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Exploiting Symmetrization and D-reducibility for
Approximate Logic Synthesis

Anna Bernasconi, Valentina Ciriani, and Tiziano Villa

Abstract—Approximate synthesis is a recent trend in logic synthesis where one changes some outputs of a logic specification, within
the error tolerance of a given application, to reduce the complexity of the final implementation. We attack the problem by exploiting the
allowed flexibility in order to maximize the regularity of the specified Boolean functions. Specifically, we consider two types of regularity:
symmetry and D-reducibility, and contribute two algorithms to find, respectively, a symmetric and a D-reducible approximation of a
given target function f , within the given error rate threshold if possible. When targeting symmetry, we characterize and compute
polynomially the closest symmetric approximation, i.e., the symmetric function obtained by injecting the minimum number of errors in
the original incompletely specified Boolean function, with an unbounded number of errors; then, we discuss strategies to achieve
partial symmetrization of the original specification while satisfying given error bounds. Finally, we present a polynomial heuristic
algorithm to compute a D-reducible approximation of an incompletely specified target function, under a bit error metric. Experimental
results on classical and new benchmarks confirm the effectiveness of the proposed approaches.

Index Terms—Logic synthesis, Approximate synthesis , Regular Boolean functions.
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1 INTRODUCTION

In approximate logic synthesis, the error tolerance of specific
applications allows to produce erroneous outputs for some
inputs, within a specified error threshold [31], [42]. Applica-
tions domains where approximations are acceptable include
image, video, audio, machine learning, pattern recogni-
tion, and error-correcting codes for wireless communication.
This flexibility can be exploited to synthesize circuits with
smaller area, delay, or lower power consumption. In recent
years there has been an increasing flow of publications
to investigate approximate logic synthesis, from one side
adapting to the new scenario the conceptual tools already
developed for standard exact logic synthesis, from the other
side addressing the specific issues such as modeling the
acceptable errors. We refer to the next section on previous
work for a tentative survey of relevant literature (see for
instance [8], [15], [26], [27], [28], [29], [34], [35], [39]).

Partial flexibility to implement a given Boolean function
appears in exact synthesis too, due both to incomplete spec-
ification from the onset and to controllability/observability
conditions arising in a specific chosen architecture, which
can be summed up as don’t care computation and ex-
ploitation. However, exploitation of don’t cares is harder
in approximate synthesis than in exact synthesis, because in
the latter case we are required to optimize under a given set
of don’t cares, i.e., to assign them to obtain the best final im-
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plementation, whereas in approximate synthesis we know
only an upper bound on the number of don’t cares, and we
are free to choose which inputs to set as don’t cares. This
point-of-view is highlighted in [28], [29], where the authors
first address the problem of approximate logic synthesis
under arbitrary error magnitude by casting it as a Boolean
relation minimization [2]; then, they present an efficient
heuristic algorithm for refining iteratively the magnitude-
constrained solution to yield a solution that satisfies also
the error rate constraint.

The key question that each approach must answer is how
to exploit the flexibility in changing the value of the function
on a subset of input points. In this paper we exploit the
network tolerance to errors to maximize the regularities of
Boolean functions and so to reduce the complexity of their fi-
nal logic implementations. Regularity of a Boolean function
is a generic notion that aims to capture intrinsic properties of
the function easing the minimization process or suggesting
the architecture of a simplified implementation. Some well-
known classes of regular functions are: unate functions,
self-dual functions, linear functions, totally and partially
symmetric functions, threshold functions, D-reducible and
autosymmetric functions. E.g., unateness is leveraged in
ESPRESSO, which is based on building cofactoring trees
of the given function until we reach unate leaves whose
minimum is unique and easy to compute [13]; synthesis
procedures based on autosymmetry can be found in [9],
[10]. Here we bring to a new height the idea of exploiting
regularities for synthesis of Boolean functions, since we
apply it within the context of approximate synthesis, where
we have the freedom of choosing which output values to
toggle to improve the regularity of the function, whereas in
the exact case we are left only with the task of exposing
the regularity if it exists, and exploiting it in the final
implementation.

In this paper, we consider two types of regularity: sym-
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metry [24], [41] and D-reducibility [5], [6], [7], and present
two algorithms that find, respectively, a symmetric and
a D-reducible approximation of a given target function f
to be synthesized, within the given error rate threshold if
possible. These regularity-based approaches to approximate
synthesis do not refer to any particular logic form, and can
therefore be used on top of any minimizer, targeting e.g.
two-level logic, XOR-AND-OR forms, multi-level logic.

When targeting symmetrization, we contribute a poly-
nomial algorithm for computing the closest totally symmetric
approximation of a given incompletely specified multi-output
Boolean function with an unbounded number of errors. This
is achieved by exploiting properties of the disjoint covers
of a Boolean function and efficient BDD constructions, so
that we can build polynomially the characteristic vector of
the closest symmetric function and its BDD. The proposed
algorithm is designed for single-output functions, but it can
be applied to multi-output ones, treating each output as a
separate Boolean function. In fact, we prove that once each
output has been replaced with its closest symmetric approx-
imation, the overall multi-output function becomes the to-
tally symmetric function closest to the original one. We then
propose heuristic strategies to relax total symmetrization in
order to guarantee a bounded approximation scheme. When
targeting D-reducibility, we contribute a polynomial heuristic
algorithm to compute a D-reducible approximation of an
incompletely specified function, under a bit error metric.

Experimental results on classical and new benchmarks
have confirmed the efficacy of the proposed approaches. For
symmetrization, the average gain in the BDD size for the
unbounded approximation scheme is 69% with an average
error rate of about 15%, while in the bounded context, with
a fixed error rate of 5%, the average gain is about 31%. For
D-reducibility we obtain a reduction of almost 19% on the
number of variables for an approximation threshold of 5%.

This paper is an extended version of the conference pa-
per presented in [12] and is organized as follows. Previous
work is reviewed in Sec. 2. Sec. 3 introduces background
information on symmetric functions, D-reducible functions
and error metrics. Sec. 4 describes the theory and algorithms
to characterize and compute the symmetric function closest
to a given one, under unbounded approximation, whereas
heuristics for partial symmetrization under a bounded error
rate are discussed in Sec. 5. Theory and algorithms for ap-
proximations targeting D-reducible functions are described
in Sec. 6. Experimental results are discussed in Sec. 7, and
conclusions outlined in Sec. 8.

2 RELATED WORK

In this section we review some representative previous work
on approximate logic synthesis.

The problem of approximate two-level logic synthesis
has been studied in [34], where the authors design a two-
level approximate logic synthesis algorithm with the ob-
jective of synthesizing an SOP circuit with fewer literals
under a constrained error rate (i.e., how often the circuit can
produce erroneous outputs). The main idea of this algorithm
is to identify heuristically output values that can be comple-
mented from 0 to 1 in order to expand products and reduce
the number of literals in the final SOP representation. This

approach has been generalized to three-level logic synthesis
in [8], where the authors propose an approximate logic
synthesis heuristic for synthesizing 2-SPP circuits, i.e., three-
level EXOR-AND-OR forms with EXOR gates with fan-in 2.

For the approximate synthesis of multi-level circuits,
Shin and Gupta propose in [35] a scheme where a node in
the circuit is assumed to have a stuck-at-fault and the circuit
is simplified by propagating this redundancy.

In [39] the authors describe a framework called SALSA
(Systematic methodology for Automatic Logic Synthesis of
Approximate circuits) to synthesize approximate circuits
under a given error constraint. Given the description of a
logic circuit and a constraint on the errors that could be
tolerated, SALSA synthesizes an approximate version of the
circuit that adheres to the quality constraint. SALSA encodes
the quality constraints using logic functions and captures
the flexibility that they allow as Approximation Don’t Cares
(ADCs), which are used for circuit simplification using
traditional don’t care based optimization techniques.

A tool called SASIMI has been presented in [40]. The
key insight behind SASIMI is to identify signal pairs in the
circuit that assume the same value with high probability,
and substitute one for the other. While these substitutions
introduce functional approximations, they might result in
some logic to be eliminated from the circuit while also
enabling downsizing of gates on critical paths. The au-
thors thus propose an automatic synthesis framework that
performs substitution and simplification iteratively, while
ensuring that a user-specified quality constraint is satisfied.

