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El Niño Southern Oscillation (ENSO) is the leading mode of tropical Pacific variability at interan-
nual timescales. Through atmospheric teleconnections, ENSO exerts large influences worldwide, so
that improved understanding of this phenomenon can be of critical societal relevance. Extreme ENSO
events, in particular, have been associated with devastating weather events in many parts of the world,
so that the ability to assess their frequency and probability of occurrence is extremely important. In
this study, we describe the ENSO phenomenon in terms of the Recharge Oscillator Model perturbed
by multiplicative deterministic chaotic forcing, and use methodologies from the field of Statistical
Mechanics to determine the average time between El Niño events of given strengths. This is achieved
by describing the system in terms of its probability density function, which is governed by a Fokker
Planck equation, and then using the Mean First Passage Time technique for the determination of the
mean time between extreme events. The ability to obtain analytical solutions to the problem allows
a clear identification of the most relevant model parameters for controlling the frequency of extreme
events. The key parameter is the strength of the multiplicative component of the stochastic perturba-
tion, but the decorrelation timescale of the stochastic forcing is also very influential. Results obtained
with this approach suggest an average waiting time between extreme events of only some tens of
years. © 2018 Author(s). All article content, except where otherwise noted, is licensed under a Cre-
ative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://
doi.org/10.1063/1.5030413

Improving the knowledge of the key factors that deter-
mine the features of the dynamics and of the statistics
of the ENSO has very broad implications for people
involved in Climate Changes study, and predictability of
the large scale Ocean dynamics. Here, using standard
methods of Statistical Mechanics, adapted to the case of
the Recharge Oscillator Model perturbed by a multiplica-
tive fast chaotic forcing, we characterize the timing of El
Niño events and we get an analytical expression in good
agreement with observations. In particular, we exploit
recent results on the perturbation projection approach to
dynamical systems to obtain a Fokker Planck Equation
for the Probability Density Function of the ENSO events,
from which, standard First Passage Time techniques lead
us to the timing between ENSO events. Noticeable is
the fact that for very strong ENSO events this timing is
just some tens of years (about the human average life-
time), with important implications for society. This fact
is a direct consequence of the non-Gaussian features of
the ENSO statistics that, in turn, is strongly related to the
multiplicative nature of the fast forcing of the Recharge
Oscillator Model.

I. INTRODUCTION

Due to its large global impacts,1 understanding and
predicting ENSO is of critical importance in the climate

a)marco.bianucci@cnr.it

community. The onset and evolution of ENSO events rely
on complex ocean-atmosphere interactions in the equatorial
Pacific, as well as extra-equatorial influences, leading to a
large diversity in amplitude, spatial pattern, and temporal
evolution of ENSO events.2

In spite of this complexity, simple dynamical paradigms
(or Low Order Models—LOM) have been able to describe the
basic features of ENSO by capturing essential aspects of the
system (see Ref. 3).

In particular, the “recharge oscillator” model (ROM)4,5

focuses on the recharge/discharge of the equatorial Pacific
upper-ocean warm water volume. This process appears to be
a robust feature of ENSO in both observations6 and climate
models,7 as well as across the diversity of ENSO events,
albeit with different intensities.8,9 The recharge/discharge pro-
cesses involve the interactions between sea surface temper-
ature (SST), equatorial wind stress, and thermocline depth
anomalies: a positive SST anomaly in the eastern Pacific
induces westerly wind anomalies in the central Pacific, result-
ing in a reduced zonal gradient of thermocline depth. The
changes in the zonal slope of the thermocline are associated,
in turn, with anomalous meridional flow which discharges
warm water from the equatorial thermocline during El Niño
events, and recharges the equatorial thermocline during La
Niña events.

Apart from the deterministic component of the wind
stress anomalies, which is associated with the large-scale
SST anomalies, stochastic wind variations in the form of
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Westerly Wind Events (WWEs) provide an important trig-
gering influence on ENSO events.10,11 Several recent studies
have shown that WWEs are often associated with the Madden
Julian Oscillation (MJO):12 WWEs are more likely to occur in
the presence of warm SST conditions (see for example, among
others, Refs. 13–15). This suggests that the WWEs should
be seen as a state-dependent “atmospheric noise,” namely, a
multiplicative, rather than additive, forcing. It is worth stress-
ing that, in general, multiplicative (instead of additive) fast
forcings typically emerge from perturbation approaches to
large-scale ocean dynamics.16,17

A representation of this state-dependent noise has been
included in the recharge oscillator model by Jin et al.18

and Levine and Jin.19 These studies have adopted a second-
order closure for the state-dependent term. An alternative
approach for the inclusion of fast state-dependent pertur-
bations to the recharge oscillator model is the projective
method of Bianucci,20–23 adapted to the ROM case24 (B_16
hereafter), where the system is described in terms of its
Probability Density Function (PDF) governed by a Fokker-
Planck Equation (FPE), for which analytical solutions can
be obtained. B_16 has derived some key aspects of the sys-
tem statistics using this approach, including an analytical
expression for the stationary PDF and a closed set of equa-
tions of motion for the first and the second moments of
the ROM.

In this study, we extend the results of B_16 to exam-
ine the average time between events of a given amplitude,
by using the mean First Passage Time (FPT) technique, a
method stemming from the field of statistical mechanics. This
quantity, for which an analytical expression can be deter-
mined, is of particular interest in the case of extreme events.
Given the devastating impacts of such events, information
of their expected frequency would be extremely valuable to
society.

The FPT approach is applied to the one-dimensional FPE
of the variable SST. This one-dimensional FPE has been
obtained in B_16 from the two dimensional FPE describing
the ROM, under the reasonable ansatz of a factorization of the
equilibrium distribution, with the aim of obtaining an approx-
imate analytical expression for the stationary reduced PDF of
the anomalous SST. We will discuss whether the same ansatz
is appropriate for evaluating the FPT of rare events, which
strongly depends on the dynamical features of the process
(and not only on the stationary PDF) and on the details of the
PDF tails. Numerical solutions are also obtained to validate
the analytical ones.

It is worth mentioning that the “non-normal” growth of
fluctuations, which characterizes strong El Niño events,25 can
be explained also in terms of multivariate linear models with
multivariate additive stochastic perturbations.26,27 However,
here, we focus on a simple ROM with a state-dependent per-
turbation, a model that, as we have already stressed, has a
clearer physical motivation. Probably, a more realistic model-
ing of ENSO should merge this two pictures (multidimension-
ality and nonlinearities). However, a deeper discussion about
the affective and respective roles of the dimension and of the
nonlinearities of a LOM to model the complexity of ENSO
goes beyond the task of the present work.

II. THE DYNAMICAL MODEL AND THE FPE

According to what we stated in the Introduction, like in
B_16 we are interested to the ROM weakly forced by a very
general fast deterministic system, the latter being described
by some variables ξ and π , variables which in turn obey some
generic differential equations

ḣ = −ω T ,

Ṫ = ω h − λT + ε ξ(1 + βT), (1)

ξ̇ = F (ξ , π) ,

π̇ = Q (ξ , π) , (2)

where the dot denotes a time derivative (d/dt) and bold case
is used for vectors. As in Ref. 18, 19, and 28, the ROM vari-
ables T and h are the equatorial east Pacific Ocean anomalous
SST and the zonally averaged anomalous thermocline depth,
respectively, normalized by their respective average ampli-
tudes; the only remaining physical dimension will be time,
measured in months. The parameter ω is the “free” oscillation
frequency of the unperturbed system, while 1/λ is the relax-
ation time of the variables of the “slow manifold” as discussed
in Refs. 4, 5, and 28.

Using the terminology of the projection approach of
Grigolini and Bianucci21,29,30 the ROM is viewed as the “sys-
tem of interest” (or system a); (ξ , π) represent the booster
system (or “rest of the system” or system b), a set of gen-
eral chaotic and fast variables (e.g., the MJO and WWB31–35)
which perturb the ROM and trigger the El Niño/La Niña
phenomena: these variables obey some unspecified equations
of motion expressed by the generic functions F (ξ , π) and
Q (ξ , π). The value of the parameter ε determines the inten-
sity of the ROM perturbation. For ε = 0, Eq. (1) defines the
unperturbed system of interest, that can also be defined “the
unperturbed ROM.”

In general, the interaction between the ROM and the
booster should be bi-directional, implying that the booster
equation of motion should be affected by the dynamics of the
ROM: F = F (ξ , π , ε R[h, T]) and Q = Q (ξ , π , ε R[h, T]),
where the function ε R(h, T) would be the “reaction” force of
the ROM variables on the MJO/WWB system. However, for
sake of simplicity we shall consider hereafter ε R(h, T) = 0
as in B_16. The feedback term can be included following the
more general approach of Refs. 22 and 23.

Suitable values of ω and λ (the “friction” coefficient) can
be obtained via phenomenological considerations when deriv-
ing the ROM from building block equations,4,5 and/or directly
from a fit to observations.28 Realistic ranges are 2π/48
months−1 ≤ ω ≤ 2π/36 months−1 and 1/12 months−1 ≤
λ ≤ 1/6 months−1.

