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Abstract—Printing is a widespread industrial process. Manu-
facturers of colored products are expected to maintain high levels
of color quality to perfectly satisfy the customers’ requirements.
The rendering of colors is visually checked by experienced
workers, who may though show different color sensitiveness,
depending, e.g., on perceptual, cognitive and cultural aspects.
This often results in products that fail to faithfully reproduce
what the customer asked for, with negative consequences for
companies, as well as huge financial losses. This paper describes a
neural network-based system to objectively check how faithfully
colors are reproduced by an industrial printing process. The
system considers a master color, then compares it to a copy, and
returns an objective degree of color fidelity of the copy to the
master. The neural system was trained and tested in a real-world
case study by using a huge quantity of color pairs taken from the
L*a*b* color space. Highly accurate results were achieved. The
strengths of the system are that it can measure the difference of
colors in a way that is incredibly close to that perceived by the
human eye, and the fact that it can do that canceling the color
distortion phenomena that may occur in the human vision.

I. INTRODUCTION

Printing is pervasive nowadays. Just think about the huge
amount of customized boxes and wrappings that come to our
homes every day. There are many industries where printing
processes are involved, such as packaging, commercial and
decorative printing. The global printing industry gets stunning
revenues and is forecast to reach $980 billion by 2018 [1].

Digital printing processes are incredibly sophisticated today,
and require frequent calibrations to control the color fidelity.
This happens because these processes are subject to various
phenomena that influence the rendering of color. If a produc-
tion batch—for example thousands of food packages—is not
chromatically homogeneous, or colors are different from how
the customer perceived those colors when signing the supply
contract, negative consequences may occur for companies,
such as huge financial losses. Since the customer requirements
are often not easy to satisfy, managing the color fidelity is
a key problem, especially because customers rarely purchase
defective products. The only way to convince them to do that
is to discount the price. But unforeseen discounts may lead to
a loss for the company.

The color rendering and homogeneity of a printing process
are today machine-assisted, but are still mainly based on visual
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inspections that are performed by experienced employees who
are responsible for the color accuracy. Unfortunately, these
workers may have different color sensitiveness, depending
on perceptual, cognitive and cultural aspects. Typical aspects
include mood, age, focus ability, color matching, lightness,
and the fact that warm or cool colors are being observed [2].
Therefore, visual checks may result in products that fail to
accurately reproduce the colors the customer asked for, or
even worse, the printed colors may be different from an item
to another, within the same batch.

Over the last decades, the CIE1 has proposed the L*a*b*
color space and different formulas to measure the difference
between two colors [3], [4]. The most used is the L*a*b*
distance or ∆E, which was introduced in 1976 and is still
widely used in industry and research. This formula has some
shortcomings that make it unable to exactly map the difference
that the human eye perceives when comparing two colors.

That is why the CIE has introduced more complicated
formulas over the years, in particular the ∆E94 and ∆E00,
released in 1994 and 2000, respectively. These measures
introduce several parameters and weighting functions, but lack
of complete visual uniformity [5].

Many advanced techniques have recently been proposed to
address the problem of guaranteeing that a color is reproduced
as accurately as possible. For instance, there are recent studies
on color calibration [6], and on the appearance of colors on
electronic devices when used under high ambient lighting
conditions [7]. Other approaches investigate the effect of the
paper properties on the color reproduction in digital printing
[8], or propose visual brightness functions to enhance the
contrast and saturation of rendered images [9]. From the
industry perspective, there are several applications to control
and guarantee that colors are reproduced accurately. Some
of the more recent include the spectrophotometric analysis
of the color of ceramic restorations in dentistry [10], and
pattern matching methods for the quality control in automotive
metallic coatings [11].

This paper focuses on the printing industry, and proposes a
neural system to measure the difference between two printed
colors as closely as possible to how this difference is perceived

1The Commission Internationale de l’Eclairage (CIE) is the international
authority of light, illumination, color, and color spaces.



by the human eye. The system is made up of two multi-layer
perceptron neural networks (comparators) that take the L*a*b*
coordinates of two colors and return their color difference. The
difference is measured objectively, thus canceling the effects of
those phenomena that alter the perception of colors, which are
typical of the human vision, like, e.g., the ones that modify
the perceived difference of colors as a consequence of the
observer’s mood and level of fatigue.