Another contribution to this field is described in [28]
and [29], where the authors address the problem of ap-
proximate logic synthesis under arbitrary error magnitude
(i.e., the maximum amount by which the numerical value
at the outputs of a circuit can deviate from the exact value)
and error rate constraints. In particular, in [28] the authors
focus on two-level approximate synthesis and propose a
two-phase approach. First, they study the problem when
constrained only by the error magnitude and they reduce
it to minimization of Boolean relations, the latter being
performed by a fast solver [2]. Then, they describe an effi-
cient heuristic algorithm to refine iteratively the magnitude-
constrained solution until when the error rate constraint is
satisfied. This algorithm finds the optimal set of minterms
on which the exact outputs must be enforced, and system-
atically corrects, in a greedy fashion, erroneous outputs of
the Boolean relation solution that lead to the smallest cost
increase until the error rate constraint is met. Furthermore,
in [29] the authors address the multi-level approximate logic
synthesis problem and develop a heuristic that synthesizes
approximate Boolean networks with reduced gate count by
using external don’t care sets. Boolean relations are again
used to formulate the error magnitude constrained prob-
lem, then the more general error magnitude and frequency
constrained problem is solved with an iterative and greedy
algorithm.

A statistically certified framework based on parallelized
stochastic optimization was presented in [27]. The frame-
work performs statistical testing to certify the quality of
the optimized circuits with high confidence. This is ac-
complished by continuously monitoring the quality of the
generated designs.
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Other papers on approximate logic synthesis have been
published over the past three years. In [26], the authors
present an interesting integration between threshold logic
and approximate computing and propose a synthesis algo-
rithm to obtain cost-efficient approximate threshold logic
circuits with an error rate guarantee. A new approximate
logic synthesis technique based on Boolean matrix factoriza-
tion is proposed in [19]. Moreover, a reinforcement learning
based approximate logic synthesis framework called Q-
ALS has been presented in [32]. Q-ALS exploits Boolean
difference calculus to estimate the maximum error rate that
each node of the given network can tolerate so that the total
error rate at each output does not exceed the predetermined
maximum error rate, and the worst case delay and the total
area are minimized. Maximum Hamming Distance (MHD)
between exact and approximate truth tables of cuts of each
node is used as error metric.

Finally, a novel heuristic search method for two-level
approximate logic synthesis under the error rate constraint
was proposed recently in [37]. Here the key idea is to
search for an optimal set of input combinations for 0-to-1
output complement. The experiments reported in the paper
show that the proposed search method is more effective
than previous state-of-art methods, especially for multiple-
output circuits.

3 PRELIMINARIES

In this section we introduce and review the two classes of
regular Boolean functions considered in our work.

3.1 Symmetric Boolean functions

The concept of symmetry has been extensively studied and
applied in several contexts, such as function classification,
functional decomposition in technology-independent logic
synthesis, Boolean matching in technology mapping, formal
verification, and binary decision diagram (BDD) minimiza-
tion (see for instance [21], [23], [25], [30], [33], [41]).

Let f : {0, 1}n → {0, 1} be a completely specified
Boolean function, and X = {x1, x2, . . . , xn} be the set of
its input variables, then the function f is called symmetric,
or totally symmetric, if it is invariant under all permutations
of the input variables; f is said to be partially symmetric if it
remains invariant under any permutation of a proper subset
of the input variables, of size at least 2.

A function can be partially symmetric with respect to
different subsets of variables. More precisely, symmetry of
a completely specified Boolean function f on pairs of input
variables leads to an equivalence relation on the setX . Thus,
there exists a unique minimal partition P of X into disjoint
subsets S1, S2, . . . , Sk, with k ≤ n, given by the equivalence
classes of this relation. These sets are called symmetry sets. If
k = 1, then f has only one symmetry set which coincides
with X , thus f is totally symmetric, while if k = n, f
presents no symmetries. In all other cases 1 < k < n, f
is partially symmetric. In this case, at least one symmetry
set contains two or more variables.

Observe that a totally symmetric function f depends
only on the number of ones in the input minterm, thus it
can be described by its value vector v = [v0, v1, . . . , vn],

where f(x1, x2, . . . , xn) = vi if x1 + x2 + . . . + xn = i, i.e.,
on all minterms of Hamming weight i.

In the next sections, we describe an efficient algorithm
for computing the symmetric function closest to a given
Boolean function, and we exploit it in the approximation
framework. The concept of the minimal distance between
a Boolean function and the set of symmetric functions has
been considered in some recent papers [14], [36], where the
authors have introduced the notion of asymmetry of a func-
tion f , defined as the minimum number of function values
that must be changed so that f becomes totally symmetric.
In particular, in [36] the authors study and characterize the
set of functions that are maximally asymmetric, i.e., those that
are maximally distant from symmetric functions.

Very efficient algorithms are known in literature for
detecting various type of symmetries and computing the
symmetry sets for Boolean functions [30], [33]. Algorithms
are usually based on checking the equality of two-variable
cofactors of the function, in order to find all pairs of symmet-
ric variables. Using this information, larger sets of symmet-
ric variables can be constructed by applying the transitivity
of the symmetry relation. This basic approach has been
improved in several ways, as reviewed in [30], where an
improved method with worst-case complexity cubic in the
size of the BDD representing the input function (but close to
linear for practical benchmarks) has been presented.

Symmetric functions have the following features:
1) They have compact realizations in some logic architec-

tures; e.g., a totally symmetric Boolean function with n
input variables has a BDD of size O(n2) (independent
from the variable order) which maps into a network of
MUXes of the same size (see [3], [16], [20]).

2) They can be implemented with circuits of linear size.
Indeed, the output of a totally symmetric function only
depends on the number 0 ≤ k ≤ n of ones in the input
vector, which can be represented using dlog2(n+1)e bits.
Thus, the idea is to compose a circuit that counts the
number k of ones in the original n-bit input vector with
a dlog2(n + 1)e-input circuit that outputs the value of
f on vectors with k ones. The counter component can
be realized by a circuit of linear size using n full adders
(see [18], [38]), and the second circuit, which depends on
dlog2(n+1)e variables, can be implemented in linear size
in n.

3.2 D-reducible functions
Dimension-reducible functions (shortly, D-reducible func-
tions, [5], [6], [7]) are functions whose on-set minterms are
contained in a linear (or affine) space A strictly smaller
than the whole Boolean space {0, 1}n. Therefore, a D-
reducible function f can be represented as f = χA · fA,
where χA is the characteristic function of A and fA is
the projection of f onto A. Notice that D-reducibility is
different from degeneracy (not being sensitive to some
variables): e.g., the function f(x1, x2, x3) = x2 + x3 is
degenerate, but not D-reducible since its onset includes the
points 001, 010, 011, 101, 110, 111 which do not fit in the
Boolean space B2; instead the function f(x1, . . . , xn) =
x1⊕x2⊕· · ·⊕xn is D-reducible since its on-set is contained in
a Boolean subspace of dimension n−1, but is not degenerate
since it depends on all n variables [7].
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The D-reducibility of a function f can be exploited in the
minimization process: the idea is to minimize the projection
fA of f onto A, instead of f . In particular, the characteristic
function χA can be always represented with an AND of
EXORs of literals (see [5], [7]), and the projection fA can
be synthesized in any framework of logic minimization,
e.g., two level logic, three-level logic, or general multi-
level minimization. Observe that the synthesis of fA could
be easier than the synthesis of f , since fA depends on a
reduced number nA of variables, where nA < n. Moreover,
the size of the network for fA can be smaller than the size
of the corresponding network for f . Indeed f and fA have
the same number of on-set minterms, but fA is defined in a
smaller space and its on-set minterms are less sparse. This
approach thus requires two steps: (i) deriving the space A
and the projection fA; (ii) minimizing fA in a given logic
framework.

In the SOP framework this method is particularly conve-
nient because if we project a function onto a smaller Boolean
space (depending on fewer variables) we have the chance
of reducing the Hamming distances among its minterms in
order to merge them forming larger cubes in the final SOP
form (as also discussed in [4]).