If we substituted the booster variable ξ with white
noise in Eq. (1), we would obtain a Stochastic Differential
Equation (SDE) with correlated additive and multiplicative
(CAM) white noise. In the recent geophysics literature, one
dimensional SDEs with white CAM noise have been exten-
sively studied and used to model large-scale atmospheric and
oceanic variables interacting with fast fluctuating forces.36–40

The introduction of white noise to mimic the dynamics
of fast chaotic perturbing forces, reducing the deterministic
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dynamics to a Markov stochastic process is, of course, very
common in statistical mechanics. This procedure has been
formally justified by old well-known works about limit theo-
rems (e.g., Ref. 41) and also by more recent ones, introducing
some specific chaotic hypothesis (e.g., Refs. 42 and 43). Actu-
ally, the mathematical theorems proved were for mechanically
very special mathematical model systems, like very chaotic
systems which, from a physical point of view, looked often
highly idealized to be relevant for physics. In any case, once
assumed to work in a stochastic framework, well known clas-
sical theorems help us to generalize this result, showing that
a very broad class of stochastic dynamical systems converge
(in a weak sense) to diffusion Markov processes.44 More
recent works have formally shown that, in some special cases,
also a process with a finite correlation time can be reduced
to a Markov stochastic process by dividing the dynamics
into Markov partitions (for a review, see, e.g., the book of
Dorfman45).

In practical cases, however, it is often not possible to
prove that the system we are interested in satisfies all the
hypothesis requested by the theorems that allow the formal
link between dynamical deterministic systems and stochastic
processes. For example, when the stochastic perturbation has
a multiplicative character and/or the perturbed system is non-
linear, it is not formally clear how to proceed to obtain this
Markov partition. Actually, it is obvious that this reduction
to a simple Markov process of non-linear dynamical systems
perturbed by stochastic colored noise is not in general pos-
sible. In any case, these approaches aim at describing the
statistics of the interested process by an affective Markov
process. The corresponding FPE is thus a parabolic Partial
Differential Equation (PDE)46 where the transport coefficients
are given by standard Green-Kubo relations47 like the clas-
sical Einstein formula for the diffusion coefficient of the
Brownian motion:

D ∼
∫ ∞

0
dt〈f (0)f (t)〉.

This formula, that relies on the validity of the central limit
theorem, either in its original strict version or in the more gen-
eral recent weak version, does not hold true, of course, if the
system of interest is not linear and/or if the perturbation f (t)
depends on the variables of interest.

In conclusion, using a simple CAM noise to force the
slow dynamics of the ROM leads to some issues:

• the dynamics of the oceanic variables (h and T) and that
of the atmosphere variables (MJO/WWB) have time scales
that are not separated enough to justify “a priori” the white
noise approximation for the ROM perturbation. The nonlin-
ear nature of the coupling between the slow dynamics of the
ROM and of the perturbation does not allow to safely use
the standard procedure of dividing the correlated dynamics
into Markov partitions;

• if we try to go beyond the white noise approximation we
will have to take into account the well known fact that
in principle the Kramers-Moyal expansion of the master
equation does not allow momentum truncations beyond the
second order and/or decorrelation hypothesis, so that we
cannot obtain a FPE for the PDF of the ROM variables;

• it follows from the previous points that in the stochastic
framework, the role of the separation of time scales is dif-
ficult to be controlled, therefore, in the same framework
the justification of white noise approximation for stochas-
tic perturbations with finite time scale is subjected to well
founded criticisms.

• in the presence of multiplicative noise (i.e., noise whose
intensity depends upon a function g of the system’s
state, here g = 1 + β T), we face the well-known Itô-
Stratonovich dilemma, i.e., we have to choice a consistent
interpretation and calculation scheme of the noise structure.
In the Itô approach, the choice is so that the Martingale
property of the stochastic process is preserved in time.
In contrast, the Stratonovich approach abandons the Mar-
tingale property but obeys the normal rules of calculus
and leads to a modified drift term when compared to the
Ito case.

For example, Jin et al.18 consider the case where ξ is a red
noise process, and they need to use an “ad hoc” stochastic
closure hypothesis to truncate the chain of the differential
equations of moments.

In B_16 and here, on the contrary, we consider the
forcing ξ(t) as part of a generic deterministic system,
and use a perturbation-projection approach borrowed from
works on foundation of Thermodynamics and Statistical
Mechanics30,48–50 (adapted to non-Hamiltonian systems20,21)
to project out the explicit dynamics of the booster. Using this
approach, we directly obtain a FPE for the PDF of the ROM
variables without the need of assuming a very large sepa-
ration between the timescales of the unperturbed ROM and
the booster. The link with the SDE is “a posteriori” because
the FPE can, in turn, be related to an equivalent stochastic
process.

Using this projection perturbation approach, the FPE is
obtained by retaining only the lowest non-zero order in the
parameter coupling the system of interest and the booster
(MJO/WWB, etc.) of the whole system. Therefore, it is clear
that in principle all the higher order terms are not vanish-
ing as in the stochastic case, but we can control and limit
the contribution of the non-Fokker Planck terms by restricting
the allowed values of the coupling parameter. This is exactly
the same procedure adopted in Quantum Mechanics perturba-
tion theory. We stress that although the equation of motion of
the whole deterministic system is Markovian (the trajectories
are fully determined by the initial conditions), the projection
approach makes the dynamics of the system of interest non-
Markovian. The Markovian-like character of the statistics of
the system of interest is recovered as a limiting case only after
the assumption of a finite correlation time τ of the booster
variable ξ and the assumption that we are interested in the
large time scale dynamics of the relevant part (the ROM vari-
ables). We will see that being a Markovian approximation of
an intrinsically non-Markovian process, the FPE we obtain
with this dynamical approach is a hyperbolic PDE,51 rather
than parabolic as for a pure Markovian stochastic process.

B_16 used the FPE obtained to determine the stationary
PDF and the first moments of the perturbed ROM. Here, we
focus on the average recurring times of ENSO events.
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In Appendix A 1, we report a short summary of the pro-
jection procedure, adapted to the present case, as described
by Eqs. (1) and (2). Hereafter, we give only the result, but
we think worthwhile stressing again that respect to other stan-
dard cases (as in chemical reaction theories50 or as in works
about foundation of thermodynamics30), where the projection
approach is applied to Hamiltonian systems, or at least where
the system of interest is Hamiltonian (o reducible to an Hamil-
tonian structure increasing the number of degrees of freedom)
and the interaction with the booster variable is Hamiltonian
(namely, it is the gradient of some potential), in the present
case, neither the ROM neither the interaction with the booster
are compatible with an Hamiltonian structure. This is because
the ROM is dissipative and because the perturbation depends
on the T variable (that plays the role of the velocity if we
consider the ROM as a standard linear oscillator). In Refs.
21–23, it has been shown that for Hamiltonian systems of
interest the energy conserving property (or the Poisson brack-
ets formalism) of the time evolution simplifies a lot the projec-
tion procedure. In non-Hamiltonian cases, energy conserving
and Poisson brackets formalism cannot be used and we must
rely in the more general formal framework of the Lie algebra
to solve the calculus with the Liouville operators involved by
the perturbation projection approach (see Ref. 52).

That specified, for weak perturbation (lowest non-
vanishing order in ε), we obtain the following FPE for the
reduced PDF σ(h, T ; t) of the ROM (hereafter ∂t ≡ ∂/∂t,
∂h ≡ ∂/∂h, and ∂T ≡ ∂/∂T):

∂tσ(h, T ; t) = {
ω ∂h T − ω ∂T h

+ (λ + D β2) ∂T T + D β ∂T

+ ∂T A(h, T) ∂T + ∂T B(h, T) ∂h
}
σ(h, T ; t),

(3)

where D ≡ ε2〈ξ 2〉bτ is the “standard” diffusion coefficient,
and the brackets 〈. . . 〉b indicate the average over the unper-
turbed fast booster variable ξ , using the booster stationary
PDF as weight, or the time average for ergodic dynamical
systems. τ is the decay time of the auto-correlation func-
tion of ξ , i.e., if ϕ(t) ≡ 〈ξ(t) ξ(0)〉b/〈ξ 2〉b is the normalized
autocorrelation function of ξ , τ ≡ ∫ ∞

0 ϕ(t)dt.
As in B_16, the diffusion functions A(h, T) and B(h, T)

are second order polynomials of the ROM variables (h, T) (see
also Appendix A 2)

A(h, T) = A0 + βA1 h + βA2 T

+ β2A3 hT + β2A4 T2,

B(h, T) = B0 + βB1 h + βB2 T

+ β2B3 hT + β2B4 T2. (4)

The Ai and Bi coefficients are proportional to ε2, they do
not depend on the β parameter and they are linear combina-
tions of the Fourier transform of the booster autocorrelation
function ϕ(t), evaluated at the frequencies 2� and � − iλ/2,
where � ≡

√
ω2 − λ2/4 is the effective frequency of the

unperturbed ROM (see Appendix A 2 for details). We obtain
the result that, despite the possible complex nature of the
forcing model described by the generic functions F (ξ , π)

and Q (ξ , π) of Eq. (2), the transport coefficients of the
FPE are controlled solely by the autocorrelation function of
the collective complex forcing ξ and by the multiplicative
character of the interaction with T (represented by the β

parameter).
The implication of this result is that we would obtain

the same FPE by replacing the complex deterministic forc-
ing with just a noise term, provided that the autocorrelation
function of the noise is the same as that of ξ . For example,
if we assumed that the normalized autocorrelation function
ϕ(t) decays exponentially, i.e., ϕ(t) = exp(−t/τ), we would
obtain a deterministic and general derivation of the ROM
driven by the red noise of Refs. 18 and 19. For a linear interac-
tion (i.e., β = 0), the diffusion coefficients do not depend on
the state of the ROM, and we would obtain a standard diffu-
sion process. Thus, using the projection perturbation approach
to the ROM, we obtain a result that on one hand agrees
with well-known works about stochastic processes (e.g., Ref.
44), but on the another hand, in spite of the less mathemat-
ical robustness and rigor with respect to the classical formal
results, gives us directly the specific FPE, without constraints
like the time scale separations (or similar ones), for the PDF
of our deterministic linear/nonlinear systems, and under very
weak assumptions.

