
A fog-based distributed look-up service for intelligent
transportation systems

G. Tanganelli, C. Vallati, E. Mingozzi
Dip. Ingegneria dell’Informazione, University of Pisa

L.go L. Lazzarino 1, I-56122
Pisa, Italy

{g.tanganelli, c.vallati, e.mingozzi}@iet.unipi.it

Abstract—Future intelligent transportation systems and appli-
cations are expected to greatly benefit from the integration with a
cloud computing infrastructure for service reliability and effi-
ciency. More recently, fog computing has been proposed as a new
computing paradigm to support low-latency and location-aware
services by moving the execution of application logic on devices at
the edge of the network in proximity of the physical systems, e.g.
in the roadside infrastructure or directly in the connected vehicles.
Such distributed runtime environment can support low-latency
communication with sensors and actuators thus allowing functions
such as real-time monitoring and remote control, e.g. for remote
telemetry of public transport vehicles or remote control under
emergency situations, respectively. These applications will require
support for some basic functionalities from the runtime. Among
them, discovery of sensors and actuators will be a significant chal-
lenge considering the large variety of sensors and actuators and
their mobility. In this paper, a discovery service specifically tai-
lored for fog computing platforms with mobile nodes is proposed.
Instead of adopting a centralized approach, we propose an ap-
proach based on a distributed hash table to be implemented by fog
nodes, exploiting their storage and computation capabilities. The
proposed approach supports by design multiple attributes and
range queries. A prototype of the proposed service has been imple-
mented and evaluated experimentally.

Keywords—Fog Computing; Distributed Hash Table; Look-up
service; Intelligent Transportation Systems;

I. INTRODUCTION

Future Intelligent Transportation Systems (ITS) will greatly
rely on sensors and actuators deployed on vehicles and the road-
side. Such sensing and actuating infrastructure will enable new
applications [6] that will improve many aspects of transportation
such as (i) safety, e.g. through prompt distribution of road hazard
warnings to drivers; (ii) traffic efficiency, e.g. through timed de-
tection and signaling of traffic jams; and (iii) drivers’ awareness,
e.g. through the dissemination of automatic map updates and
info. The implementation of these services is expected to largely
rely on cloud computing as a scalable and cheap computing and
storage infrastructure [7]. However, for services having low-la-
tency requirements and demanding location-aware interactions,
running in data centers usually located far from devices and us-
ers may not be a viable option.

To this aim, fog computing [13] has recently emerged as a
new computing model that delivers services and storage at the

edge of the network close to physical systems and users. Fog
computing is expected to play a major role for applications and
services deployed on devices installed in the roadside infrastruc-
ture or directly on connected vehicles. Such runtime environ-
ment will provide a virtualized framework to support applica-
tions, such as real-time traffic accident notification or localized
information delivery [8], which are unfit for the cloud environ-
ment.

Among the basic services that need be delivered to (ITS) ap-
plications in this context, maintaining a directory of the available
resources, i.e., sensor and actuator devices, for efficient discov-
ery is of utmost importance. Implementing such a service in a
cloud infrastructure is rather straightforward, since centralized
solutions can be readily adopted. However, a fog environment is
inherently dispersed, and therefore providing a distributed im-
plementation for the discovery service represents a better fit.
Moreover, resource discovery for ITS applications presents ad-
ditional challenges. On the one hand, resources will be charac-
terized by different and heterogeneous attributes. Handling such
variety will be further challenging given the dynamicity of the
environment in which context data is created and destroyed rap-
idly, e.g., because of mobility. On the other hand, applications
will specify queries with both multiple attributes and values in a
range. For example, consider charging stations for electric vehi-
cles (EVs), they might be equipped with sensors to check if a
charging spot is available. In this case, an EV might want to dis-
cover all the charging stations of a certain type in its proximity,
i.e. within a certain range of latitude and longitude. In this case,
the application of the EV will issue a discovery request with
multiple attributes (type, latitude, and longitude) and with range-
query (latitude and longitude within a range).

In this paper, a distributed discovery service for fog compu-
ting platforms is presented. The proposed look-up service ex-
ploits a two-tier logical overlay, inspired by LORM [4], an ex-
isting Distributed Hash Table (DHT), to support both multi-at-
tribute and range queries, as required by ITS applications. In the
proposed service, the original design is extended to allow dy-
namic management of information, required to handle the heter-
ogeneous storage capabilities offered by fog nodes. Specifically,
the proposed service can handle dynamic creation of information
contexts that could vary over time due to mobility. The feasibil-
ity of the proposed approach is demonstrated through a proto-
type based on existing software, which is exploited to run a per-
formance evaluation.