We refer the reader to [7] for a comprehensive and
formal introduction to D-reducibility. Here, we just give
an intuitive presentation through an example. Consider the
function f in the Karnaugh map on the left side of Figure 1,
f is D-reducible since its on-set is entirely contained in
the three-dimensional space A marked with circles in the
Karnaugh map. We can therefore study the new function
fA that depends only on three variables, represented in the
Karnaugh map on the right side of the figure. Notice that f
and fA have the same number of on-set minterms, but these
are now compacted in a smaller space, whose description
requires less variables (in this case three instead of four).
If we synthesize f and fA in the classical SOP framework
we obtain f = x1x2x3x4 + x1x2x3x4 + x1x3x4 + x1x2x4 ,
and fA = x1x2 + x2x3 + x2x3 , respectively. The overall
number of products has decreased from 4 to 3. As proposed
in [5], [7], if we multiply the SOP for fA by the characteristic
function χA of the space A, we can derive a new and more
compact form describing the original function f . For the
current example, as A is represented by the EXOR (x1⊕x4),
we get the form

f = (x1 ⊕ x4)(x1x2 + x2x3 + x2x3) .

This form contains 8 literals, while the SOP for f contains
14 literals.

The test that establishes whether a function f is D-
reducible and the computation of the smallest space A con-
taining f and of the projection fA can be easily performed
in polynomial time starting from any SOP representation
of f . As shown in [5], [7], this kind of regularity if quite
common: a large percentage (about 70%) of the functions
in the classical ESPRESSO benchmark suite have at least a
D-reducible output.

3.3 Error metrics for approximate synthesis

Approximate logic synthesis has been studied under differ-
ent error metrics, and therefore different cost functions. The
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Fig. 1. Karnaugh maps of a D-reducible function f (on the left)
and its corresponding projection fA (on the right).

two main error constraints that have been considered are
Error magnitude (EM) and Error rate (ER). The error magnitude
for a set of outputs is defined as the maximum amount by
which the numerical value at the outputs of a circuit can
deviate from the exact value, and it is used typically in
arithmetic circuits to quantify the numerical error. Instead,
the error rate represents the percentage of all input vectors
that produce the erroneous outputs in the approximate
circuits. Composite metrics have also been defined using
ER and EM. In this paper we use metrics based on the error
rate.

The concept of error rate has been specialized in [8],
following the approach from [34], into the notions of bit
threshold Bt and minterm threshold Mt. The first metric eval-
uates the overall number of complemented (wrong) output
bits, while the second metric evaluates the number of input
vectors on which the output computed by the circuit differs
from the exact one by at least one bit. These two error mea-
sures coincide for single-output functions, while Bt ≥ Mt

for multi-output ones. For practical implementations, the
most adequate error measure should be selected depending
on the specific application under study.

In this work, we consider only the bit threshold metric
Bt, which can be computed starting from the error rate
threshold as follows. Let f : {0, 1}n → {0, 1,−}m be a
multi-output Boolean function with n inputs and m out-
puts, and let r denote the error rate, defined as the max-
imum percentage allowed of erroneous output bits. Then,
Bt = r ·m · 2n.

In our study, we will also adopt a slightly different
approach. In Sec. 4, we approximate the function f by
the totally symmetric function with a minimal Hamming
distance from f . Thus, instead of fixing an error rate r,
we will first compute the minimum number e of output
bits that must be complemented in order to transform f
into a totally symmetric function. Then, from e, we will
derive the error rate r induced by this transformation as
follows. If the target function f is a single output function,
with n inputs, then r = e/2n. If the target function f is a
multi-output function with n inputs and m outputs, then
r =

∑m
i=1 ei
m 2n , where ei denotes the minimum number of

output bits that must be complemented to transform the
i-th output function into a totally symmetric one. The value
of r should then be compared with the error rate that is
considered acceptable for the application under study, to
verify whether the approximation is feasible or not.

In Sec. 5, we discuss different strategies that can be
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adopted to enhance the symmetry of the target function
within a given error rate r defined in advance.

4 UNBOUNDED APPROXIMATION WITH A TOTALLY
SYMMETRIC FUNCTION

In the context of approximate logic synthesis, we now study
how to modify some outputs of a Boolean function f in
order to maximize its structural regularity and derive a reg-
ular approximation f ′ whose logic implementation might be
of reduced complexity, smaller area and delay, as discussed
in Section 1. The first type of regularity that we consider
is symmetry. To this aim, we propose here an algorithm
that, given a single output Boolean function f , computes
the minimum number of outputs that must be changed in
order to transform f into a totally symmetric function. In
other words, the proposed algorithm computes the totally
symmetric function f ′ closest to f , implicitly assuming an
unbounded error rate threshold. We will discuss in Section 5
some strategies that can be adopted to enhance the sym-
metry of the target function f within a given error rate r
defined in advance. Finally, in Section 6 we will analyze
the approximation with D-reducible functions and propose
a polynomial heuristic algorithm to find a D-reducibiile
approximation of an incompletely specified function.

4.1 Completely specified functions

Let f : {0, 1}n → {0, 1} be a completely specified Boolean
function depending on n binary variables. Our algorithm
for computing the closest symmetric approximation of f
starts from a minimal disjoint sum of products form (DSOP)
representing f [11]. Recall that in a DSOP representation,
each minterm in the on-set of f is covered by exactly one
product. This representation can be derived by applying
an efficient heuristic algorithm, as for instance the one
described in [11], or by building the BDD representation of f
as proposed in [17]. In fact, a DSOP form can be extracted in
a straightforward way from a BDD, as different one-paths
correspond to disjoint cubes. We refer the reader to [11]
for more details and references on DSOP forms and their
applications.

The first step of the algorithm consists in computing, for
each 0 ≤ w ≤ n, the number of minterms in the on-set of
f with Hamming weight w, where the Hamming weight
of a minterm x1x2 · · ·xn is defined as the number of ones
among x1, x2, . . . , xn.

Proposition 1. Let p be a product in a DSOP representation
of f , containing d ≤ n literals, k of which are positive.
Let h = n − d be the number of don’t care variables,
i.e., the variables that do not appear in p. Then, for each
0 ≤ w ≤ n, the number Tp(w) of on-set minterms with
Hamming weight w covered by p is given by

Tp(w) =

{ ( h
w−k

)
k ≤ w ≤ k + h

0 o/w .

Proof. The Hamming weight of the 2h minterms covered by
p is at least k and at most k + h, as p contains k positive
literals and h don’t cares variables. Then, the proposition
follows immediately since, for any 0 ≤ i ≤ h, there are

exactly
(h
i

)
ways to choose the i variables to set to 1, out of

the h variables that do not appear in p.
For example, in the Boolean space B4, consider the

function f with DSOP representation x2x3x4 + x1x3x4 +
x1x2x3x4 + x2x3x4, and its product p = x2x3x4. For p we
have that k = 1 and h = 1. Therefore, Tp(0) = Tp(3) =
Tp(4) = 0, Tp(1) =

(1
0

)
= 1, and Tp(2) =

(1
1

)
= 1. In fact,

p covers two minterms: one, 0001, with Hamming weight
1 (i.e., Tp(1) = 1) and one, 1001, with Hamming weight 2
(i.e., Tp(2) = 1).

Summing the contribution Tp(w) of each product p in the
DSOP representation of f , we then derive the exact number
T (w) of on-set minterms of Hamming weight w, for each
0 ≤ w ≤ n. Observe that, f is a totally symmetric function
if and only if, for all 0 ≤ w ≤ n, T (w) = 0 or T (w) =

(n
w

)
.

For instance, considering all the products in the previous
example, we have that T (0) = 1, T (1) = 3, T (2) = 2,
T (3) = 1, and T (4) = 0. We can note that f is not symmetric
since some of the non-zero values of T are not equal to the
corresponding binomial: i.e., T (1) 6=

(4
1

)
= 4, T (2) 6=

(4
2

)
=

6, T (3) 6=
(4
3

)
= 4.

The second phase of the algorithm consists in deriv-
ing the totally symmetric function f ′ closest to f . For all
0 ≤ w ≤ n, we compute the minimum number E(w)
of minterms on which the output bit of f must be com-
plemented to make the function constant on all inputs of
Hamming weight w. Observe that E(w) is given by

E(w) = min

{
T (w),

(
n

w

)
− T (w)

}
.

In particular, if E(w) = T (w), then f ′ is derived from f by a
1 to 0 complement of the output bit on the on-set minterms
of Hamming weight w, otherwise f ′ is derived by a 0 to
1 complement on the off-set minterms of Hamming weight
w. The overall minimum number of output bits that must
be changed in order to transform f into a totally symmetric
function, is then given by e =

∑n
w=0E(w).