The presence of the coefficient B is an indication of the
non-Markovian nature of the booster. If ξ(t) were a Marko-
vian process (white noise) it would have a vanishing decay
time of the autocorrelation function, and in this case B van-
ishes too, as it can be seen from its explicit expression given
in Appendix A 2.

We emphasize again that from the FPE it is possible to
obtain all the important statistical features of the ROM. For
example, it is remarkable that for the present case, where we
have a CAM forcing, as shown in B_16 and also reported
in Appendix A 3, it is straightforward to get the exact and
closed equation of motion for any order of the moments of
the variables (h, T). In Appendix A 3, we obtain explicitly the
equation of motion of the first two moments (the mean of h
and T and their variance), and we see that the dynamics of the
h and T averages (and thus, that of the “lag t” auto and cross
correlation functions) is the same as that of a linear damped
oscillator with a constant forcing and additive white noise.
Obviously, this “effective” linear oscillator does not have the
same coefficients of the bare ROM: frequency and relaxation
time are modified by the multiplicative interaction with the
booster.

It is worth stressing that for weak perturbations (small ε

values) the spread of the T variable, namely, 〈T2〉s (hereafter
the subscript s stands for stationary), depends only weakly on
the β parameter (but the skewness and the Kurtosis strongly
depend on β). In fact, the spread of the T variable can be
written as (see Appendix A 2)

〈T2〉s = A0

λ − 2 β2 A4

(
1 − β2 A3

β2 A3 + ω

)

≈ A0

λ

[
1 + β2

(
2

A0

λ
− A3

ω

)]
+ O(ε6) ≈ A0

λ
+ O(ε4).

(5)



103118-5 Bianucci et al. Chaos 28, 103118 (2018)

In Eq. (5), the approximate expression in the second line
relies on the linear dependence of the coefficients Ai on ε2

(see Appendix A 2). The approximate expression for 〈T2〉s

shown in Eq. (5) implies that the width of the reduced PDF
of the T variable is always close to the width of the Gaus-
sian distribution we obtain for β = 0. This fact will be used in
Sec. III.

A crucial aspect of the results is that the dynamics of the
first two moments depend only weakly on the time scale sepa-
ration between the unperturbed ROM and the forcing booster.
This important fact is derived analyzing the exact equations
of motion of the moments (see again Appendix A 3) and it is
not just assumed a priori as usually done when using white
noise. Thus, we can simplify the FPE of Eqs. (3) and (4) by
safely taking, a posteriori, the limit of very large time scale
separation between the dynamics of the ROM and that of the
fast booster (first order in τ in the limit τω → 0, τλ → 0).
As a result, we have A1 = A3 ∼ 0, A0 ∼ A2/2 ∼ A4 ∼ D ≡
ε2〈ξ 2〉bτ , B ∼ 0 (see Appendix A 4), so that the diffusion
coefficients of the FPE become

A(T) = D (1 + βT)2 + O(τ 2),

B(T) = 0 + O(τ 2),
(6)

leading to the following FPE from Eq. (3)

∂t σ(h, T ; t) = {
ω ∂h T − ω ∂T h + λ T + D β∂T (1 + β T)

+ ∂T D (1 + βT)2∂T
}
σ(h, T ; t),

= {
ω ∂h T − ω ∂T h + λ T − D β∂T (1 + β T)

+ ∂2
T D (1 + βT)2

}
σ(h, T ; t). (7)

In a nutshell, the time scale separation is not as critical as
the value of the multiplicative coupling parameter β, if we
are interested in the dynamics of the first moments of the
ROM. However, when the timing of rare events is concerned,
this may no longer be the case. In fact, from the general
FPE of Eq. (3), obtained by the projection approach, we see
that a finite time scale separation between the ROM and the
fast forcing results in a non-vanishing cross diffusion term
∂T B(h, T)∂h in the FPE. This term breaks the parabolic struc-
ture of the simplified FPE of Eq. (7) and it increases the
effective dimensionality of the system; and in turn this could
affect the dynamics of rare events in a non-negligible way.
Nevertheless, we will still use the simplified FPE of Eq. (7) to
get the analytic expression for the average timing for ENSO
events. This is so because we are not interested in a precise
estimate of the average recurring times of El Niño events, but
in evaluating the influence of the non-Gaussian structure of
the stationary FPE on the recurring times.

The FPE of Eq. (7) allow us to make a link with a
SDE picture of the perturbed ROM. In fact, the structure of
this FPE, and, in particular, the “noise-induced drift” term
−D β∂T (1 + β T) of the last equality of Eq. (7), suggests
we can consider Eq. (1) as a SDE with the Stratonovich
interpretation for integration.

III. THE STATIONARY PDF

We stated above that from the FPE, taking advantage of
the well-tested procedures used to recover thermodynamics
from microscopic dynamics, we can get important informa-
tion about the statistics of the system. However, the FPE in
Eq. (7), due to the multiplicative character of the forcing, that
depends on the T variable (which plays the role of the velocity
if we considered the ROM as a linear dissipative oscillator),
has not an Hamiltonian origin. So that its stationary solution
is neither Gaussian nor Canonical {e.g., ∝ exp[−H(h, T)/},
where H(h, T) is some Hamiltonian function and  is some
parameter). Still, it is possible, using a reasonable ansatz, to
obtain the following analytic expression for the stationary
PDF of the T variable (see Appendix B)

ps(T) = βfμ

(
μ − 2

1 + βT

)
for T > −1/β,

ps(T) = 0 for T ≤ −1/β,

μ ≡ 1 + λ

Dβ2
,

(8)

μ ≡ 1 + λ

Dβ2
, (9)

where the Gamma-like density function fμ(x) is defined as

fμ(x) ≡ 1

(μ − 2)�(μ − 1)
e−xxμ, (10)

in which �(a) is the standard complete Gamma function. The
dimensionless parameter μ must be greater than 3 to have both
a finite normalization of the reduced PDF and the existence of
(at least) the first two moments. This stationary PDF depends
only on the value of the β parameter that controls the relative
intensity of the multiplicative part of the perturbation, and on
the ratio of the diffusion (D) and frictional (λ) coefficients
(the “temperature” parameter in the corresponding Brownian
motion picture, where T is the velocity of the Brownian par-
ticle and the booster represents the thermal bath) via the μ

parameter of Eq. (9). The values of D/λ can be obtained from
observations with a reasonable accuracy. In fact, according to
the exact relationship of Eq. (5), to the second order in ε the
variance of this PDF is well approximated by A0/λ ∼ D/λ,
namely, it is independent of β. Thus, D/λ can be inferred from
the variance σ 2 of the Niño3 time series, leading to values of
D/λ of about 0.8.

It is easy to check analytically that in the limit β → 0
and D/λ fixed, the stationary PDF in Eqs. (8)–(10) becomes
a standard Gaussian with the same variance D/λ. However,
for β �= 0, the stationary PDF is clearly non-Gaussian. In fact,
for large positive T it has a “power law” tail that makes pos-
sible high fluctuations of positive values of T (strong El Niño
events). From Eq. (9), we have that the μ parameter, which
controls the decay of this “heavy” tail of the stationary PDF,
strongly depends on the value of the β parameter. Although
the average value of T is close to zero, the maximum of
the stationary PDF is found at Tmax = −2/(βμ) ≈ −2β D/λ,
namely, for fixed D/λ, it is proportional to β. Notice also
that for negative values of T (La Niña events) the probabil-
ity of strong events is largely reduced and it has a threshold
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FIG. 1. Best fit of the stationary PDF
of Eqs. (8)–(10) (solid line) with the nor-
malized frequency of the one month (cir-
cles) and three months (squares) average
Niño3 data from NOAA (http://www.
cpc.ncep.noaa.gov/data/indices/). From
the fit, we get β = 0.19 and μ = 34.
Dashed line and squares: the same as the
solid line and the circles, respectively,
but with a three months average of the
data. In this case, we get β = 0.21 and
μ = 31.4. In the text, we use the values
β = 0.2 and μ = 32.7. Inset: normalized
autocorrelation function of T . Circles:
from the NOAA Niño3 data. Solid line:
from the FPE of Eq. (7) with λ = 1/6
months−1. Dashed line: as the previous
but with λ = 1/12 months−1.

at Tmin = −1/β. It is apparent that these non-Gaussian fea-
tures are shared by the Niño3 data, as seen by Fig. 1. The
agreement with the observed PDF of the Niño3 index was also
shown by B_16 using β = 0.2 and D/λ = 0.66. Here, we use
an improved fitting approach by constraining D/λ ∼ 0.8 and
obtain β = 0.2, leading to μ = 32.7.

While the value of the quantity D/λ can be determined
reasonably reliably as the variance of the data (thus it may be
considered as well-established and fixed), the value of the β

parameter depends on “finer” features of the statistics of the
data, such as the tails of the PDF, where the number of avail-
able data is small. For fixed D/λ, the parameter μ [Eq. (9)]
depends only on β, and the stationary PDF itself can be con-
sidered as controlled uniquely by β. In Fig. 2, we show the
stationary PDF of Eq. (8) for β = 0.2 and for β → 0 (corre-
sponding to a Gaussian function). In Sec. IV, we will explore
the dependence of the recurrence time of El Niño events on β.

