>0 PN (τ). In Fig. S4,
we explicitly show the optimal charging power PN (τ∗),
normalized by N times the optimal charging power of
a single cell P1(τ∗). This ratio tends to saturate to a
constant for N large enough, meaning that the power of
a Dicke battery does not display a super-linear scaling.
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