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Abstract: The syntheses of six thiol-exhibiting monosaccharides towards suicide inhibition of
Helicobacter pylori are reported. Blood group Antigen Binding Adhesin (BabA), a bacterial
membrane-bound lectin, binds to human ABO and Lewis b blood group structures displayed
on the surface of host epithelial cells. Crystal structures of the carbohydrate-recognition domain
revealed a conserved disulfide bonded loop that anchors a critical fucose residue in these blood group
structures. Disruption of this loop by N-acetylcysteine results in reduced BabA-mediated adherence
to human gastric tissue sections and attenuated virulence in Lewis b-expressing transgenic mice.
With a view of creating specific inhibitors of the lectin, we designed and successfully synthesised
six fucose-derived compounds with thiol motifs to engage in a thiol-disulfide exchange with this
disulfide bond of BabA and form a glycan-lectin disulfide linkage. Branching and extending the
fucose backbone with 2- and 3-carbon thiol motifs delivered a range of candidates to be tested for
biological activity against BabA.
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1. Introduction

Helicobacter pylori, a Gram-negative helical-shaped bacterium, infects the stomach of almost 50%
of the population [1–3]. Though most infections tend to be asymptomatic, in up to 10% of carriers,
H. pylori is associated with the development of diseases such as gastritis, peptic ulcers and, in extreme
cases, stomach cancers [4–8]. The bacterium survives the harsh acidic conditions of the stomach due to
generation of ammonia and bicarbonate from epithelial urea and buries itself into the gastric mucosa,
where the pH is relatively neutral [9,10]. Current treatments for infections have moved towards
combination therapies, which involve the use of a proton-pump inhibitor and at least two antibiotics
due to increasing levels of antibiotic resistance [11–15].

Binding of H. pylori to host epithelial cells is multivalent, but a prominent interaction is that of
the blood group Antigen Binding Adhesin BabA to human ABO and Lewis b blood group structures
of the lacto series displayed on the surface of the cells [16,17]. Transfer of effector proteins like VacA
and CagA is facilitated through this binding, which increases the virulence of BabA-positive strains.
Studies have shown that strains which are triple-positive for BabA, VacA and CagA are significantly
more likely to cause gastric diseases [18].

Moonens et al. reported a series of crystal structures of the carbohydrate-recognition domain of BabA
bound to a Lewis b hexasaccharide synthesised in our group [19–21]. Structures of BabA originating
from different clinical isolates showed a highly polymorphous binding site, with the exception of a
fucose-binding subsite. A particular paratope, Cysteine-clasped Loop 2 (CL2), was observed to be
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strongly conserved and served as a critical anchoring point for the binding of the α(1→2) linked fucose
residue in the blood group antigen structures (Figure 1).
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Figure 1. Highlighted in red is the fucose residue bound in CL2 of BabA [19].

CL2 was reported by Moonens et al. to contain a disulfide bond between Cys189 and Cys197,
constraining the loop into the conformation in which the α(1→2) fucose residue is bound [19].
Interestingly, they outlined that BabA-mediated adherence of H. pylori to human gastric tissue sections
was prevented through treatment with the redox reagent N-acetylcysteine (NAC). Furthermore,
Leb-expressing transgenic mice infected with H. pylori showed reduced bacterial titers and neutrophil
infiltration when their drinking water was dosed with NAC. The authors attributed these observations
to disruption of the Cys189-Cys197 disulfide bond, providing optimism for this to be a target of future
H. pylori inhibitors. However, due to the lack in binding specificity for the BabA carbohydrate binding
site, high doses of NAC are required to reduce the CL2 disulfide and inhibit BabA adherence [19].

Based on the proof-of-principle of NAC in diminishing H. pylori binding, we hypothesised that we
could design more specific redox-active inhibitors of BabA by mimicking the natural fucosyl epitope
of CL2 and introducing thiol moieties onto fucose-derived backbones. These compounds could then
potentially perform a thiol-disulfide exchange with the Cys189-Cys197 disulfide bond and act as
suicide inhibitors of BabA (Scheme 1).
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Scheme 1. Representation of possible thiol-disulfide exchange for inhibition of BabA.

Based on rational design, we targeted the syntheses of compounds 1–6 (Figure 2). The 2- and
3-carbon spacers were desired to enable reaching towards the disulfide bond in CL2. We decided to
synthesise α-O-methyl glycosides to stay consistent with the natural α-linkage, as shown previously in
Figure 1.

Targets 1 and 2 both exhibited axial thiol motifs from the 2-position, with the structures being
branched to attempt to maintain H-bonding interactions with the 2-OH. Inspired by the work of Cleator
et al., we envisioned proceeding via oxidation of the 2-position followed by addition of an alkenyl
Grignard reagent (Scheme 2) [22]. This would then provide us with a handle to perform thiol-ene
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reactions to introduce thiol groups. Since we predicted that the Grignard reaction would generate a
mixture of diastereomers, we chose to also synthesise equatorial thiol compounds 3 and 4.Molecules 2020, 25, x FOR PEER REVIEW 3 of 18 
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Scheme 2. Retrosynthetic pathway for targets 1–4 (PG = protecting group).

Given that the 4-substituent of L-fucose is natively axial, we aimed to take advantage of this by
extending the 4-position in targets 5 and 6, rather than branching at another location. Introduction
of a secondary amine at this position was also desired to aid in maintaining H-bonding interactions
within CL2. We decided to follow a similar pathway to Rabuka et al. and perform a double inversion
at the 4-position to introduce an axial azido group [23]. Reduction would then yield an intermediate
containing a primary amine (Scheme 3), with N-alkylation allowing us to introduce 2- and 3-carbon
spacers towards 5 and 6.
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Scheme 3. Retrosynthetic pathway of a key intermediate towards targets 5 and 6 (PG = protecting group).

For target 5, we proposed introducing the 2-carbon motif through N-alkylation with an alkyl
bromide containing a protected thiol (Scheme 4). Deprotection would then yield the final structure.

Towards target 6, we envisioned installing an N-allyl group and then performing a thiol-ene
reaction to introduce a protected thiol. Removal of the protecting groups would then afford the target
compound (Scheme 5).
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2. Results and Discussion

2.1. Branched Targets 1–4

In a telescoped procedure (Scheme 6) beginning from 3,4-isopropylidene protected compound 7,
the 2-OH was oxidised to the corresponding ulose with N-methylmorpholine N-oxide (NMO) and
catalytic tetrapropylammonium perruthenate (TPAP) [24–27]. This was then used in a Grignard
reaction with vinylmagnesium bromide, followed by acidic cleavage of the isopropylidene group,
yielding triols 8 (14%) and 10 (50%) over 3 steps. Compounds 9 (34%) and 11 (21%) were prepared in a
similar fashion over 3 steps using allylmagnesium bromide as the Grignard reagent. Each diastereomer
was separated by flash chromatography and the stereochemistry was assigned through analysis of
NOESY spectra.
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Scheme 6. Syntheses of alkenyl compounds 8–11. (a) NMO, TPAP (cat.), 4 Å molecular sieves, CH2Cl2,
rt, 1.5–2 h; (b) 1 M vinylmagnesium bromide/THF, toluene, 0 ◦C, 10 min; (c) 1 M allylmagnesium
bromide/Et2O, toluene, 0 ◦C, 10 min; (d) Dowex® (H+) resin, MeOH, rt, 16 h–48 h. Yields over 3 steps:
(8) = 14%, (10) = 50% (d.r. = 1:3.6); (9) = 34%; (11) = 21% (d.r. = 1.6:1).

Compounds 8, 9, 10 and 11 underwent AIBN-initiated thiol-ene reactions with thioacetic acid
to furnish corresponding thioacetate-containing compounds 12, 13, 14 and 15, respectively, in yields
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between 73% and 85% (Scheme 7). Deacetylation with freshly prepared, de-gassed NaOMe/MeOH
solution in dry, de-gassed MeOH yielded targets 1–4 in yields ranging from 92%–95%, with little to no
evidence of unwanted disulfide side-products. Monitoring of the deacetylations proved to be difficult
since the thioacetates and their corresponding free thiols had the same Rf values by TLC. However,
the reactions were observed to be complete in a short period of time (5–15 min) with longer reaction
times (16–18 h) leading to some disulfide formation.
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◦C, 3 h, (12) = 73%; (13) = 84%; (14) = 85%; (15) = 84%; (b) 0.4 M NaOMe/MeOH, MeOH, rt, 5 min, (1)
= 92%; (2) = 92%; (3) = 92%; (4) = 95%.