As anticipated in Sec. II, the value for the relaxation
parameter λ of Eq. (1) has been obtained in the literature
by using phenomenological considerations when deriving the
ROM from building block equations,4,5 and/or directly from a
fit to observations.28 The estimates range from 1/12 months−1

to 1/6 months−1. However, the value of λ could also be
obtained, in principle, by comparing the autocorrelation func-
tions of the T variable obtained from observations with that
obtained from the FPE of Eq. (7). The expression for the lat-
ter is 〈T(t)T(0)〉s/〈T2〉s = e−�t/2 (cos[�t] − � sin[�T]/�),
with � ≡

√
ω2 − �2/4 and � ≡ (

λ − Dβ2
)
. The theoreti-

cal autocorrelation function from the above expression for
λ = 1/6 months−1 and λ = 1/12 months−1 are compared
with the autocorrelation function of the observed Niño3 index
in the inset of Fig. 1. Clearly, even with this approach, uncer-
tainties remain. We shall see that the comparison of the timing
of El Niño events obtained analytically from the ROM with

FIG. 2. Solid line: the stationary PDF
of Eqs. (8)–(10) with β = 0.2 and
μ = 32.7. Dashed line: the Gaussian
function with the same variance of the
stationary PDF, corresponding to Eqs.
(8)–(10) in the limit β → 0 and D/λ

fixed.

http://www.cpc.ncep.noaa.gov/data/indices/
http://www.cpc.ncep.noaa.gov/data/indices/
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the observed average timing of weak and intermediate ENSO
events (for which the statistics is significant) will constrain
the possible range of values for the friction coefficient of the
ROM.

IV. THE MEAN FPT FOR ENSO EVENTS

As already stressed, the main focus of the present paper
is to use the model described by Eqs. (1) and (2) to estimate
the average time we have to wait for the onset of a “strong” El
Niño event, starting from a “neutral” initial state. The latter is
defined as the case where the initial temperature Ti has a value
in the range −0.5 ≤ Ti ≤ 0.5. As depicted in Fig. 3, “strong”
El Niño events are identified with the criterion T > 1.5. The
stationary PDF that we use for the T variable is given in
Eqs. (8)–(10). Notice that for an ergodic system (which is
an obvious implicit assumption in the present approach) the
stationary PDF, evaluated at a given target temperature Ttg,
ps(Ttg) provides directly the average rate at which a very
long trajectory of the system passes through the given target
value Ttg. The average period between passages can then be
obtained as 2/ps(Ttg) (the factor 2 is used because the long tra-
jectory, after going through the target value Ttg from below, it
will always pass the same target value from above, coming
back to lower values of T , “counting” twice the same event).
However, 2/ps(Ttg) is not exactly the information we are
interested in. In fact, after reaching the target value Ttg, the
trajectory may continue to fluctuate around it, thus increasing
the average rate. What we are really interested in is a mean
First Passage Time (FPT), which deeply involves the dynam-
ical features of the statistics, and which, in turn, relates to the
full FPE of Eq. (7), rather than the sole stationary PDF.

The study of the FPT problem started more than a century
ago, but its diverse applications in science and engineering
mostly emerged in the last two to three decades. Assuming
that T(t) is a one-dimensional stochastic process, the FPT is
defined as the time δt(Ti | Ttg) when T(t) first crosses a given
target Ttg, starting from the initial value Ti (see Fig. 4). But,
if T(t) is a stochastic process, repeating many times the same
“experiment” should lead to different values for δt(Ti | Ttg),
so that the FPT itself is a stochastic process, with its own PDF.
We indicate with tn(Ti | Ttg) the n-th moment of the PDF of
the FPT. Thus, the mean FPT is given by t1(Ti | Ttg).

In our model of Eqs. (1) and (2), the fluctuations of the
ENSO variables (h, T) stem from the weak interaction of the
ROM with the fast perturbation ξ(t), thus, we expect that
typically, for small values of the target temperature anomaly
(e.g., Ttg < 1), the time scale of the FPT is governed by the
unperturbed ROM dynamics, namely, a few years. On the
opposite, for very large target values (e.g., Ttg > 3.5), we can
expect that the positive feedback mechanism (the multiplica-
tive part of the perturbation) must dominate, and that happens
only when we have an unlikely sequence of positive values
of the fast forcing. Thus, these strong spikes, embedded in
a background of many minor fluctuations, are fast, rare, and
uncorrelated with each other, namely, they are Poisson-like
random events that decay quickly with a timescale of the order
of 1/λ. In this case, the average period between two consecu-
tive events is well approximated by the double of the inverse
of the stationary PDF.

In between these two extremes, the mean FPT cannot be
estimated so easily, and must be obtained by working with the
FPE of Eq. (7).

In principle, First Passage Time (FPT) techniques53–56

can be applied to any kind of FPE, and allow one to obtain
a closed recursion formula for the moments of the PDF of
the FPT, which involves the stationary PDF and the transport
coefficients of the FPE.57,58 However, as also emphasized in
B_16, we cannot even find an exact analytic expression for
the stationary PDF of the two-dimensional FPE of Eq. (7),
thus we use the already cited ansatz to reduce the dimen-
sionality of the system to one, and to obtain the approximate
reduced stationary PDF given in Eq. (8). An important issue
is, of course, the legitimacy of using this ansatz for evaluat-
ing the FPT of strong events. In Appendix C 1, it is shown
that if the ansatz introduced in B_16 gives the exact reduced
stationary PDF for the T variable, then the same ansatz can
be legitimately used in the calculation of the moments of the
FPT. The ansatz allows us to obtain a good approximation of
the stationary PDF. Unfortunately, the FPT for strong events is
sensitive to the details of the tails of the stationary PDF, details
that may not be well reproduced by the approximate analyti-
cal expression of Eq. (8) obtained exploiting the ansatz. This
ansatz corresponds to a “crude” reduction of the dimension-
ality of the system of interest from the initial two degrees of
freedom (h, T) to only one (T), and a path in the two dimen-
sional space (h, T) takes, in general, more time than a path

FIG. 3. The month average Niño3 index from January 1949 to February 2016. Data from the Tokyo Climate Center, WMO Regional Climate Centers (RCCs),
http://ds.data.jma.go.jp/tcc/tcc/. In green color, one of the path for the First Passage Time (FPT) δt(Ti, Ttg) for a given target temperature anomaly Ttg (here
Ttg = 1.5), starting from an initial temperature Ti [−0.5 ≤ Ti ≤ 0.5, see also the text and Fig. 4 for details about the FPT].
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FIG. 4. The First Passage Time
δt(Ti, Ttg) for a target temperature
anomaly of Ttg = 1.5 is defined as the
first time the fluctuating temperature
T(t) cross the threshold Ttg (1.5 in this
case), starting from an initial temperature
Ti (that we will choose in the range
−0.5 ≤ Ti ≤ 0.5).

in a one dimensional space (T), to reach a given threshold in
the T axis. However, even with these caveats, we shall con-
tinue to use the same ansatz also for the calculation of the
FPT. This will allow us to obtain an analytical result that can
contribute to shed some light on the role played by the mul-
tiplicative noise and by the relaxation time of the ROM in
affecting the average timing of strong ENSO events. We need
to keep in mind, however, that the average timing that we
obtain with this approach must be considered as a reasonable
“round down” approximation for the true FPT of the ENSO.

Using standard results of the FPT literature57,58 (see also
Appendix C 1), we have

t1(Ti | Ttg) =
∫ Ttg

Ti

dT

A(T) ps(T)

∫ T

− 1
β

ps(T
′)dT ′, (11)

t2(Ti | Ttg) =
∫ Ttg

Ti

dT

A(T) ps(T)

∫ T

− 1
β

ps(T
′) t1(T

′ | Ttg)dT ′.

(12)

The above two equations show explicitly that the moments of
the PDF of the FPT depend not only on the stationary PDF of
the FPE but also on the diffusion coefficient A(T). Using Eq.
(6), we have A(T) = D (1 + βT)2 = λ σ 2 (1 + βT)2, where
σ 2 = 0.8 and β = 0.2, as discussed in Sec. III. Inserting this
expression for A(T) in Eq. (11), it results that the average FPT
depends inversely on λ. As discussed in Sec. III, reasonable
values for λ should be in the range 1/12 months−1 ≤ λ ≤ 1/6
months−1.

Substituting the stationary PDF of Eqs. (8)–(10) in Eqs.
(11) and (12), we can easily numerically determine the values
of the first two moments of the FPT for different values of
λ. However, with a little algebra and some minor approxima-
tions, from Eq. (11), we can also get the following analytical
result (see Appendix C 2 for details)

t1(Ti | Ttg) =
⎧⎨
⎩

2

ps(T)
× β

2λ

M
[
1, −(μ − 2), − μ−2

βT+1

]

βT + 1

⎫⎬
⎭

Ttg

Ti

,

(13)

where, for any function g(x), we define {g(x)}b
a ≡ g(b) −

g(a), and M [1, y, z] is the Kummers (generalized hypergeo-
metric) function of the first kind with first argument equal to
one. The analytical result of Eq. (13) gives much more phys-
ical information about the mean FPT for the ENSO model
of Eqs. (1) and (2) than just numerical simulations. In fact,
the first factor term inside the curly brackets in the r.h.s. of
Eq. (13) is twice the inverse of the stationary PDF, which, as
we have previously noticed, should be a good approximation
for the mean FPT when events can be considered uncorre-
lated with each other. The second factor term is the correction
to this approximation and it is proportional to the Kummers
function. We can see in Fig. 5 that for λ ∼ 1/6, the correction
factor is close to unity for T ∼ 3.5. On the other hand, this
is not the case for λ ∼ 1/12, indicating that for the smaller
values of λ, some correlations remain also among the rare
largest events. We stress that this finding agrees with the work
of Wittenberg59 that analyzed the data from 2000 years run
of global coupled GCM. It is also interesting to note that for
the present μ and β parameters and in the range of realistic T
values, the Kummers function in Eq. (13) does not have any
simple behavior nor it can be approximated by some simple
limit function.

