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Abstract

We analyze a simple stochastic model of economic growth in which physical and health
capital accumulation jointly contribute to determine long run economic growth. Health capi-
tal is subject to random shocks via the effects of behavioral changes: unpredictable changes in
individuals’ attitude toward healthy behaviors may reduce the effectiveness of health services
provision; this in turn, by reducing the production of new health capital, lowers economic
production activities negatively affecting economic growth. Unlike the extant literature, we
assume that the probability with which such random shocks occur is not constant but state-
dependent. Specifically, the probability that behavioral changes will negatively impact on
health capital and economic growth depends on the level of economic development, proxied
by the relative abundance of health capital with respect to physical capital. We show that
our model’s dynamics can be converted into an iterated function system with state-dependent
probabilities which converges to an invariant self-similar measure supported on a (possibly
fractal) compact attractor. We develop a numerical method to approximate the invariant
distribution to illustrate its features in specific model’s parametrizations, exemplifying thus
the effects of state-dependent probabilities on the model’s steady state.
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1 Introduction

The importance of random shocks for economic outcomes and macroeconomic dynamics is well
known since the seminal work by [7]. A large body of studies analyze from different points of
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view the implications of uncertainty on economic growth (see [26] for a survey). Several of these
papers analyze the random dynamics associated with economic growth models showing that they
can eventually converge to invariant measures supported on fractal sets [23]. The fractal nature
of the steady state of such stochastic growth models has been extensively analyzed lately, both in
purely dynamic setting ([17], [27]) and in frameworks with agents’ optimization ([19], [20], [21],
[22]), showing that the support of the invariant measure can take the form of different fractal
sets, including the Cantor set ( [23], [19], [20], [21], [22] and [13]), the Sierpinski gasket ([12],
[13]) or the Barnsley’s fern ([15],[16]). To the best of our knowledge, all these works rely upon
the assumption that the probability with which shocks occur is constant over time. Even if this
setting is useful to characterize macroeconomic dynamics in a simple and intuitive way, it precludes
us from analyzing the implications of important phenomena, and in particular how the stage of
economic development affects the probability with which shocks may occur. Several studies argue
that developing countries are more vulnerable to shocks than industrialized economies [32], and
thus that the entire process of economic development may be characterized by path-dependency
([10], [25], [18]): after a certain level of development is achieved, further development is more likely
to occur. Understanding thus the implications of path-dependency for economic development and
macroeconomic outcomes is crucial to develop a realistic theory of economic growth. This paper
wishes to make a first contribution in this direction by proposing a simple stochastic growth model
in which probabilities are state-dependent. State-dependent probabilities are a straightforward
generalization of constant probabilities which allow to explain the path-dependency phenomenon
and to enrich the set of possible outcomes for the model, shedding some light on the mutual links
between economic shocks and economic development.

Specifically, we analyze a simple two-sector stochastic purely dynamic model of economic
growth in which physical and health capital accumulation jointly contribute to determine long
run economic growth ([33], [1], [4]). Health capital measures the health status of the population
which can be improved through the purposive provision of health services. Health capital de-
termines the level of productivity of the labor force and thus it represents an important input in
economic production activities. Both the final consumption good and health services are produced
by combining physical and health capital, but the production of health services is subject to ran-
dom shocks via the effects of behavioral changes: unpredictable changes in individuals’ attitude
toward healthy behaviors may reduce the effectiveness of the health services provided; this in turn,
by reducing the production of new health capital, lowers economic production activities negatively
affecting economic growth in the long run. The probability with which these shocks occur endoge-
nously depends on the economy’s level of development measured by the relative abundance of
health capital with respect to physical capital, meaning that according to its specific development
stage an economy may be more or less likely to face a negative shock with detrimental effects on
long run economic growth. We show that this model can be converted into a contractive iterated
function system (IFS) with state-dependent probabilities (SDP) which, under rather general con-
ditions, converges to an invariant self-similar measure supported on a (possibly fractal) compact
attractor. Iterated function systems with state-dependent probabilities (IFSSDP) have received
much attention in the mathematics literature, mostly in the context of state-dependent Markov
processes with invariant measures ([3], [29], [14]), but to the best of our knowledge they have
never been discussed in economics. In this paper we develop a novel application of IFSSDPs in
macroeconomic theory to shed some light on the effects of state-dependent probabilities on the
economic dynamics and the steady state of a stochastic growth model.

The paper proceeds as follows. Section 2 reviews some well-known concepts on the IFS theory
and it focuses in particular on the theory of IFSSDP. Section 3 introduces our stochastic growth
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model with state-dependent probabilities and, after a brief discussion on the dynamical features
of its deterministic counterpart, shows how its random dynamics can be converted into an affine
IFSSDP. Section 4 presents a numerical method to approximate the invariant measure of affine
IFSSDPs, which is then applied in Section 5 to illustrate, for a given parameterization of the
growth model, how the characteristics of the invariant measure associated to our IFSSDP are
affected by different choices of the state-dependent probability generating it. Section 6 as usual
presents concluding remarks and highlights directions for future research.

2 Iterated Function Systems

In this section we review some basic concepts and results in the theory of iterated function systems.
We first discuss the case in which probabilities are constant, and since this case is well-known we
will try to be as brief as possible (similar but more detailed discussions can be found in [13],
[16]). We then move to the less-known case in which probabilities are state dependent, and we
will discuss with more depth the implications of such state-dependency.

2.1 Constant Probabilities

Let (X, d) be a compact metric space. An N -map Iterated Function System (IFS) on X , w =
{w1, . . . , wN}, is a set of N contraction mappings on X , i.e., wi : X → X , i = 1, . . . , N , with
contraction factors ci ∈ [0, 1) (see [2], [8], [11]). Associated with an N -map IFS, one can construct
the following set-valued mapping ŵ on the space H (X) of nonempty compact subsets of X :

ŵ (S) :=
N
⋃

i=1

wi (S) , S ∈ H (X) .

The distance between sets can be measured by means of the Hausdorff distance h defined onH (X)
as follows:

h (A,B) = max

{

sup
x∈A

inf
y∈B

d (x, y) , sup
x∈B

inf
y∈A

d (x, y)

}

.

The pair (H (X) , h) is a compact (and then complete) metric space.

Theorem 1 ([8]). For A,B ∈ H (X),

h (ŵ (A) , ŵ (B)) ≤ cH (A,B) where c = max
1≤i≤N

ci < 1.

The following result states the contractivity of the operator ŵ with respect to the Hausdorff
distance.

Corollary 1. There exists a unique set Ā ∈ H (X) such that

Ā = ŵ
(

Ā
)

=
N
⋃

i=1

wi

(

Ā
)

.

Moreover, for any B ∈ H (X), h
(

Ā, ŵtB
)

→ 0 as t → ∞.
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The set Ā ∈ H (X) is called the attractor of the IFS w as it satisfies the properties which
define an attractor of a general dynamical system.1

An N -map iterated function system with (constant) probabilities (w,p) is an N -map IFS w
with associated probabilities p = {p1, . . . , pN},

∑N

i=1 pi = 1.
Let M (X) denote the set of probability measures on (Borel subsets of)X and dMK the Monge-

Kantorovich distance on this space. For µ, ν ∈ M (X) the Monge-Kantorovich metric is defined
as

dMK (µ, ν) = sup
f∈Lip1(X)

[
∫

f dµ−

∫

f dν

]

,

where Lip1 (X) = {f : X → R : |f (x)− f (y)| ≤ d (x, y)}. The metric space (M (X) , dMK) is
compact (and then complete) [2], [8]. If X is not compact but only complete then a first-moment
condition needs to be imposed to guarantee the completeness of (M (X) , dMK).

Associated with an N -map IFSP is a mapping M : M → M, often referred to as the Foias
operator, defined as follows. Let ν = Mµ for any µ ∈ M (X). Then for any measurable set S ⊂ X ,

ν (S) = (Mµ) (S) =

N
∑

i=1

pi µ
(

w−1
i (S)

)

.

Theorem 2 ([8]). For µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ c dMK (µ, ν) .

