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Artificial Collinear Lagrangian Point Maintenance
with Electric Solar Wind Sail
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Abstract—This paper discusses the maintenance of an L1-
type artificial equilibrium point in the Sun-[Earth+Moon] cir-
cular restricted three-body problem by means of an Electric
Solar Wind Sail. The reference configuration instability is
compensated for with a feedback control law that adjusts the
grid voltage as a function of the distance from the natural L1

point. Two different control strategies are analyzed assuming
the solar wind fluctuations to be modelled through a statistical
approach.

Index Terms—Electric Solar Wind Sail, artificial Lagrangian
equilibrium point, solar wind fluctuations, circular restricted
three-body problem

I. Introduction

AN Electric Solar Wind Sail (E-sail) is an innova-
tive propulsion system, invented in 2004 by Pekka

Janhunen [1], which generates a propulsive acceleration
by exploiting the solar wind dynamic pressure through
the electrostatic interaction between a grid of charged
tethers and the solar wind ions. After an on-ground
experimental campaign [2], [3], the first in-flight testing
of E-sail technology is being attempted in a geocentric
environment by flying a variant of the E-sail working
principle, the plasma brake [4], [5], [6]. The latter is a
deorbiting system, consisting of a single charged tether
that interacts with ions in the ionosphere to generate a
drag. The first test was tried by the Estonian satellite
EstCube [7], but a failure to the tether unreel mechanism
occurred [8]. Currently, the Finnish Aalto-1 [9] satellite is
equipped with a plasma brake tether that should enable
an end-of-life deorbiting [10].

The major advantage of an E-sail-based spacecraft over
more conventional systems is in its capability of providing
thrust without consuming any propellant mass [11], [12],
[13], [14], in a similar way to a solar sail [15]. The latter
however uses the interaction of the solar radiation pressure
with a large and highly reflective surface. The peculiarity
of propellantless propulsive systems allows exotic mission
scenarios to be envisaged, such as the creation and mainte-
nance of an artificial equilibrium point (AEP) in which the
relative position of the spacecraft is constant with respect
to the Sun and the [Earth+Moon]. Indeed, because an
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AEP requires a continuous propulsive acceleration to be
used, such a mission application is especially well suited
for both solar sails [16], [17] and E-sails [18], [19]. The
equilibrium condition for an AEP maintenance may be
obtained by considering either the Sun’s gravity alone [20],
[21] or, more accurately, by taking into account the Sun-
[Earth+Moon] gravitational field, as is done in the cir-
cular [22] and in the elliptic [23] three-body problem. In
particular, this paper studies an L1-type AEP, generated
by means of a continuous outward radial propulsive ac-
celeration, capable of displacing the collinear Lagrangian
point L1 toward the Sun. The practical importance of such
an AEP is because a spacecraft placed at this point could
guarantee an early warning in case of catastrophic solar
events [17], a critical information for on-Earth communi-
cations and for orbiting satellites, especially in view of
future manned mission toward the Moon or Mars [24].
Other possible mission scenarios aimed at Solar System
exploration and involving an AEP-based orbit have been
proposed in the literature [25], [26], [27], [28].

The design of an L1-type AEP mission is complicated
by the fact that the dynamics of a spacecraft placed at
such an equilibrium point is known to be intrinsically
unstable, so that the maintenance of its equilibrium po-
sition can only be achieved by means of an active control
system. As far as solar sails are concerned, the possibility
of properly adjusting their thrust magnitude by means
of electrochromic materials has been firstly proposed in
Ref. [29]. This concept has been tested in space by the
Japanese IKAROS mission [30], and applied to AEP-
maintenance in Refs. [16], [17]. In principle, a solar balloon
can also be used as a sort of spherical solar sail, instead of
a conventional flat (or nearly flat) reflective surface. When
the balloon is inflated with gas, it expands (contracts) as
the solar distance decreases (increases), with the effect
of adjusting the propulsive acceleration magnitude and
passively maintaining the spacecraft in the vicinity of the
collinear AEP [31]. However, preliminary results obtained
with typical values of the thermo-mechanical properties
of the film material coating the solar balloon are not
promising, and suggest that the contribution of such a
passive control system to orbital stability is negligible [32].
As far as an E-sail propulsion system is considered, the
only way to guarantee an L1-type AEP maintenance is by
means of an active control system that modifies the E-sail
grid voltage as a function of the spacecraft heliocentric
position and velocity.