Using Eq. (13) we show, in Fig. 6, the dependence of
the mean FPT on Ttg for different values of the λ parame-
ter, compared with the mean FPT obtained from observations
(circles).

From this figure, we see that λ = 1/12 months−1, i.e.,
a value at the lower end of the allowed λ range, provides
the best agreement between observational estimates and our
analytic result for the mean FPT. In fact, with λ = 1/12
months−1, the mean FPT for intermediate target temperatures,
obtained from Eqs. (11) or (13), is in the range 2–7 years, in
good agreement with the observed intervals between interme-
diate El Niño events. The increase in FPT with decreasing λ

for a fixed Ttg may seem at first counterintuitive. In fact, for
a given diffusion coefficient D (i.e., for a constant intensity
of the booster variable ξ , recall that D = ε2〈ξ 2〉bτ ) decreas-
ing the “friction” parameter λ would increase the width of
the stationary PDF. This, in turn, would decrease the average
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FIG. 5. The correction factor term in the
analytical expression for the mean FPT
given in Eq. (13) for λ in the range 1/12
months−1 ≤ λ ≤ 1/6 months−1 (see the
text for details).

FPT for any Ttg since the probability to have high T values
would also increase. However, this is not our case because the
observational data constrain the width of the stationary PDF,
so that, instead, the resulting average FPT is inversely propor-
tional to the relaxation parameter λ. From a physical point of
view, this can be related to the fact that for large λ, the events
are less correlated to each other.

Strong and very strong El Niño events are extreme
events, and as such they are rare, so that it is not pos-
sible to have a sufficiently large observational sample
size to validate our analytical results [for example, the
Niño3 index from the NOAA data center (http://www.cpc.
ncep.noaa.gov/data/indices) includes only 3 events with T ≥
2.0 and just one with T ≥ 2.75]. Therefore, we cannot use
these data to validate our analytical results, but, vice versa,
we can use our analytical solution as a reasonable extrapo-
lation of the mean FPT for these strong or very strong El
Niño. The reliability of this extrapolation is based on two main
observations:

• the validation of both the perturbed ROM of Eqs. (1) and
(2) and the projection/FPE approach based on the analysis
of the stationary PDF and of the first two moments of the
Niño3 index;

• the relatively good agreement that we have found between
our theoretical results and observational data for weak and
intermediate El Niño events.

We think worthwhile to stress again that from the analyti-
cal expression of Eq. (13), we can evaluate how the FPT
depends on the relevant parameters of the system. Apart from
the inverse proportionality relationship with the relaxation
coefficient λ, it is also clear that the FPT has a strong sen-
sitivity to the value of the β parameter (notice that, once the
variance σ 2 = D/λ is fixed, the μ parameter depends only
on β as ∼ 1/β2). In Fig. 7, we compare the average FPT
obtained from the analytical expression of Eq. (13) with both
observations and the values derived through the numerical
integration of the stochastic differential equation equivalent to

FIG. 6. The mean FPT for different
values of the λ parameter, vs the tar-
get temperature, obtained using directly
Eq. (13), compared with observations
(circles). The values of the β and μ

parameters have been fixed by the fit
of the stationary PDF to the observa-
tion data: β = 0.2 and μ = 32.7 (see
text for details). Dashed line: λ =
1/6, dot-dashed line λ = 1/8, solid line
λ = 1/12. In the inset, a zoom of the
same graph, where we emphasize with a
gray background the range of 2–7 years
and 1.0 ≤ T ≤ 1.6 corresponding to the
typical recurring times interval for inter-
mediate El Niño events. We see that the
curve obtained with λ=1/12 falls better
than the others in this zone.

http://www.cpc.ncep.noaa.gov/data/indices
http://www.cpc.ncep.noaa.gov/data/indices
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FIG. 7. Semi-log plot of the average
FPT as a function of the target temper-
ature Ttg , for λ = 1/12 month−1 and
σ 2 = D/λ = 0.8 (see text for details).
Thick and thin solid lines show analytical
solutions from Eq. (13) with β = 0.19
and β = 0.3, respectively; while the
thick dashed line is for the case β = 0,
corresponding to the pure additive
forcing of the ROM [in this case the
stationary PDF is the Gaussian of Fig.
2]. Circles: the average FPT from obser-
vation data. Crosses: average FPT from
numerical simulations of the Îto SDE
corresponding to the FPE of Eq. (7):63

dh = −ωT dt; dT = (−ωh + Dβ)dt −
(λ − Dβ2)Tdt + √

D(1 + βT), dW ,
where W is a Wiener process, β = 0.19,
and ω = 2π/48 month−1.

the FPE of Eq. (7), corresponding to the case of a very large
time scale separation between the ROM and the booster. The
numerical solution has been obtained for the case β = 0.2.
We can see that there is a good agreement between the analyt-
ical (β = 0.2) and both observations and numerical solutions,
especially for values of Ttg < 3.0. In the same figure, we also
show the analytical solutions of the average FPT in the case
of a pure additive perturbation (β = 0, in which case the
reduced stationary PDF for the T variable is Gaussian) and for
β = 0.3. We see that for weak to intermediate El Niño events
(Ttg ≤ 1.5), the average FPT depends only weakly on β. How-
ever, the sensitivity to β clearly emerges in the case of strong
and very strong events. In particular, the pure additive forc-
ing leads to average FPT that are several orders of magnitude
larger than those obtained with β = 0.2 (note the logarith-
mic scale in the ordinate of the graph), while in the case
of β = 0.3, the FPTs are shorter at large Ttg. A more exten-
sive analysis of the dependence of the average FPT on the β

parameter is shown in Fig. 8. For a given Ttg, the FPTs become
shorter with increasing β, especially for large Ttg, indicating a
larger likelihood of stronger El Niños when the multiplicative
component of the booster increases.

Now, we examine also the second moment of the PDF
of the FPT. It is particularly important to do that because of
the nonconstant diffusion coefficient of the FPE in Eq. (7).
In fact, usually the FPT approach is used when we are look-
ing for the timing of large and rare fluctuations, far from the
equilibrium values, for example, when the system is typically
confined to a limited region by a very high potential barrier
and we are interested in the escaping rate from this zone.
This is the case, for example, for the unimolecular reaction
processes,60–62 where the thermalization induced by the inter-
action with a thermal bath gives rise to canonical equilibrium
statistics and to the famous Arrhenius law for the reaction
rate. Here, on the contrary, we have a nonstandard statistics
(respect to the Gaussian/Canonical one, see Fig. 2) with a
power law tail of the stationary PDF, and target values Ttg

that are not so far from the typical values of Ti. Thus, it is
worthwhile to get an idea of the dispersion of the FPT with
respect to the average value, namely, the standard deviation
defined by σFPT ≡ √

t2(Ti | Ttg) − [t1(Ti | Ttg)]2. Numerically
integrating Eq. (12), we obtain the second moment of the FPT
from which we obtain the standard deviation. Figure 9 shows
the ratio between σFPT and mean FPT. Not surprisingly, we

FIG. 8. Plot of the average FPT from
the analytic result of Eq. (13) as a func-
tion of the target temperature Ttg for dif-
ferent values of the β parameter. In all
the cases, we have set λ = 1/12 month−1

and the variance is kept fixed to 0.8 (see
text for details).
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FIG. 9. The ratio between the mean
FPT and the FPT standard deviation σFPT

for the case λ = 1/12, where the stan-
dard deviation has been obtained by the
numerical integration of Eq. (12). We
can see that for weak/moderate ENSO
events the dispersion of the FPT is quite
large (the standard deviation is larger than
the mean FPT), while for strong ENSO
the dispersion decreases, and becomes
very close to the mean FPT.

see that for weak El Niño events the standard deviation is
larger than the average FPT, namely, the FPT has large fluctu-
ations around the average value. However, for strong ENSO,
the standard deviation becomes equal to the mean FPT. Thus,
although the statistics of the perturbed ROM is not Gaussian,
we can state that “the mean FPT is a good estimate of the
waiting time for strong ENSO events.”

V. CONCLUSION

In this paper, we build on the work of B_16 to explore
other statistical aspects of the perturbed ROM, which, in spite
of its simplicity, appears to provide very useful insights into
the ENSO system. As in B_16, using a projection/perturbation
approach, we obtain a generalized FPE for the PDF of the
ROM, from which, adapting the standard FPT procedures to
this nonstandard case, we get analytical expressions for the
average time between strong events and for its associated
standard deviation. These expressions are given in terms of
transcendent Gamma and Hypergeometric Functions, a fact
that is strictly connected with the “heavy” tail of the station-
ary PDF. The analytic solution for the mean First Passage
Time (FPT) is obtained for different values of the ocean relax-
ation parameter λ, within a reasonable range of values for this
parameter as determined through a fit to the autocorrelation
function of the temperature T . We find that for λ = 1/12,
we have the best agreement between the theoretical results
for the mean FPT and the observed average inter-event inter-
val (4–7 years) for intermediate ENSO events. We emphasize
that the estimation of the FPTs goes beyond the information
gained from the stationary PDF (already obtained in B_16)
because the timing of the events deeply involves the dynam-
ics of the statistics, and not only stationary properties (apart
from the cases of unrealistically large El Niño events, e.g.,
T >> 3.5).