The paper is organized as follows. Section II contains
a background on color and color perception. Section III
describes the proposed way to fix the deficiencies of ∆E.
Section IV presents the neural comparators and the developed
system. Section V draws the conclusions.

II. BACKGROUND

Color is a physiological sensation that our brain uses to
recognize the objects around us. The color sensation basically
occurs according to the following four steps:

1) a light source emits a light;
2) an object reflects this light by modifying it according to

its surface characteristics;
3) the human eye detects this reflected light and turns it

into a stimulus;
4) the brain processes this stimulus and generates the

chromatic sensation.

A. What is light?

Light is an electromagnetic radiation. The portion that the
human eye can sense (commonly known as visible light) is the
radiation with wavelengths ranging from ∼380 nm (violet) to
∼800 nm (red).

A light source is something that emits light, such as the neon
lamps in office buildings. A light source emits different amount
of energy (i.e. power) at each wavelength λ of the visible color
spectrum, thus forming its spectral power distribution, denoted
with SPD or S(λ).

B. Standard illuminants

The CIE has standardized the different light sources by the
amount of energy emitted at each wavelength (i.e. the SPD).
Unlike a light source, an illuminant is not a physical object,
but rather a representation of the SPD curve of a light, e.g.
by means of a graph (examples are in Fig. 1). SPDs are
generally represented as relative SPDs, normalizing in [0, 100]
the amount of energy emitted.

Fig. 1. SPDs of three standard illuminants: daylight (D65), incandescent bulb
(A), cool white fluorescent lamp (F2).

C. Object

When a light strikes the surface of the objects, they absorb
and reflect specific amounts of energy at each wavelength. In
the case of a red object, for instance, the red part of the visible
spectrum is reflected almost completely, whereas the energy
at the other wavelengths is mainly absorbed.

The percentage of incident electromagnetic power that is
reflected at each wavelength is called reflectance. The plot of
the reflectance of an object as a function of the wavelength is
called spectral reflectance curve (see Fig. 2).

Fig. 2. Spectral reflectance curve of a red ball.

D. Observer

When illuminating an object with a light source, the re-
flected light coming from the object reaches an observer (e.g.
the human eye). This reflected light has an SPD, which is
referred to as reflected SPD or rSPD.

The rSPD is obtained by multiplying the energy that comes
from the light source by the reflectance of the object for each
λ ∈ [380nm, 800nm], as shown in Fig. 3.

Fig. 3. Reflected SPD (rSPD) obtained multiplying the relative SPD of the
light source (incident SPD) by the reflectance of the object.

E. Color perception

Given the SPD of a light that reaches the retina, three
types of cones jointly generate a 3-tuple (ρ, γ, β) called the
tristimulus response. Let S(λ) be the SPD, where λ is the
wavelength, and let ρ(λ), γ(λ) and β(λ) be the sensitivity
functions of the three types of cones. The response can then be
computed by integrating the products of wavelength intensity
and cone sensitivity over the visible spectrum, i.e.,

(ρ, γ, β) =(∫ λu

λl

S(λ)ρ(λ)dλ,

∫ λu

λl

S(λ)γ(λ)dλ,

∫ λu

λl

S(λ)β(λ)dλ

)
(1)

where λl = 380 nm and λu = 800 nm. Our color perception
is determined by this 3-tuple response. Functions ρ(λ), γ(λ)



and β(λ) are called color matching functions and have been
determined through experiments.

Given three color matching functions, any visible color is
represented using a 3-tuple.