Following the previous example, we have that E(0) =
min{1,

(4
0

)
− 1} = 0, E(1) = min{3,

(4
1

)
− 3} = 1, E(2) =

min{2,
(4
2

)
− 2} = 2, E(3) = min{1,

(4
3

)
− 1} = 1, and

E(4) = min{0,
(4
4

)
− 0} = 0. In particular, the points with

Hamming weight 1 are: 3 in the on-set and 1 (i.e., 1000)
in the off-set of f . With 1 error we set all of them to 1.
Moreover, the points with Hamming weight 2 are: 2 in the
on-set and 4 in the off-set. With 2 errors we set all of them
to 0. Finally, the points with Hamming weight 3 are: 1 in the
on-set and 3 in the off-set, with 1 error we set all of them to
0. This means that the value vector of the closest symmetric
function f ′ is v = [1, 1, 0, 0, 0], and e = 4.

The overall computation is depicted in Table 1, where
the first two columns report the weigh w and the number of
points that have weigh w (i.e.,

(n
w

)
), respectively. The third

and forth columns show the number of points in the on-
set (T (w)) and in the off-set (

(n
w

)
− T (w)) having weight

w, respectively. The column labeled E(w) is the computed
error. The column labeled “Approximation”, in presence of
an error, indicates what kind of approximation has been
applied, i.e., a 0 to 1 or a 1 to 0 approximation. The last
column represents the value vector (vw) of the computed
symmetric function f ′.
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TABLE 1
Example of error computation for a completely specified function.

w
(n
w

)
T (w)

(n
w

)
− T (w) E(w) Approximation vw

0 1 1 0 0 no 1
1 4 3 1 1 0→ 1 1
2 6 2 4 2 1→ 0 0
3 4 1 3 1 1→ 0 0
4 1 0 1 0 no 0

Observe that the symmetric approximation f ′ of f is not
necessarily unique. Indeed, whenever T (w) = 1

2

(n
w

)
, f ′ can

be derived either by a 1 to 0 complement of f on the on-set
minterms of Hamming weight w, or by a 0 to 1 complement
of f on the off-set minterms of weight w.

4.2 Incompletely specified functions
We now discuss how to transform an incompletely specified
Boolean function in a totally symmetric one, introducing the
minimum number of errors. Since any don’t care condition
can represent a 0 or a 1, often, the generalization of a prob-
lem to an incompletely specified Boolean function implies
a growth of the complexity of the resolution algorithm.
Fortunately, we can show that, in this case, the resolution
procedure is still polynomial. The intuition behind this fact
is that don’t cares with the same Hamming weight w should
be all set to 0 or all set to 1. Therefore, the choice is
performed for the whole subset of don’t cares with the same
weight w, which ranges between 0 and n, and not for any
single don’t care point.

More formally, let f : {0, 1}n → {0, 1,−} be
an incompletely specified Boolean function, and X =
{x1, x2, . . . , xn} be the set of its input variables. The min-
imum number of errors is given by

E(w) = min

{
T (w),

(
n

w

)
− T (w)−D(w)

}
,

where D(w) is the number of don’t care minterms of Ham-
ming weight w, for each 0 ≤ w ≤ n, computed in the
same way as T (w), considering a DSOP representation of
the don’t care minterms of f . Note that if E(w) = T (w),
then f ′ is derived from f assigning value 0 to all on-set
and don’t care-set points of Hamming weight w and the
number of errors is given only by the number T (w) of on-
set minterms of weight w, otherwise f ′ is derived assigning
value 1 to all off-set and don’t care minterms of Hamming
weight w. In this last case, the number of errors is given by
the number of off-set minterms of Hamming weight w, i.e.,(n
w

)
− T (w)−D(w).

Let us consider, for example, the incompletely specified
function f with on-set fon = {0001, 0010, 0100, 0011, 1110,
1101, 1111} and don’t-care set fdc = {1000, 0101, 1011}.

Table 2 shows the computation of the error and the
corresponding value vector. The first two columns report the
weigh w and the number of points that have weigh w (i.e.,(n
w

)
), respectively. The third, fourth and fifth columns show

the number of points in the on-set (T (w)), in the don’t care
set (D(w)), and in the off-set (

(n
w

)
− T (w) − D(w)) having

weight w, respectively. The column labeled E(w) is the
computed error. The column labeled “Approximation”, in
presence of an error, indicates which kind of approximation
has been applied, i.e., a 0 to 1 or a 1 to 0 approximation.

TABLE 2
Example of error computation for an incompletely specified function.

w
(n
w

)
T (w) D(w)

(n
w

)
− T (w)−D(w) E(w) Approximation vw

0 1 0 0 1 0 no 0
1 4 3 1 0 0 no 1
2 6 1 1 4 1 1→ 0 0
3 4 2 1 1 1 0→ 1 1
4 1 1 0 0 0 no 1

The last column (vw) represents the value vector of the
computed symmetric function f ′. In this case, the overall
error is 2. Observe that the error computation does not take
into account the don’t care set. In the example, while the
don’t care points with weight 2 are set to 0, the don’t care
points with weights 1 and 3 are set to 1.

4.3 Algorithms to represent totally symmetric func-
tions
Algorithm 1 describes, in pseudocode, the strategy dis-
cussed in the previous subsections, in the general case of
incompletely specified Boolean functions.

Let f : {0, 1}n → {0, 1,−} be an incompletely specified
Boolean function, and let fon and fdc denote its on-set
and don’t care-set, respectively. For the sake of simplicity,
suppose that fon ∩ fdc = ∅; otherwise, following the usual
semantics, we consider fon \ fdc as the on-set of f . The
proposed algorithm starts from the DSOP representations of
the on-set and of the don’t care-set of the target function f .
Algorithm 1. Algorithm for computing the totally symmet-

ric function closest to an incompletely specified target
function under the bit threshold metric.

SymmetricApproximation (function f )

INPUT: An incompletely specified function f = (fon, fdc), with
on- and don’t care-set represented in DSOP form
OUTPUT: The value vector v of the totally symmetric
function f ′ closest to f , and the number e of output bits
of f that must be complemented to derive f ′

e = 0
v = new array of n+ 1 integers, initialized to 0
T = new array of n+ 1 integers, initialized to 0
D = new array of n+ 1 integers, initialized to 0

forall product p in DSOP(fon) or in DSOP(fdc)
compute the number k of positive literals in p
compute the number h of don’t care variables in p
for w = k to k + h do

if (p ∈ DSOP(fon)) T [w] = T [w] +
( h
w−k

)
else D[w] = D[w] +

( h
w−k

)
for w = 0 to n do

if (T [w] >
(n
w

)
− T [w]−D[w])

v[w] = 1
e = e+

(n
w

)
− T [w]−D[w]

else
v[w] = 0
e = e+ T [w]

return v, e

The algorithm has a time complexity polynomial in the
number n of input variables and in the number t of products
in the DSOP forms representing fon and fdc. More precisely,
the time complexity is O(n2 + t · n), where the term n2

accounts for the cost of the computation (via dynamic pro-
gramming) of all the binomial coefficients, while the term
t · n represents the overall cost of the nested for-cycles.
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The correctness is proved in the following theorem.

Theorem 1. Let f be a Boolean function represented in DSOP
form. The proposed algorithm computes the totally sym-
metric function closest to f , i.e., a totally symmetric func-
tion f ′ that can be derived complementing the minimum
number e of output bits of f .

Proof. The correctness of the algorithm follows from Propo-
sition 1 and from the fact that each on-set minterm is cov-
ered by one and only one product in the DSOP representa-
tion of fon, as well as each don’t care-set minterm is covered
by one and only one product in the DSOP representation of
fdc. Thus, the numbers T (w) and D(w) of the on-set and
of the don’t care-set minterms of Hamming weight w, for
each 0 ≤ w ≤ n, can be correctly computed summing the
contribution of each product in the DSOP representations of
fon and fdc.

Observe that in an approximate logic synthesis scenario,
the minimum number e of output bits that must be changed
to make f totally symmetric provides a sort of lower bound
to the bit threshold Bt required in order to allow the
approximation of f with f ′. That is, whenever e ≤ Bt,
we can synthesize f ′ instead of f . In terms of error rate,
we can consider the approximation feasible if the error rate
r = e/2n induced by the substitution of f with f ′, is less
or equal to the error rate considered acceptable for the
application under study.