While confirming the suitability and usefulness of the
FPE-projection approach in modeling the ENSO events devel-
oped in B_16, the present study also allows to achieve, albeit
in an approximate fashion, to our knowledge the first analyt-
ical estimate of the timing of ENSO events [Eq. (13)]. From

this analytical expression, we can evaluate how the FPT statis-
tics depends on the relevant parameters of the system. For
example, evaluating the behavior of the Kummer function in
Eq. (13), we can quantitatively estimate the non-Poissonian
features of the statistics of the ENSO events within the model
studied here.

An important result that emerges from our analytical
approach is that the average recurring time of very strong
ENSO events is of the order of just some tens of years (about
the human average life-time), with important implications for
society. This result is strongly related to the multiplicative
nature of the perturbation to the ROM, as expressed by the
parameter β.

To test and validate these results, we have used the
NOAA Niño3 index, which is based on observations covering
only a limited time period, 1950 to present. To better test and
validate our approach we are working on proxy data (networks
of precipitation, tree-rings, corals, and ice core records) that
can help extend the time series back in time some hundreds of
years.64 We believe that using these extended data, we could
also take into account the dependence of the model parameters
(in particular, the critical β parameter) on the global climate
indexes, such as the average global temperature. Results from
this approach will be presented in future studies.

In a more broad scenario, where we take into account
constant or periodic forcing obtained from observed or esti-
mated climatology, we have to improve our approach so
to take into account non-autonomous (Low Order) models,
either deterministic, for which we have to improve the pro-
jection method (e.g., by increasing the number of degrees
of freedom to obtain an effective autonomous system), or
stochastic, for which we could use the results of Ref. 69.

APPENDIX A: VERY SHORT REVIEW OF THE
PROJECTION APPROACH

1. The formal approach

In the present work, we study the same dynamical sys-
tems considered in B_16, however we do not use the FPE of
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Eqs. (3) and (4) in B_16 because of a marginal mistake. Equa-
tions (3) and (4) of B_16 were obtained from the results in
Eqs. (54) and (55) of Ref. 21 (B_15 hereafter), using ε1 = 0
and making the following identification: (x, v) → (h, −ωT),
ε0 g′(x, v) → ωεG(T), � → λ and V ′(x) → ω2h. Looking at
Eq. (22) of B_15, inside the big parenthesis at the end of the
second line of Eq. (22), we should find the perturbation Liou-
villian operator ∂vg′(x, v) while there is the operator g′(x, v)∂v.
These two operators are equal to each other only if the func-
tion g′ does not depend on the v variable of the system of
interest, while in the general case, we should have ∂vg′(x, v) =
g′(x, v)∂v + [∂vg′(x, v)]. It is the missing term [∂vg′(x, v)] that
leads to the mistake in Eqs. (54) and (55) of B_15 and, in turn,
to a missing term in the FPE of Eqs. (3) and (4) of B_16.

To make the derivation self consistent, here we shortly
review the Zwanzig projection approach, adapted to the
present case, where the whole deterministic system (or LOM)
is given in Eqs. (1) and (2), that we rewrite here

ḣ = −ω T ,

Ṫ = ω h − λT + ε ξ(1 + βT),

ξ̇ = F (ξ , π) ,

π̇ = Q (ξ , π) . (A1)

According to the projection procedure, we divide this LOM in
two parts: a part of interest, identified with the ROM variables
(h, T), and the rest of the system, the booster,21,30 represented
by the variables (ξ , π ). The functions F (ξ , π) and Q (ξ , π)

represent the equation of motion for the booster, and they
are not specified, because we do not need to know them (the
booster typically will be a nonlinear chaotic system); how-
ever they must satisfy some specific assumptions detailed in
the following. The coupling of the ROM with the booster is
represented by a term that is proportional to the same booster
variable ξ , namely, by the term ε ξ(1 + βT) in Eq. (A1). This
implies some loss of generality, but not so quite as it might
seem at first glance. In fact, if the “real” coupling was given by
a more general function as, for example, ε f (ξ)(1 + βT), we
could always redefine f (ξ) → ξ to go back to the linear form
in Eq. (A1), and redefining as needed the booster equations of
motion.

With respect to the more general cases in B_15, here the
dynamics of the booster does not depend on the dynamics of
the ROM. The dependence of the perturbing atmosphere forc-
ing on the dynamics of the system of interest is here directly
included in both the friction term −λT of the ROM (see the
derivation of the ROM by Refs. 65 and 66) and in the multi-
plicative part βTξ of the forcing, that formally expresses the
fact that the strength of part of the perturbation depends on the
value of the SST anomaly.

The goal is to describe the statistics of only the part
of interest, i.e., the ROM, of the LOM in Eq. (A1). From
this LOM, we can write the following PDE for the PDF
ρ(h, T , ξ , π ; t) of the total system

∂tρ(h, T , ξ , π ; t) = {La + ε LIξ + Lb} ρ(h, T , ξ , π ; t), (A2)

where the unperturbed (La) and perturbation (LI) Liouville
operators, are given by

La = ω ∂h T − ω ∂T h + λ ∂T T ,

LI = −∂T (1 + β T),
(A3)

respectively. In Eq. (A2), we cannot explicitly write the Liou-
ville operator Lb of the booster because it is related to the
unknown functions F (ξ , π) and Q (ξ , π).

We are interested in obtaining a Fokker Plank Equation
(FPE) for the reduced (or marginal) PDF of the system of
interest, σ(h, T ; t) ≡ ∫

ρ(h, T , ξ , π ; t)dξdπ . Introducing the
projection operator, P · · · ≡ ℘b(ξ , π)

∫
dξdπ · · · , where ℘b

is the stationary PDF of the booster, defined by ℘b(ξ , π) |
Lb℘b(ξ , π) = 0, we have σ(h, T ; t) = 1/℘b(ξ , π) ×
Pρ(h, T , ξ , π ; t). In the Zwanzig-like formal projection
approach,30,50,67 we use the identity ρ(h, T , ξ , π ; t) = (Q +
P)ρ(h, T , ξ , π ; t), where Q = 1 − P; we apply separately P

and Q to Eq. (A2) and obtain a couple of differential equa-
tions. Then, from this couple of differential equations, we
obtain the equation of motion for the σ(h, T ; t). This hides
the dynamics of the booster part. Considering that we are
observing the system of interest for times much longer than
the decay times of the correlation functions of the booster,
we get rid of the initial PDF. Consequently, the evolution
of the PDF of the system of interest σ(h, T ; t) is no longer
deterministic. At the lowest nonvanishing order of the cou-
pling parameter ε, the time evolution of σ(h, T ; t) obeys the
following integro-differential equation

∂tσ(x; t) = La σ(x; t)

+ ε2 〈ξ 2〉b

{
LI

∫ ∞

0
du ϕ(u) eLauLI e

−Lau

}
σ(x; t),

(A4)

where ϕ(u) is the normalized auto-correlation function of the
booster variable ξ and 〈ξ 2〉b is the variance of ξ (without loss
of generality, we assume 〈ξ〉b = 0).

Equation (A4) implies that we can group all the possible
booster dynamical systems in different classes of equiva-
lence, where all the booster belonging to the same class give
rise to the same statistical properties for a given system of
interest. In fact, the FPE depends only on the booster autocor-
relation function 〈ξ 2〉bϕ(u): different dynamical systems that
share the same autocorrelation function belong to the same
booster class of equivalence. Given Eq. (A3), we can rewrite
Eq. (A4) as

∂tσ(h, T ; t) =
{
∂hω T − ∂Tω h + λ ∂T T

+ β ε2 〈ξ 2〉b τ ∂T (1 + β T)

+ ε2 〈ξ 2〉b ∂T (1 + β T)

×
∫ ∞

0
du ϕ(u)[1 + β Ta(h, t; −u)]

×eLau∂T e−Lau
}
σ(h, T ; t), (A5)

where we have used the identity ∂T (1 + β T) = (1 +
β T)∂T + β (the interaction with the booster is not Hamilto-
nian) and we have introduced the decay time of the booster
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autocorrelation function defined as τ ≡ ∫ ∞
0 duϕ(u). In Eq.

(A5), we have exploited the result exp[Lau]T exp[−Lau] =
Ta(h, t; −u) [see, for example, Eqs. (31) and (32) of Ref.
21], where Ta(h, t; −u) and ha(h, t; −u) are the unperturbed
(ε = 0) back time evolution for a time u of the T and the
h variables, respectively, starting from the initial condition
Ta(h, t; 0) = T and ha(h, t; 0) = h, up to the time −u.

Notice that the last drift term of Eq. (A5), proportional to
β, is due to the fact that the interaction of the booster variable
ξ with the ROM is not Hamiltonian, in fact it depends on the
variable T that plays the role of the velocity if we consider the
ROM as a standard harmonic oscillator. Incidentally, this term
is formally equivalent to the “noise-induced drift” involved in
the Itô vs Stratonovich debate about the interpretation of SDE.

2. The general FPE for the ROM

From Eq. (A5), we can obtain the transport coefficients
A(h, T) and B(h, T) of Eq. (3) for the general case, when we
do not make any assumptions about the time scale separa-
tion between the ROM and the booster. Although we already
reported them in B_15, to make this paper self consistent, we
shall obtain again the expressions for A(h, T) and B(h, T).