Corollary 2. There exists a unique measure µ̄ ∈ M (X), the invariant measure of the IFSP
(w,p), such that

µ̄ (S) = (Mµ̄) (S) =
N
∑

i=1

piµ̄
(

w−1
i (S)

)

. (1)

Moreover, for any ν ∈ M (X), dMK (µ̄,M tν) → 0 as t → ∞.

Theorem 3 ([8]). The support of the invariant measure µ̄ of an N-map IFSP (w,p) is the
attractor Ā of the IFS w′ = {wi : pi > 0}, i.e.,

supp µ̄ = Ā.

Example 1. The following two-map IFS on X = [0, 1],

w1 (x) =
1

2
x, w2 (x) =

1

2
x+

1

2
,

has attractor A = [0, 1]. Let p1 ≡ p2 ≡ 1/2. It is well known that the invariant measure µ̄ of
this IFSP is the (uniform) Lebesgue measure on [0, 1]. This is simple to see by verifying (1) for
S = [a, b] ⊆ [0, 1].

1We recall that a dynamical system is a pair (X,φ) where (X, d) is a metric space and φ : X → X is a continuous
map. A set A ⊂ X is said to be a global attractor for (X,φ) if: i) φ (A) ⊆ A, ii) limn→+∞ d′ (A, φn (x0)) = 0 for
any x0 ∈ X , where d′ is the distance point-to-set and φn (x0) = φ (φ (... (φ (x0)))) is the nth iterate of φ applied to
x0 (or the orbit generated by x0). Of course if A = {x̄} is a singleton, then x̄ is a fixed point of φ. Banach fixed
point theorem guarantees the existence of a unique fixed point that is also a global attractor under completeness
of X and contractivity of φ with respect to d.
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Note that, while in this paper we assume that all the maps wi in the IFS are contractive, the
contractivity of M only requires average contractivity,

∑

i pici < 1 [30].

2.2 State-Dependent Probabilities

We now consider the case in which the probabilities, pi, 1 ≤ i ≤ N , associated with an N -map
IFS w are state-dependent, i.e., pi : X → [0, 1] such that

N
∑

i=1

pi (x) = 1, for all x ∈ X. (2)

In the literature a lot of attention has been devoted to IFSs with state-dependent probabilities in
particular in the context of state-dependent Markov processes with invariant measures [29].

The result is an N -map IFS with state-dependent probabilities (IFSSDP).

Example 2 (Affine probability functions). In the special case X = [0, 1] ⊂ R with affine proba-
bilities pi (x) = ξix + ηi, substitution into (2) along with the fact that the functions x and 1 are
linearly independent over [0,1] yields the following conditions on the ξi and ηi,

N
∑

i=1

ξi = 0 ,
N
∑

i=1

ηi = 1.

Only two other conditions must be imposed, namely, (i) 0 ≤ pi (0) ≤ 1 and 0 ≤ pi (1) ≤ 1 for
1 ≤ i ≤ N , which lead to the following additional constraints,

0 ≤ ηi ≤ 1, 0 ≤ ξi + ηi ≤ 1, 1 ≤ i ≤ N.

These constraints also imply that −1 ≤ ξi ≤ 1. In the special case ξi = 0, 1 ≤ i ≤ N , the IFSSDP
reduces to an IFSP with constant probabilities pi = ηi, 1 ≤ i ≤ N .

Associated with an N -map IFSSDP, (w,p), there is a Foias operator M : M (X) → M (X),
defined as follows. Let ν = Mµ for any µ ∈ M (X). Then for any measurable set S ⊂ X ,

ν (S) = Mµ (S) =
N
∑

i=1

∫

w−1
i (S)

pi (x) dµ (x) . (3)

Theorem 4 ([14]). Given M as defined in (3), then M maps M (X) to itself. In other words, if
µ ∈ M (X), then ν = Mµ ∈ M (X).

Under appropriate conditions, the above Foias operator can be contractive with respect to the
Monge-Kantorovich metric.

Theorem 5 ([14]). Let (X, d) be a compact metric space and (w,p) an N-map IFSSDP with IFS
maps wi : X → X with contraction factors ci ∈ [0, 1). Furthermore, assume that the probabilities
pi : X → R are Lipschitz functions, with Lipschitz constants Ki ≥ 0. Let M : M (X) → M (X)
be the Foias operator associated with this IFSSDP, as defined in (3). Then for any µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ (c+KDN) dMK (µ, ν) ,
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where c = maxi ci, K = maxi Ki and D = diam (X) < ∞. If c +KDN < 1 then there exists a
unique measure µ̄ ∈ M (X), the invariant measure of the IFSSDP, such that Mµ̄ = µ̄. Moreover,
for any ν ∈ M (X), dMK (µ̄,M tν) → 0 as t → ∞.

However, the operator M needs not to be contractive with respect to the Monge-Kantorovich
metric in order to have a fixed point. In fact, by the Schauder fixed point theorem, as long as all
the pi (x)s are continuous there is at least one invariant measure for M . The following examples
exhibit more than one invariant measure.

Example 3. We return to the two-map IFS on X = [0, 1] of Example 1,

w1 (x) =
1

2
x, w2 (x) =

1

2
x+

1

2
,

and consider two state dependent probabilities p1 (x) = 1− x and p2 (x) = x. In this case the two
Dirac measures δ0 and δ1, concentrated at the points 0 and 1 respectively, are both fixed points and
thus it is not possible for the Foias operator to be contractive. Moreover, for any ξ ∈ [0, 1], the
measure µ = ξδ0 + (1− ξ) δ1 is a fixed point of the Foias operator.

We now describe the so-called Chaos Game for an IFS with probabilities. Start with x0 ∈ X ,
and define the sequence xt ∈ X by

xt+1 = wσt
(xt) ,

where σt ∈ {1, 2, . . . , N} is chosen according to the probabilities pi (xt) (that is, P [σt = i] =
pi (xt)). We note that the sequence (xt) is a Markov chain with values in X .

The following theorem (from results in [3], [9]) gives conditions as to when the IFSSDP has a
unique stationary distribution µ̄ and the Chaos Game “converges” to µ̄ in a distributional sense.

Theorem 6 ([3], [9]). Suppose that there is a δ > 0 so that pi (x) ≥ δ for all x ∈ X and
i = 1, 2, . . . , N and suppose further that the moduli of continuity of the pis satisfy Dini’s condition
(see [3], [9]). Then there is a unique stationary distribution µ̄ for the Foias operator. Furthermore,
for each continuous function f : X → R,

1

t+ 1

t
∑

h=0

f (xh) →

∫

X

f (x) dµ̄ (x) .

where the sequence {xh}
t

h=0 is generated by the Chaos Game described above, that is xh+1 =
wσh

(xh), and σh ∈ {1, 2, . . . , N} is chosen according to P [σh = i] = pi (xh).

Theorem 6 can be used to show the following result.

Corollary 3. Suppose that the IFSSDP {w, pi} satisfies the hypothesis of Theorem 6. Then the
support of the invariant measure µ̄ of the N-map IFSSDP (w,p) is the attractor Ā of the IFS w,
i.e.,

supp µ̄ = Ā.

Notice that the support of the invariant measure of an IFSPDP depends only on the family of
IFS maps w and not on the family of probabilities pi.

Example 4. Modifying Example 3 slightly by using

p1 (x) = 1− β − (1− 2β)x, and p2 (x) = (1− 2β)x+ β,
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for 0 < β < 1, we obtain an IFSSDP which satisfies the conditions of Theorem 6 and thus has a
unique invariant measure. Notice that the probability functions from Example 3 correspond to the
case β = 0.

Notice that if pi are not continuous then the IFSSDP might have more than one invariant
measure (in fact, continuity is not enough – see [29]).

The following theorem allows us to characterize the singularity of the self-similar measure
associated to an IFS with state-dependent probability in the case of two linear maps having the
same slope. The proof follows by noticing that whenever the common slope λ satisfies λ < 1/2
the invariant measure µ̄λ is supported on a Cantor set with zero Lebesgue measure.