The aim of this paper is to preliminarily investigate the
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two-dimensional dynamics of an E-sail-based spacecraft
near an L1-type AEP in the presence of an active control
system capable of modulating the grid electric voltage,
in order to estimate the performance level necessary for
orbital maintenance. The analysis is first conducted under
the assumption of constant solar wind properties. Then,
in analogy with the recent approach of Refs. [33], [34],
the variability of the solar environment is taken into
account by modelling the solar wind dynamic pressure as
a random variable, of which the statistical distribution is
reconstructed from available in-situ measurements. In this
latter case, the control law design is much more involved,
since the electric voltage modulation also depends on the
solar wind dynamic pressure fluctuations. The analysis
discussed in this work is confined to collinear L1-type
AEPs and assumes an early solar warning mission sce-
nario, in which AEPs lie on the Ecliptic plane and are
located between the Sun and the [Earth+Moon]. Indeed,
an AEP placed above or below the Ecliptic plane would
be more demanding to obtain in terms of required propul-
sive acceleration magnitude, without any advantage in
terms of early warning time compared to an AEP placed
on the Ecliptic. Moreover, unlike an out-of-plane AEP,
the maintenance of a collinear L1-type Lagrangian point
requires a stable Sun-facing configuration [35], in which
the spacecraft main body (including the communication
subsystem) is located along the Sun-Earth line. On the
other hand, ground communications could be interfered
by the Sun’s activity if the spacecraft were located exactly
on the L1-type AEPs. In fact, in that case, the telemetry
signal would be mixed in the (strong) background solar
radiation, which would lead to a too low value of the signal-
to-noise ratio. For this reason, a scientific mission towards
an L1-type AEPs should plan the use of a (large enough)
artificial Lissajous orbit. Finally, note that the transfer
phase, from launch to the design AEP, is not considered
this analysis. In fact, since an E-sail is capable of providing
thrust only when there is no shielding action due to a
planetary magnetic field, the velocity increment required
to leave the Earth’s magnetosphere must be provided by
the upper stage of the launch vehicle, while the heliocentric
transfer phase has been investigated elsewhere [36] in an
optimal framework.

The manuscript is structured as follows. First, par-
alleling the procedure proposed by Aliasi et al. [22], a
mathematical model describing the spacecraft dynamics
around an L1-type AEP is given, using the recent E-
sail thrust model [37] to describe the propulsive accelera-
tion magnitude and its direction. Then, an active control
system is introduced in the model, and its capability of
generating a stable dynamics around the AEP is inves-
tigated. The results are first presented by considering a
deterministic space environment, and then by considering
the fluctuations of the solar wind dynamic pressure. In the
latter case the control law is suitably modified. Finally, the
conclusion section summarizes the main outcomes on the
work, and suggests possible future developments.

II. Mathematical model

Consider a spacecraft with a continuous-thrust
propulsion system, which is moving within the Sun-
[Earth+Moon] gravitational field. The spacecraft total
mass m is negligible when compared to the Sun’s
mass m� and the [Earth+Moon]’s mass m⊕, so that
the celestial bodies cover a circular orbit around their
barycenter, without being affected by the presence of the
spacecraft. It is convenient to use the standard notation
of the circular restricted three-body problem (CR3BP).
To that end, introduce a three-dimensional Cartesian
synodic reference frame T (C; î, ĵ, k̂) with unit vectors
{̂i, ĵ, k̂}, of which the origin C is located at the system’s
barycenter. The unit vector î lies along the Sun-Earth
line, k̂ is perpendicular to the Ecliptic, and ĵ completes
the right-handed frame; see Fig. 1. Finally, the spacecraft
and the propulsive acceleration vector always lie on the
Ecliptic.