F. CIE RGB color space
RGB is a convenient color model to represent colors in

computer graphics, as the human visual system works like an
RGB color space, though not quite identical. The (R,G,B)
3-tuple that describes a color is

(R,G,B) =(∫ λu

λl

S(λ)r(λ)dλ,

∫ λu

λl

S(λ)g(λ)dλ,

∫ λu

λl

S(λ)b(λ)dλ

)
(2)

where r(λ), g(λ) and b(λ) are the (experimentally obtainable)
color matching functions shown in Fig. 4. The (R,G,B) 3-
tuple uniquely determines a visible color, given a light source.

Fig. 4. Intensity curves of source lights R, G and B. When used as color
matching functions, we get the CIE RGB color space.

G. CIE L*a*b* color space
CIE L*a*b* is a color space that describes all perceivable

colors in three dimensions: L* for lightness; a* and b* for
the color opponents green-red and blue-yellow, respectively.
The CIE L*a*b* system thus describes and orders colors
on the basis of the color opponent theory, which says that
colors cannot be perceived as both red and green at the same
time, or yellow and blue at the same time. Colors can instead
be perceived as one of the following combinations: red and
yellow; red and blue; green and yellow; green and blue.

The CIE L*a*b* color space was introduced as a percep-
tually uniform color space, where the difference between two
colors at a given distance from each other is perceived the
same way, no matter the region they come from. The CIE
L*a*b* color space was purposely designed to approximate
the human vision as close as possible.

Given a color, the L*, a* and b* coordinates represent the
color lightness, the position between red/magenta and green,
and the position between yellow and blue, respectively. In
particular, L* = 0 is the darkest black and L* = 100 indicates
diffuse white; negative values of a* indicate green, whereas
positive values indicate magenta; negative values of b* indicate
blue and positive values indicate yellow.

Fig. 5. The CIE L*a*b* color space.

H. Measuring the difference of colors

As the CIE L*a*b* is a perceptually uniform color space,
the difference between two colors can be measured by using
the Euclidean distance. This way of measuring the difference
of colors was introduced by the CIE in 1976 and is called ∆E
(or L*a*b* distance). Formally, if (L∗

1, a
∗
1, b

∗
1) and (L∗

2, a
∗
2, b

∗
2)

are two colors in the CIE L*a*b* color space, their difference
is:

∆E =
√

(L∗
2 − L∗

1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2. (3)

This measure has some drawbacks. For example, when
visually comparing a pair of colors that come from the dark
region of the L*a*b* space—look at the bottom area of the
sphere in Fig. 5,—they are perceived as the same color even
when their ∆E is very high. In other regions, this value of ∆E
characterizes two colors that are completely different. There
are other zones of the L*a*b* space where the same happens,
for example the blue-violet region.

Over the last decades, the CIE has proposed several re-
finements of ∆E. Even though these more recent versions
better map the human vision, they are particularly complicated
and retain some drawbacks. This work thus tries to start from
Eq. (3) and aims to improve its accuracy, thereby fixing the
drawbacks.

III. IMPROVING ∆E

A. Overview and motivation

Equation (3) calculates the difference between two colors
that is perceived by the human eye, and is thought to return
values that are lower than 2 when two colors are hard to
distinguish by the human eye. The higher the value of ∆E,
the more different two colors should be perceived.

Unfortunately, this does not hold anywhere one picks two
colors in the L*a*b* space. There are in fact some regions
where the difference is less perceptible to the human eye.
Imagine the L*a*b* sphere as a series of overlapped circles, as
Fig. 6 shows. Looking at the figure, it is easy to understand the
problem. When varying the value of L* (i.e., the brightness),
the difference perceived comparing two given colors picked
from the same region of each of the three slices changes. For
example, when L = 0 (the dark colors in the slice at the



(a) (b)

Fig. 6. Front view (a) and top view (b) of different horizontal slices of the
L*a*b* space.

bottom on the right-hand side of Fig. 6), it is easy to see
that the difference is less perceptible, so here two colors with
∆E > 2 are the same to the human eye.