We finally describe a dynamic programming procedure,
based on the recursive approach described in [22] (pp. 65-
66), which can be used to build the BDD representation of
the totally symmetric function f ′ computed by Algorithm 1,
starting from the value vector v of f ′. The idea is to first
build an (n+1)×(n+2) matrixM of BDDs, whereM [i][j+1]
is the BDD representing the set of all i-dimensional vectors
of Hamming weight j, and then to select, according to the
value vector v, the BDDs in the last row of the matrix M
whose union corresponds to f ′.

Algorithm 2. Algorithm for computing the BDD represen-
tation of a totally symmetric function, starting from its
value vector.

ValueVectorToBDD (function f )

INPUT: The value vector v of a totally symmetric function
with n inputs
OUTPUT: The reduced BDD representation of f

/* Dynamic programming computation of the matrix M */
M = new matrix of dimension (n+ 1)× (n+ 2)
M [0][1] = the BDD terminal node 1
for i = 0 to n do

M [i][0] = the BDD terminal node 0
for i = 0 to n do

for j = i+ 2 to n+ 1 do
M [i][j] = the BDD terminal node 0

for i = 1 to n do
for j = 1 to i+ 1 do
M [i][j] = BDD-ITE(xi, M [i− 1][j − 1], M [i− 1][j])

/* BDD construction */
SymDD = the BDD terminal node 0
for i = 0 to n do

if (v[i] == 1) SymDD = BDD-OR(SymmDD, M [n][i+ 1])
return SymDD

The time complexity of this algorithm is polynomial in
the number n of input variables. Indeed, the first dynamic
programming phase accounts for a cost Θ(n2), since each
entry in the table can be derived in constant time using the
entries already computed. Then, the algorithm computes
at most n unions of two BDDs representing symmetric
functions, each of size O(n2). The cost of each union is
upper bounded by the product of the sizes of the two BDDs.
Moreover, the BDDs resulting from the union operations are
always symmetric and their size remains O(n2). Thus, the
computational cost of this second phase is at most O(n5),
and the overall cost of the algorithm is O(n5).

4.4 Multi-output functions
The algorithms that we designed for single-output functions
can be applied also to multi-output functions, by simply
considering each output as a separate Boolean function.
Indeed, once each output function has been transformed
into a totally symmetric function, the overall multi-output
function becomes totally symmetric as well, as proved in the
following Proposition 2.

Let f be an incompletely specified Boolean function with
n inputs and m outputs. For each i, 1 ≤ i ≤ m, let fi denote
the single output function corresponding to the i-th output
of f , and let f ′i be the totally symmetric function derived
complementing the minimum number ei of output bits of
fi, i.e., applying Algorithm 1 to each output of f . Finally, let
f ′ be the multi-output function obtained substituting each
output function fi in f with the totally symmetric function
f ′i , 1 ≤ i ≤ m.
Proposition 2. The multi-output function f ′ is a totally

symmetric function.

Proof. A multi-output function is totally symmetric if and
only if it computes the same output vector on all minterms
with the same Hamming weight. Now consider the function
f ′ and observe that each single output of f ′ is totally sym-
metric, thus each single output is constant on all minterms
with weight w, 0 ≤ w ≤ n. As a consequence, f ′ outputs
the same vectors on all minterms with Hamming weight w
and the thesis immediately follows.

We now prove that not only f ′ is totally symmetric, it is
also the totally symmetric function closest to f .
Proposition 3. The function f ′ derived applying Algo-

rithm 1 to each output of f is the totally symmetric func-
tion that can be derived complementing the minimum
number of output bits of f .

Proof. For each i, 1 ≤ i ≤ m, let ei denote the number
of output bits complemented in order to transform the
i-th output function of f into a totally symmetric one
applying Algorithm 1. Moreover, let e =

∑m
i=1 ei denote

the overall number of output bits complemented to make
the whole f totally symmetric. Suppose that there exists
a totally symmetric multi-output function g′ closer to f .
Then, there exists at least one output of f , say fi, that can
be made totally symmetric complementing e′i < ei output
bits, in contradiction with the minimality of ei proved in
Theorem 1.

Finally, the error rate r induced by the approximation of
f with the totally symmetric function f ′ can be computed
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as r = e
m 2n =

∑m
i=1 ei
m 2n , where m is the number of outputs

of f .

5 SYMMETRY-BASED APPROXIMATION UNDER A
BOUNDED ERROR RATE

In this section we discuss some strategies that can be
adopted to enhance the symmetry of a function f within
an error rate r defined in advance.

Let f : {0, 1}n → {0, 1,−}m be an incompletely speci-
fied function with n inputs and m outputs, and let r denote
the error rate. From r, we can compute the bit threshold
Bt = r · m · 2n, i.e., the maximum number of output bits
that we are allowed to complement to derive a symmetric
approximation f ′ of f .

A first greedy strategy consists in simply sorting the out-
puts of the multi-output function with respect to the number
of errors needed to transform each of them into a totally
symmetric function. Starting from the output function with
the lowest number of errors, we transform th outputs in
symmetric functions till we reach the given bit threshold
Bt. In this way, we enhance the symmetry of the overall
function making some of its outputs totally symmetric.
Observe that two possible approaches could be considered
in this context: we could assign the same threshold to each
output, splitting the bit threshold Bt in m equal parts, or
apply the overall threshold value Bt to the function as
a whole. In the first case, we approximate each output
function independently, complementing at most r2n of its
output bits.

An alternative method could make a function constant
on all minterms with the same Hamming weight. The idea
is basically to apply Algorithm 1 to f , and to stop the com-
putation as soon as the number of complemented output
bits reaches the bit threshold Bt. But instead of processing
the subsets of minterms in order of increasing Hamming
weight, we first compute, for each weightw and each output
function fi, the minimum number Ei(w) of minterms on
which the output bit of fi must be complemented to make
this output constant on all inputs of weightw. Then, we start
from the weight w and from the output fi on which f can
be made constant (0 or 1) complementing the least number of
output bits, and we proceed in a greedy way in ascending
order of Ei(w), until we reach the threshold Bt. At the
end of the process, we obtain a function f ′ with some out-
puts that assume a constant value on minterms with equal
weight for a subset of possible weights. A limitation of this
approach is that making a function constant only for some
weights does not necessarily enhance its overall symmetry
and may not provide realizations of reduced complexity.
This limitation has been confirmed by our experiments,
showing that only the greedy strategy based on the total
symmetrization of some outputs of the function provides
interesting results.

We finally discuss a completely different approach based
on the idea of enhancing the partial symmetry of a function,
instead of its total symmetry, increasing the number of
variables that can be permuted without changing the out-
put. This task can be accomplished, for instance, increasing
the cardinality of the biggest symmetry set adding a new
variable to it. This new variable should be selected in a

greedy way, as the variable whose insertion in the currently
biggest symmetry set causes the least number of erroneous
output bits.

More precisely, consider the partition P of the set of in-
put variables X = {x1, x2, . . . , xn} into the disjoint symme-
try sets S1, S2, . . . , Sk, with k ≤ n. Let S ⊂ {x1, x2, . . . , xn}
be a symmetry set with maximal cardinality t. Our goal is
to increase the cardinality of S adding a new variable to it.

Observe that f can be represented with a cofactor vector,
i.e., a sequence of t + 1 cofactors (or subfunctions) each
depending on the n − t variables outside S, obtained as-
signing all possible values to the t variables in S. Since f
is symmetric in all variables in S, the number of different
cofactors is t+1 instead of 2t, as each cofactor depends only
on the number of variables in S with value 1. If f is totally
symmetric, then t = n and the cofactor vector becomes the
usual value vector v.

Let us denote with f|S,w the cofactor obtained assigning
the value 1 to exactly w of the variables in S, for 0 ≤ w ≤ t.
In order to add a new variable y to S we need to change
the value of the function in such a way that all cofactors
corresponding to the t+ 1 variables in the set S′ = S ∪ {y},
depend only on the number of variables in S′ with value 1.