Let G denote the universal gravitational constant, µ ,
m⊕/(m⊕ + m�) ≈ 3.0404 × 10−6 the dimensionless mass
of [Earth+Moon], and l , 1 au the Sun-[Earth+Moon]
reference distance. Note that l is constant in the CR3BP
and is used as a scaling length of the problem. Accordingly,
the Sun and the [Earth+Moon] are placed at a distance
l µ and l (1 − µ) from C, respectively. The dimensionless
position vectors of the spacecraft with respect to the Sun,
the [Earth+Moon], and the system’s barycenter C, are
referred to as ρ�, ρ⊕, r, respectively, with ρ� ,

∥∥ρ�

∥∥
and ρ⊕ ,

∥∥ρ⊕

∥∥; see Fig. 1. With simple geometrical
considerations, these vectors are related to each other by
the following expressions

ρ⊕ = ρ� − î , r = ρ� − µ î (1)

Let ω⊕ k̂ be the constant angular velocity of the synodic
reference frame T with respect to an inertial reference
frame, where ω⊕ ,

√
G (m� +m⊕)/l3 = 2π rad/year.

The scaling time of the CR3BP is chosen to be ω−1
⊕ =√

l3/G (m� +m⊕). In analogy with Refs. [22], [38], the
spacecraft equation of motion in the CR3BP may be
written in dimensionless terms as

r̈ + 2 k̂ × ṙ + k̂ ×
(
k̂ × r

)
+

1− µ
ρ3�

ρ� +
µ

ρ3⊕
ρ⊕ = a (2)

where a is the dimensionless propulsive acceleration vec-
tor. In Eq. (2), the dot symbol denotes a derivative taken
with respect to the dimensionless time ω⊕ t, which may
equivalently be converted into a derivative with respect to
a polar angle (measured counterclockwise from a generic
inertially-fixed direction) by recalling that ω⊕ is constant.

A. L1-type AEP

Equation (2) can be specialized to describe the orbital
dynamics of a spacecraft placed at an L1-type AEP. In
that case, illustrated in Fig. 2, the spacecraft is at an
equilibrium position in the synodic reference frame T , and
lies on the Sun-Earth line at a (dimensionless) distance
ρ�0
∈ (0, 1) from the Sun, viz.

ρ�0
= ρ�0

î (3)
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ĵ

ˆ�
�
k

k̂

Figure 1. Geometrical sketch of the planar circular restricted three-body problem (CR3BP). Adapted from Ref. [22].

where the subscript 0 identifies a nominal and unperturbed
condition.
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Figure 2. Sketch of the AEP maintenance mission scenario. Adapted
from Ref. [33].

From Eqs. (1), the position vector r0 and the Earth-
spacecraft vector ρ⊕0

can be rewritten as

ρ⊕0
= − (1− ρ�0

) î , r0 = (ρ�0
− µ) î (4)

To maintain such an AEP, the time derivatives of the
position and velocity vectors must be set equal to zero,
that is

r̈0 = ṙ0 = 0 (5)

When Eqs. (3)–(5) are substituted into Eq. (2), the latter
provides the equilibrium condition along the radial direc-
tion, or

a0 =

[
−(ρ�0

− µ) +
1− µ
ρ2�0

− µ

(1− ρ�0
)2

]
î (6)

which gives the required dimensionless propulsive accel-
eration a0 for an L1-type AEP maintenance. Note that
the direction of a0 must be along the Sun-spacecraft
line. Equation (6) is general, in that it is independent
of the specific propulsion system, and must therefore be
specialized to the E-sail case by introducing a suitable
thrust model.

B. E-sail thrust model

The recent E-sail thrust model proposed by Huo et
al. [37] is here used to describe the spacecraft propulsive
acceleration vector a. Starting from the results of Ref. [39],
Huo et al. express the thrust vector T generated by an E-
sail as

T = mτ
ac
2

(
1

ρ�

)[
ρ̂� +

(
ρ̂� · n̂

)
n̂
]

(7)

where ρ̂� , ρ�/ρ� is the Sun-spacecraft unit vector, n̂ is
the unit vector normal to the E-sail nominal plane in the
direction opposite to the Sun, τ ∈ {0, 1} is a dimensionless
parameter that models the possibility of switching either
on (τ ≡ 1) or off (τ ≡ 0) the electron gun that maintains
the E-sail grid voltage, and ac denotes the characteristic
acceleration, that is, the maximum magnitude of the
propulsive acceleration at a Sun-spacecraft distance equal
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to l. According to Ref. [37], the characteristic acceleration
is

ac =
0.18N L

m
(V − Vw)

√
ε0 p⊕ '