Another problem of the L*a*b* distance is that the same
drawback described before (i.e., high value of ∆E for fairly
undistinguishable colors) occurs in other regions, and is not
completely due to the level of brightness of the two colors
compared. Such regions are, for example, the gray region
and the region that contains the colors that range from blue
to violet. This means that the whole L*a*b* space must be
sampled in order to investigate and solve these problems that
involve the hue of colors. In order to measure the difference
of colors in a way that is perceptually uniform in the whole
L*a*b* space, the L*a*b* distance has thus to be modified.

The next sections describe the two modifications that were
made to get a measure that is very close to how the human
eye perceives the difference of colors.

B. First step: fixing the drawbacks due to changing the
brightness

Consider two colors whose coordinates in the L*a*b* color
space are (L∗

1, a
∗
1, b

∗
1) and (L∗

2, a
∗
2, b

∗
2), respectively. In order

to fix the mismatch between the L*a*b* distance and the
perceived difference between two colors when varying the
brightness, a series of visual experiments was made. These
experiments led to the definition of the piecewise regulariza-
tion function shown in Fig. 7. The slope of each segment was
determined as follows.

Ten partitions (precisely, thick horizontal slices) of the
L*a*b* sphere were first considered, containing, respectively,
the colors with brightness ranging from 0 to 10, 11 to 20 and
so on. A uniform set of color pairs with ∆E ∈ {2, 3, 4} were
considered in the volume within each slice. Ten observers were
then asked to sequentially look at all these color pairs, and
classify each of them as containing equal, slightly different
or different colors. The number of votes of each class was
counted for each color pair with ∆E = 2. If the majority of
the votes was equal the slope was set to zero. The slope was
otherwise increased/decreased by 5% and the test was done

again. The same procedure was repeated for color pairs with
∆E = 3 and ∆E = 4. In these cases, the highest number
of votes to maintain the ∆E unaltered was expected in the
slightly different and different classes, respectively.

The result of the experiments was that the L*a*b* distance
satisfactorily matches the perceived difference of colors for
values that range from L∗ = 30 to L∗ = 80. Elsewhere, the
distance along the L∗ dimension does not map the perception
of the human eye uniformly, and thus needs to be rescaled.
In order to adjust the distance along the L* dimension, the
following function is proposed:

∆L∗
mod =

∫ L∗
2

L∗
1

ψ(L∗)dL∗, (4)

where ψ(L∗) : [0, 100]→ [0, 1] is the piecewise regularization
function that was experimentally obtained as explained before.
The function aims to make it true that values of L*a*b*
distance lower than 2 actually correspond to pairs of colors
that are indistinguishable to the human eye and vice versa,
wherever one picks two colors with the same brightness in
the L*a*b* space. Higher values of ψ(L∗) represent a higher

L*

Fig. 7. Piecewise regularization function to fix the brightness nonuniformity
of the L*a*b* distance.

sensitivity—the difference of colors is easier to perceive,—on
the other hand, lower values represent a lower sensitivity. The
value obtained by Eq. (4) is then used as a substitute for term
(L∗

2 − L∗
1) in Eq. (3). This leads to the definition of ∆Emod,

whose expression is:

∆Emod1,2 =

√∫ L∗
2

L∗
1

ψ(L∗)dL∗ + (a∗2 − a∗1)2 + (b∗2 − b∗1)2.

(5)
Note that when considering two colors c1 and c2 with ψ(L∗

1) =
ψ(L∗

2) = 1, nothing changes with respect to the original
L*a*b* distance, as the difference calculated using Eq. (3)
accurately maps the human perception of colors.