For each w between 1 and t, we consider the two cofac-
tors f|S,w,y=1 and f|S,w,y=0 obtained from f|S,w assigning
to y the value 1 and the value 0, respectively. We leave the
first cofactor unchanged, while we change the second one
in order to make it equal to f|S,w−1,y=1, so that all cofactors
based on S′ = S ∪ {y} and with the same weight become
equal to each other1: ∀w ∈ [1, t], f|S,w,y=0 ← f|S,w−1,y=1.
The number of output bits that must be complemented to
transform f|S,w,y=0 in f|S,w−1,y=1 is given by the Hamming
distance between the two cofactors, which can be computed
as |f|S,w,y=0 ⊕ f|S,w−1,y=1|, where for a function g, |g|
denotes the number of on-set minterms. Thus, the overall
number of erroneous output bits induced by adding y to S
can be computed as

E(y) =
t∑

w=1

(
t

w

)
|f|S,w,y=0 ⊕ f|S,w−1,y=1| ,

since the cofactor f|S,w,y=0 occurs
( t
w

)
times in the original

function f . If E(y) ≤ Bt, y can be added to S. The same
procedure can then be applied to the new function obtained,
in order to further increase the cardinality of the biggest
symmetry set within the bound Bt − E(y). As before, the
variable y should be selected in a greedy way, as the variable
whose insertion in the biggest symmetry set S′ causes the
minimum number of erroneous output bits.

The correctness of this procedure is proved in the follow-
ing theorem. Let f ′ be the function obtained from the target
function f applying the procedure described above.
Theorem 2. The function f ′ is symmetric in all variables in

the set S′ = S ∪ {y}.
Proof. We show that the cofactors defined by S′ depend
only on the number of variables in S′ with value 1, i.e.,
all cofactors with the same weight are equal to each other.
Consider the

(t+1
w

)
value assignments to the t + 1 variables

1. Alternatively, we could change the cofactor f|S,w,y=1 making it
equal to f|S,w+1,y=0, for 0 ≤ w < t.
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in S′ of weight w, for 0 ≤ w ≤ t + 1, and observe
that they can be partitioned into two subsets: the

( t
w−1

)
assignments with y = 1, and the

( t
w

)
assignments with

y = 0. The cofactors defined by all assignments in the
first group coincide, as they are all equal to f|S,w−1,y=1.
The thesis then follows from the fact that, by construction,
all cofactors obtained from the assignments in the second
group have been changed and made equal to f|S,w−1,y=1.

6 APPROXIMATION TO D-REDUCIBLE FUNCTIONS

We now consider a different kind of approximation towards
regularity. We consider the class of D-reducible Boolean
functions, and discuss how to modify some outputs of a
given target function f , in order to derive a D-reducible
approximation of f , for a given error rate r. To ease the
computation and, at the same time, to be technologically
feasible, we only consider spaces A that can be represented
by an AND of single literals and/or EXORs of two literals
(2-EXOR factors).

For example, consider the D-reducible Boolean func-
tion f depicted on the left side of Figure 1 and its on-
set fon = {0000, 0110, 1001, 1101, 1111}. Let us define a
new completely specified Boolean function f ′ with on-set
f ′on = fon∪{1010}. The function f ′ is not D-reducible, since
the point 1010 is not in the space A marked with circles
in the Karnaugh map of Figure 1, and there is no other
space A′ ⊂ {0, 1}n that entirely contains the on-set of f ′. If
we synthesize f ′ in the classical SOP framework we obtain
f ′ = x1x2x3x4 +x1x2x3x4 +x1x3x4 +x1x2x4 +x1x2x3x4.
If we introduce an error and we insert the point 1010 in
the off-set of f ′ we obtain the D-reducible function f whose
representation is much more compact, i.e., (x1⊕x4)(x1x2 +
x2x3 + x2x3).

So we propose an algorithm that, given a single output
Boolean function f : {0, 1}n → {0, 1}, computes the mini-
mum number of outputs that must be changed in order to
transform f into a D-reducible function fS whose projection
space S can be described by an AND of literals and 2-
EXOR factors. The algorithm starts from a minimal DSOP
representing f , and looks for a (n − 1)-dimensional space,
described by a single literal or by an EXOR of two distinct
literals, onto which to project the on-set of f with the least
number of errors. The projection of f onto this space defines
a D-reducible approximation fS . If the distance d between
f and fS (i.e., the number of outputs on which the two
functions differ) is smaller than the bit threshold Bt = r ·2n,
we consider the approximation fS instead of f .

Moreover, if the distance d is less than the bit threshold
Bt, the algorithm proceeds iteratively on the projection fS ,
i.e., it looks for a (n − 2)-dimensional subspace T ⊆ S
onto which to project fS , and so on. The overall projection
space A computed by the algorithm is then given by the
product (AND) of the single literals or 2-EXOR factors
representing the spaces identified during each iterative step.
The approximation f ′ of f can be computed projecting f
onto the space A, and setting to 0 all on-set minterms that
do not belong to A.

The proposed algorithm is thus based on a greedy
heuristic, which proceeds iteratively making the locally op-
timal choice for the projection space at each phase. Observe

that, while the first step of the algorithm, i.e., the projection
onto a (n − 1)-dimensional space S described by a single
literal or by an EXOR of two literals, actually provides the
D-reducible function closest to f , we have no guarantees that
the overall approximation f ′, computed by the set of all
projections, defines the closest D-reducible approximation
of f . For example, consider a function f and suppose that
the first step of the algorithm selects the space S where
xi = 1 as the most convenient one for the projection, and
chooses the cofactor f|xi=1 as D-reducible approximation
of f . Observe that the other cofactor f|xi=0 contains less
on-set minterms than f|xi=1, otherwise the projection onto
the space xi = 0 would have been more convenient. Now
suppose that f|xi=0 is a D-reducible function, while f|xi=1

is not. Then, any other projection starting from the chosen
cofactor f|xi=1 increases the overall number of errors. On
the other hand, with the initial choice of projecting (with a
greater number of errors) f onto the space where xi = 0,
the subsequent projections would not introduce any addi-
tional error, possibly leading to a closer overall D-reducible
approximation of f .

Let us now describe how at each step the algorithm finds
the space better suited for the projection. Given a DSOP
representation of the function f that must be projected, the
algorithm computes the following parameters, for all 1 ≤
i ≤ n and for all i < j ≤ n:
• the numberE0(i) of on-set minterms that do not belong

to the subspace S whose characteristic function is χS =
xi, i.e., the space where the variable xi is always equal
to 0;

• the numberE1(i) of on-set minterms that do not belong
to the subspace S whose characteristic function is χS =
xi, i.e., the space where the variable xi is always equal
to 1;

• the number E=(i, j) of on-set minterms that do not
belong to the subspace S whose characteristic function
is χS = (xi ⊕ xj), i.e., the space where xi = xj ;

• the number E6=(i, j) of on-set minterms that do not
belong to the subspace S whose characteristic function
is χS = (xi ⊕ xj), i.e., the space where xi 6= xj .

These parameters represent the number of outputs that must
be changed (from 1 to 0) in order to transform f into a D-
reducible function f ′ with projection space S described by
xi, xi, (xi ⊕ xj), and (xi ⊕ xj), respectively. They can be
computed as follows. Let p be a product representing a cube
of dimension d in a DSOP of f :
• if the product contains xi, then we add 2d to E0(i);
• if the product contains xi, we add 2d to E1(i);
• if the product does not contain the variable xi, then we

add 2d−1 to both E0(i) and E1(i).
• if xi and xj appear both as negative or both as positive

literals in p, we add 2d to E=(i, j);
• if xi and xj appear with a different complementation in
p, we add 2d to E 6=(i, j);

• finally, if at least one of the two variables xi and xj
does not appear in p, we add 2d−1 to both E=(i, j) and
E6=(i, j).

Once these parameters have been evaluated for all
n variables and all

(n
2

)
pairs of variables, the algorithm

projects the input function f onto the space that con-
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TABLE 3
Example of error computation D-reducible approximation for the on-set {0000, 0110, 1010, 1001, 1101, 1111}.