Proposition 1. Take the two-map IFS {λx, λx+ (1− λ)} on X = [0, 1] where λ ∈ (0, 1) along
with the two probability functions p1 (x) = p (x) and p2 (x) = 1 − p (x) on [0, 1]. Assume that
inf {p (x) : 0 ≤ x ≤ 1} > 0 and that and that p is Hölder continuous. Let µ̄λ be the invariant
measure of this state-dependent IFS. If 0 ≤ λ < 1/2 then µ̄λ is singular with respect to the
Lebesgue measure.

3 The Model

We propose a discrete time stochastic growth model driven by physical and health capital ac-
cumulation: while physical capital is a rival good, health capital is a nonrival good. Our novel
contribution consists of allowing the probabilities with which shocks occur to be state-dependent.
As our main goal is to analyze the effects of such state-dependent probabilities on the dynamics of
the economic system, for the sake of simplicity we completely abstract from agents’ optimization
and we focus on a purely dynamic Solow-type [28] setting. As in [31], the unique final consumption
good, yt, is produced through a constant returns to scale Cobb-Douglas production function em-
ploying health capital, ht, and a certain share of physical capital, kt, as follows: yt = θ (ukt)

α h1−α
t ,

where θ > 0 is a fixed productivity parameter, 0 < α < 1 is the physical capital share of GDP and
0 < u < 1 an exogenously given share of physical capital allocated to final good production. Phys-
ical capital is accumulated through investment activities, to which an exogenous share of output
is devoted: kt+1 = syt, where 0 < s < 1 is the saving rate. Health capital accumulates thanks to
the provision of health services, gt, as follows: ht+1 = gt. Health services are produced through a
Cobb-Douglas production function employing the existing level of health capital and the share of
physical capital not used in the production of the final good. This represents a situation in which
the provision of health services is relatively intensive in physical capital, meaning that in order
to achieve further improvements in the health status of the population it is important to invest
in physical infrastructure (hospitals, machines, medical equipment). However, such production
activities are also subject to multiplicative random shocks, zt, so that the total production of
health services is gt = zt [(1− u) kt]

β h1−β
t , where 0 < β < 1 is the elasticity of health services

production with respect to physical capital, and zt is a random component measuring the effect of
behavioral changes which may reduce the effectiveness of activities aimed to improve the overall
health status in the population resulting in increases in the health capital. Indeed, the diffusion of
antivax sentiments, the spread of risky sexual behavior and the growing reliance on junk food are
all examples of how changes in individuals’ health attitude can affect the effectiveness of health
services potentially harming the entire economy. For the sake of simplicity, we abstract from
physical and health capital depreciation without loss of generality.
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3.1 The Deterministic Dynamics

As the dynamics characterizing our model present a sufficiently rich scenario already in the de-
terministic version, we deem it worth spend in a few words on this setting before analyzing how
random shocks may affect such dynamics. By assuming that zt ≡ z is constant through time (i.e.,
non random), with 0 < z ≤ 1, the model’s dynamics are determined by the following system of
difference equations:







kt+1 = sθ (ukt)
α h1−α

t

ht+1 = z [(1− u) kt]
β h1−β

t

k0 and h0 > 0 given.

(4)

According to the specific model’s parametrization, three scenarios are possible and the system
(4) may exhibit:

1. convergence to a unique non trivial steady state whenever parameters z, s, θ, u and α satisfy
a certain condition; such a steady state, however, depends on the initial conditions k0 and
h0;

2. sustained growth of both kt and ht if the saving rate s is larger than the threshold value
characterizing the previous scenario;

3. asymptotic extinction of the economy, i.e., kt → 0+ and ht → 0+ as t → ∞, if the saving
rate s is smaller than the threshold value characterizing the first scenario.

Specifically, any steady state for system (4) must satisfy:

{

k = sθuα (k)α (h)1−α

h = z (1− u)β (k)β (h)1−β ⇐⇒



















(

h

k

)1−α

=
1

sθuα

(

h

k

)β

= z (1− u)β
⇐⇒















h

k
=

1

(sθuα)
1

1−α

h

k
= z

1
β (1− u) .

(5)

The last system of equations can be satisfied only if

(sθuα)−
1

1−α = z
1
β (1− u) ,

that is, only if the saving rate satisfies:

s̄ =
1

θuα

[

z
1
β (1− u)

]1−α
. (6)

Note that, as 0 < u < 1 and 0 < s̄ < 1 must hold, the following condition must be met:

θ >
1

uα

[

z
1
β (1− u)

]1−α
, (7)

which, as 0 < z ≤ 1 and 0 < u < 1, implies necessarily that θ > 1.
It is immediately seen from system (5) that the steady state is naturally defined in terms of

the ratio h/k; hence, it is convenient to explicitly introduce the new variable health to physical
capital ratio:

χt =
ht

kt
. (8)
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Therefore, a steady state is any pair (h, k) satisfying

χ∗ =
h

k
≡ z

1
β (1− u) ; (9)

this represents a situation of balanced development in which the input ratio (i.e., the health to
physical capital ratio) is constant. This steady state is globally stable and the economy naturally
tends to converge to such a long run situation of balanced development. Whenever the physical
capital ratio is different than the constant 1− u, then it will change over time. Specifically, when
ht/kt > 1− u there is an excessive level of health capital with respect to physical capital and the
former decreases while the latter increases as time elapses; the opposite occurs when ht/kt < 1−u.
This represents a situation of unbalanced development in which the input ratio keeps changing
over time. The effects of unbalances on economic growth have been analyzed by several studies
([24], [5], [6]), and our model as we shall clarify later suggests that such unbalances may occur
endogenously through the realization of shocks. To see how the transition towards the steady
state works let us compute the growth rates of kt and ht:

γ̄k
t =

kt+1 − kt
kt

=
s̄θuαkα

t h
1−α
t

kt
− 1 =

θuα

θuα

[

z
1
β (1− u)

]1−α

(

ht

kt

)1−α

− 1

=

[

χt

z
1
β (1− u)

]1−α

− 1 (10)

γ̄h
t =

ht+1 − ht

ht

=
z (1− u)β kβ

t h
1−β
t

ht

− 1 = z (1− u)β
(

kt
ht

)β

− 1 =

[

z
1
β (1− u)

χt

]β

− 1, (11)

where in the second equality of the first line we used (6). From the expressions above it is

immediately seen that whenever χt > z
1
β (1− u) the physical capital exhibits a positive growth

rate and, at the same time, the health capital exhibits a negative growth rate, while the signs

of the growth rates are the opposite if χt < z
1
β (1− u); this establishes that the steady state is

globally stable.2

Finally, having in mind the introduction of random shocks to our dynamical system in the
next Subsection, it is interesting to study the dynamics (4) for values of the saving rate different
than that defined in (6). Using (8), system (4) can be reduced to a one-dimensional dynamic in
the variable χt:

χt+1 =
ht+1

kt+1
=

z (1− u)β kβ
t h

1−β
t

sθuαkα
t h

1−α
t

=
z (1− u)β

sθuα

(

ht

kt

)λ

= zΛχλ
t (12)

2There is, however, a caveat: as the steady state χ∗ = h/k ≡ z
1

β (1− u) in (9) is defined by the ratio between

health and physical capital, any pair (h, k) having ratio z
1

β (1− u) defines a steady state, possibly corresponding to
values of h and k very far apart. By the (opposite) monotonicity of the transition dynamics of kt and ht defined by
their growth rates in (10) and (11), we deduce that each different steady state χ∗ depends on the initial conditions,
(k0, h0). In other words, only economies starting with high levels of both physical and health capital converge
to steady states envisaging high stationary values of physical and health capital. We may thus claim that the
deterministic version of our model under the assumption that the saving rate satisfies (6) exhibits indeterminacy
in the sense that there exist a continuum of stable steady states, each dependent on the initial condition (k0, h0).
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where

Λ =
(1− u)β

sθuα
and λ = α− β.