2.2. Extended Targets 5 and 6

Commencing with 2,3-butanediacetal (BDA)-protected compound 16, the 4-OH was triflated
with Tf2O in CH2Cl2/Py at −40 ◦C and subsequently displaced with Bu4NOAc, furnishing equatorial
4-OAc compound 17 in a 68% yield over 2 steps [28]. The Rf values of the triflate and 17 were
extremely similar by TLC and so mass spectrometry aided in monitoring of the displacement reaction.
Deacetylation under Zemplén conditions then yielded compound 18 (94%) [29,30]. Triflation, similar
to before, and SN2 inversion with NaN3 furnished 19 (70% over 2 steps). Pd-catalysed reduction of
the azido-group, under a H2 atmosphere, generated primary amine intermediate 20 in a 91% yield
(Scheme 8).
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Scheme 8. Synthesis of intermediate 20 via double inversion. (a) Tf2O, CH2Cl2/Py, −40 ◦C, 4 h;
(b) Bu4NOAc, toluene, rt, 14 h, 68% over 2 steps; (c) NaOMe (cat.), MeOH, rt, 19 h, 94%; (d) Tf2O,
CH2Cl2/Py, −20 ◦C, 4 h; (e) NaN3, DMF, 60 ◦C, 17 h, 70% over 2 steps; (f) H2 (5 bar), Pd/C (cat.), EtOH,
rt, 21 h, 91%.
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2.2.1. Target 5

Towards target 5, as detailed in Scheme 9, we opted to proceed via N-alkylation using alkyl
bromide 21 [31]. Alkylation of the primary amine of 20, in the presence of K2CO3 and KI, proceeded
in a 40% yield to furnish compound 22. When using these mild alkylation conditions, we typically
observed little to no over-alkylation of the amine; however, we suspect the diminished yield was due
to S→N acyl-transfer taking place as a side-reaction [32]. The BDA protecting group was then removed
in TFA/H2O, yielding 77% of diol 23. We often observed the formation of an amine-TFA salt during
this reaction, but stirring with Amberlyst® A21 resin afterwards removed any TFA and was therefore
incorporated as part of the work-up [33].
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Scheme 9. N-alkylation and degradation of compound 23. (a) K2CO3, KI, DMF, rt, 4 days, 40%; (b)
TFA/H2O (9:1, v/v), rt, 3 h, then Amberlyst® A21 resin, CH2Cl2, rt, 16 h, 77%.

At this point, deacetylation was attempted, but resulted in the formation of a range of products
(inseparable by TLC/flash chromatography). Upon further investigation, we realised that compound
23 had degraded within 5 days. Interestingly, Paritala et al. have also reported degradation upon
isolation of a product containing the same 2-carbon thioacetyl motif [34]. They reported that stability of
their product could be increased by replacing the thioacetyl group with that of a thiobenzoyl, perhaps
suggesting that degradation was occurring due to migration of the acetyl group. We therefore decided
trial the approach of employing a benzoyl protecting group.

Alkyl bromide 24 was synthesised from 1,2-dibromoethane and sodium thiobenzoate in an 86%
yield [35]. Paritala et al. reported the use of microwave methodology to alkylate a primary amine in
their synthetic pathway using 24 [34]. However, in our hands, we only observed S→N acyl-transfer
using these conditions [32]. We then attempted N-alkylation at 80 ◦C in an oil bath in the presence of
potassium iodide. In this case, we were able to isolate compound 25 in a 49% yield, with some S→N
acyl-transfer still being observed by TLC (Scheme 10). The progress of the reaction if performed at
room temperature, or without KI being present, was too slow to be viable.Molecules 2020, 25, x FOR PEER REVIEW 7 of 18 
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Scheme 10. Re-designed synthesis towards target 5. (a) K2CO3, KI (cat.), DMF, 80 ◦C, 20 h, 49%;
(b) TFA/H2O (9:1, v/v), rt, 3 h, then Amberlyst® A21 resin, CH2Cl2, rt, 18 h, 64%; (c) 1 M NaOMe/MeOH,
MeOH, rt, 15 min, 58% (95% thiol, 5% disulfide).

Acid hydrolysis in TFA/H2O yielded diol 26 (64% yield), with no degradation being observed
after isolation. De-benzoylation with freshly prepared, de-gassed 1 M NaOMe/MeOH in dry, de-gassed
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MeOH yielded target 5 (Scheme 10). Flash chromatography was performed through a small plug of
silica gel, using de-gassed solvents, to remove methyl benzoate, the by-product from the reaction.
From the mass of material collected, a 58% yield was obtained. However, according to 1H NMR data,
up to 5% of the corresponding disulfide was isolated, giving an actual yield of 55% of thiol 5.

2.2.2. Target 6

Compound 20 underwent N-alkylation with allyl bromide and K2CO3 in DMF to allow us to
perform a thiol-ene reaction towards target 6. Mono-alkylated product 27 was isolated in a 68% yield
(Scheme 11) with what was hypothesised to be minor over-alkylation visible by TLC.

Molecules 2020, 25, x FOR PEER REVIEW 7 of 18 

 

 
Scheme 10. Re-designed synthesis towards target 5. (a) K2CO3, KI (cat.), DMF, 80 °C, 20 h, 49%; (b) 
TFA/H2O (9:1, v/v), rt, 3 h, then Amberlyst® A21 resin, CH2Cl2, rt, 18 h, 64%; (c) 1 M NaOMe/MeOH, 
MeOH, rt, 15 min, 58% (95% thiol, 5% disulfide). 

2.2.2. Target 6 

Compound 20 underwent N-alkylation with allyl bromide and K2CO3 in DMF to allow us to 
perform a thiol-ene reaction towards target 6. Mono-alkylated product 27 was isolated in a 68% yield 
(Scheme 11) with what was hypothesised to be minor over-alkylation visible by TLC. 

Firstly, using 27 and thioacetic acid, AIBN was trialled as an initiator in a similar procedure to 
what yielded compounds 12–15. However, the reaction did not deliver positive results, with a 
complex mixture observed by TLC. Povie et al. outlined problems when performing thiol-ene 
reactions where an O-allyl or benzylic alkenyl substrate was used [36]. They reported poor yields and 
regioselectivity and attributed these difficulties to the stability of the radical on the carbon next to the 
aromatic ring or oxygen during the mechanism. This led to formation of numerous side-products due 
to disproportionation or recombination. Since we possessed an N-allyl group, we believed that our 
problems may have been similar to what Povie et al. observed. They reported the use of Et3B 
(initiator), catechol (repair reagent) and thioacetic acid in CH2Cl2 to mend the thiol-ene process and 
when these conditions were performed with 27, the reaction proceeded smoothly to furnish 
compound 28 in an 83% yield (Scheme 11). 

 

Scheme 11. N-alkylation, thiol-ene and deprotection towards target 6. (a) Allyl bromide, K2CO3, DMF, 
rt, 21 h, 68%; (b) 1 M Et3B/hexanes, AcSH, catechol, CH2Cl2, rt, 3 h, 83%; (c) TFA/H2O (9:1, v/v), rt, 4 h, 
then Amberlyst® A21 resin, CH2Cl2, rt, 16 h, 68%; (d) 1 M NaOMe/MeOH, MeOH, rt, 30 min, 88% 
(88% thiol, 12% disulfide). 

The BDA protecting group of 28 was removed via acid hydrolysis in TFA/H2O (68% yield), 
generating compound 29, with no degradation being observed over time. Deacetylation using dry, 
de-gassed reagents and solvents furnished target 6 in an 88% yield based on the mass of material 
collected (Scheme 11). From 1H NMR data, up to 12% of the disulfide was observed, giving an actual 
yield of 77% free thiol 6. 

NMR spectra of compounds 1–29 are available in the Supplementary Materials. 
  

Scheme 11. N-alkylation, thiol-ene and deprotection towards target 6. (a) Allyl bromide, K2CO3, DMF,
rt, 21 h, 68%; (b) 1 M Et3B/hexanes, AcSH, catechol, CH2Cl2, rt, 3 h, 83%; (c) TFA/H2O (9:1, v/v), rt, 4 h,
then Amberlyst® A21 resin, CH2Cl2, rt, 16 h, 68%; (d) 1 M NaOMe/MeOH, MeOH, rt, 30 min, 88%
(88% thiol, 12% disulfide).

Firstly, using 27 and thioacetic acid, AIBN was trialled as an initiator in a similar procedure to
what yielded compounds 12–15. However, the reaction did not deliver positive results, with a complex
mixture observed by TLC. Povie et al. outlined problems when performing thiol-ene reactions where
an O-allyl or benzylic alkenyl substrate was used [36]. They reported poor yields and regioselectivity
and attributed these difficulties to the stability of the radical on the carbon next to the aromatic
ring or oxygen during the mechanism. This led to formation of numerous side-products due to
disproportionation or recombination. Since we possessed an N-allyl group, we believed that our
problems may have been similar to what Povie et al. observed. They reported the use of Et3B (initiator),
catechol (repair reagent) and thioacetic acid in CH2Cl2 to mend the thiol-ene process and when these
conditions were performed with 27, the reaction proceeded smoothly to furnish compound 28 in an
83% yield (Scheme 11).

The BDA protecting group of 28 was removed via acid hydrolysis in TFA/H2O (68% yield),
generating compound 29, with no degradation being observed over time. Deacetylation using dry,
de-gassed reagents and solvents furnished target 6 in an 88% yield based on the mass of material
collected (Scheme 11). From 1H NMR data, up to 12% of the disulfide was observed, giving an actual
yield of 77% free thiol 6.

NMR spectra of compounds 1–29 are available in the Supplementary Materials.