0.18N LV

m

√
ε0 p⊕

(8)
where N is the number of tethers of the grid, L is the
tether length, V is the grid voltage, Vw is the electric
potential corresponding to the kinetic energy of the solar
wind ions, ε0 is the vacuum permittivity, and p⊕ is the
solar wind dynamic pressure at 1 au from the Sun. The
approximated final expression of Eq. (8) is justified by the
fact that V is on the order of tens of kV [40], whereas Vw is
about 1 kV only [37]. The value of ac depends on the E-sail
design parameters, the grid voltage and the environmental
conditions. As such, as long as the fluctuations of the solar
wind dynamic pressure are neglected and the grid voltage
is fixed, ac is constant.

Because an L1-type AEP can be maintained by means of
a continuous thrust only, the switching parameter is τ ≡ 1;
see Eq. (8). Moreover, the required propulsive acceleration
is purely radial, see Eq. (6), and so the E-sail is always at
a Sun-facing condition (that is, n̂ ≡ ρ̂�), even when the
spacecraft position does not perfectly match that of the
AEP. Note that the assumption of a Sun-facing E-sail at-
titude is supported by the recent results of Refs. [35], [41],
[42], which state that the Sun-facing attitude is a stable
configuration for a spinning and axially-symmetric E-sail
with a uniform grid voltage. In this case, bearing in mind
Eq. (7) and the definition of {l, ω⊕}, the dimensionless
propulsive acceleration vector is given by

a =
ac l

2

G (m⊕ +m�)

(
1

ρ�

)
ρ̂� (9)

In analogy with Ref. [22], Eq. (9) can be conveniently
rewritten as

a =
β (1− µ)

ρ�
ρ̂� (10)

where β is a dimensionless performance parameter, defined
as

β ,
ac

Gm�/l2
(11)

Note that β is proportional to the characteristic accelera-
tion, and its value coincides with the ratio of the maximum
propulsive acceleration that the E-sail can generate at
a distance of 1 au from the Sun to the local gravity
attraction.

Substituting Eq. (10) into Eq. (6), the nominal value
of lightness number necessary for maintaining an L1-type
AEP is

β0 = β0L1
,

1

ρ�0

− µρ�0

1− µ

[
ρ�0

µ
− 1 +

1

(1− ρ�0
)2

]
(12)

The corresponding characteristic acceleration ac0 required
for orbital maintenance is obtained from the definition
of β (see Eq. (11)), since ac0 = β0L1

(Gm�/l
2) '

5.93β0L1
mm/s2.

III. Linear stability of an L1-type AEP

The stability of an L1-type AEP can be investigated
with a linear approach. Paralleling the discussion of
Ref. [31] for a solar sail-based spacecraft, the state vector
of the dynamical system and its derivative are defined as

x ,


x− ρ�0

+ µ
y
ẋ
ẏ

 , ẋ ,


ẋ
ẏ
ẍ
ÿ

 (13)

where x and y (or ẋ and ẏ) are the components of the
position (or velocity) vector, which are measured in the
synodic reference frame T along the radial (̂i) and the
transverse (ĵ) direction, respectively. The state vector x
is decomposed into the sum of the nominal (equilibrium)
state x0, corresponding to the AEP, and a small pertur-
bation vector δx = [δx, δy, δẋ, δẏ]T such that

x = x0 + δx ≡ δx (14)

Note that out-of-plane perturbations (both in position and
velocity components) are not included in this analysis. In
fact, it is well known that they would generate an oscillat-
ing dynamics along the k̂-direction, without affecting the
system stability.

Substituting Eq. (14) into Eq. (2), subtracting the un-
perturbed solution expressed by Eq. (6), and neglecting
the second-order perturbation terms, the dynamics of the
linearized system can be written in matrix form as

ẋ = Ax (15)

where

A ,


0 0 1 0
0 0 0 1
a31 0 0 2
0 a42 −2 0

 (16)

with

a31 = 2 +
2µ

(1− ρ�0
)3

+
1− µ
ρ3�0

− µ

ρ�0

+
µ

ρ�0
(1− ρ�0

)2

(17)

a42 =
µ

ρ�0

− µ

ρ�0
(1− ρ�0

)3
(18)

For a given value of ρ�0
∈ (0, 1), the matrix A has

one eigenvalue with positive real part, and so the two-
dimensional dynamics of an E-sail-based spacecraft in the
vicinity of an L1-type AEP is intrinsically unstable, in
accordance with the results of Refs. [22], [31]. A suitable
control system is therefore required to maintain the arti-
ficial collinear point.