In the following we shall assume that α > β > 0 so to always have 0 < λ < 1, which, in turn,
implies that the one-dimensional dynamic defined by (12) has a unique globally stable steady state
defined by:

χ∗ = (zΛ)
1

1−λ =

[

z (1− u)β

sθuα

]
1

1−λ

=

[

z (1− u)β

sθuα

]
1

1−α+β

. (13)

The growth rates of kt and ht along the steady state χ∗ defined in (13) turn out to be the
same:

γk
t =

kt+1 − kt
kt

= sθuα

(

ht

kt

)1−α

− 1 = sθuα (χ∗)1−α − 1 = sθuα

[

z (1− u)β

sθuα

]
1−α

1−α+β

− 1

= (sθuα)
β

1−α+β

[

z (1− u)β
]

1−α
1−α+β

− 1 (14)

γh
t =

h∗
t+1 − h∗

t

h∗
t

= z (1− u)β
(

kt
ht

)β

− 1 = z (1− u)β
(

1

χ∗

)β

− 1

= z (1− u)β
[

sθuα

z (1− u)β

]
β

1−α+β

− 1

= (sθuα)
β

1−α+β

[

z (1− u)β
]

1−α
1−α+β

− 1, (15)

which is consistent with the property of balanced development in steady state in which both
variables kt and ht grow at the same rate over time. Specifically, if s > s̄ we have:

s > s̄ =
1

θuα

[

z
1
β (1− u)

]1−α
⇐⇒ sθuα

[

z
1
β (1− u)

]1−α

> 1

⇐⇒ (sθuα)
β

1−α+β

[

z
1
β (1− u)

]

β(1−α)
1−α+β

> 1 ⇐⇒ (sθuα)
β

1−α+β

[

z (1− u)β
]

1−α
1−α+β

> 1,

which implies that both growth rates of kt and ht in (14) and (15) are positive, that is, when
s > s̄ system (4) describes an economy that asymptotically converges to a balanced growth path
in which both health and physical capital grow at the same positive constant rate. Conversely, if
s < s̄ both growth rates of kt and ht in (14) and (15) are negative and the economy asymptotically
converges to a balanced growth path that lead to extinction as t → ∞.

3.2 Adding Random Shocks to Health Capital Production

We now assume that coefficient z is a random variable affecting health capital production, so
that the stochastic model’s dynamics can be summarized by the following system of difference
equations:







kt+1 = s (ukt)
α h1−α

t

ht+1 = zt [(1− u) kt]
β h1−β

t

k0, h0 > 0 and z0 ∈ {r, 1} given.
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The random shock {zt}
∞

t=0 is a Bernoulli process taking values 0 < r < 1 and 1 with probabilities
p (ht/kt) = p (χt) and 1−p (ht/kt) = 1−p (χt), respectively. Therefore, at each time t, zt can take
only two values with state-dependent probabilities; specifically, the fact that probabilities depend
on the health to physical capital ratio implies that the realization of shocks is related to the past
evolution of both types of capital, implying a path-dependency in the macroeconomic dynamics.
In particular, what matters in determining the probability of shocks is the relative abundance of
the two forms of capital which is a proxy for the level of economic development. As mentioned
earlier, economic development is balanced if the physical to health capital ratio remains constant
over time, while it is unbalanced when the ratio changes over time. The fact that the probability of
shocks depends on the physical to health capital ratio implies that unbalanced development is the
result of the realizations of random shocks. By recalling that random shocks represent the effects of
behavioral changes, our model suggests that the effectiveness of public activities aimed to improve
the overall health status in the economy changes with the level of development. For example, more
developed economies may be conducive to the diffusion of junk foods with detrimental effects on
health capital accumulation (i.e., p′ < 0), or conducive of safer sexual behavior with beneficial
effects on health capital accumulation (i.e., p′ > 0). It is not so clear which of these cases is
more realistic to consider, thus in the following we will not impose a priori any restriction on the
relation between p(·) and economic development, but we will analyze how the results will change
when p′ R 0.

The one-dimensional dynamic of the reduced model expressed by the health to physical capital
ratio variable χt = ht/kt, to which the probability p (χt) actually depends, is the same as in (12),
only with the random shock zt replacing the constant z:

χt+1 = ztΛχ
λ
t (16)

with Λ = (1− u)β / (sθuα) and λ = α− β, satisfying α > β > 0 so to always have 0 < λ < 1. The
one-dimensional dynamics described by (16) is straightforward: it has an attractive set to which
the system is eventually being trapped defined as the interval

[χ∗
r, χ

∗
1] =

[

(rΛ)
1

1−λ ,Λ
1

1−λ

]

=





(

r (1− u)β

sθuα

)
1

1−α+β

,

(

(1− u)β

sθuα

)
1

1−α+β



 ,

whose endpoints are the globally stable steady state of the model defined in (13) for z = r and
z = 1 respectively. As t → ∞ the variable χt jumps from one feasible value to another in the
interval [χ∗

r, χ
∗
1] according to a stochastic process governed by the state-dependent probabilities

p (χt) and 1 − p (χt) that, as it will be shown in the sequel, eventually converges to an invariant
measure whose support may be the whole interval [χ∗

r, χ
∗
1] or some (fractal) subset of it.

However, recasting the original dynamics followed by the pair (kt, ht) is not simple: from the
previous discussion on the deterministic model counterpart we know that the pattern followed
by such dynamics depends on the relative value of the saving rate s with respect to the values
of parameters θ, u, α and on the realization of the random shock zt ∈ {r, 1} [see condition (6)].
Specifically, assuming that condition

θ >
1

uα

[

r
1
β (1− u)

]1−α
(17)
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holds—which implies that condition (7) hold as well for z = 1—and defining

s̄1 =
1

θuα (1− u)1−α
, s̄r =

1

θuα

[

r
1
β (1− u)

]1−α
, (18)

whenever 0 < p (χt) < 1 three scenarios may occur.

1. If s̄1 ≤ s ≤ s̄r, when the time t shock realization is zt = 1 the system finds itself on
a transition trajectory that, if zt = 1 were to hold forever, would eventually approach a
balanced growth path characterized by sustained growth (or to some steady state defined
by χ∗

1 = h/k ≡ 1 − u if s = s̄1). However, as 0 < p (χt) < 1, at some future date τ1 > t
the realization zτ1 = r must occur with probability 1; at such date the system jumps on a
different type of transition trajectory that, if zt = r were to hold forever, would eventually
converge to balanced growth path leading to extinction (or to some steady state defined

by χ∗
r = h/k ≡ r

1
β (1− u) if s = s̄r). The economy, however, cannot vanish entirely (or

converge to the smaller steady state χ∗
r = r

1
β (1− u) if s = s̄r) as there is another future

date τ2 > τ1 at which zτ2 = 1 again and the system reverses back to a new transition
trajectory pushing toward sustained growth (or toward the larger steady state χ∗

1 = 1 − u
if s = s̄1). Because all jumps from one regime to the other—sustained growth vs. decay—
happen from ever changing values of (kt, ht), depending on how many times the shock value
zt remained constant before, the system actually wanders around in an unpredictable way.

2. If s > s̄r the system exhibits features that, at least qualitatively, are easier to classify, as in
this case the economy converges to paths characterized by sustained balanced growth. The
system actually jumps from transition trajectories converging to sustained balanced growth
at different constant rates depending on the shock realization zt, with a smaller constant
growth rate associated to the zt = r realization and a larger constant growth rate associated
to the zt = 1 realization.

3. Similarly, if s < s̄1 the economy converges to balanced paths characterized by constant
decay implying that the economy vanishes asymptotically regardless of the realization of
the Bernoulli process of shocks {zt}

∞

t=0. The latter process realization establishes a path
characterized by jumps between transition trajectories converging to balanced paths defined
by different rates of decay, the faster associated to the occurrence of zt = r realizations and
the slower associated to the occurrence of zt = 1 realizations.

3.3 The associated log-linearized dynamics

Let us focus on the simpler one-dimensional random dynamical system defined by (16):

χt+1 = ztΛχ
λ
t ,

where Λ = (1− u)β / (sθuα) and λ = α− β, with α > β > 0 so that 0 < λ < 1.