3. Materials and Methods

Reactions were monitored by thin-layer chromatography (TLC) on Merck DC-Alufolien plates
precoated with silica gel 60 F254 in the eluents states in parentheses (v/v). Visualisation was
performed with UV-light (254 nm) and/or staining with 8% H2SO4/EtOH solution. All chemicals were
purchased from commercial suppliers [Carbosynth Ltd. (Compton, Berkshire, UK), Fisher Scientific
Ltd. (Blanchardstown, Co. Dublin, Ireland), Glycom A/S (Hørsholm, Denmark), Merck (Carrigtwohill,
Co. Cork, Ireland), Sigma-Aldrich (Arklow, Co. Wicklow, Ireland), VWR (Blanchardstown, Co. Dublin,
Ireland) and were used without purification. Dry solvents were obtained from a PureSolv-ENTM



Molecules 2020, 25, 4281 8 of 18

solvent purification system (Innovative Technology Inc., Hong Kong) or were used as purchased from
Sigma-Aldrich (Arklow, Co. Wicklow, Ireland) in AcroSeal® bottles. NMR spectra were recorded
on Varian Inova spectrometers (Varian, Ltd., Palo Alto, CA, USA) at 25 ◦C. High-resolution mass
spectrometry (HRMS) data were recorded on a Waters Micromass LCT LC-TOF instrument using
electrospray ionisation (ESI) in positive mode. Specific rotations were recorded (Model 343) at the
sodium D-line (589 nm) at 20 ◦C in a 1 dm cell at the stated concentration (c 1.0 = 10 mg/mL) on a
Perkin-Elmer polarimeter (PerkinElmer Ltd., Waltham, MA, USA), except for compound 17 which
was recorded on a Schmidt-Haensch UniPol L 2000 polarimeter. Deprotected sugars were lyophilised
using a Christ Alpha 1-2 LDplus (SciQuip Ltd., Shropshire, UK) freeze-dryer: pressure: 0.035 mbar;
ice-condenser temperature: −55 ◦C. Each proton and carbon belonging to the monosaccharide ring
systems was numbered according to conventional guidelines [37].

3.1. General Procedure A (Preparation of Compounds 12–15)

Thioacetic acid (20 eq.) and azobisisobutyronitrile (1 eq.) were added to a solution of the
alkene-bearing sugar (1 eq.) in dry, de-gassed 1,4-dioxane (0.5 mL) under N2. The reaction mixture
was refluxed at 75 ◦C and after 3 h, the volatiles were removed in vacuo. Flash chromatography on
silica gel yielded the desired product.

3.2. General Procedure B (Preparation of Compounds 1–4)

A freshly prepared solution of dry, de-gassed 0.4 M NaOMe/MeOH was added to a solution of
the thioacetate-containing sugar in dry, de-gassed MeOH (1 mL) under N2 until pH 13 was reached.
The mixture was stirred at room temperature for 5 min. The solution was then neutralised with
Dowex® (H+) ion-exchange resin and the resin was filtered off and washed with MeOH. The filtrate
was concentrated in vacuo to furnish the product.

3.3. Methyl 2-C-vinyl-α-l-fucopyranoside (8) and Methyl 6-deoxy-2-C-vinyl-α-l-talopyranoside (10)

Four Å molecular sieves (150 mg), 4-methylmorpholine N-oxide (180 mg, 1.53 mmol),
and tetrapropylammonium perruthenate (27 mg, 77 µmol) were added sequentially to a solution of
compound 7 (180 mg, 0.825 mmol) in dry CH2Cl2 (7.5 mL). The resulting mixture was stirred at room
temperature. After 2 h, TLC analysis (CH2Cl2/acetone, 9:1) showed the disappearance of the starting
material and the formation of a less polar spot. The mixture was filtered through a Celite®-silica-Celite®

triple pad, and the filter was washed with CH2Cl2 (10 mL) and EtOAc (15 mL). The filtrate was
concentrated in vacuo to afford a white solid which was used without further purification.

The crude was dissolved in dry toluene (10 mL) and the solution was cooled to 0 ◦C. 1 M
vinylmagnesium bromide/THF (2.5 mL, 2.5 mmol) was then added dropwise. After 10 min, EtOH (1 mL)
and sat. aq. NaHCO3 solution (10 mL) were added. The resulting mixture was extracted with EtOAc
(2 × 20 mL), and the combined organic phase was dried over MgSO4. The solids were filtered off and
the filtrate was concentrated in vacuo.

The crude residue was dissolved in MeOH (15 mL) and Dowex® (H+) acidic ion-exchange resin
(400 mg) was added. The mixture was stirred at room temperature and after 16 h, the solids were
filtered off and the filtrate was concentrated in vacuo. The residue was purified by flash column
chromatography on silica gel (toluene/EtOAc, 3:7→EtOAc) to afford 8 (23 mg, 14%) and 10 (85 mg,
50%) over 3 steps as white amorphous solids.

(8): Rf = 0.4 (EtOAc); [α]20
D −85 (c 0.5, CHCl3); 1H NMR (500 MHz, CDCl3) δ 6.29 (dd, J = 17.4,

11.0 Hz, 1H, CH2=CH), 5.53 (dd, J = 17.5, 1.9 Hz, 1H, CH2(A)=CH), 5.32 (dd, J = 11.1, 1.9 Hz, 1H,
CH2(B)=CH), 4.48 (s, 1H, H-1), 3.99 (qd, J = 6.6, 1.8 Hz, 1H, H-5), 3.85 (br s, 1H, H-3 or H-4), 3.81 (br s,
1H, H-3 or H-4), 3.43 (s, 3H, OCH3), 2.65 (s, 1H, OH), 2.57 (d, J = 4.6 Hz, 1H, OH), 2.30 (d, J = 3.3 Hz, 1H,
OH), 1.32 (d, J = 6.6 Hz, 3H, H-6); 13C NMR (126 MHz, CDCl3) δ 136.6 (CH2=CH), 116.8 (CH2=CH),
102.7 (C-1), 74.5 (C-2), 73.3 (C-3 or C-4), 71.4 (C-3 or C-4), 65.6 (C-5), 55.7 (OCH3), 16.1 (C-6); HRMS
(ESI) m/z calculated for C9H16O5 [M + Na]+ 227.0895, found 227.0905.
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(10): Rf = 0.5 (EtOAc); [α]20
D −150 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) δ 5.91 (dd, J = 17.4,

10.9 Hz, 1H, CH2=CH), 5.48 (dd, J = 17.4, 1.6 Hz, 1H, CH2(A)=CH), 5.31 (dd, J = 10.9, 1.6 Hz, 1H,
CH2(B)=CH), 4.39 (s, 1H, H-1), 4.25 (s, 1H, OH), 3.97 (q, J = 6.6 Hz, 1H, H-5), 3.90 (d, J = 6.3 Hz, 1H,
OH), 3.76-3.71 (m, 2H, H-3, H-4), 3.48 (m, 1H, OH), 3.34 (s, 3H, OCH3), 1.32 (d, J = 6.6 Hz, 3H, H-6);
13C NMR (126 MHz, CDCl3) δ 137.8 (CH2=CH), 116.7 (CH2=CH), 104.4 (C-1), 75.5 (C-2), 72.1, 68.8 (C-3,
C-4), 66.0 (C-5), 55.4 (OCH3), 16.5 (C-6); HRMS (ESI) m/z calculated for C9H16O5 [M + Na]+ 227.0895,
found 227.0894.

3.4. Methyl 2-C-allyl-α-l-fucopyranoside (9) and Methyl 2-C-allyl-6-deoxy-α-l-talopyranoside (11)

Four Å molecular sieves (150 mg), 4-methylmorpholine N-oxide (252 mg, 2.15 mmol),
and tetrapropylammonium perruthenate (38 mg, 0.11 mmol) were added sequentially to a solution of
7 (252 mg, 1.15 mmol) in dry CH2Cl2 (10 mL). The resulting mixture was stirred at room temperature.
After 1.5 h, TLC analysis (CH2Cl2/acetone, 9:1) showed the disappearance of the starting material and
the formation of a less polar spot. The mixture was filtered through a Celite®-silica-Celite® triple pad,
and the filter was washed with CH2Cl2 (10 mL) and EtOAc (15 mL). The filtrate was concentrated in
vacuo to afford a white solid which was used without further purification.

The crude was dissolved in dry toluene (10 mL) and the solution was cooled to 0 ◦C before adding
1 M allylmagnesium bromide/Et2O (3.5 mL, 3.5 mmol) dropwise. After 10 min, EtOH (1 mL) and
sat. aq. NaHCO3 solution (10 mL) were added. The resulting mixture was extracted with EtOAc
(2 × 20 mL), and the organic phase was dried over MgSO4. The solids were filtered off and the filtrate
was concentrated in vacuo.

The crude residue was dissolved in MeOH (15 mL) and Dowex® (H+) acidic ion-exchange resin
(600 mg) was added. The mixture was stirred at room temperature and after 48 h, the solids were filtered
off and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on
silica gel (toluene/EtOAc, 1:1→EtOAc) to afford 9 (86 mg, 34%) and 11 (54 mg, 21%) over 3 steps as
white amorphous solids.