C. Second step: refining ∆Emod by including the human
perception of hues

In order to improve the accuracy of ∆Emod when varying
the hue, a perceptual information was incorporated into the
formula, using a product. With the help of a developed tool
equipped with an easy-to-use graphic interface, a similarity



level in {equal, almost equal, slightly different, different,
definitely different} was assigned to each copy of a master.
A number k ∈ R was then associated with each similarity
level. This number is multiplied by ∆Emod in order to get the
similarity rate σ. Considered two colors whose coordinates
in the L*a*b* color space are (L∗

1, a
∗
1, b

∗
1) and (L∗

2, a
∗
2, b

∗
2),

respectively, the similarity rate is:

σ1,2 = k ·

√∫ L∗
2

L∗
1

ψ(L∗)dL∗ + (a∗2 − a∗1)2 + (b∗2 − b∗1)2. (6)

The value of k was chosen with the aim to increase/decrease
the value of ∆Emod, thus refining what previously done with
∆Emod, thereby making σ as close as possible to the way the
human eye perceives the difference of colors. The values of k
that were experimentally found to refine ∆Emod are:

• k = 0.5 when master and copy are considered as equal;
• k = 0.8 when the two colors are judged almost equal;
• k = 1 when the two colors seem slightly different;
• k = 1.2 when the two colors are judged different;
• k = 2 when the colors are judged definitely different.

IV. THE NEURAL COMPARATOR

A. Overview

This section describes a system made up of two multi-
layer perceptron (MLP) neural networks that were designed
and trained to compare two colors c1 and c2, and return their
∆Emod1,2 and σ1,2, respectively.

The system was developed as a MATLAB tool with a
user-friendly graphic interface. The tool was designed to
generate a set of color pairs that are made up of a master
and a copy, in order to simulate what actually happens when
reproducing colors in industrial printing processes. The tool
also allows to make comparisons between colors and quantify
their difference. This incorporates the human perception of
colors into the data.

This section also describes the details of the MLP neural
networks, and the choices made to achieve the best results.

B. Dataset

The dataset is made up of 1232 reflectance spectra, each
relative to a matt color patch (master). These colors, shown in
Fig. 8, were chosen because they are colors that are actually
used in a real-world industrial scenario.

Reflectance spectra are sampled with 1 nm step, from 380
nm to 800 nm, thus collecting 421 samples per color patch.
The dataset also contains the RGB and L*a*b* coordinates of
each spectrum, calculated using the D65 illuminant (daylight).

The experiments described in this section were purposely
thought and carried out to show how the proposed system
actually works in a real-world case study. Even though the
number of colors in the dataset may seem not so high to
properly deal with the problem, these colors were in fact
sufficient to demonstrate that the system works well and can
really help reproduce colors faithfully in a real-world case

Fig. 8. Dataset of master color patches.

study related to a key industry, like packaging. Further works
are in progress to investigate the use of the system with wider
sets of colors and different material finishings.

C. Generating reproductions of a color (copies)

The developed system first asks how many masters to
consider. Given a master m, the system can generate copies
c whose distance from the master (i.e., ∆Em,c) falls within
(∆Emin,∆Emax]. When generating copies, the values of
∆Emin and ∆Emax are chosen according to one of the
following criteria:

1) very close to the master, with 0.5 < ∆Em,c ≤ 2, so
copies that are almost equal to the master;

2) close to the master, with 2 < ∆Em,c ≤ 3, these are
copies that may be either equal or very similar to the
master;

3) a little far from the master, with 3 < ∆Em,c ≤ 5, these
copies are very likely to be different from the master,
but may be equal in specific cases;

4) far away from the master, with 5 < ∆Em,c ≤ 10, i.e.,
copies that are very different from the master.

Fig. 9. The graphic interface to generate copies based on the L*a*b* distance.

Let M be the chosen number of masters to put in set M. If
the user does not choose the whole dataset (i.e., M < 1232),
the system selects M masters that are uniformly distributed in



Fig. 10. The graphic interface to generate copies based on perturbing the spectrum with a Gaussian white noise.

the L*a*b* sphere, and these masters are then put into M. For
each master m ∈M, the system generates four copies cm1 , cm2 ,
cm3 and cm4 . The distance of each copy from the master—and
the other parameters—can be chosen using the corresponding
drop-down menu on the left-hand side of Fig. 9.