E0(1) E0(2) E0(3) E0(4) E1(1) E1(2) E1(3) E1(4) E=(1, 2) E=(1, 3) E=(1, 4) E=(2, 3) E=(2, 4) E=(3, 4) E6=(1, 2) E6=(1, 3) E6=(1, 4) E6=(2, 3) E6=(2, 4) E6=(3, 4)
4 3 3 3 2 3 3 3 3 3 1 2 2 4 3 3 5 4 4 2

tains the majority of on-set minterms, i.e., the space
corresponding to the parameter with the smallest value
d that does not exceed the bit threshold Bt: d =
min 1≤i≤n

1≤i<j≤n
{E0(i), E1(i), E=(i, j), E6=(i, j)} . In particular,

if the parameter of minimum value d corresponds to a space
S described by a single variable, e.g., xi or xi, then the
projection fS is obtained simply by assigning the correct
value, 0 or 1, to the variable xi in the DSOP for f . In-
stead, if the parameter with minimum value corresponds
to a space S described by an EXOR of two variables, e.g.,
(xi⊕xj) or (xi⊕xj), then the projection fS can be computed
substituting in the DSOP for f each occurrence of xj with
xi or xi, respectively. In both cases, the approximation of
f is given by the function f ′ = χSfS , and is obtained
from f by complementing from 1 to 0 all on-set minterms
that do not belong to S. In case of more parameters with
the same minimum value d, the algorithm heuristically
chooses, if possible, the space described by just a single
literal, to simplify the algebraic description and derive an
implementation of smaller area. If d > Bt, the algorithm
stops the computation without performing the projection,
otherwise it computes fS and proceeds iteratively trying
to project fS onto a subspace T ⊆ S within the updated
minterm threshold Bt − d. At the end of the computation,
the algorithm outputs the D-reducible approximation f ′

of the target function f , the characteristic function of its
projection space, and the residual minterm threshold that
can be exploited for further approximations.

For example, consider again the D-reducible Boolean
function f depicted on the left side of Figure 1 and its
on-set fon = {0000, 0110, 1001, 1101, 1111}, and the non-
D-reducible function f ′ with on-set f ′on = fon ∪ {1010} =
{0000, 0110, 1010, 1001, 1101, 1111} described in the previ-
ous example.

Let us now compute the number E0(i) of on-set
minterms in f ′on that do not belong to the subspace whose
characteristic function is xi, i.e., the space where the variable
xi is always equal to 0. For instance, when i = 1, the on-set
minterms with variable x1 equal to 1 (i.e., they do not belong
to the subspace xi) are 4 (i.e., {1010, 1001, 1101, 1111}),
thus E0(1) = 4. The number E1(i) can be computed in
a similar way, considering now the on-set minterms f ′on
that do not belong to the subspace whose characteristic
function is xi. For instance, when i = 1, the on-set minterms
with variable x1 equal to 0 (i.e., they do not belong to the
subspace xi) are 2 (i.e., {0000, 0110}), thus E0(1) = 2. The
overall computation for E0(i) and E1(i) is shown in the
first 8 columns of Table 3. E=(i, j) is the number of on-
set minterms that do not belong to the subspace whose
characteristic function is (xi ⊕ xj), i.e., it is the number
of on-set minterms where xi 6= xj . For example, the on-
set minterms where x1 6= x2 are {0110, 1010, 1001}. Thus,
E=(1, 2) = 3. Similarly, E6=(i, j) is the number of on-set
minterms that do not belong to the subspace (xi ⊕ xj),
i.e., it is the number of on-set minterms where xi = xj .

For example, the on-set minterms where x1 = x2 are
{0000, 1101, 1111}. Thus, E 6=(1, 2) = 3. The overall com-
putation for E=(i, j) and E 6=(i, j) is shown in the last
12 columns of Table 3. Table 3 shows that the minimum
number of errors is 1 that corresponds to the space with
characteristic function (x1 ⊕ x4). The approximate func-
tion is then composed by the minterms in f ′on such that
(x1 = x4), i.e., {0000, 0110, 1001, 1101, 1111}. Note that the
approximated D-reducible function is the one of Figure 1.
Algorithm 3. Algorithm for computing a D-reducible ap-

proximation of an incompletely specified target function
under the bit threshold metric.

D-reducibleApproximation (function f )

INPUT: An incompletely specified function f = (fon, fdc) on n
variables, with on-set in DSOP form, and a bit threshold Bt

OUTPUT: A D-reducible function f ′, approximating f within the
threshold Bt, or f is such approximation is not possible

function AppSynDred (f, n,Bt)

if n = 0 then return 1
E0 = new array of n integers, initialized to 0
E1 = new array of n integers, initialized to 0
E6= = new array of

(
n
2

)
integers, initialized to 0

E= = new array of
(
n
2

)
integers, initialized to 0

/* Error evaluation */
forall product p in DSOP(fon)

compute the number d of don’t care variables in p
for i = 1 to n do

if xi occurs in p then
E0[i] = E0[i] + 2d

for j = i+ 1 to n do
if xj occurs in p then E6=[i, j] = E6=[i, j] + 2d

else if xj occurs in p then E=[i, j] = E=[i, j] + 2d

else
E6=[i, j] = E6=[i, j] + 2d−1

E=[i, j] = E=[i, j] + 2d−1

else if xi occurs in p then
E1[i] = E1[i] + 2d

for j = i+ 1 to n do
if xj occurs in p then E=[i, j] = E=[i, j] + 2d

else if xj occurs in p then E6=[i, j] = E6=[i, j] + 2d

else
E6=[i, j] = E6=[i, j] + 2d−1

E=[i, j] = E=[i, j] + 2d−1

else
E0[i] = E0[i] + 2d−1

E1[i] = E1[i] + 2d−1

for j = i+ 1 to n do
E6=[i, j] = E6=[i, j] + 2d−1

E=[i, j] = E=[i, j] + 2d−1

/* Selection of the projection space S */
e1 = min({E0, E1})
e2 = min({E6=, E=})
if e2 < e1 then e = e2 else e = e1

/* Computation of χS and fS */
if e < Bt then

compute the characteristic function χS of the projection space

compute the projection fS = (fonS , fdcS ) of f onto the space S
derive a DSOP for fonS from DSOP(fon)
return χS · AppSynDred (fS , n− 1, Bt − e)

else return f
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The time complexity of this algorithm is again polynomial
in the number of input variables and in the number t of
products in the DSOP representation of the on-set of f .
More precisely, the overall cost of the algorithm is O(t · n3).
Indeed, the algorithm performs at most n recursive calls,
each of cost O(t · n2). Observe that, inside each recursive
call, the computations of χS , fS , and DSOP(f

(on)
S ) require

time linear in the input size, and are therefore dominated by
the cost O(t · n2) of the nested for-cycles.

We finally discuss how to approximate an incompletely
specified Boolean function with a D-reducible one. First of
all, observe that for this kind of approximation, it is never
convenient to move a minterm from the don’t care-set to
the on-set, as this may increase the cost of the projections
(i.e., the number of 1 to 0 complementations required) and
it never decreases it. For this reason, all don’t care minterms
can be considered as off-set minterms when computing the
parameters E0(i), E1(i), E=(i, j), E6=(i, j), for all 1 ≤ i ≤ n
and for all i < j ≤ n, that measure the costs of the
projections. Then, when the best space S has been selected,
the projection fS can be computed setting to 0 all don’t
care minterms that do not belong to S, while leaving un-
specified those that belong to S. Algorithm 3 describes, in
pseudocode, the strategy discussed for the general case of
incompletely specified Boolean functions.

The time complexity of the proposed heuristic is poly-
nomial in the number n of input variables and in the
number of products in the DSOP form representing the
input function f .

7 EXPERIMENTAL RESULTS

In this section we discuss the experimental results for the
proposed techniques. We first evaluate the method pro-
posed for symmetric functions and then we show the ex-
perimental results for D-reducible functions.

7.1 Approximation to Symmetric Functions

We first discuss the experimental results obtained by ap-
plying the algorithms described in Sections 4 and 5. We
considered both the classical ESPRESSO benchmark suite [43]
and the new EPFL combinational benchmark suite [1]. The
computational experiments were performed on a Linux Intel
Core i7-7700 CPU with 8 GB of RAM. The algorithms have
been implemented in C, using the CUDD library for BDDs
to represent Boolean functions.