(9): Rf = 0.3 (EtOAc); [α]20
D −145 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) δ 5.93 (m, 1H,

CH2=CH), 5.25–5.02 (m, 2H, CH2=CH), 4.56 (s, 1H, H-1), 3.93 (q, J = 6.5 Hz, 1H, H-5), 3.88 (d, J = 3.5 Hz,
1H, H-3 or H-4), 3.81 (br s, 1H, H-3 or H-4), 3.61–3.47 (m, 1H, OH), 3.39 (s, 3H, OCH3), 2.86–2.58 (m, 4H,
CH-CH2, 2 × OH), 1.30 (d, J = 6.5 Hz, 3H, H-6); 13C NMR (151 MHz, CDCl3) δ 133.9 (CH2=CH), 118.7
(CH2=CH), 101.1 (C-1), 73.45 (C-2), 73.41 (C-3 or C-4), 71.4 (C-3 or C-4), 65.6 (C-5), 55.6 (OCH3), 36.1
(CH-CH2), 16.0 (C-6); HRMS (ESI) m/z calculated for C10H18O5 [M + Na]+ 241.1052, found 241.1064.

(11): Rf = 0.4 (EtOAc); [α]20
D −66 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) δ 5.87 (m, 1H,

CH2=CH), 5.18 (s, 1H, CH2(A)=CH), 5.15 (m, 1H, CH2(B)=CH), 4.45 (s, 1H, H-1), 3.92 (q, J = 6.6 Hz,
1H, H-5), 3.68–3.52 (m, 4H, H-3, H-4, 2 × OH), 3.35 (s, 3H, OCH3), 2.60 (m, 1H, CH-CH2(A)), 2.33
(m, 1H, CH-CH2(B)), 1.30 (d, J = 6.6 Hz, 1H, H-6); 13C NMR (151 MHz, CDCl3) δ 132.6 (CH2=CH),
119.4 (CH2=CH), 102.9 (C-1), 74.6 (C-2), 72.8 (C-3 or C-4), 69.7 (C-3 or C-4), 65.8 (C-5), 55.3 (OCH3),
38.8 (CH-CH2), 16.5 (C-6); HRMS (ESI) m/z calculated for C10H18O5 [M + Na]+ 241.1052, found 241.1054.

3.5. Methyl 2-C-[2-acetylthioethyl]-α-l-fucopyranoside (12)

Compound 8 (14 mg, 69 µmol) was subjected to General Procedure A and purified by flash
chromatography on silica gel (toluene/EtOAc, 3:2→EtOAc) to afford 12 (14 mg, 73%) as a white
amorphous solid. Rf = 0.6 (EtOAc); [α]20

D −59 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.61 (s, 1H,
H-1), 3.93 (qd, J = 6.6, 1.9 Hz, 1H, H-5), 3.88 (br s, 1H, H-3), 3.82 (br s, 1H, H-4), 3.42 (s, 3H, OCH3),
3.13 (ddd, J = 13.3, 11.1, 5.3 Hz, 1H, CH2(A)SAc), 3.02 (d, J = 3.8 Hz, 1H, OH), 2.90 (ddd, J = 13.3, 11.3,
5.4 Hz, 1H, CH2(B)SAc), 2.63 (d, J = 1.4 Hz, 1H, OH), 2.44 (m, 1H, OH), 2.32 (s, 3H, CH3(SAc)), 2.20 (ddd,
J = 14.5, 11.4, 5.3 Hz, 1H, C(sugar)-CH2(A)), 2.06 (m, 1H, C(sugar)-CH2(B)), 1.30 (d, J = 6.7 Hz, 3H, H-6);
13C NMR (126 MHz, CDCl3) δ 196.7 (C=O), 101.2 (C-1), 73.6 (C-3), 73.4 (C-2), 71.3 (C-4), 65.8 (C-5), 55.8
(OCH3), 31.9 (CH2-SAc), 30.7 (CH3(SAc)), 23.9 (C(sugar)-CH2), 15.9 (C-6); HRMS (ESI) m/z calculated for
C11H20OsS [M + Na]+ 303.0878, found 303.0878.
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3.6. Methyl 2-C-[3-acetylthiopropyl]-α-l-fucopyranoside (13)

Compound 9 (67 mg, 0.31 mmol) was subjected to General Procedure A and purified by flash
chromatography on silica gel (toluene/EtOAc, 1:1→EtOAc) to afford 13 (76 mg, 84%) as a white
amorphous solid. Rf = 0.5 (EtOAc); [α]20

D #x2212;74 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.55 (s,
1H, H-1), 3.93 (m, 1H, H-5), 3.85 (t, J = 3.9 Hz, 1H, H-3), 3.81 (br s, 1H, H-4), 3.56 (d, J = 4.1 Hz, 1H, OH),
3.40 (s, 3H, OCH3), 2.87 (m, 2H, CH2-SAc), 2.82 (m, 1H, OH), 2.72 (d, J = 1.3 Hz, 1H, OH), 2.32 (s, 3H,
CH3(SAc)), 1.99–1.87 (m, 2H, -CH2-), 1.79 (m, 1H, C(sugar)-CH2(A)), 1.61 (m, 1H, C(sugar)-CH2(B)), 1.29 (d,
J = 6.7 Hz, 3H, H-6); 13C NMR (126 MHz, CDCl3) δ 196.4 (C=O), 100.9 (C-1), 73.5 (C-2), 73.5 (C-3), 71.4
(C-4), 65.6 (C-5), 55.6 (OCH3), 30.7 (CH3(SAc)), 30.2 (-CH2-), 29.8 (CH2-SAc), 23.4 (C(sugar)-CH2), 15.9
(C-6); HRMS (ESI) m/z calculated for C12H22O6S [M + Na]+ 317.1035, found 317.1027.

3.7. Methyl 2-C-[2-acetylthioethyl]-6-deoxy-α-l-talopyranoside (14)

Compound 10 (50 mg, 0.25 mmol) was subjected to General Procedure A and purified by flash
chromatography on silica gel (toluene/EtOAc, 3:2→EtOAc) to afford 14 (59 mg, 85%) as a white
amorphous solid. Rf = 0.6 (EtOAc); [α]20

D −72 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.57 (s,
1H, H-1), 4.14 (s, 1H, OH), 3.95–3.82 (m, 2H, H-5, OH), 3.74 (d, J = 9.2 Hz, 1H, OH), 3.67 (dd, J = 6.9,
3.0 Hz, 1H, H-4), 3.55 (dd, J = 9.3, 3.0 Hz, 1H, H-3), 3.35 (s, 3H, OCH3), 3.04 (ddd, J = 13.3, 11.4, 4.7 Hz,
1H, CH2(A)-SAc), 2.85 (ddd, J = 13.3, 11.2, 5.7 Hz, 1H, CH2(B)-SAc), 2.33 (s, 3H, CH3(SAc)), 2.05 (ddd,
J = 14.1, 11.2, 4.7 Hz, 1H, C(sugar)-CH2(A)), 1.83 (ddd, J = 14.1, 11.2, 5.7 Hz, 1H, C(sugar)-CH2(B)), 1.30 (d,
J = 6.6 Hz, 3H, H-6); 13C NMR (126 MHz, CDCl3) δ 196.9 (C=O), 102.6 (C-1), 74.6 (C-2), 72.7 (C-4), 69.7
(C-3), 65.7 (C-5), 55.3 (OCH3), 34.6 (CH2-SAc), 30.7 (CH3(SAc)), 23.0 (C(sugar)-CH2), 16.5 (C-6); HRMS
(ESI) m/z calculated for C11H20OsS [M + Na]+ 303.0878, found 303.0872.

3.8. Methyl 2-C-[3-acetylthiopropyl]-6-deoxy-α-l-talopyranoside (15)

Compound 11 (38 mg, 0.17 mmol) was subjected to General Procedure A and purified by flash
chromatography on silica gel (toluene/EtOAc, 3:2→EtOAc) to afford 15 (43 mg, 84%) as a white
amorphous solid. Rf = 0.4 (toluene/EtOAc, 1:4); [α]20

D −67 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) δ
4.50 (s, 1H, H-1), 3.92–3.86 (m, 2H, H-5, OH), 3.79 (d, J = 7.1 Hz, 1H, OH), 3.65 (m, 1H, H-3 or H-4), 3.59
(d, J = 8.6 Hz, 1H, OH), 3.52 (br s, 1H, H-3 or H-4), 3.35 (s, 3H, OCH3), 2.90–2.82 (m, 2H, CH2-SAc),
2.33 (s, 3H, CH3(SAc)), 1.85 (ddd, J = 14.5, 7.0, 4.0 Hz, 1H, -CH2(A)-), 1.75 (m, 1H, C(sugar)-CH2(A)),
1.65–1.48 (m, 2H, -CH2(B)-, C(sugar)-CH2(B)), 1.29 (d, J = 6.6 Hz, 3H, H-6); 13C NMR (126 MHz, CDCl3) δ
196.4 (C=O), 102.5 (C-1), 74.5 (C-2), 72.7 (C-3 or C-4), 70.0 (C-3 or C-4), 65.6 (C-5), 55.3 (OCH3), 33.3
(-CH2-), 30.8 (CH3(SAc)), 29.7 (CH2-SAc), 22.4 (C(sugar)-CH2), 16.5 (C-6); HRMS (ESI) m/z calculated for
C12H22O6S [M + Na]+ 317.1035, found 317.1024.