Through an appropriate log-transformation it is possible to recast (16) into a topologically equiv-
alent one. Specifically, defining the new variable:

xt = −
1 − λ

ln r
lnχt + 1 +

lnΛ

ln r
, (19)
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the new random dynamic system becomes:

xt+1 = λxt + (1− λ)

(

1−
ln zt
ln r

)

,

which can be rewritten as follows:
{

xt+1 = λxt with probability p̃ (xt)
xt+1 = λxt + (1− λ) with probability 1− p̃ (xt) ,

(20)

where

p̃ (xt) ≡ p (χt) = p

(

ht

kt

)

= p
[

(rΛ)
1

1−λ

(

r−
1

1−λ

)xt
]

, (21)

which follows from (19) since

lnχt =
ln r + lnΛ

1− λ
−

ln r

1− λ
xt =

ln (rΛ)

1− λ
−

ln r

1− λ
xt = ln

[

(rΛ)
1

1−λ

]

+ ln
[(

r−
1

1−λ

)xt
]

= ln
[

(rΛ)
1

1−λ

(

r−
1

1−λ

)xt
]

,

which, in turn, implies that

χt = (rΛ)
1

1−λ

(

r−
1

1−λ

)xt

.

From the results in Section 2.2 we know that the IFSSDP (20) defined on the space X = [0, 1]
converges to a unique invariant measure µ̄λ supported on the attractor Ā defined in Corollary 1
whenever inf {p̃ (x) : 0 ≤ x ≤ 1} > 0 and p̃ is Hölder continuous. Moreover, according to Propo-
sition 1, if λ < 1/2 the attractor Ā is a Cantor-like set and the invariant measure µ̄λ is singular
with respect to the Lebesgue measure.

In the rest of the paper we will focus on the IFSSDP given by (20), in which the maps are
linear. In the next section we develop a numerical method to approximate its invariant measure and
show the implications of state-dependent probabilities on the fractal steady state of our stochastic
growth model.

4 A Method to Approximate the Invariant Measure

In this section we focus on the affine IFSSDP {w1 (x) , w2 (x) , p (x)} defined by

{

w1 (x) = λx with prob. p (x)
w2 (x) = λx+ (1− λ) with prob. 1− p (x)

(22)

on X = [0, 1] where λ ∈ (0, 1/2] and p : [0, 1] → (0, 1) is a Hölder continuous function representing
the state-dependent probability p (xt−1) of moving from xt−1 ∈ [0, 1] to xt = w1 (xt−1) = λxt−1

after the tth iteration of the IFSSDP, while 1 − p : [0, 1] → (0, 1) represents the state-dependent
probability 1− p (xt−1) of moving from xt−1 ∈ [0, 1] to xt = w2 (xt−1) = λxt−1 + (1− λ) after the
tth iteration of the IFSSDP. In other words, the function p (x) denotes the probability of reaching
the lowest of the two maps in (22), w1 (x), after one period when in t−1 the system is on x, while
1 − p (x) denotes the probability of reaching the highest of the two maps in (22), w2 (x), after
one period when in t − 1 the system is on x. The assumption that 0 < λ ≤ 1/2 implies that the
IFSSDP is (almost) non overlapping, i.e., whenever λ < 1/2 the images of the maps w1, w2 do not
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overlap and the attractor of the system is a Cantor-like set, that we will denote by λ-Cantor set,
while when λ = 1/2 the images of the maps w1, w2 overlap only on the (zero Lebesgue measure)
point 1/2 and the attractor of the system is the full interval [0, 1].

Our aim is to provide an iterative algorithm capable of approximating the unique invariant
measure µ̄λ supported on the attractor of the IFSSDP (22). To this purpose we exploit the
very intuitive process defined by the Chaos game according to the random dynamics described
by (22). Let B [0, 1] be the σ-algebra of Borel measurable subsets of [0, 1] and P [0, 1] the space
of probability measures on B [0, 1]. Recall the following definitions of the Hutchinson and Foias
operators respectively, W : [0, 1] → [0, 1] and M : P [0, 1] → P [0, 1]:

W (A) = w1 (A) ∪ w2 (A) , for all A ⊆ [0, 1] , (23)

Mµ (B) =

∫

w−1
1 (B)

p (x) dµ (x) +

∫

w−1
2 (B)

[1− p (x)] dµ (x) , for all B ∈ B [0, 1] (24)

where wσ (A) denotes the image of the set A through wσ and w−1
σ (B) denotes the set

{x ∈ [0, 1] : wσ (x) ∈ B}, σ = 1, 2.
The algorithm starts from the uniform density on [0, 1], µ0 (x) ≡ 1 for a.e. x ∈ [0, 1], and

then applies iteratively the Foias operator in (24) to generate the tth marginal distribution of
the system supported over the tth pre-fractal generated by the Hutchinson operator in (23). To
keep the algorithm simple and efficient we approximate each iteration of M , µt (·) = Mµt−1 (·),
by measuring the mass produced by M on each component (sub-interval) of the tth pre-fractal
and originating from the masses supported over each component of the pre-fractals generated by
the same iteration of W applied on the (t− 1)th pre-fractal. Specifically, we first generate all
components of the pre-fractal after the tth iteration of W starting from A0 = [0, 1] and then we
put a uniformly distributed mass on each component according to Mµt−1, where µt−1 is the set
of rectangular masses on the components of the pre-fractal obtained after the (t− 1)th iteration
of M , starting with the rectangle [0, 1]2 representing the uniform distribution µ0 (x) ≡ 1 over
A0 = [0, 1]. Indeed, the algorithm is based on the following two core procedures.

1. The following recursion produces the tth pre-fractal as union of the images of the maps w1,
w2 evaluated on the (t− 1)th pre-fractal according to

A0 = [0, 1]

A1 = w1 (A0) ∪ w2 (A0) = w1 ([0, 1]) ∪ w2 ([0, 1]) = [0, λ] ∪ [1− λ, 1]

A2 = w1 (A1) ∪ w2 (A1) = w1 ([0, λ] ∪ [1− λ, 1]) ∪ w2 ([0, λ] ∪ [1− λ, 1])

=
[

0, λ2
]

∪
[

λ− λ2, λ
]

∪
[

1− λ, 1− λ+ λ2
]

∪
[

1− λ2, 1
]

...

At = w1 (At−1) ∪ w2 (At−1)

=
[

0, λt
]

∪
[

λt−1 − λt, λt−1
]

∪ · · · ∪
[

1− λt−1, 1− λt−1 + λt
]

∪
[

1− λt, 1
]

. (25)

Each pre-fractal At is made up of 2t components (sub-intervals), each of size (Lebesgue
measure) λt; such components are disjoint (they do not overlap) whenever λ < 1/2, in
which case limt→∞At is the λ-Cantor set. Each component is thus an interval that we will
denote by [xt,i, xt,i+1] of length xt,i+1 − xt,i = λt, for i = 1, 3, 5, . . . , 2t+1 − 1. The key step

in each iteration is the split of each component of the (t− 1)th pre-fractal with length λt−1,
[xt−1,i, xt−1,i+1] into two smaller components of length λt in the tth pre-fractal, corresponding
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to its two distinct images through the maps w1 and w2. As we keep track of all components
in each pre-fractal by their endpoints, xt,i, xt,i+1, the idea is to exploit the recursion (25) so
as to let the procedure generate four endpoints, xt,j , xt,j+i, xt,j+2, xt,j+3, corresponding to
two components of the tth pre-fractal, out of the originating unique preimage [xt−1,i, xt−1,i+1]

through one of the maps wσ, for σ = 1, 2, which is one single component of the (t− 1)th

pre-fractal. In other words, we generate the two new components in the tth pre-fractal as the
intervals [xt,j , xt,j+i] = [xt−1,i, xt−1,i + λt] and [xt,j+2, xt,j+3] = [xt−1,i+1 − λt, xt−1,i+1], which
is nothing else than the standard procedure to generate the λ-Cantor set: to remove the
middle interval from each component in the (t− 1)th pre-fractal. Note that, besides the
counter t, in this first part two indexes are needed: i and j, the former increasing by 2 after
each split of the (t− 1)th component into the two tth components (the next left endpoint of
the (t− 1)th component is i+ 3) and the latter increasing by 4 (the next first left endpoint
of the third component born after the tth iteration is j + 5).