A. Active control system

The previous analysis has shown that the maintenance
of an L1-type AEP is possible only by means of an active
control system, of which the aim is to adjust the E-sail grid
voltage V in order to modify the characteristic acceleration
value ac (or β); see Eqs. (8) or (11). The performance
parameter is therefore written as β = β0 + δβ, where β0
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is given by Eq. (12) and δβ is the contribution due to the
grid voltage variation, which is assumed to be sufficiently
small. The linearized equation of the system becomes

ẋ = Ax+ B δβ (19)

where A is given by Eq. (16), and B is defined as

B ,


0
0

(1− µ)/ρ�0

0

 (20)

A proportional-derivative feedback control law is now
introduced, in the form

δβ = −Kx (21)

with
K ,

[
k1 0 k2 0

]
(22)

where k1 ≥ 0 is the proportional gain, whereas k2 ≥ 0
is the derivative gain, that is, δβ = −k1 δx − k2 δẋ. The
dynamics of the controlled system becomes

ẋ = (A− BK) x = Cx (23)

and the system stability depends on the eigenvalues of
the matrix C , A − BK, where A, B, and K are given
by Eqs. (16), (20), and (22), respectively. Recalling the
definitions of matrices {A, B, K}, the stability of an L1-
type AEP only depends on µ (which is determined by
Sun’s and [Earth+Moon]’s masses), on the nominal Sun-
spacecraft distance ρ�0

, and on the control gains {k1, k2}.

B. Case of fluctuating solar wind dynamic pressure

The thrust model used so far and expressed by Eqs. (7)–
(8) is based on the assumption that the solar wind dy-
namic pressure p⊕ is time-constant and isotropic (i.e., it
is independent of heliocentric latitude and polar angle).
While isotropy is fairly realistic in a two-dimensional
dynamics, the time invariance is not supported by in-situ
measurements, which instead reveals that the solar wind
is highly unpredictable and the dynamic pressure has a
chaotic behaviour [43]. Indeed, the fluctuations of the solar
wind dynamic pressure are on the same order of magnitude
as its mean value and show almost no regularity. To
verify the effectiveness of the proposed control laws in a
realistic environment, the value of p⊕ in Eq. (8) is therefore
conservatively modelled as a random variable, of which the
instantaneous value is independent of the previous ones,
in accordance with the approach of Refs. [33], [34]. The
probability density function (PDF) used to model p⊕ is
artificially-reconstructed, based on available experimental
measurements, with the procedure discussed in Ref. [34].

A grid voltage adjustment in response to a fluctuating
solar wind dynamic pressure p⊕ is assumed in analogy with
Refs. [33], [34], [44], [45], and is obtained as follows. First,
the total flight time T is divided into legs of 1 day. Previous
studies suggest that the length of time legs does not
significantly affect the results, as soon as the selected value
is on the order of some hours [34]. At the beginning of each

leg, a value of p⊕ is randomly generated, with the PDF
given in Ref. [34], and the E-sail grid voltage is adjusted so
as to meet the nominal value of the performance parameter
β0. In practice, recalling that Vw � V , the desired grid
voltage Vopt at the beginning of a (generic) leg, is found
as

Vopt(t) = V0

√
p⊕

p⊕(t)
(24)

where p⊕ , 2 nPa is the mean value of the solar wind
dynamic pressure at 1 au from the Sun, and V0 , 25 kV
is the nominal E-sail grid voltage [40]. However, because
the E-sail grid voltage cannot exceed a maximum value, a
saturation constraint on V is introduced, that is,

V ≤ Vmax (25)

where Vmax is the maximum allowable value of V . The
voltage adjustment is therefore

V (t) =

{
Vopt(t) if Vopt(t) ≤ Vmax

Vmax if Vopt(t) > Vmax

(26)

where Vopt is given by Eq. (24). Note that, unlike Refs. [34],
[33], no constraint is introduced on the maximum allowable
voltage variation. Indeed, preliminary results suggest that
the typical characteristic time required for grid voltage
adjustment is on the order of a few minutes only. The
new value of β0(t) is obtained by combining Eqs. (8), (11)
and (24), that is