3.9. Methyl 2-C-[2-thioethyl]-α-l-fucopyranoside (1)

Compound 12 was subjected to General Procedure B (14 mg, 50 µmol) to afford 1 (11 mg, 92%)
as a colourless, amorphous solid. Rf = 0.5 (CH2Cl2/MeOH, 19:1); [α]20

D −78 (c 0.9, CH3OH); 1H NMR
(400 MHz, CD3OD) δ 4.52 (s, 1H, H-1), 3.95 (m, 1H, H-5), 3.82 (d, J = 3.9 Hz, 1H, H-4), 3.70 (dd, J = 3.9,
1.6 Hz, 1H, H-3), 3.40 (s, 3H, OCH3), 2.73 (m, 1H, CH2(A)-SH), 2.59 (m, 1H, CH2(B)-SH), 2.25 (ddd,
J = 14.5, 11.8, 5.3 Hz, 1H, C(sugar)-CH2(A)), 2.15 (ddd, J = 14.5, 11.8, 5.3 Hz, 1H, C(sugar)-CH2(B)), 1.25 (d,
J = 6.6 Hz, 3H, H-6); 13C NMR (Taken from HSQC) δ 103.3 (C-1), 74.3 (C-4), 74.1 (C-3), 67.7 (C-5), 56.3
(OCH3), 39.9 (C(sugar)-CH2), 20.1 (CH2-SH), 16.8 (C-6); HRMS (ESI) m/z calculated for C9H18OsS [M +

Na]+ 261.0773, found 261.0767.

3.10. Methyl 2-C-[3-thiopropyl]-α-l-fucopyranoside (2)

Compound 13 (33 mg, 0.11 mmol) was subjected to General Procedure B to afford 2 (26 mg, 92%)
as a colourless, amorphous solid. Rf = 0.4 (CH2Cl2/MeOH, 19:1); [α]20

D −78 (c 0.9, CH3OH); 1H NMR
(400 MHz, CD3OD) δ 4.53 (s, 1H, H-1), 3.97 (m, 1H, H-5), 3.83 (d, J = 4.0 Hz, 1H, H-4), 3.72 (dd, J = 4.0,
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1.9 Hz, 1H, H-3), 3.41 (s, 3H, OCH3), 2.52 (t, J = 7.3 Hz, 2H, CH2-SH), 2.00–1.90 (m, 2H, -CH2-), 1.83 (m,
1H, C(sugar)-CH2(A)), 1.65 (m, 1H, C(sugar)-CH2(B)), 1.25 (d, J = 6.7 Hz, 3H, H-6); 13C NMR (Taken from
HSQC) δ 103.0 (C-1), 74.2 (C-4), 73.4 (C-3), 67.4 (C-5), 56.1 (OCH3), 32.1 (-CH2-), 29.3 (C(sugar)-CH2), 26.3
(CH2-SH), 16.6 (C-6); HRMS (ESI) m/z calculated for C10H20O5S [M + Na]+ 275.0929, found 275.0919.

3.11. Methyl 6-deoxy-2-C-[2-thioethyl]-α-l-talopyranoside (3)

Compound 14 (10 mg, 36 µmol) was subjected to General Procedure B to afford 3 (8 mg, 92%) as
a colourless, amorphous solid. Rf = 0.5 (CH2Cl2/MeOH, 19:1); [α]20

D −57 (c 0.9, CH3OH); 1H NMR (500
MHz, CD3OD) δ 4.48 (s, 1H, H-1), 3.89 (m, 1H, H-5), 3.61 (d, J = 2.5 Hz, 1H, H-4), 3.50 (d, J = 3.3 Hz,
1H, H-3), 3.37 (s, 3H, OCH3), 2.69 (td, J = 12.3, 4.4 Hz, 1H, CH2(A)-SH), 2.50 (td, J = 12.3, 5.3 Hz, 1H,
CH2(B)-SH), 2.12 (ddd, J = 13.8, 12.3, 4.4 Hz, 1H, C(sugar)-CH2(A)), 1.82 (ddd, J = 13.8, 12.3, 5.2 Hz,
1H, C(sugar)-CH2(B)), 1.26 (d, J = 6.6 Hz, 3H, H-6); 13C NMR (Taken from HSQC) δ 105.1 (C-1), 74.8
(C-4), 71.0 (C-3), 68.0 (C-5), 55.9 (OCH3), 41.4 (C(sugar)-CH2), 19.3 (CH2-SH), 17.3 (C-6); HRMS (ESI) m/z
calculated for C9H18OsS [M + Na]+ 261.0773, found 261.0773.

3.12. Methyl 6-deoxy-2-C-[3-thiopropyl]-α-l-talopyranoside (4)

Compound 15 (30 mg, 0.10 mmol) was subjected to General Procedure B to afford 4 (24 mg,
95%) as a colourless, amorphous solid. Rf = 0.4 (CH2Cl2/MeOH, 19:1); [α]20

D −71 (c 0.8, CH3OH);
1H NMR (400 MHz, CD3OD) δ 4.48 (s, 1H, H-1), 3.90 (m, 1H, H-5), 3.62 (dd, J = 3.4, 1.0 Hz, 1H,
H-4), 3.51 (d, J = 3.4 Hz, 1H, H-3), 3.38 (s, 3H, OCH3), 2.56–2.44 (m, 2H, CH2-SH), 1.97–1.73 (m, 2H,
C(sugar)-CH2(A), -CH2-(A)), 1.67–1.53 (m, 2H, C(sugar)-CH2(B), -CH2-(B)), 1.27 (d, J = 6.6 Hz, 3H, H-6);
13C NMR (Taken from HSQC) δ 104.9 (C-1), 74.7 (C-4), 71.3 (C-3), 68.0 (C-5), 56.0 (OCH3), 34.8 (-CH2-),
29.0 (C(sugar)-CH2), 26.3 (CH2-SH), 17.3 (C-6); HRMS (ESI) m/z calculated for C10H20O5S [M + Na]+

275.0929, found 275.0917.

3.13. Methyl 4-O-acetyl-2,3-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-l-quinovopyranoside (17)

Compound 16 (6.09 g, 20.6 mmol) was placed under N2 and dissolved in dry CH2Cl2 (90 mL)
and dry pyridine (14 mL). The solution was cooled to −40 ◦C and trifluoromethanesulfonic anhydride
(4.2 mL, 25 mmol) was added. The reaction was stirred at −40 ◦C for 7 h, then allowed to reach
room temperature. The organic phase was washed with sat. NaHCO3 solution (100 mL) and brine
(100 mL), dried over MgSO4, filtered and concentrated in vacuo. The dark red/brown oil obtained was
immediately used in the next step.

The crude and tetrabutylammonium acetate (7.55 g, 25.0 mmol) were placed under N2 and dry
toluene (60 mL) was added. The reaction was stirred for 14 h at room temperature and the solvent was
then removed under reduced pressure. The product was purified via flash chromatography on silica
gel (cyclohexane/EtOAc, 4:1→1:1) to yield 17 a pale-yellow syrup (4.71 g, 68% over 2 steps). Rf = 0.7
(cyclohexane/EtOAc, 1:1); [α]20

D +47 (c 1.0, CHCl3); 1H NMR (300 MHz, CDCl3) δ 4.80 (t, J = 9.7 Hz, 1H,
H-4), 4.69 (d, J = 3.6 Hz, 1H, H-1), 4.06 (t, J = 9.7 Hz, 1H, H-3), 3.84–3.72 (m, 2H, H-2, H-5), 3.41 (s, 3H,
OCH3), 3.24 (s, 3H, OCH3), 3.22 (s, 3H, OCH3), 2.07 (s, 3H, CH3(OAc)), 1.32 (s, 3H, CH3(BDA)), 1.24 (s,
3H, CH3(BDA)), 1.17 (d, J = 6.3 Hz, 3H, H-6); 13C NMR (126 MHz, CDCl3) δ 169.9 (C=O), 100.0, 99.5
(2 × C(ketal)), 97.9 (C-1), 73.3 (C-4), 68.7 (C-2), 67.1 (C-3), 66.1 (C-5), 55.2, 48.0, 47.6 (3 × OCH3), 21.0
(CH3(OAc)), 17.9, 17.8 (2 × CH3(BDA)), 17.5 (C-6); HRMS (ESI) m/z calculated for C15H26O8 [M + Na]+

357.1525, found 357.1523.

3.14. Methyl 2,3-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-l-quinovopyranoside (18)

Compound 17 (3.33 g, 9.96 mmol) was dissolved in MeOH (100 mL) and NaOMe (293 mg,
5.06 mmol) was added. The reaction was stirred for 19 h at room temperature and then Amberlite®

IR120 resin (H+ form) was added to neutralise the solution. The mixture was filtered, and the
filtrate was concentrated under reduced pressure. The resulting yellow syrup was purified via flash
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chromatography on silica gel (toluene→toluene/EtOAc, 1:1) to yield 18 as a white foam (2.74 g, 94%).
Rf = 0.4 (cyclohexane/EtOAc, 1:1); [α]20

D +59 (c 1.0, CHCl3); 1H NMR (300 MHz, CDCl3) δ 4.68 (d,
J = 3.5 Hz, 1H, H-1), 3.95 (dd, J = 10.4, 9.2 Hz, 1H, H-3), 3.74–3.63 (m, 2H, H-2, H-5), 3.40 (s, 3H, OCH3),
3.35 (m, 1H, H-4), 3.27 (s, 3H, OCH3), 3.24 (s, 3H, OCH3), 2.23 (d, J = 2.8 Hz, 1H, OH), 1.33 (s, 3H,
CH3(BDA)), 1.30 (s, 3H, CH3(BDA)), 1.28 (d, J = 6.3 Hz, 3H, H-6); 13C NMR (126 MHz, CDCl3) δ 100.0,
99.6 (2 × C(ketal)), 98.1 (C-1), 73.8 (C-4), 69.5 (C-3), 68.6 (C-2), 67.9 (C-5), 55.1, 48.1, 48.0 (3 × OCH3),
18.0, 17.8 (2 × CH3(BDA)), 17.7 (C-6); HRMS (ESI) m/z calculated for C13H24O7 [M + Na]+ 315.1420,
found 315.1410.

