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ABSTRACT
The inclusion of tracking technologies in personal devices opened
the doors to the analysis of large sets of mobility data like GPS
traces and call detail records. This tutorial presents an overview of
both modeling principles of human mobility and machine learning
models applicable to specific problems. We review the state of the
art of five main aspects in human mobility: (1) human mobility data
landscape; (2) key measures of individual and collective mobility; (3)
generative models at the level of individual, population and mixture
of the two; (4) next location prediction algorithms; (5) applications
for social good. For each aspect, we show experiments and simula-
tions using the Python library "scikit-mobility" developed by the
presenters of the tutorial.
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1 TOPIC AND RELEVANCE
The availability of geo-spatial mobility data (e.g., GPS traces, mobile
phone records, social media records) is a trend that will grow in the
near future. In particular, this will happen when the shift from tra-
ditional vehicles to autonomous, self-driving, vehicles, will change
individual and public transportation, transforming our society, the
economy and the environment. For this reason, understanding and
modeling human mobility is of paramount importance for many
This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6675-5/19/05.
https://doi.org/10.1145/3308560.3320099

present and future applications such as traffic forecasting, urban
planning, estimating migratory flows, and epidemic modeling [12].
In this tutorial we will present a concise and intuitive overview on
both the fundamental modeling principles of human mobility and
artificial intelligence models applicable to specific mobility-related
problems1. Starting from the general laws that govern humanmobil-
ity, we will drive the audience through the main models for human
mobility highlighting the parallelism between statistical and deep
learning models, presenting the recent advances of the latter that
are nowadays representing the state-of-the-art in many human
mobility tasks, like next location prediction. To this end, we will
review the state of the art of five aspects:

(1) The human mobility data landscape
A natural starting point is to describe the nature of empir-
ical data which has been used in mobility research. In this
part, we outline the main data sources available for mobility
research and the relevant information that can be extracted
from them. [3, 4, 6, 17, 35]

(2) Under the microscope: Measuring individual and col-
lective mobility patterns
In this part, we will review some of the fundamental metrics
and representations used to characterize human mobility,
such as trip distance [8, 13], radius of gyration [13, 24, 25],
mobility entropy [19, 34], origin-destination matrix [7], mo-
bility motifs [30], and more.

(3) Agents on the move: simulating mobility patterns
This part will review the state of the art for generative mod-
els at both the individual level (i.e., generation of individual
spatio-temporal trajectories) [2, 15, 23–25, 33] and the popu-
lation level (i.e., generation of mobility flows) [16, 31, 32, 39].

(4) Where’s next? AI for human mobility
After a short review of various artificial intelligence and
machine learning models for human mobility [21, 22, 36, 38,
43] we will review recent advances based on deep learning,
with particular focus on next location prediction [10, 18, 40,
41, 44].

(5) Humanmobility for SocialGood and future challenges
In this part, wewill show how developing accurate predictive
and generative mobility models can be greatly beneficial for
several aspects of social good, from mobility in emergency

1The online version of the tutorial and all the updated material can be found at
https://humanmobility-tutorial.github.io/
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scenarios [14] to the prevention of epidemic diffusion [9],
nowcast well-being [26] and even the design of more sus-
tainable smart cities [11]. We will discuss about present and
future challenges on mobility-related problems such as ride-
sharing [29], automatic discovery of urban regions [37, 42],
prediction of health from human displacements [1, 5] and
traffic forecasting [20, 28]. Finally, we discuss privacy issues
related to the analysis of human mobility data [27].
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