From an operational point of view, given a master color m ∈
M, the system first generates a random number u ∼ U(0, 1),
where U(0, 1) denotes the uniform probability distribution in
[0, 1]. This number is then multiplied by the chosen ∆Emax.
The system thus considers a spherical shell in the L*a*b*
space, whose center is the master. This spherical shell is then
divided into four quarters. The system then moves along the
a* and b* dimensions, in order to obtain a copy in each
quadrant of the spherical shell. We chose not to consider the
L* dimension at this stage because it is already included in
the ∆E, so the generated copies may have different L* with
respect to the master.

Copies of a given master can also be generated by perturbing
its spectrum using a Gaussian white noise. This is helpful
when desiring copies that are particularly close to the master,
or when we aim to obtain copies that differ from the master
in specific hues. This kind of copies can easily be generated
by the developed tool by means of the appropriate interface
that is shown in Fig. 10. As can be seen on the left-hand
side of the figure, the user can easily select the region (i.e.,
the range of wavelengths) where the noise is added, and the
signal noise ratio (SNR). The other areas on the right-hand
side of the GUI show, at the top, the obtained spectrum, and
at the bottom, from left to right, the color evaluation of master
and copy (i.e., their L*a*b* distance ∆E, L*a*b* distance
modified ∆Emod, RGB and L*a*b* coordinates) and finally
the master and copy patches.

D. First comparator: reproducing ∆Emod

The first neural comparator takes the L*a*b* coordinates
of the master and copy patches and returns their ∆Emod. The
whole dataset of masters was first used to design and train the
network, i.e., 1232 masters (see Section III-B).

1) Generating the training and test sets: The training set
was created using the developed tool. In more detail, a total
of 16 copies was generated for each master m: four copies
very close to the master (0.5 < ∆Em,c ≤ 2), four copies
close to the master (2 < ∆Em,c ≤ 3), four copies a little far
from the master (3 < ∆Em,c ≤ 5), and the last four copies
far away from the master (5 < ∆Em,c ≤ 10). This led to
19712 master-copy pairs of L*a*b* coordinates, and made it
possible to uniformly cover all the dataset, as can easily be
seen in Fig. 11. Given a master mi and the j-th of its copies

a a

L

Fig. 11. Distribution of the data in the L*a*b* space.

ci,j , the master-copy pair of L*a*b* coordinates is associated
with its ∆Emodmi,ci,j , in order to obtain the 19712 samples to
show to the network. The structure of the sample to use for



Fig. 12. Masters and copies used for the training. Each master is followed
by its copies in the same row, from left to right.

the training is

samplei = ((L∗
mi
, a∗mi

, b∗mi
, L∗

ci,j , a
∗
ci,j , b

∗
ci,j ),∆Emodmi,ci,j ),

(7)
where L∗

mi
, a∗mi

, b∗mi
, and L∗

ci,j , a∗ci,j , b∗ci,j are the L*a*b*
coordinates of master mi and copy ci,j , respectively. The
whole set of masters and their copies is shown in Fig. 12.

The test set was generated with the help of the developed
graphic tool, with the same structure as the training set. In
particular, a total of 900 master-copy pairs were uniformly
selected from the L*a*b* space, and then each pair was
associated with its ∆Emod.

2) Neural network architecture: The neural network has six
neurons in the input layer and one neuron in the output layer.
The input is made up of two triples of neurons, which receive
the L*a*b* coordinates of master m and copy c, respectively.
The output is ∆Emodm,c .

Multiple networks were trained in order to find the best
architecture. More in detail, a single hidden layer was used,
whose number of neurons was experimentally found varying
it from 20 to 200 with step one. For each number of neurons,
the network was trained ten times and the mean squared error
(MSE) on the test set was calculated. The number of hidden
neurons that produced the lowest MSE was chosen as the
best one. The network was trained according to the procedure
described above by separately using the Levenberg-Marquardt
backpropagation and Bayesian regularization backpropagation
training functions.

3) Results: The best result for the Levenberg-Marquardt
training function was achieved with 50 neurons. On the other
hand, with the Bayesian training function, the best result was
achieved with 100 neurons.