3.15. Methyl 4-azido-4-deoxy-2,3-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-l-fucopyranoside (19)

Compound 18 (3.96 g, 13.6 mmol) was placed under an N2 atmosphere and dissolved in dry CH2Cl2
(37 mL) and dry pyridine (8 mL). The solution was cooled to -20 ◦C and trifluoromethanesulfonic
anhydride (2.6 mL, 16 mmol) was added slowly. The reaction was stirred at -20 ◦C for 4 h, then allowed
to reach room temperature. The solution was then diluted with CH2Cl2 (35 mL) and washed with sat.
aq. NaHCO3 (70 mL) and brine (70 mL). The combined aqueous phase was extracted with CH2Cl2
(70 mL) and the collective organic layer was dried over MgSO4, filtered and concentrated. The crude
was used immediately in the next step.

The crude triflate and sodium azide (5.31 g, 81.7 mmol) were placed under N2 and dry DMF
(110 mL) was added. The resulting suspension was stirred at 60 ◦C for 17 h and the solvent was
then removed in vacuo. EtOAc (100 mL) and water (100 mL) were added to the resulting residue.
The organic layer was separated and then washed with brine (100 mL). The collective aqueous phase
was extracted with EtOAc (2 × 50 mL) and the combined organic layer was dried over MgSO4, filtered
and concentrated under reduced pressure. The product was purified by flash chromatography on
silica gel (cyclohexane/EtOAc, 3:1) to yield 19 as a pale-yellow syrup (3.00 g, 70% over 2 steps). Rf = 0.4
(cyclohexane/EtOAc, 3:1); [α]20

D +86 (c 1.0, CHCl3); 1H NMR (300 MHz, CDCl3) δ 4.71 (d, J = 3.6 Hz, 1H,
H-1), 4.21 (dd, J = 10.5, 3.5 Hz, 1H, H-3), 4.11 (dd, J = 10.5, 3.6 Hz, 1H, H-2), 3.99 (m, 1H, H-5), 3.64
(dd, J = 3.5, 3.2 Hz, 1H, H-4), 3.37 (s, 3H, OCH3), 3.27 (s, 3H, OCH3), 3.26 (s, 3H, OCH3), 1.31 (s, 3H,
CH3(BDA)), 1.29 (s, 3H, CH3(BDA)), 1.26 (d, J = 6.5 Hz, 3H, H-6); 13C NMR (101 MHz, CDCl3) δ 100.3,
100.2 (2 × C(ketal)), 98.4 (C-1), 67.0 (C-3), 65.50 (C-5), 65.49 (C-2), 63.8 (C-4), 55.4, 48.14, 48.11 (2 × OCH3),
17.9, 17.8 (2 × CH3(BDA)), 17.4 (C-6); HRMS (ESI) m/z calculated for C13H23N3O6 [M + Na]+ 340.1485,
found 340.1469.

3.16. Methyl 4-amino-4-deoxy-2,3-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-l-fucopyranoside (20)

Compound 19 (2.74 g, 8.63 mmol) was dissolved in EtOH (15 mL). 10% Pd/C (0.54 g, 0.51 mmol)
suspended in EtOH (5 mL) was added and the mixture was stirred under H2 (5 bar) at room temperature
for 22 h. The suspension was then filtered through Celite® and the filtrate was concentrated. Flash
chromatography on silica gel (CH2Cl2/MeOH, 49:1) yielded 20 as a white solid (2.28 g, 91%). Rf = 0.7
(CH2Cl2/MeOH, 19:1); mp = 87–89 ◦C; [α]20

D +41 (c 1.0, MeOH); 1H NMR (300 MHz, CD3OD) δ 4.66 (d,
J = 2.2 Hz, 1H, H-1), 4.07–3.97 (m, 3H, H-2, H-3, H-5), 3.38 (s, 3H, OCH3), 3.25 (s, 3H, OCH3), 3.24
(s, 3H, OCH3), 2.98 (t, J = 1.7 Hz, 1H, H-4), 1.28–1.27 (m, 6H, 2 × CH3(BDA)), 1.21 (d, J = 6.6 Hz, 3H,
H-6); 13C NMR (126 MHz, CD3OD) δ 101.5, 101.3 (2 × C(ketal)), 99.7 (C-1), 67.8 (C-2 or C-3), 67.4 (C-5),
66.1 (C-2 or C-3), 55.4 (OCH3), 54.1 (C-4), 48.22, 48.15 (2 × OCH3), 18.1, 18.0 (2 × CH3(BDA)), 16.9 (C-6);
HRMS (ESI) m/z calculated for C13H25NO6 [M + H]+ 292.1760, found 292.1761.

3.17. 2-Bromoethyl Thioacetate (21)

Dry THF (40 mL) was added to potassium thioacetate (2.00 g, 17.5 mmol) under N2.
1,2-Dibromoethane (3.1 mL, 36 mmol) was added and the mixture was refluxed at 90 ◦C for
22 h. The suspension was then filtered through Celite®, and the filtrate was concentrated under
reduced pressure. The resulting yellow residue was purified via flash chromatography on silica
gel (cyclohexane/EtOAc, 19:1), yielding compound 21 as a colourless oil (1.18 g, 37%). Rf = 0.5
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(cyclohexane/EtOAc, 10:1); 1H NMR (400 MHz, CDCl3) δ 3.44 (m, 2H, CH2-Br), 3.30 (m, 2H, CH2-S),
2.35 (s, 3H, CH3(SAc)); 13C NMR (101 MHz, CDCl3) δ 194.7 (C=O(SAc)), 31.4 (CH2), 30.7 (CH3(SAc)),
30.1 (CH2). While the chemical shifts of the 1H NMR data match those reported in literature,
we observed the CH2 signals as multiplets rather than triplets [28]. No 13C NMR data have been
reported previously.

3.18. Methyl
4-[(2-acetylthioethyl)amino]-4-deoxy-2,3-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-l-fucopyranoside (22)

Compound 20 (0.50 g, 1.7 mmol) and K2CO3 (1.19 g, 8.57 mmol) were placed under N2 and
dry DMF (5 mL) was added. Alkyl bromide 21 (610 mg, 3.33 mmol) in dry DMF (5 mL) was added
followed by KI (286 mg, 1.72 mmol) and the resulting suspension was stirred at room temperature for
4 days. The solvent was removed in vacuo and water (25 mL) was added. The aqueous phase was
extracted with EtOAc (3 × 25 mL) and the combined organic layer was dried over Na2SO4, filtered
and concentrated. The product was purified by flash chromatography on silica gel (toluene/EtOAc,
7:3), yielding 22 as a pale-yellow syrup (271 mg, 40%). Rf = 0.4 (cyclohexane/EtOAc, 1:1); [α]20

D −8.2
(c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.71 (d, J = 3.8 Hz, 1H, H-1), 4.12 (dd, J = 10.9, 4.4 Hz,
1H, H-3), 3.98–3.90 (m, 2H, H-2, H-5), 3.37 (s, 3H, OCH3), 3.24 (s, 3H, OCH3), 3.22 (s, 3H, OCH3), 3.07
(m, 1H, NH-CH2(A)), 2.98 (m, 1H, NH-CH2(B)), 2.93–2.84 (m, 2H, CH2-SAc), 2.73 (dd, J = 4.5, 4.4 Hz,
1H, H-4), 2.32 (s, 3H, CH3(SAc)), 1.31 (s, 3H, CH3(BDA)), 1.25 (s, 3H, CH3(BDA)), 1.24 (d, J = 6.7 Hz, 3H,
H-6); 13C NMR (101 MHz, CDCl3) δ 196.1 (C=O(SAc)), 100.1, 99.8 (2 × C(ketal)), 98.3 (C-1), 67.1 (C-5),
66.5 (C-3), 65.6 (C-2), 60.1 (C-4), 55.1 (OCH3), 50.3 (CH2-SAc), 48.01, 47.99 (2 × OCH3), 30.8 (CH3(SAc)),
29.7 (NH-CH2), 17.91, 17.89 (2 × CH3(BDA)), 17.5 (C-6); HRMS (ESI) m/z calculated for C17H31NO7S [M
+ Na]+ 416.1719, found 416.1721.