2. While the generation of all components [xt,i, xt,i+1] in the tth pre-fractal is pursued sequen-
tially according to recursion (25), the building of the marginal probabilities (‘rectangular
masses’) supported on them is obtained by computing the two masses originating from the
same (t− 1)th rectangular mass supported on one single (t− 1)th component as they are
being transformed into new masses over the two intervals corresponding to the images of
each map w1 and w2. Thus, such newly born pairs of masses are put on intervals which
are far apart: one in the first half of [0, 1], to which Im (w1) belongs, and the other in
the second half of [0, 1], to which Im (w2) belongs. Specifically, the rectangle denoting the
mass supported on each component [xt−1,i, xt−1,i+1] of the (t− 1)th pre-fractal is being split
into two masses, each supported on the two distinct components of the tth pre-fractal cor-
responding to the image sets w1 ([xt−1,i, xt−1,i+1]) and w2 ([xt−1,i, xt−1,i+1]), according to the
weights defined by the fixed state-dependent probabilities p (y) and 1 − p (y) respectively,3

both with y ∈ [xt−1,i, xt−1,i+1]. Let us denote by µt−1,i the (constant) mass supported on the
component [xt−1,i, xt−1,i+1]—that is, the area of the rectangle with base [xt−1,i, xt−1,i+1]—in

the (t− 1)th pre-fractal. Hence, in principle the Foias operator in (24) would define the two
masses µt,i and µt,2t−1+i, supported respectively on the components w1 ([xt−1,i, xt−1,i+1]) and
w2 ([xt−1,i, xt−1,i+1]) of the tth pre-fractal, as4

µt,i =

∫ xt−1,i+1

xt−1,i

p (y)µt−1,idy = µt−1,i

∫ xt−1,i+1

xt−1,i

p (y)dy

µt,2t−1+i =

∫ xt−1,i+1

xt−1,i

[1− p (y)]µt−1,idy = µt−1,i

∫ xt−1,i+1

xt−1,i

[1− p (y)] dy.

That is, as is apparent from the right hand sides above, µt,i and µt,2t−1+i are originated by the
same (constant) mass µt−1,i, but are weighted according to the integrals

∫ xt−1,i+1

xt−1,i
p (y) dy and

∫ xt−1,i+1

xt−1,i
[1− p (y)] dy respectively. However, as the interval of integration, [xt−1,i, xt−1,i+1],

has length λt−1 < 1 and the state-dependent probabilities p (y) and 1−p (y) sum up to 1 for
any y ∈ [xt−1,i, xt−1,i+1], the two integral values

∫ xt−1,i+1

xt−1,i
p (y)dy and

∫ xt−1,i+1

xt−1,i
[1− p (y)] dy

3From now on we will denote by y the argument of the place-dependent probabilities to avoid confusion with
the endpoints xt−1,i and xt−1,i+1 of the pre-fractal components, which in the sequel will assume the role of extrema
of integration.

4Note that, as we deal with masses represented by rectangles, we implicitly assume that the probability measure
supported on each pre-fractal component is represented by a (constant) density, which allows for the Riemann
definite integrations.
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necessarily sum up to a number which is strictly less than 1: it is the area of the rectangle
[xt−1,i, xt−1,i+1]× [0, 1] = λt−1 < 1. This implies that in the formulation above the sum of µt,i

and µt,2t−1+i turns out to be strictly less than the original mass µt−1,i, which is impossible as
that whole mass must be transferred on either w1 ([xt−1,i, xt−1,i+1]) or w2 ([xt−1,i, xt−1,i+1]) in
the tth pre-fractal and a correction factor of 1/λt−1 must be introduced in both expressions
above, yielding the final formulas5

µt,i =

∫ xt−1,i+1

xt−1,i
p (y)µt−1,idy

λt−1
=

µt−1,i

λt−1

∫ xt−1,i+1

xt−1,i

p (y) dy (26)

µt,2t−1+i =

∫ xt−1,i+1

xt−1,i
[1− p (y)]µt−1,idy

λt−1
=

µt−1,i

λt−1

∫ xt−1,i+1

xt−1,i

[1− p (y)] dy. (27)

Finally, the heights of the newly born rectangles with areas µt,i and µt,2t−1+i are computed by
dividing the numbers above by the length λt of the tth pre-fractal components: mt,i = µt,i/λ

t

and mt,2t−1+i = µt,2t−1+i/λ
t. In this second part again two indexes, i and j, are needed, but

now the former increases by 2 after each split of the µt−1,i mass into the two newly born
masses µt,i and µt,2t−1+i because it denotes the two endpoints of the interval [xt−1,i, xt−1,i+1]
on which the single original mass µt−1,i is supported, while the latter increases only by 1
because it refers to the single mass µt−1,i.

The following algorithm summarizes the whole procedure.

Algorithm 1 (Approximates marginal distributions for the IFSP (22)).

Step 1 (Initialization): Set the number n of iterations, the contraction factor 0 < λ ≤ 1/2 and
the functional form for the state dependent probability 0 < p (y) < 1 for y ∈ [0, 1]. Moreover
set the initial endpoints x0,1 = 0 and x0,2 = 1 of the t = 0 interval (pre-fractal) A0 = [0, 1],
and the initial (uniform) mass on it, µ0,1 = 1.

Step 2 (Generate pre-fractals and ‘rectangle masses’): For t from 1 to n do:

1. set i = 1 and j = 1,

2. while i ≤ 2t and j ≤ 2t+1 do:

(a) (define endpoints of tth pre-fractal components) set xt,j = xt−1,i,
xt,j+1 = xt−1,i + λt, xt,j+2 = xt−1,i+1 − λt, xt,j+3 = xt−1,i+1,

(b) (update indexes i and j and move to the next component on the (t− 1)th pre-fractal)
set i = i+ 2, j = j + 4;

3. reset i = 1 and j = 1,

4. while i ≤ 2t−1 and j ≤ 2t do:

(a) (split the mass µt−1,i on each component of the (t− 1)th pre-fractal into masses on
w1 ([xt−1,i, xt−1,i+1]) and w2 ([xt−1,i, xt−1,i+1]) of the tth pre-fractal) set
µt,i = (µt−1,i/λ

t−1)
∫ xt−1,j+1

xt−1,j
p (y) dy, µt,2t−1+i = (µt−1,i/λ

t−1)
∫ xt−1,j+1

xt−1,j
[1− p (y)] dy,

mt,i = µt,i/λ
t, mt,2t−1+i = µt,2t−1+i/λ

t,

5Note that equations (26) and (27) reduce to the standard probability assignment on the tth pre-fractal when
probabilities are constant, p1 ≡ p and p2 ≡ 1− p, which is given by µt,i = pµt−1,i and µt,2t−1+i = (1− p)µt−1,i.
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(b) (update indexes i and j and move to the next mass on the (t− 1)th pre-fractal) set
i = i+ 1, j = j + 2.

Step 3 (Produce and plot the approximation of the nth marginal distribution):

1. Set i = 1, j = 1 and set (null vector of rectangles) X = [ ],

2. while i ≤ 2n−1 and j ≤ 2n do:

(a) (generate a vector of rectangles each representing the mass on each component of
the nth pre-fractal) add the rectangle [xn,i, xn,i+1]× [0, mn,j] to the vector X,

(b) (update indexes i and j and move to the next rectangle on the nth pre-fractal) set
i = i+ 2, j = j + 1;

3. plot the vector X containing the rectangles just generated.