The most troublesome term is exp[Lau]∂T exp[−Lau]
inside the integral of Eq. (A5). In general, this expression
gives rise to a series of differential operators, which needs to
be summed. For Hamiltonian systems of interest the unper-
turbed Loiuville operator La preserves the energy and can
be written in terms of Poisson brackets. In this case, the
series was resummed some years ago,30 and the coefficients
of the corresponding diffusion operator were obtained. More
recently, in B_15 the series was resummed also in the case
of dissipative systems of interest, resulting the following first
order partial differential operator

eLau∂T e−Lau = e−λu[∂T ha(h, t; −u)]∂h

+ e−λu[∂hha(h, t; −u)]∂T . (A6)

In the case of the LOM in Eq. (A1), the system of interest is
the ROM and its unperturbed evolution is easily obtained as

ha(h, t; −u) = e
λ
2 u

[
cos(� u) − λ

2

sin(� u)

�

]
h

+ e
λ
2 u ω

sin(� u)

�
T

Ta(h, t; −u) = −e
λ
2 u ω

sin(� u)

�
h

+ e
λ
2 u

[
cos(� u) + λ

2

sin(� u)

�

]
T ,

(A7)

where � ≡
√

ω2 − ( λ
2 )2, leading to

(∂hha[h, t; −u]) = e
λ
2 u

[
cos(� u) − λ

2

sin(� u)

�

]

(∂T ha[h, t; −u]) = e
λ
2 u ω

sin(� u)

�
.

(A8)

Thus, using Eqs. (A6)–(A8), we see that the last line in the
r.h.s. of Eq. (A5) is a second order differential operator, with

coefficients that are quadratic polynomials of the ROM vari-
ables (h, T). Namely, Eq. (A5) becomes the FPE given in Eqs.
(3) and (4), where (we remind that D ≡ ε2〈ξ 2〉bτ )

A0 = D

τ

∫ ∞

0
du ϕ(u)e− λ

2 u

[
cos(�u) − λ

2�
sin(�u)

]

= D

τ

{
� [

ϕ̂(� − iλ/2)
] + λ

2�
� [

ϕ̂(� − iλ/2)
]}

,

(A9)

A1 = −D

τ

ω

2�

∫ ∞

0
du ϕ(u)

[
λ

2�
cos(2�u) + sin(2�u)

]

+ D

τ

ωλ

4�2

∫ ∞

0
ϕ(u)du

= −D

τ

ω

2�

{
λ

2�
� [

ϕ̂(2�)
] − � [

ϕ̂(2�)
]} + D

ωλ

4�2
,

(A10)

A4 = D

τ

∫ ∞

0
du ϕ(u)

[
ω2(1 + cos(2�u)) − λ2

2

]
1

2�2

= D

(
1 − ω2

2�2

)
+ D

τ

ω2

2�2
� [

ϕ̂(2�)
]

, (A11)

A2 = A4 + A0, A3 = A1, (A12)

B0 = −D

τ

ω

�

∫ ∞

0
du ϕ(u)e− λ

2 u sin(�u)

= D

τ

ω

�
� [

ϕ̂(� − iλ/2)
]

,

(A13)

B1 = −D

τ

ω2

2�2

∫ ∞

0
du ϕ(u) cos(2�u)

+ D

τ

ω2

2�2

∫ ∞

0
ϕ(u)du

= −D

τ

ω2

2�2
� [

ϕ̂(2�)
] + D

ω2

2�2
,

(A14)

B4 = −D

τ

ω

2�

∫ ∞

0
du ϕ(u)

[
sin(2�u) − λ

�
cos(2�u)

]

− D

τ

λ

2

ω

�2

∫ ∞

0
ϕ(u)du

= D

τ

ω

2�

{
λ

�
� [

ϕ̂(2�)
] + � [

ϕ̂(2�)
]}

− D
λ

2

ω

�2
,

(A15)

B2 = B4 + B0, B3 = B1, (A16)

with τ = � [
ϕ̂(0)

]
; the symbols �[. . .] and �[. . .] stand

for the imaginary and the real part of [. . .], respectively,
and the hat over the function ϕ means the Fourier trans-
form of this function, having assumed ϕ(t) = 0 for t < 0:
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FIG. 10. Evolution of the variance of T (left), h (center) and of the cross-correlation between T and h, obtained from Eq. (A19) with the Ai and Bi coefficients
given by Eqs. (A9)–(A16), in the case where ϕ(t) = exp(−t/τ), for different values of τ . Solid line: τ = 6; dashed line: τ = 3; dotted line: τ = 1. Curves for
different values of τ are very similar.

ϕ̂(k) ≡ ∫ ∞
0 exp[−iku]ϕ(u)du. Notice also that the following

equalities hold

A4 + B3 = D, A2 + B1 = A0 + D. (A17)

In the limit of large time scale separation between the
ROM and the booster, we can use the approximations
� [

ϕ̂(x �)
] ∼ � [

ϕ̂(0)
] = τ and � [

ϕ̂(x �)
] ∼ � [

ϕ̂(0)
] = 0

in Eqs. (A9)–(A16).

3. The dynamics of the first two moments

Using the FPE of Eqs. (3) and (4), it is easy to obtain
a closed equation of motion of the first n-th moments of the
ROM. For the first two moments we get

˙〈h〉 = −ω 〈T〉,
˙〈T〉 = (ω + β2A3) 〈h〉 − (λ − β2A4) 〈T〉 + βA0, (A18)

˙〈h2〉 = −2ω 〈hT〉,
˙〈hT〉 = (ω + β2A3) 〈h2〉

− (λ − β2D) 〈hT〉 − (ω − β2B4) 〈T2〉
+ β (D + A0 − A4) 〈h〉 − βB2 〈T〉 + B0,

˙〈T2〉 = 2(ω + 2β2A3)〈hT〉 − 2
(
λ − β2 2A4

) 〈T2〉
+ 2β (2A0 + A4) 〈T〉 + 2βA3〈h〉 + 2A0. (A19)

From which

〈T2〉eq = A0

λ − 2 β2 A4

(
1 − β2 A3

β2 A3 + ω

)

≈ A0

λ

[
1 + β2

(
2

A0

λ
− A3

ω

)]
+ O(ε6) ≈ A0

λ
+ O(ε4).

(A20)

Thus, the width of the stationary PDF is well approximated by
the width of the Gaussian PDF we had if β = 0.

A few comments are appropriate: Eq. (A18) depends only
on the A transport coefficient of the FPE and it is equivalent
to the equation of motion of a linear dissipative oscillator,
with bare frequency

√
ω(ω + β2A3) and friction coefficient

(λ − β2A4), perturbed by the constant force β A0. The weak
perturbation assumption and the fact that β ∼ 0.2, imply that
ω + β2A3 ∼ ω and (λ − β2A4) ∼ λ.

Concerning the second moments equation of motion of
Eq. (A19), similarly, they weakly depend on B and they
mainly depend on β, and A0, thus, the dynamics of the sec-
ond moments should not depend too much on the time scale
of the booster [see Fig. 10].

Assuming an exponential decays of the autocorrelation
function of ξ , i.e., ϕ(t) = exp(−t/τ), we have that for values
of τ up to ∼ 3 months−1, the transport coefficient A has the
same structure it has in the limit of very large time scale sep-
aration between the dynamics of the unperturbed ROM and
that of the perturbation ξ(t): A1 = A3 ∼ 0 , A0 ∼ A2/2 ∼ A4,
namely, A(T) ∼ A0 (1 + βT)2 (see Fig. 11).

Because λ = 1/12 months−1, for τ = 3 months−1, we
have a large, but not very large time scale separation between
the dynamics of the unperturbed ROM and that of the pertur-
bation ξ(t).

FIG. 11. The values of the coeffi-
cients A0, A4, and A3 vs τ for ϕ(t) =
exp(−t/τ). In the range 0 ≤ τ ≤ 3, we
have A4 ∼ A0 and A3 ∼ 0. We recall that
A2 = A4 + A0 and that A1 = A3. Thus
A ∼ A0(1 + βT)2, which must be com-
pared with A = D(1 + βT)2 that holds
true in the limit of very large time scale
separation between the dynamics of the
ROM and that of the booster (see text for
details).
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4. The case of large time scale separation

We can now extend the work in B_16: using Eq. (A1)
as a LOM mimicking the statistics of the ENSO, we can
safely stay in the limit of very large time scale separation
between the dynamics of the ROM and that of the booster.
The coefficients of the FPE in this limit case are given by Eqs.
(A9)–(A17) considering the limit of vanishing frequency in
the Fourier transform of ϕ (� [

ϕ̂(0)
] = τ and � [

ϕ̂(0)
] = 0),

from which A1 ∼ A3 ∼ 0 , A0 ∼ A2/2 ∼ A4 ∼ D ≡ ε2〈ξ 2〉bτ .
Alternatively, the FPE can be directly obtained from Eq. (A5),
considering that in this case in the integral of the last line
the booster autocorrelation function ϕ(u) decays so fast, with
respect to the typical time scale of the unperturbed ROM,
that we can make the approximations Ta(h, t; −u) ∼ T and
eLau∂T e−Lau ∼ ∂T . In both approaches, we eventually obtain

∂tσ(h, T ; t) = {
ω ∂h T − ω ∂T h + λ ∂T T

+ D β ∂T (1 + β T)

+ D ∂T (1 + β T)2∂T
}
σ(h, T ; t), (A21)

which, after elementary algebraic manipulation, coincides
with the FPE of Eq. (7).