3.19. Methyl 4-[(2-acetylthioethyl)amino]-4-deoxy-α-l-fucopyranoside (23)

Compound 22 (20 mg, 52 µmol) was stirred in TFA/H2O (1.7 mL, 9:1, v/v) at room temperature
for 2.5 h. The solvents were then removed through co-evaporation with toluene under reduced
pressure. The resulting residue was dissolved in CH2Cl2 (1.8 mL) and stirred with Amberlyst® A21
resin (197 mg) at room temperature for 18 h. The resin was then filtered off and washed with MeOH.
The filtrate was concentrated in vacuo and the product was purified by flash chromatography on
silica gel (EtOAc→EtOAc/MeOH, 19:1), furnishing 23 as a colourless syrup (11 mg, 77%). Rf = 0.5
(EtOAc/MeOH, 9:1); 1H NMR (500 MHz, CDCl3) δ 4.70 (d, J = 4.0 Hz, 1H, H-1), 4.06 (m, 1H, H-5),
3.63 (dd, J = 9.8, 4.6 Hz, 1H, H-3), 3.40 (s, 3H, OCH3), 3.38 (dd, J = 9.8, 4.0 Hz, 1H, H-2), 3.23 (m, 1H,
CH2(A)-SAc), 3.04–2.95 (m, 2H, NH-CH2), 2.73–2.64 (m, 2H, H-4, CH2(B)-SAc), 2.36 (s, 3H, CH3(SAc)),
1.26 (d, J = 6.7 Hz, 3H, H-6); 13C NMR (126 MHz, CDCl3) δ 195.8 (C=O(SAc)), 99.6 (C-1), 71.3 (C-2), 70.7
(C-3), 66.3 (C-5), 62.6 (C-4), 55.6 (OCH3), 50.7 (CH2-SAc), 30.83 (CH3(SAc)), 30.82 (NH-CH2), 17.6 (C-6);
HRMS (ESI) m/z calculated for C11H21NO5S [M + H]+ 280.1219, found 280.1208.

3.20. 2-Bromoethyl thiobenzoate (24)

Potassium thiobenzoate (0.51 g, 2.9 mmol) was placed under N2 and dry THF (28 mL) was added
followed by 1,2-dibromoethane (2.4 mL, 28 mmol). The reaction was refluxed at 90 ◦C for 3 h, cooled
to room temperature and the solids were removed by filtration through Celite®. The filtrate was
concentrated in vacuo and purified by flash chromatography on silica gel (cyclohexane/toluene, 4:1).
Compound 24 was obtained as a colourless oil (603 mg, 86%). Rf = 0.4 (cyclohexane/toluene, 7:3);
1H NMR (300 MHz, CDCl3) δ 7.99–7.92 (m, 2H, Ar-H), 7.58 (m, 1H, Ar-H), 7.52–7.39 (m, 2H, Ar-H),
3.67–3.40 (m, 4H, CH2-Br, CH2-S); 13C NMR (101 MHz, CDCl3) δ 190.7 (C=O(SBz)), 136.6 (Ar-C(quat)),
133.9, 128.9, 127.5 (3 × Ar-CH), 31.2 (CH2-S), 30.2 (CH2-Br).
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3.21. Methyl
4-[(2-benzoylthioethyl)amino]-4-deoxy-2,3-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-l-fucopyranoside (25)

Compound 20 (351 mg, 1.20 mmol) was placed under N2 and dissolved in dry DMF (6 mL).
K2CO3 (183 mg, 1.33 mmol) was added followed by a solution of alkyl bromide 24 (326 mg, 1.33 mmol)
in dry DMF (6 mL). KI (97 mg, 0.58 mmol) was then added and the reaction was stirred at 80 ◦C
for 20 h. The solvent was then removed in vacuo and water (30 mL) was added to the resulting
residue. The product was extracted with EtOAc (3 × 30 mL) and the combined organic layer was
dried over MgSO4, filtered and concentrated under reduced pressure. Flash chromatography on
silica gel (toluene/acetone, 19:1) yielded compound 25 as a colourless syrup (267 mg, 49%). Rf = 0.5
(toluene/EtOAc, 1:1); [α]20

D +14 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.00–7.93 (m, 2H, Ar-H),
7.56 (m, 1H, Ar-H), 7.49–7.38 (m, 2H, Ar-H), 4.73 (d, J = 3.8 Hz, 1H, H-1), 4.14 (dd, J = 10.8, 4.4 Hz, 1H,
H-3), 3.99 (dd, J = 10.8, 3.8 Hz, 1H, H-2), 3.94 (m, 1H, H-5), 3.38 (s, 3H, OCH3), 3.32–3.14 (m, 8H, 2 ×
OCH3, NH-CH2(A), NH-CH2(B)), 3.03–2.96 (m, 2H, CH2-SBz), 2.79 (dd, J = 4.4, 1.6 Hz, 1H, H-4), 1.31 (s,
3H, CH3(BDA)), 1.26 (d, J = 6.7 Hz, 3H, H-6), 1.24 (s, 3H, CH3(BDA)); 13C NMR (101 MHz, CDCl3) δ 192.1
(C=O(SBz)), 137.3 (Ar-C(quat)), 133.4, 128.7, 127.3 (3 × Ar-CH), 100.1, 99.8 (2 × C(ketal)), 98.3 (C-1), 67.2
(C-5), 66.6 (C-3), 65.6 (C-2), 60.1 (C-4), 55.1 (OCH3), 50.4 (CH2-SBz), 48.0 (2 × OCH3), 29.6 (NH-CH2),
17.90, 17.88 (2 × CH3(BDA)), 17.5 (C-6). HRMS (ESI) m/z calculated for C22H33NO7S [M + H]+ 456.2056,
found 456.2068.

3.22. Methyl 4-[(2-benzoylthioethyl)amino]-4-deoxy-α-l-fucopyranoside (26)

Compound 25 (52 mg, 0.11 mmol) was stirred in TFA/H2O (3.7 mL, 9:1, v/v) at room temperature
for 3 h. The solvents were then co-evaporated with toluene under reduced pressure. The resulting
residue was re-dissolved in CH2Cl2 (5 mL) and stirred at room temperature with Amberlyst® A21 resin
(507 mg) for 20 h. The resin was then filtered off and washed with CH2Cl2/MeOH (1:1, v/v). The filtrate
was concentrated in vacuo and purified via flash chromatography on silica gel (toluene/EtOAc,
1:4→EtOAc), yielding 26 as a white amorphous solid (30 mg, 76%). Rf = 0.3 (EtOAc); [α]20

D −120 (c
1.0, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.98–7.93 (m, 2H, Ar-H), 7.57 (m, 1H, Ar-H), 7.48–7.41
(m, 2H, Ar-H), 4.69 (d, J = 4.0 Hz, 1H, H-1), 4.06 (m, 1H, H-5), 3.63 (dd, J = 9.8, 4.7 Hz, 1H, H-3),
3.42–3.37 (m, 4H, H-2, OCH3), 3.31 (m, 1H, CH2(A)-SBz), 3.22–3.19 (m, 2H, NH-CH2), 2.81–2.71 (m,
2H, H-4, CH2(B)-SBz), 1.26 (d, J = 6.7 Hz, 3H, H-6); 13C NMR (126 MHz, CDCl3) δ 191.8 (C=O(SBz)),
137.0 (Ar-C(quat)), 133.7 (Ar-CH), 128.8 (Ar-CH), 127.4 (Ar-CH), 99.6 (C-1), 71.3 (C-2), 70.7 (C-3), 66.3
(C-5), 62.6 (C-4), 55.6 (OCH3), 50.8 (CH2-SBz), 30.7 (NH-CH2), 17.6 (C-6). HRMS (ESI) m/z calculated
for C16H23NO5S [M + H]+ 342.1375, found 342.1366.

3.23. Methyl 4-deoxy-4-(2-thioethyl)amino-α-l-fucopyranoside (5)

Compound 26 (20 mg, 57 µmol) was placed under N2. Dry, de-gassed MeOH (0.58 mL) was
added followed by freshly prepared, de-gassed 1 M NaOMe/MeOH (0.15 mL, 0.15 mmol). The reaction
was stirred at room temperature for 15 min and then neutralised with Amberlite® IR120 resin (H+

form). The resin was filtered off and the filtrate was concentrated. The product was purified by
flash chromatography through a short column of silica gel (CH2Cl2/MeOH, 19:1→9:1) under an N2

atmosphere and using de-gassed solvents. Compound 5 was obtained as a colourless residue (8 mg,
58% by mass, 95% thiol, 5% disulfide). Rf = 0.2 (EtOAc/MeOH, 19:1); [α]20

D +2.7 (c 0.75, H2O); 1H NMR
(500 MHz, D2O) δ 4.79 (d, 1H, H-1, underneath HDO peak), 4.14 (m, 1H, H-5), 3.97 (dd, J = 10.4, 4.3 Hz,
1H, H-3), 3.68 (dd, J = 10.4, 4.0 Hz, 1H, H-2), 3.40 (s, 3H, OCH3), 3.09 (m, 1H, CH2(A)-SH), 2.99 (d,
J = 4.3 Hz, 1H, H-4), 2.85 (m, 1H, CH2(B)-SH), 2.77–2.67 (m, 2H, NH-CH2), 1.31 (d, J = 6.7 Hz, 3H, H-6);
13C NMR (126 MHz, D2O) δ 99.2 (C-1, JC-1,H-1 = 170.9 Hz), 68.8 (C-3), 68.0 (C-2), 65.9 (C-5), 61.8 (C-4),
55.0 (OCH3), 53.4 (CH2-SH), 23.3 (NH-CH2), 16.5 (C-6); HRMS (ESI) m/z calculated for C9H19NO4S
[M + H]+ 238.1113, found 238.1119.
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3.24. Methyl 4-allylamino-4-deoxy-2,3-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-l-fucopyranoside (27)