β0(t) =


β0L1

if Vopt(t) ≤ Vmax

β0L1

Vmax

V0

√
p⊕(t)

p⊕

if Vopt(t) > Vmax

(27)

where β0L1
and Vopt(t) are given by Eqs. (12) and (24), re-

spectively. Then, p⊕ (and so β0) is kept constant through-
out the leg, and Eq. (2) is integrated with an orbital
propagator until the end of the leg, when a new value of p⊕

is generated and the procedure is restarted. The algorithm
stops when the total desired flight time is reached, that is,
t ≡ T .

IV. Numerical simulations

As discussed in the previous section, the stability of
an L1-type AEP in the Sun-[Earth+Moon] gravitational
field only depends on ρ�0

and the control gains {k1, k2}.
However, the necessary performance level of the E-sail
is also influenced by the value of ρ�0

, so that an AEP
close to the Sun could be theoretically stable, but prac-
tically impossible to be maintained due to the severe
technology requirements. Three possible values of Sun-
AEP distance l ρ�0

have been considered, that is, l ρ�0
=

[0.987730, 0.980521, 0.943555] au, corresponding to ac0 =
[0.1, 0.3, 1] mm/s2, which are compatible with a near-,
mid- or far-term technology level, respectively. In a solar
warning mission case [17], the selected values of Sun-AEP
distance could guarantee an early warning time of about
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[1.27, 2.02, 5.86] hours, with a substantial improvement
compared to that of NASA’s ACE mission [46], which is
tracking a Lissajous orbit around L1 since 1997, with a
warning time of about 1 hour.

To check the stability of the controlled system, the
eigenvalues of the C matrix are calculated for each value of
ρ�0

as a function of the control gains {k1, k2}; see Eq. (23).
Then, some numerical tests are performed by simulating
the orbital dynamics of an E-sail by means of a variable
order Adams-Bashforth-Moulton solver scheme [47], [48].
The initial conditions are chosen in the vicinity on an L1-
type AEP, with a small initial perturbation δxin , δx(tin)
(with tin , 0) which models an orbital insertion error.
According to Folta et al. [49], the initial errors in the
Earth-Moon gravitational field may be set equal to 1 km
(position error) and 1 cm/s (velocity error) in each direc-
tion. In our case, taking into account the different length
and time scales of the Earth-Moon CR3BP with respect to
the Sun-[Earth+Moon] CR3BP, the position (or velocity)
error is increased by three (or two) order of magnitudes,
thus obtaining an initial position error of 1000 km and an
initial velocity error of 1 m/s in both radial and transverse
directions. These values, when expressed in dimensionless
form in the synodical frame T , are

δxin =


6.684× 10−6

6.684× 10−6

3.357× 10−5

3.357× 10−5

 (28)

The vector δxin of Eq. (28) is used as the initial perturba-
tion for all simulations. Two cases will now be discussed,
according to whether the solar wind dynamic pressure is
constant or modeled as a random variable.

A. Proportional control law

Assume first that the grid voltage is adjusted with a
simple proportional feedback control. This amounts to
setting k2 = 0 in the K matrix of Eq. (22), so that the
variation of β only depends on the radial distance from
the spacecraft and the AEP, that is, δβ = −k1 δx.

Figure 3 shows the real parts of the eigenvalues λi (with
i = 1, . . . , 4) of the closed-loop matrix as a function of k1,
using three different values of the nominal characteristic
acceleration. Clearly, one eigenvalue has a positive real
part when k1 < k?, thus implying system instability.
When k1 > k?, instead, the AEP is marginally stable,
that is, the perturbed dynamics oscillates in the vicinity
of the nominal position. The value of k? depends on the
nominal characteristic acceleration ac0 or, equivalently,
on the Sun-AEP distance ρ�0

. It may be verified that
k? ' 6.272, 3.816, or 3.043, when ac0 = 0.1, 0.3, or
1 mm/s2, respectively, as is illustrated in Fig. 3.