APPENDIX B: THE ANSATZ AND THE STATIONARY
PDF

Here, we review Appendix B of B_16, to find the reduced
stationary PDF for the T variable. We start from the corrected
FPE of Eq. (A21) or the equivalent of Eq. (7). First of all,
note that the second line in Eq. (A21) corresponds to the a
term (is missing in B_16). This term (weakly) changes the
effective friction of the perturbed ROM from λ to λ + Dβ2,
and it introduces also an effective constant forcing, −Dβ, on
the perturbed ROM. It is straightforward to check that this
constant force halves the stationary value of the average of
the h variable, respect to that obtained in B_16. We have

〈h〉s = −D
β

ω
, (B1)

a result that we shall use hereafter. Because we are interested
only on the reduced PDF for the T variable, we integrate the
h variable in the FPE of Eq. (A21), to obtain

∂t p(T ; t) = −ω ∂T 〈h〉T + {
Dβ∂T + (λ + Dβ2)∂T T

+∂T D(1 + βT)2∂T
}

p(T ; t), (B2)

where p(T ; t) ≡ ∫
σ(h, T ; t)dh is the reduced PDF for the T

variable and 〈h〉T ≡ ∫
hσ(h, T ; t)dh, is the conditional aver-

age value of the h variable [note: ps(T) ≡ ∫
σs(h, T)dh].

Because ω ∼ 0.13 and λ ∼ 0.1, we are neither in the under-
damped nor in the over-damped standard cases, where it is
possible to reduce the two-dimensional FPE to the one dimen-
sional type.49,50,68 However, we take advantage of the fact
that here we focus our attention on the stationary PDF of the
reduced FPE, for which ∂p(T ; t)/∂t = 0 in Eq. (B2). Thus,
observing that the relations among the stationary first and sec-
ond moments of the h and T variables that we obtain from
the FPE of Eq. (A21), are the same of the case of a stochastic
forced damped linear oscillator (see also B_16), we make the

following ansatz

〈h〉T ,s = 〈h〉s ps(T) = −β
D

ω
ps(T), (B3)

where the former equality represents the ansatz, and in the
latter we exploited Eq. (B1).

Inserting Eq. (B3) in the FPE of Eq. (B2), imposing
the condition of vanishing current, and using the definition
μ ≡ 1 + λ/(D β2), we obtain

β(2 + μβT) ps(T) + (1 + βT)2∂T ps(T) = 0. (B4)

From the previous equation, we get two results: the station-
ary PDF has a maximum (i.e., the T derivative vanishes)
for T = −2/(βμ) = −2βD/(λ + D β2); the stationary PDF
must vanish for T = −1/β (and for lesser values too, for obvi-
ous physical reasons). As already noted in B_16, from the FPE
of Eq. (A21), we see that for μ > 3 the equation of motion of
the first and second order moments of the ROM converge to a
finite value for t → ∞. It is not difficult to check that the same
constraint ensures that also the solution of the same FPE con-
verges, for t → ∞, to a finite (normalizable) stationary PDF.
Thus, under the assumption that μ > 3, from Eq. (B4) we get
the stationary PDF given in Eq. (8).

APPENDIX C: ANALYTIC EXPRESSION FOR THE
MEAN FPT

1. The ansatz at work for the calculation of the FPT

In the state space of (h, T), we assume an absorb-
ing boundary T = Ttg for the paths starting from the initial
region −0.5 ≤ hi ≤ 0.5, −0.5 ≤ Ti ≤ 0.5, and we indicate
with ℘(hi, Ti | Ttg; δt) the PDF of the FPT of these paths.
Given the FPE in Eq. (7), it is easy to prove that ℘(hi, Ti |
Ttg; δt) satisfies the adjoint FPE57,58

∂δt ℘(hi, Ti | Ttg; δt) = {−ωTi∂hi + ωhi∂Ti − (λ + Dβ2)Ti∂Ti

− Dβ∂T + ∂Ti A(T)∂Ti}℘(hi, Ti | Ttg; δt), (C1)

where we want to remove the hi dependence. For this purpose,
we define Pst(h) as the reduced stationary PDF for the variable
h, we multiply Eq. (C1) by Pst(hi) and we integrate over hi

∂δt

∫
℘(hi, Ti | Ttg; δt)Pst(hi)dhi =

− ωTi

(∫
Pst(hi)∂hi ℘(hi, Ti | Ttg; δt)dhi

)

+ ∂Ti ω

(∫
Pst(hi)hi ℘(hi, Ti | Ttg; δt)dhi

)

− (λ + Dβ2)Ti∂Ti ℘(Ti | Ttg; δt) − Dβ∂Ti ℘(Ti | Ttg; δt)

+ ∂TiA(Ti)∂Ti℘(Ti | Ttg; δt), (C2)

where ℘(Ti | Ttg; δt) ≡ ∫
℘(hi, Ti | Ttg; δt)dhi. Now, we

know that if the starting position (hi, Ti) belongs to a neigh-
borhood of points (h, T), where the PDF is close to the
maximum value, the FPT should not depend too much on
(hi, Ti). Assuming that this is the case, the l.h.s. of the previous
equation becomes ∂δt ℘(Ti | Ttg; δt), while in the r.h.s. the first
term vanishes, and inside the integral of the second one we
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can make the substitution ℘(hi, Ti | Ttg; δt) ∼ ℘(Ti | Ttg; δt)
[because Pst(hi) is peaked closed to hi = 0]. Thus we get

∂δt ℘(Ti | Ttg; δt) = ω〈h〉s∂Ti ℘(Ti | Ttg; δt)

− (λ + Dβ2)Ti∂Ti ℘(Ti | Ttg; δt)

− Dβ∂Ti , ℘(Ti | Ttg; δt) + ∂Ti A(Ti)∂Ti℘(Ti | Ttg; δt),
(C3)

where 〈h〉s is the stationary value of h. Using Eq. (B1),
formally the above equation is equal to the adjoint of the
following FPE for the reduced PDF of the sole T variable

∂t p(T ; t)

=
{
(λ + Dβ2)∂T T + 2Dβ∂Ti + ∂T A(Ti)∂T

}
p(T ; t).

(C4)

Imposing the stationary condition in the Eq. (C4) we get Eq.
(B4). Thus Eq. (C3) can be thought as derived from a one-
dimensional stochastic process governed by the FPE of Eq.
(C4), for which the stationary solution is given in Eq. (8). It
is well known57,58 that from such a one-dimensional FPE we
get directly the expressions in Eqs. (11) and (12) for the mean
FPT and for the second moment of the FPT.

2. Analytic expression for the mean FPT

Substituting the stationary PDF of Eq. (8), in the expres-
sion for the average FPT given in Eq. (11), we have

t1(Ti | Ttg) =
∫ Ttg

Ti

dT

D(1 + βT)2 ps(T)

�
(
μ − 1, μ−2

βT+1

)

�(μ − 1)
,

(C5)
where �(a, x) is the standard incomplete Gamma func-
tion. For Ttg > 1, with a good approximation, the factor

�
(
μ − 1, μ−2

βT+1

)
/�(μ − 1) in the integrand of Eq. (C5), can

be substituted by one (see Fig. 12).
This approximation leads to a relative error that ranges

from less than 3% for Ttg ≥ 2.5 to 15% for Ttg = 1. Using
this approximation and making the change of variable

FIG. 12. Plot of the two factors, �
(
μ − 1, μ−2

βT+1

)
/�(μ − 1) (solid line,

with values on the left vertical axis) and 1/[D(1 + βT)2 ps(T)] (dashed
line, with values on the right vertical axis), which appear into the integral
of Eq. (C5). It is clear from these graphs that for T > 1 the first factor

�
(
μ − 1, μ−2

βT+1

)
/�(μ − 1) can be approximated by the unity, while for T <

1 the product of these two factors is relatively small, thus it gives a far lesser
contribute to the integral. We can conclude that for Ttg > 1 in Eq. (C5) we can

safely make the following substitution: �
(
μ − 1, μ−2

βT+1

)
/�(μ − 1) → 1.

x = (μ − 2)(βT + 1), we have

t1(Ti | Ttg) = �(μ − 1)

β2D

∫ μ−2
βTi+1

μ−2
βTtg+1

exx−μdx

= �(μ − 1)

β2D
(−1)μ

{
�(1 − μ, −x)

} μ−2
βTtg+1

μ−2
βTi+1

. (C6)

This expression is not easily handled because of the
complex number (−1)μ and because the incomplete
Gamma function has a non-analytical behavior when
its arguments assume negative values, thus we exploit
the following identity: �(a, z) = exp[−z]�(1 − a, 1 − a; z),
where �(b, c; z) is the Tricomi confluent hypergeomet-
ric function. In turn, the Tricomi function can be
expressed in term of the Kummer generalized hypergeo-
metric function: �(b, c; z) = M (b, c; z)�(1 − c)/�(b − c +
1) + z1−cM (b − c + 1, 2 − c; z)�(c − 1)/�(c). Using these
identities, we rewrite Eq. (C6) in the following way

t1(Ti | Ttg) = �(μ − 1)

β2D

{
(−1)μ−1�(1 − μ) ex M (μ, μ, −x)

+ x1−μ

μ − 1
ex M (1, 2 − μ, −x)

} μ−2
βTtg+1

μ−2
βTi+1

. (C7)

Because M (μ, μ, −x) = exp(−x), the first term inside the big
brackets of Eq. (C7) is a constant and can be neglected being
at least two order of magnitude lesser than the second one for
the range μ−2

βTtg+1 ≤ x ≤ μ−2
βTi+1 . Thus, using also the expression

in Eqs. (8)–(10) for the stationary PDF, and the identity 1/D =
(μ − 1)β2/λ, we get the good approximation for the mean
FPT given in Eq. (13). As it can be checked by numerical
integration, the deviation of this approximation from the exact
mean FPT in Eq. (11) ranges from a maximum of 17% for
Ttg = 1 to less then 1% for Ttg > 3.5.
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