It should be noted that the well known algorithm based on the “Chaos game” (see, e.g., [3] or,
more recently, [14]) may be applied in this case as well. Its advantage with respect to Algorithm 1
is less computational effort required, as it yields directly an approximation of the invariant measure
in the form of an Histogram obtained just by iterating the maps w1 and w2 in the IFSSDP (22)
a sufficiently large number of times according to probabilities p (x) and 1 − p (x) starting from
any point x0 ∈ [0, 1], and counting how many times the trajectory enters each sub-interval in
a partition of [0, 1] of M sub-intervals, each of of length 1/M , for M sufficiently large. Unlike
this approach, our Algorithm 1 allows for keeping track of the evolution of the initial uniform
probability on [0, 1] at each iteration t, so that the effect of the state-dependent probabilities p (x)
and 1− p (x) on the maps w1 and w2 is being emphasized by how the masses (rectangles) on each
tth pre-fractal are transformed on new masses generated on the newly born (t + 1)th pre-fractals
after the next iteration. Such evolution can be appreciated in the next Figures 1 and 2, where the
whole transition from the uniform measure on [0, 1] to the approximation of the invariant measure
in Figures 1(i) and 2(i) is plotted through all first nine iterations of Algorithm 1. Admittedly, our
approach is more computationally intensive than the “Chaos game” procedure; however, we believe
that the purposeful contribution of Algorithm 1 is a dynamic one, by allowing to study how the
state-dependent probabilities affect the geometric transformation of the marginal measures after
each single iteration of the IFSSDP (22). Moreover, as nine iterations are enough to get a good
approximation of the invariant measure, all plots in the next Section are obtained in few seconds.

5 Applying Algorithm 1 to our Stochastic Growth Model

To be precise, Algorithm 1 uses the probabilities of the ‘linearization’ x of the reduced variable
χ = h/k according to the log-linear transformation (19), that is, those labelled as p̃ (x) in (21),
rather than the original probability function p (χ) associated to the reduced variable χ = h/k.
In the following examples we shall consider monotone state-dependent probabilities for the linear
IFSSDP (22), that, consistent with the notation adopted in Algorithm 1, will be denoted by p̃ (y)
rather than by p̃ (x), as the xt,is denote endpoints of the tth pre-fractal components. Under the
assumptions that inf {p̃ (y) : 0 ≤ y ≤ 1} > 0 and p̃ is Hölder continuous the results in Section 2.2
guarantee that the IFSSDP (22) defined on the space X = [0, 1] converges to a unique invariant
measure µ̄λ supported on the attractor Ā defined in Corollary 1. We shall further assume that
λ < 1/2, so that, according to Proposition 1, the attractor Ā is a Cantor-like set and the invariant
measure µ̄λ is singular with respect to the Lebesgue measure. Using the probability transformation
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in (21) we can easily recover the state-dependent probability governing the original nonlinear
reduced variable χ = h/k as:

p (χ) = p̃ (y) = p̃

(

−
1 − λ

ln r
lnχ+ 1 +

lnΛ

ln r

)

, (28)

where in the second equality we used (19). Note that probability p (χ) is defined on the same space

as that of the nonlinear system (16), that is, the interval
[

(rΛ)
1

1−λ ,Λ
1

1−λ

]

, whose endpoints are the

two nontrivial fixed points of the maps w1 (χ) = rΛχλ and w2 (χ) = Λχλ respectively. Moreover,

inf
{

p (χ) : (rΛ)
1

1−λ ≤ χ ≤ Λ
1

1−λ

}

> 0, sup
{

p (χ) : (rΛ)
1

1−λ ≤ χ ≤ Λ
1

1−λ

}

< 1 and p is Hölder

continuous because the argument y of p̃ in the RHS of (28) is a continuous, strictly increasing

function of χ (as − ln r > 0), being 0 when χ = (rΛ)
1

1−λ and 1 when χ = Λ
1

1−λ . Therefore, the
random dynamical system χt+1 = ztΛχ

λ
t defined in (16) is an homeomorphism conjugate to the

linear system (20)—or, equivalently (22)—and thus itself converges to a unique singular invariant

measure supported on a distorted Cantor-like set contained in the interval
[

(rΛ)
1

1−λ ,Λ
1

1−λ

]

.

In order to shed some light on how the invariant measure may look like, and on how it is
affected by different state-dependent probabilities p̃ (y), in the sequel we run Algorithm 1 for some
examples of p̃ (y). We consider the following values for some of the parameters:

θ = 12, α = 0.67, β = 0.18, r = u = 0.5. (29)

All values above envisage a sufficiently large θ [see condition (17)] and allow for a range [s̄1, s̄r]
for the saving rate s that permits to consider both the first and second scenarios at the end
of Subsection 3.2, that is, wandering randomly between one dynamic pushing toward sustained
growth and one leading to asymptotic extinction, and randomly jumping between two trajectories
both converging to balanced growth paths characterized by sustained growth but at different
growth rates. Specifically, according to (18) the values of the bounds s̄1 and s̄r become:

s̄1 =
1

θuα (1− u)1−α
= 0.1333 and s̄r =

1

θuα

[

r
1
β (1− u)

]1−α
= 0.4751,

so that, for example, when s = 0.3 the system is randomly being stretched between dynamics
asymptotically converging either to null or to sustained balanced growth, while if s = 0.6 the
system grows in time, although at (positive) growth rates that change as time elapses.

The values for α and β imply that λ = α − β = 0.49, just below 1/2, which means that the
linear IFSSDP (22) converges to a unique singular invariant measure supported over a Cantor
set that almost fills the whole interval [0, 1]. Such an assumption is justified by our interest in
thoroughly investigating the role of state-dependent probabilities: having pre-fractals that almost
cover [0, 1] in Algorithm 1 means that the state-dependent probabilities affect the system on most
points in their domain; in other words, their shape gives an important contribution in determining
the invariant measure µ̄λ. For such parameters’ values the trapping region of the corresponding

nonlinear system (16) becomes the interval [χ∗
r , χ

∗] =
[

(rΛ)
1

1−λ ,Λ
1

1−λ

]

= [0.0067, 0.0262].

In the following examples we shall just assume that λ = 0.49, so that the economy described
by the parameters’ values in (29) belongs to the family of economies for which we aim at approxi-
mating their invariant measure. Note, however, that, as Algorithm 1 requires only the parameter
λ = α − β to work, our simulations turn out to be independent of all parameters’ values in (29)
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except of the difference α − β, moreover, they are also independent of the saving rate; specifi-
cally, any value of saving rate 0 < s < 1 can be associated to our simulations, including values
s < s̄1 = 0.1333 envisaging dynamics all leading to extinction, although at different rates through
time.

Figure 1 illustrates the working of Algorithm 1 by showing its first n = 9 iterations performed
by Maple for the state-dependent probability defined by p̃ (y) = 0.98y + 0.01, satisfying p̃ (y) > 0
and 1− p̃ (y) > 0 for all y ∈ [0, 1], which is increasing and affine. Such a probability represents a
“smoothing” process that tends to concentrate the weight of the random variable xt of the IFSSDP
(20) on the fractal components that lie in the middle of the interval [0, 1]. Specifically, it puts a
smaller probability on the lower map w1—so that the probability of the higher map w2 is larger—
when xt is small, thus favoring higher values for xt+1 when xt approaches the left endpoint of [0, 1],
while it puts a higher probability on the lower map w1—so that the probability of the higher map
w2 is lower—when xt is closer to 1, thus favoring lower values for xt+1 when xt approaches the
right endpoint of [0, 1]. As confirmed by the plots in the figure, such system concentrates most
of the mass in the middle of the interval [0, 1], although such mass is very irregularly distributed
because the invariant measure is singular. Note that already after the 5th iteration in Figure 1(e)
the approximation of the marginal distribution µ5 assumes qualitative traits that are maintained
in the subsequent iterations; this implies that our algorithm exhibits the main characteristic traits
that must feature in the limit invariant measure µ̄λ, at least qualitatively.

Figure 2 shows the first n = 9 iterations of Algorithm 1 performed by Maple for the state-
dependent probability defined by p̃ (y) = 0.99 − 0.98y, satisfying p̃ (y) > 0 and 1 − p̃ (y) > 0 for
all y ∈ [0, 1], which is again affine but now is decreasing. Contrary to the previous example, such
probability represents a conservative process that polarizes the system by concentrating the weight
of the random variable xt close to the endpoints 0 and 1. Specifically, it puts a larger probability
on the lower map w—so that the probability of the higher map w2 is smaller—when xt is small,
while it puts a smaller probability on the lower map w1—so that the probability of the higher
map w2 is larger—when xt is closer to 1. As confirmed by the plots in the figure, such a system
increases inequality through time, concentrating most of the mass—but not all, as p̃ (y) > 0 and
1− p̃ (y) > 0—on the endpoints of the interval [0, 1].