Figure 4 shows the evolution of the spacecraft position
on the Ecliptic calculated with an orbital propagator,
assuming l ρ�0

= 0.980521 au (that is, ac0 = 0.3 mm/s2)
and k1 = 5, which corresponds to a marginally stable
condition. Recall that the initial perturbation vector is
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(a) ac0 = 0.1 mm/s2.
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(b) ac0 = 0.3 mm/s2.
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Figure 3. Real parts of eigenvalues λi (i = 1, . . . , 4) as a function of
k and ac0 for a proportional control law.

given by Eq. (28), while the total simulated flight time is
T = 50 years. The motion remains bounded in the vicinity
of the AEP (marked with a green point) and the maximum
distance from the AEP is 4.93 × 10−5 au ' 7 381 km.
The maximum variation of β with respect to its nominal
value given by Eq. (12) is on the order of 0.35% only.
In other terms, an orbital maintenance is possible with
very small variations of the grid voltage only, since V
is directly proportional to β; see Eqs. (8) and (11). The
simulations obtained with other values of ρ�0

and k1
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provide similar results, and are not reported here for the
sake of conciseness.
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Figure 4. Two-dimensional distance with respect to the AEP (green
point) for a E-sail-based spacecraft with proportional control system
(k1 = 5, k2 = 0) with initial conditions given by Eq. (28) (red point).

B. Proportional-derivative control law

The previous discussion has shown that a purely-
proportional feedback control system can only generate
an oscillatory dynamics around the AEP. If the space-
craft is required to return in the vicinity of the nominal
position, a proportional-derivative control law could solve
the problem. In this case the gains k1 and k2 in the K
matrix of Eq. (22) are both different from zero, and β
becomes a function of the radial distance from the AEP
and the radial component of the spacecraft velocity, that
is, δβ = −k1δx− k2δẋ.

The real parts of the eigenvalues λi (with i = 1, . . . , 4)
of the closed-loop matrix are shown in Fig. 5 as a function
of ac0 and of the gains, which, in analogy with Ref. [31],
are assumed to take the same numerical value, that is,
k1 = k2 = k. Figure 5 shows that a stable dynamics
is possible only if k > k?, where k? coincides with the
value found with a proportional control law. This result
confirms that the stability of the system is influenced
by the proportional gain k1 only, whereas the derivative
gain k2 introduces some damping in the motion along
the radial component. Indeed, a proportional-derivative
control law (with k > k?) guarantees all of the eigenvalues
to have negative real part, which implies an asymptotically
stable motion around the L1-type AEP. However, because
the real part of the dominant pole has a very small
modulus, the system approaches the design AEP with a
slow dynamics.

Figure 6 shows the two-dimensional dynamics of the
system starting in the vicinity of an AEP with l ρ�0
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Figure 5. Real parts of eigenvalues λi (i = 1, . . . , 4) as a function of
k and ac0 for a proportional-derivative control law.

0.980521 au (corresponding to ac0 = 0.3 mm/s2). The
proportional and derivative gains are chosen as k1 = k2 =
5, and the total simulated flight time is T = 50 years.
In this case, the maximum distance between the AEP
and the E-sail is 3.02 × 10−5 au ' 4 514 km, whereas
the maximum required variation of grid voltage amounts
to 0.40% of the nominal value. These values both have
the same order of magnitude than those found in the
proportional control case. Even though the derivative gain
gives an asymptotical convergence to the AEP, the settling
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time is long, since the spacecraft-AEP distance is still
larger than 1000 km after 1 year and becomes practically
negligible only after 4 years of flight time. Therefore, the
advantages with respect to a proportional control system
are not substantial from a mission design viewpoint.
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Figure 6. Two-dimensional distance with respect to the AEP (green
dot) for a E-sail-based spacecraft with proportional-derivative control
system (k1 = k2 = 5) and initial conditions given by Eq. (28) (red
dot).

Other simulations have been performed by further in-
creasing the derivative gain k2, but the results do not
substantially change, while the voltage variations im-
posed by the control system increase up to unfeasible
values. These considerations suggest that a proportional-
derivative control system does not guarantee a sufficient
improvement with respect to a proportional control, since
the characteristic time required to damp out the oscil-
lations around the AEP are long, when compared to a
typical mission duration of an orbiting spacecraft. There-
fore, taking into account the increased complexity of the
control system, and the difficulty of accurately measuring
the radial component of velocity (which is necessary in
a proportional-derivative control), a simple proportional
control probably represents the best compromise solution
between performance and complexity.