The probability distribution of the error is shown in Fig.
13. As the figure shows, both networks achieve a good result,
with errors that are very likely to range from –0.05 to 0.05.
This means that the networks are highly accurate. The network
trained using the Bayesian training function was included into
the neural system.

(a) (b)

Fig. 13. Probability distribution of the error when using 50 neurons in the
hidden layer and Levenberg-Marquardt training function (a), and when using
100 neurons in the hidden layer with Bayesian training function (b).

E. Second comparator: improving ∆Emod

This section describes a second neural network that was
purposely designed and trained to include the human aspects
related to the perception of colors described in Section III-C.
This was done to improve the accuracy of the comparison
when considering similar colors with slightly different hues.

1) Generating the training and test sets: The training set
is made up of 2000 pairs of similar colors, i.e., with ∆E
between 2 and 3, and 800 pairs with ∆E between 3 and 5.
The distribution of the data is shown in Fig. 14 (i.e., the bold
dots). As can be seen, colors are uniformly distributed over
the color space. After generating these pairs of colors, they

Fig. 14. Distribution of the data in the L*a*b* space.

were analyzed by ten observers who quantified the similarity
level using the graphic interface of the system. The value of
coefficient k was then associated to the similarity levels as
explained in Section III-C.

A total of 2800 samples with the following structure were
thus obtained to train the network:

samplei = ((L∗
mi
, a∗mi

, b∗mi
, L∗

ci,j , a
∗
ci,j , b

∗
ci,j ), σmi,ci,j ). (8)

The test set was generated by using the developed graphic
tool, with the same structure as the training set, i.e., made up
of two groups of pairs, the first with ∆E between 2 and 3, and
the second with ∆E between 3 and 5. A total of 200 master-
copy pairs were generated, by uniformly sampling them in
the L*a*b* space. Each pair was finally associated with the
corresponding value of σ.



2) Neural network architecture: The MLP neural network
has six input neurons and one output neuron. The first three
neurons of the input take the L*a*b* coordinates of master m,
whereas the next three neurons receive the L*a*b* coordinates
of copy c. The output is σm,c.

A diverse set of networks were trained, and this made it
possible to find out the best architecture. As done for the
network described in Section IV-D2, a single hidden layer was
used. In order to find the best number of neurons to put in
the hidden layer, different networks were tested by increasing
the number of neurons in the hidden layer, starting from 20
up to 200, with step one. For each value, the corresponding
network was trained ten times and the MSE on the test
set was finally calculated. The network was trained using
both the Levenberg-Marquardt backpropagation and Bayesian
regularization backpropagation training functions.

3) Results: In this case, a definitely better performance
was achieved by training the networks with the Bayesian
regularization backpropagation. The network with 100 neurons
in the hidden layer obtained the highest accuracy.

The probability distribution of the error is shown in Fig. 15.
As can be seen, the error is just a little bit higher than
zero. Values that are higher than 0.02 are very unlikely
to obtain with this network, which can thus be reasonably
considered as highly accurate in reproducing what the human
eye perceives when observing two similar colors that come
from an industrial printing process.

Fig. 15. Probability distribution of the error obtained by the best neural
network to reproduce σ.

V. CONCLUSIONS

This paper has presented a neural network-based system
that automatically compares two printed colors and returns a
perceptually uniform measure of their difference as perceived
by the human eye, without being affected by the typical
phenomena that alter the perception of colors.

In order to achieve this result, the L*a*b* distance has first
been regularized to incorporate how the human eye actually
perceives the different levels of brightness. By means of visual
comparisons, the measure has then been refined to better map
the human perception of the difference of colors.

The results have shown that the neural system—i.e., the
two neural comparators—accurately compares two colors, and

returns a measure whose value is actually higher the greater
the difference the human eye perceives.

The system can thus be extremely useful for those workers
who perform visual checks in industrial sectors where print-
ing accurate colors is key, thereby providing them with an
objective measure of the difference of two printed colors. The
developed tool can also help establish the most accurate level
of color tolerance of the production process. This lets the color
vary a little bit, making the process cost-effective with no
influence on the final quality that the customer perceives.
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