Compound 20 (374 mg, 1.28 mmol) and K2CO3 (196 mg, 1.42 mmol) were subjected to an N2

atmosphere. Dry DMF (7.5 mL) was added followed by allyl bromide (0.13 mL, 1.5 mmol). The resulting
suspension was stirred at room temperature for 21 h and the solvent was then removed under reduced
pressure. Water (25 mL) was added and aqueous phase was extracted with EtOAc (3 × 25 mL).
The combined organic layer was dried over Na2SO4, filtered and concentrated in vacuo. The crude was
purified by flash chromatography on silica gel (toluene/EtOAc, 4:1→7:3) to yield 27 as a pale-yellow,
waxy solid (290 mg, 68%). Rf = 0.3 (cyclohexane/EtOAc, 1:1); [α]20

D +28 (c 1.0, CHCl3); 1H NMR
(500 MHz, CDCl3) δ 5.89 (m, 1H, CH2=CH), 5.19 (dq, J = 17.2, 1.4 Hz, 1H, CH2(A)=CH), 5.06 (dq,
J = 10.2, 1.4 Hz, 1H, CH2(B)=CH), 4.72 (d, J = 3.8 Hz, 1H, H-1), 4.13 (dd, J = 10.8, 4.5 Hz, 1H, H-3), 3.99
(dd, J = 10.8, 3.8 Hz, 1H, H-2), 3.91 (m, 1H, H-5), 3.40 (ddt, J = 14.3, 5.4, 1.6 Hz, 1H, NH-CH2(A)), 3.37 (s,
3H, OCH3), 3.27 (m, 1H, NH-CH2(B)), 3.24 (s, 3H, OCH3), 3.21 (s, 3H, OCH3), 2.75 (dd, J = 4.5, 4.3 Hz,
1H, H-4), 1.30 (s, 3H, CH3(BDA)), 1.25–1.24 (m, 6H, CH3(BDA), H-6); 13C NMR (126 MHz, CDCl3) δ 137.5
(CH2=CH), 115.7 (CH2=CH), 100.0, 99.8 (2 × C(ketal)), 98.3 (C-1), 67.3 (C-5), 66.5 (C-3), 65.6 (C-2), 59.5
(C-4), 55.1 (OCH3), 53.8 (NH-CH2), 47.98, 47.94 (2 × OCH3), 17.90, 17.88 (2 × CH3(BDA)), 17.80 (C-6);
HRMS (ESI) m/z calculated for C16H29NO6 [M + H]+ 332.2073, found 332.2079.

3.25. Methyl 4-[(3-acetylthiopropyl)amino]-4-deoxy-2,3-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-l-fucopyran
-oside (28)

Compound 27 (281 mg, 0.849 mmol) and 1,2-dihydroxybenzene (116 mg, 1.05 mmol) were placed
under N2 and dissolved in dry CH2Cl2 (1.1 mL). Thioacetic acid (0.12 mL, 1.7 mmol) was added
followed by 1 M Et3B/hexanes (1.3 mL, 1.3 mmol). The reaction was stirred for 2.5 h at room temperature
and then the volatiles were then removed under reduced pressure. The product was purified by flash
chromatography on silica gel (toluene/EtOAc, 9:1→3:2), yielding 28 as a pale-yellow syrup (287 mg,
83%). Rf = 0.2 (cyclohexane/EtOAc, 3:2); [α]20

D +8.4 (c 1.0, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.71
(d, J = 3.8 Hz, 1H, H-1), 4.11 (dd, J = 10.8, 4.4 Hz, 1H, H-3), 3.97 (dd, J = 10.8, 3.8 Hz, 1H, H-2), 3.92
(m, 1H, H-5), 3.36 (s, 3H, OCH3), 3.24 (s, 3H, OCH3), 3.21 (s, 3H, OCH3), 3.01–2.91 (m, 2H, CH2-SAc),
2.81–2.68 (m, 2H, NH-CH2), 2.66 (dd, J = 4.5, 4.4 Hz, 1H, H-4), 2.31 (s, 3H, CH3(SAc)), 1.83–1.68 (m, 2H,
-CH2-), 1.30 (s, 3H, CH3(BDA)), 1.25 (s, 3H, CH3(BDA)), 1.23 (d, J = 6.7 Hz, 3H, H-6); 13C NMR (126 MHz,
CDCl3) δ 196.1 (C=O(SAc)), 100.0, 99.8 (2 × C(ketal)), 98.3 (C-1), 67.2 (C-5), 66.6 (C-3), 65.6 (C-2), 60.8 (C-4),
55.1 (OCH3), 50.3 (CH2-SAc), 47.98, 47.97 (2 × OCH3), 30.7 (CH3(SAc)), 30.2 (-CH2-), 26.9 (NH-CH2),
17.92, 17.88 (2 × CH3(BDA)), 17.6 (C-6); HRMS (ESI) m/z calculated for C18H33NO7S [M + H]+ 408.2056,
found 408.2076.

3.26. Methyl 4-[(3-acetylthiopropyl)amino]-4-deoxy-α-l-fucopyranoside (29)

Compound 28 (272 mg, 0.667 mmol) was stirred in TFA/H2O (22 mL, 9:1, v/v) at room temperature
for 3 h. The solvents were then co-evaporated with toluene in vacuo. The resulting residue re-dissolved
in CH2Cl2 (25 mL) and stirred at room temperature with Amberlyst® A21 resin (2.42 g) for 16 h.
The resin was then filtered off and washed with CH2Cl2/MeOH (1:1, v/v). The filtrate was concentrated
in vacuo and purified via flash chromatography on silica gel (EtOAc→EtOAc/MeOH, 4:1) to yield
compound 29 as a yellow syrup (133 mg, 68%). Rf = 0.3 (EtOAc/MeOH, 9:1); [α]20

D −136 (c 1.0, CHCl3);
1H NMR (500 MHz, CDCl3) δ 4.69 (d, J = 4.0 Hz, 1H, H-1), 4.05 (m, 1H, H-5), 3.63 (dd, J = 9.8, 4.7 Hz,
1H, H-3), 3.39 (m, 4H, H-2, OCH3), 3.04–2.89 (m, 3H, NH-CH2, CH2(A)-SAc), 2.69 (dd, J = 4.8, 4.7 Hz,
1H, H-4), 2.58 (m, 1H, CH2(B)-SAc), 2.33 (s, 3H, CH3(SAc)), 1.82–1.73 (m, 2H, -CH2-), 1.26 (d, J = 6.7 Hz,
3H, H-6); 13C NMR (126 MHz, CDCl3) δ 196.1 (C=O(SAc)), 99.6 (C-1), 71.1 (C-2), 70.4 (C-3), 66.2 (C-5),
62.6 (C-4), 55.6 (OCH3), 50.2 (CH2-SAc), 30.9 (-CH2-), 30.8 (CH3(SAc)), 26.7 (NH-CH2), 17.6 (C-6); HRMS
(ESI) m/z calculated for C12H23NO5S [M + H]+ 294.1375, found 294.1364.
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3.27. Methyl 4-deoxy-4-[(3-thiopropyl)amino]-α-l-fucopyranoside (6)

Compound 29 (27 mg, 91 µmol) was placed under N2 and dissolved in dry, de-gassed MeOH
(0.90 mL). Freshly prepared, de-gassed 1 M NaOMe/MeOH (0.19 mL, 0.19 mmol) was then added
and the reaction was stirred at room temperature for 30 min. The solution was then diluted with dry,
de-gassed MeOH (1.0 mL), neutralised with activated Amberlite® IR120 resin (H+ form), filtered and
concentrated in vacuo. Compound 6 was obtained as a yellow/orange residue (20 mg, 88% by mass,
88% thiol, 12% disulfide). Rf = 0.4 (CH2Cl2/MeOH, 9:1); [α]20

D −180 (c 1.0, H2O); 1H NMR (400 MHz,
D2O) δ 4.79 (d, 1H, H-1, underneath HDO peak), 4.12 (m, 1H, H-5), 3.97 (dd, J = 10.5, 4.6 Hz, 1H, H-3),
3.66 (dd, J = 10.5, 4.0 Hz, 1H, H-2), 3.40 (s, 3H, OCH3), 3.03–2.88 (m, 2H, H-4, CH2(A)-SH), 2.79 (m, 1H,
CH2(B)-SH), 2.61 (t, J = 7.0 Hz, 2H, NH-CH2), 2.01–1.79 (m, 2H, -CH2-), 1.31 (d, J = 6.8 Hz, 3H, H-6);
13C NMR (126 MHz, D2O) δ 99.2 (C-1, JC-1,H-1 = 170.8 Hz), 68.7 (C-3), 68.0 (C-2), 66.1 (C-5), 62.2 (C-4),
55.0 (OCH3), 49.8 (CH2-SH), 32.5 (-CH2-), 21.4 (NH-CH2), 16.5 (C-6); HRMS (ESI) m/z calculated for
C10H21NO4S [M + H]+ 252.1270, found 252.1261.

4. Conclusions

In conclusion, we successfully synthesised six potential suicide inhibitors of BabA which are
currently being evaluated for biological activity. Our attention has now turned to the synthesis
of disaccharide inhibitors to include more binding interactions in CL2 of BabA, in theory creating
stronger inhibitors.
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