Table 4 compares the BDD dimension for the benchmark
functions and for their closest symmetric approximations
in the unbounded and bounded error models. We report
a significant subset of the experiments. The first column
reports the name of the benchmarks and the number of their
inputs and outputs. The second column shows the dimen-
sion (number of nodes) of the BDDs representing the on-
set of the benchmark functions. The first group of columns,
labeled Sym Unbounded, refers to the closest totally symmet-
ric function in the unbounded model (Section 4). The first
column in this group shows the BDD size of the symmetric
function, the second column contains the required error rate,
and the third column reports the percentage gain of the BDD
of the closest symmetric function. The second group, labeled

Sym Bounded, provides the results for the bounded model
based on the symmetrization of a subset of the outputs
(Section 5) with a fixed error rate r = 5%. The last column
provides the sum of computational times (in seconds) of
the two approaches. In general, the average gain for the
unbounded model is 69% with an average error rate 15%. In
the bounded context, with a fixed error rate 5%, the average
gain is about 31%. Note, however, that there are a few cases
where the symmetrization of the benchmark produces BDDs
of larger size (e.g., i2c and router). Due to the polynomial
nature of the algorithms, the computational times are very
small. The second bounded approach described in Section 5,
which makes a function constant only for some weights,
has been tested on the same benchmarks with low quality
results, i.e., the BDD size increases by 150%. This confirms
the theoretical intuition that fixing a constant value for
just some weights does not give an interesting “symmetry”
property to the function.

In order to assess the effectiveness of our approach,
we compared the BDDs generated by our experiments
with those of the approximated functions derived by the
approximation method proposed in [34], keeping r = 5%
as error rate. The experiments, conducted on the classical
ESPRESSO benchmark suite [43], show that our bounded
model generates an average reduction of the number of
nodes of about 20%, and our unbounded model gives an
average reduction of the number of nodes of about 81%.
These results show that an approximation synthesis method
designed for augmenting the symmetry of a function can
significantly help in deriving more compact BDD represen-
tations.

7.2 Approximation to D-reducible Functions
We now discuss the experimental results obtained by ap-
plying the technique proposed in Section 6 on the classical
ESPRESSO benchmark suite [43]. In particular, we are inter-
ested in evaluating experimentally the amount of variables
that are not needed to describe the projection fA, due to the
approximation procedure. In fact, a function that depends
on fewer variables is, in general, less complex and easier
to be synthesized. For this purpose, we first consider an
approximation threshold of 5%. In this case, we get an
average reduction of the number of variables of about 40.5%.
This result seems very encouraging.

On the other hand, we gather from the experiments
that an approximation threshold of 5% corresponds to an
average 36.4% of errors in the on-set. This means that, in
many benchmarks, the on-set is very small with respect
to the entire Boolean space. In these cases, the number
of swapped outputs, from 1 to 0 in the on-set, may end
up as being too high. To address this issue, we set the
thresholds of our approximations by considering only the
on-set dimension of the benchmarks. We then obtain the
results reported in Table 5, which shows that we can get
an interesting reduction in the number of variables already
with a low approximation threshold (on the dimension of
the on-set). Indeed, we have an high reduction in the num-
ber of variables even when considering high approximation
thresholds. Table 5 shows that an approximation threshold
of about 5% is a good trade-off to obtain a significant
decrease on the number of variables (i.e., 18.45%).



12

TABLE 4
Experimental comparison with the closest-symmetric in the unbounded

and bounded models.

Sym Unbounded Sym Bounded (5%)
bench.(in/out) BDD BDD ER (%) gain BDD gain time (s)
add6 (12/7) 309 122 42.2 60.5 226 26.9 0.01
alcom (15/38) 95 131 6.9 -37.9 83 12.6 0.01
alu2 (10/8) 242 42 9.7 82.6 177 26.9 0.01
alu3 (10/8) 237 43 9.7 81.9 170 28.3 0.01
apla (10/12) 212 40 1.2 81.1 40 81.1 0.01
b2 (16/17) 4424 79 29.0 98.2 4215 4.7 0.15
b9 (16/5) 173 80 37.9 53.8 173 0.0 0.01
bc0 (26/11) 590 490 32.9 17.0 635 -7.6 0.02
bca (26/46) 1428 52 0.1 96.4 52 96.4 0.02
bcb (26/39) 1268 52 0.1 95.9 52 95.9 0.01
bcc (26/45) 1116 27 0.1 97.6 27 97.6 0.02
bcd (26/38) 843 27 0.1 96.8 27 96.8 0.01
cavlc (10/11) 508 37 10.3 92.7 291 42.7 0.01
chkn (29/7) 742 234 7.8 68.5 577 22.2 0.02
cps (24/109) 1710 48 2.1 97.2 48 97.2 0.03
ctrl (7/26) 101 27 13.4 73.3 65 35.6 0.01
dec (8/256) 510 16 0.4 96.9 16 96.9 0.01
dk48 (15/17) 189 1 0.0 99.5 1 99.5 0.01
ex5 (8/63) 268 32 5.5 88.1 57 78.7 0.01
exps (8/38) 521 30 14.8 94.2 336 35.5 0.01
i2c (147/142) 2873 8306 22.1 -189.1 7287 -153.6 2.24
in0 (15/11) 518 89 23.2 82.8 410 20.9 0.01
in1 (16/17) 4424 79 29.0 98.2 4215 4.7 0.10
in2 (19/10) 2361 101 12.1 95.7 1195 49.4 0.05
in5 (24/14) 492 144 10.6 70.7 200 59.4 0.01
in7 (26/10) 235 229 23.0 2.6 166 29.4 0.01
int2float (11/7) 359 51 25.5 85.8 345 3.9 0.01
mark1 (20/31) 253 153 0.0 39.5 153 39.5 0.01
max1024 (10/6) 261 93 43.2 64.4 261 0.0 0.01
max128 (7/24) 130 78 26.0 40.0 144 -10.8 0.01
max46 (9/1) 75 1 12.1 98.7 75 0.0 0.01
max512 (9/6) 148 65 38.0 56.1 168 -13.5 0.01
opa (17/69) 513 172 8.0 66.5 118 77.0 0.01
pdc (16/40) 695 102 4.0 85.3 102 85.3 0.06
router (60/30) 231 551 0.2 -138.5 231 0.0 2.77
t2 (17/16) 149 81 7.9 45.6 44 70.5 0.01
test2 (11/35) 4817 77 9.9 98.4 2694 44.1 0.14
test3 (10/35) 2619 79 9.8 97.0 1445 44.8 0.07
test4 (8/30) 941 89 8.5 90.5 476 49.4 0.02
tial (14/8) 1307 153 37.7 88.3 1029 21.3 0.01
ts10 (22/16) 4391 1 6.3 100.0 1331 69.7 0.09
vg2 (25/8) 219 213 21.2 2.7 175 20.1 0.01
vtx1 (27/6) 241 228 14.9 5.4 182 24.5 0.01
x9dn (27/7) 271 229 12.8 15.5 186 31.4 0.01
Z9sym (9/1) 25 25 0.0 0.0 25 0.0 0.01

TABLE 5
Average number of reduction of variables.

Approximation threshold 5% 10% 30%
Reduction (% number of variables) 18.45% 19.02% 22.58%

8 CONCLUSIONS

In this paper we describe a new approach to approximate
synthesis, based on changing the outputs of a given function
to obtain either the closest symmetric function, or a D-
reducible function, where the optimality criterion is given
by the chosen error metrics. To achieve symmetrizazion, we
change the original function within the tolerance allowed
by the given error bounds to yield a totally symmetric
function with the fewest changes, and then we relax total
symmetrization when the error bounds are not met, until we
reach a feasible solution. The core technical contribution is a
polynomial algorithm for computing the closest symmetric
approximation of an incompletely specified multi-output
Boolean function with an unbounded number of errors.
Then we present the first polynomial heuristic algorithm
to compute a D-reducible approximation of an incompletely
specified target function, under a bit error metric.

Experimental results confirm the efficacy of the pro-
posed approaches. For symmetrization, the average gain
in the BDD size for the unbounded approximation scheme

is 69% with an average error rate of about 15%, while in
the bounded context, with a fixed error rate of 5%, the
average gain is about 31%. For D-reducibility, we obtain a
reduction of almost 19% on the number of variables for an
approximation threshold of 5% of the on-set of the function
only.

Future work includes a comparison of the proposed
techniques with other approximation methods. Finally, to
improve the applicability of our approach, which currently
requires, for both symmetrization and D-reducibility, a
DSOP or a BDD representation of the input function that can
be hard to obtain for large benchmarks, we plan to design a
new approximation heuristic starting from a more scalable
representation of the input function, such as AIGs.
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