Finally, the proposed control law has also been tested
in a more complex scenario, that is, in an elliptic re-
stricted framework, in which the actual eccentricity of the
[Earth+Moon] heliocentric orbit is taken into account. The
mathematical model used in the numerical simulations has
been adapted from Ref. [16]. The numerical results are
obtained by simulating a total flight time T = 50 years
with the same initial conditions and control gains used
for the simulations reported in Figs. 4 and 6. Using a
proportional control law the maximum AEP-spacecraft
distance is 7.23 × 10−4 au ' 108 184 km, while using a
proportional-derivative control law this value reduces to

4.04 × 10−4 au ' 60 010 km, with a settling time further
increased with respect to the circular case. The maximum
lightness number variation amounts to 3.06% (or 1.30%)
of the nominal value for the proportional (or proportional-
derivative) control law case, including the contribution re-
quired to compensate the Sun-AEP distance variation due
to planetary orbital eccentricity. These results show that
the [Earth+Moon]’s orbital eccentricity does not change
the control law effectiveness, and that the (pulsating) AEP
maintenance is still feasible and compatible with typical
mission requirements. The previous considerations about
the CR3BP case, according to which a proportional control
system is a good compromise between performance and
complexity, still apply to the elliptic case.

C. Results with a varying solar wind dynamic pressure

The performance of a proportional control system in a
CR3BP framework are now verified in a more realistic
environment, in which the solar wind dynamic pressure
is time-varying. Using the above described procedure, a
numerical simulation with l ρ�0

= 0.980521 au and δxin of
Eq. (28) is performed for a total flight time of T = 10 years,
comparable with the duration of a deep space mission.
Because the results of Refs. [33], [34] suggest a large
saturation voltage to be required for orbital maintenance,
a value of Vmax = 80 kV is chosen for the simulations. A
number of 100 simulations have been performed, and the
mean value of the distance is about 26 123 km, while the
global maximum amounts to 176 335 km. For exemplary
purposes, Fig. 7 shows a time-history of the radial coordi-
nate, which compares the AEP position (green line) with
the perturbed trajectories in the synodic frame, obtained
by assuming either a constant (black line) or a variable
(blue line) solar wind dynamic pressure. Although the
distance from the AEP has increased with respect to the
previous cases, the spacecraft is still able to provide an
early warning in case of catastrophic solar events. Finally,
note that the introduction of an out-of-plane perturbation
(both in position and velocity) does not significantly affect
the results even in presence of a fluctuating solar wind
dynamic pressure. Indeed, the mean and maximum values
of the position error are very close to that obtained for the
planar case.

V. Conclusions

A spacecraft propelled by an Electric Solar Wind Sail
may generate an artificial equilibrium point in the Sun-
[Earth+Moon] gravitational field. In particular, with ref-
erence to an L1-type artificial equilibrium point, its orbital
maintenance is complicated by the intrinsic instability of
such a position. However, a control system capable of
adjusting the grid voltage of the Electric Solar Wind Sail
is able to overcome this issue.

A proportional and a proportional-derivative control
law have been discussed with a linear approach, which
allows the minimum values of the system gains neces-
sary for stability to be obtained numerically. The volt-
age variations imposed by the control system and the
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Figure 7. Time history of the radial coordinate x with ρ�0 =
0.980521 in the case of constant (black) or fluctuating (blue) solar
wind dynamic pressure with Vmax = 80 kV, compared with the AEP
position (green).

maximum distances from the nominal position are found
to be small. A proportional control system could only
guarantee marginal stability (with an oscillating dynam-
ics), while a proportional-derivative control system may
provide asymptotic stability. However, since in the latter
case the characteristic times are on the order of years, the
former solution is advisable, due to its design simplicity.
The proportional control system may be effectively used
even when the random fluctuations of the solar wind
dynamic pressure are taken into account. Further work will
concentrate on the inclusion of the orbital eccentricity of
the primary bodies, and on the control problem within a
three-dimensional dynamics. In particular, the impact of
electromagnetic interferences generated by grid charging
and discharging on the communication subsystem needs
to be better analyzed and quantified. In this regard, a
possible research extension is about the development of
a control law for applications to Lissajous orbits around
the (design) artificial equilibrium point.
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