Figure 3 reports only the 9th iteration of Algorithm 1 implemented by Maple for four nonlinear
variants of the previous two state-dependent probabilities. Specifically, in Figure 3(a) we use
p̃ (y) = 0.98y4 + 0.01, which is increasing and convex, concentrating most of the weight on the
higher map w2, thus favoring higher values for xt+1, when xt take values up to around 0.75, while
concentrating most of the weight on the lower map w1, thus favoring lower values for xt+1, when
xt take values closer to 1. The figure shows a measure that somewhat resembles the traits of
the measure in Figure 1(i), only concentrating more mass on the right part of the interval [0, 1];
that is, consistent with the increasing monotonicity of p̃, this system tends to put most of the
mass on points which are interior to [0, 1], the convexity of p̃ implying a larger mass to the right.
A similar picture is provided by Figure 3(b), where p̃ (y) = 0.99 − 0.98 (y − 1)4 has been used,
which is increasing and concave, concentrating most of the weight on the lower map w1, thus
favoring lower values for xt+1, when xt take values larger than 0.25, while concentrating most of
the weight on the higher map w2, thus favoring lower values for xt+1, when xt take values closer to
0. Again the figure shows a measure that somewhat resembles the traits of the measure in Figure
1(i), only concentrating more mass on the left part of the interval [0, 1]; that is, consistent with
the increasing monotonicity of p̃, this system tends to put most of the mass on points which are
interior to [0, 1], the concavity of p̃ implying a larger mass to the left.

If a decreasing, convex state-dependent probability is used instead, like p̃ (y) = 0.98 (y − 1)4 +
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Figure 1: First 9 iterations of Algorithm 1 for λ = 0.49 and p̃ (y) = 0.98y + 0.01.

0.01 that concentrates most of the weight on the higher map w2, thus favoring higher values for
xt+1, when xt take values larger than 0.25, while concentrating most of the weight on the lower
map w1, thus favoring lower values for xt+1, when xt take values closer to 0, the measure ends up
concentrating most of the mass close to the right endpoint 1, as it is apparent from Figure 3(c);
it somewhat resembles the traits of the measure in Figure 2(i), only concentrating mass almost
exclusively around 1; that is, consistent with the decreasing monotonicity of p̃, this system tends
to put most of the mass close to the endpoints 0 and 1 of [0, 1], the convexity of p̃ implying a
larger mass to the right. Conversely, if a decreasing, concave state-dependent probability is used
instead, like p̃ (y) = 0.99− 0.98y4 that concentrates most of the weight on the lower map w1, thus
favoring higher values for xt+1, when xt take values up to around 0.75, while concentrating most of
the weight on the higher map w2, thus favoring higher values for xt+1, when xt take values closer
to 1, the measure ends up concentrating most of the mass close to the left endpoint 1, as shown
in Figure 3(d); again the traits of the measure in Figure 2(i) are maintained, only concentrating
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Figure 2: First 9 iterations of Algorithm 1 for λ = 0.49 and p̃ (y) = 0.99 − 0.98y.

mass almost exclusively around 0; that is, consistent with the decreasing monotonicity of p̃, this
system tends to put most of the mass close to the endpoints 0 and 1 of [0, 1], the concavity of p̃
implying a larger mass to the left.

Finally, in Figure 4 we tentatively attempt two comparisons between constant probabilities at p̃
and 1−p̃ values and the simplest state-dependent counterparts defined as piecewise constant/affine
functions: Figures 4(a) and 4(b) report the 9th iteration of Algorithm 1 implemented by Maple
for constant probabilities p̃ ≡ 0.333 and p̃ ≡ 0.667 respectively, while Figures 4(c) and 4(d) report
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Figure 3: 9th iteration of Algorithm 1 for λ = 0.49 and a) p̃ (y) = 0.98y4 + 0.01, b)
p̃ (y) = 0.99 − 0.98 (y − 1)4, c) p̃ (y) = 0.98 (y − 1)4 + 0.01, d) p̃ (y) = 0.99 − 0.98y4 + 0.01.

the 9th iteration of Algorithm 1 implemented by Maple for the piecewise probabilities defined as

p̃ (y) =







0.333 for 0 ≤ y < 0.49
16.7y − 7.85 for 0.49 ≤ y < 0.51
0.667 for 0.51 ≤ y ≤ 1

and (30)

p̃ (y) =







0.667 for 0 ≤ y < 0.49
8.85− 16.7y for 0.49 ≤ y < 0.51
0.333 for 0.51 ≤ y ≤ 1

(31)

respectively. The latter probabilities in (30) and (31) are continuous and constant on the two
components of the first pre-fractal, i.e. on the intervals [0, 0.49] and [0.51, 1], while they are
affine and steeply sloped—the former increasing and the latter decreasing—on the open interval
(0.49, 0.51), which turns out to be irrelevant for the iterations of Algorithm 1 as it contains only
points that will never appear in the chaos game. They are both Hölder continuous, so that existence
and uniqueness of the invariant measure µ̄λ is assured. Figures 4(a) and 4(b) show the well-known
features of two singular measures that concentrate more mass on the right part and in the left part
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of [0, 1] respectively. Conversely, Figures 4(c) and 4(d) again exhibit a feature already encountered
in the previous plots: depending on whether p̃ (y) is increasing or decreasing (weakly in this case)
the mass is being concentrated toward the inner part of [0, 1] in the former case while it is being
concentrated toward the endpoints of [0, 1] in the latter case; that is, increasing probabilities have
a “smoothing” effect cutting out the edges while decreasing probabilities increase the polarization
of the system. In this peculiar scenario both also happen to transform the unbalanced measures
in Figures 4(a) and 4(b), which are skewed to the right and to the left respectively, into perfectly
symmetric measures.
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Figure 4: 9th iteration of Algorithm 1 for λ = 0.49 and a) p̃ ≡ 0.333, b) p̃ ≡ 0.667, c) p̃ defined as a
piecewise function in (30), d) p̃ defined as a piecewise function in (31).

The above analysis allows us to derives some interesting conclusions. First, allowing prob-
abilities to be state dependent increases the number of possible outcomes. Second, assuming
simplistically that probabilities are constant does not necessarily provide us with an even rough
approximation of the outcome under state dependent probabilities. These results suggest that
formally taking into account the state-dependency of probabilities is important not only to de-
velop a more realistic framework to characterize economic outcomes, but also to understand which
outcomes may effectively occur.
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6 Conclusion

Several studies discuss how the degree of vulnerability to shocks changes from one economy to
the next according to their specific individual characteristics, suggesting the existence of path-
dependency in the process of economic development. In order to analyze path-dependency in
macroeconomic dynamics, we analyze a two-sector discrete time stochastic growth model driven by
physical and health capital accumulation in which shock probabilities are state-dependent. State-
dependent probabilities represent an interesting generalization of classical constant probabilities
both from a mathematical and an economic point of view, since they allow to enrich the set of
possible model’s outcomes and to describe more realistically economic dynamics. We show that
our model’s dynamics can be converted into an iterated function system with state-dependent
probabilities, which converges to an invariant self-similar measure supported on a (possibly fractal)
compact attractor. We develop a numerical method to approximate the invariant measure of our
iterated function system with state-dependent probabilities to illustrate the implications of such
state-dependent probabilities on the steady state of our stochastic growth model, and we show
that the model’s long run outcome under state-dependent and constant probabilities may be very
different, suggesting that neglecting the state-dependence of probabilities may lead to misleading
conclusions about long run macroeconomic outcomes.

To the best of our knowledge this is the first paper introducing state-dependent probabilities
in economics. To exemplify the variety of possible outcomes that state-dependent probabilities
can lead to, we focus on a very stylized purely dynamic model, completely abstracting from
agents’ optimization. Introducing agents’ optimization adds a further layer of complexity to the
analysis since rational agents, by realizing that their decisions affect state variables and thus
probabilities, account for the eventual time evolution of probabilities in the determination of
their best choices. Analyzing the extent to which agents’ optimization in a framework with state
dependent probabilities differs from a traditional setting with constant probabilities is left for
future research.
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