The rest of the paper is organized as follows: in Section II an
overview of the state of art on the topic of distributed services
for discovery is provided. Section III presents the overall archi-
tecture of the look-up service while in Section IV its basic oper-
ations are presented, Section V presents the performance evalu-
ation, while in Section VI conclusions are drawn.

II. STATE OF ART

Many distributed discovery services based on DHT have
been proposed in the literature. However, among them, only a
few allows multi-attribute and range queries.

In [1], the authors present MAAN, a Multi-Attribute Ad-
dressable Network, derived from Chord [2], which is specifi-
cally designed for the grid computing paradigm that requires
multi attribute queries. Every node has a unique ID and all nodes
form an overlay that has a ring topology based on their IDs. In
order to allow range queries, MAAN uses a locality preserving
hash function. Such hash function simplifies the resolution of
range queries: starting from the lower bound of the query range,
nodes can be interrogated in sequence and, whenever a value
greater than the request’s upper bound is obtained, a result is
found. MAAN also allows multi attribute queries by registering
multiple pairs (key, value) for each resource; the multi attribute
lookup is split into sub-queries, executed in parallel and reas-
sembled at the request originator. However, this approach in-
creases the exchange of information and, thus, the overhead.

Mercury [3], instead, allows multi-attribute queries by ex-
ploiting multiple DHT overlays. Each DHT manages a single
attribute. In order to enable range-queries, keys are strictly or-
dered. The proposed architecture, however, is not efficient: to
manage multiple separate DHTs is expensive, especially when a
large number of attributes is considered. Considering that nodes
participate to every DHT, the number of routing tables stored by
each node is in the order of log(), where n is the number of
nodes, and m is the number of attributes.

The limitations of MAAN and Mercury are fixed by LORM,
proposed in [5]. Lorm is a DHT system designed to provide scal-
able multi-attribute and range-query resource discovery. In order
to support storage and retrieval of data associated with multiple
attributes, Lorm adopts an overlay network in which nodes are
grouped into clusters, each one managing the information re-
lated with a different attribute. In order to enable retrieval of in-
formation from different clusters, a two-dimensional hash
schema is exploited: one dimension is used to identify the cluster
that manages the attribute, the other one to locate the information
inside the cluster. In order to handle range queries, a locality pre-
serving function is adopted to compute the part of the index that
is used to retrieve the information inside the cluster. In order to
guarantee efficient routing across clusters, a specific routing
strategy is defined, in which the routing tables include also
neighbors from different clusters. This overlay architecture that
splits information into clusters jointly with the routing strategy
minimizes the number of hops for information retrieval com-
pared to MAAN and Mercury.

Although LORM is efficient and offers both multi-attribute
and range query functionalities, it has some limitations that re-
frain from its adoption in ITS. One limitation is represented by
the number of attributes that can be managed. Specifically, the

number of attributes must be fixed and known at the time of con-
figuration. The addition of a new attribute through the addition
of a new cluster is not addressed, and would require significant
modifications to the current design and, in particular, the hash
schema. Another limitation is the distribution of the information
load thought the nodes of the overlay. Although LORM guaran-
tees a more balanced distribution of information among the
nodes, the hash function does not take into account potentially
heterogeneous storage capabilities between nodes. In order to
solve both these issues, in this paper we present a DHT that
adopts an architecture, inspired by LORM, but can handle dy-
namic creation/destruction of clusters and potentially offer
mechanisms for data relocation.

III. DHT LOOKUP SERVICE

The proposed lookup service is implemented using a hierar-
chical two-tier DHT overlay. Such hierarchical structure, in-
spired by the architecture of LORM [4], is adopted to achieve
efficient storage and lookup of data associated with multiple at-
tributes. The overall architecture is illustrated in Figure 1. Spe-
cifically, the outer tier is composed of a set of independent DHTs
overlays (called clusters), each one instantiated to store the re-
sources associated with one specific attribute. Lookup requests
involving a specific attribute are processed by the respective
cluster. The inner tier, called global DHT, is exploited to inter-
connect the clusters of the outer tier together. Specifically, the
global DHT is exploited to dispatch multi-attribute queries to
different clusters. For each multi-attribute query, multiple sub-
queries, one for each attribute, are generated and forwarded to
the corresponding cluster for resolution. The results obtained by
each cluster are then aggregated and forwarded to the applica-
tion.

In order to allow range queries for attributes involving nu-
meric values, e.g. GPS location, a locality preserving hash func-
tion is implemented by clusters. A locality preserving hash func-
tion is a hash function in which the numerical order of the values
is preserved in the hash domain, formally:

DEFINITION. A Hash function is locality preserving, or
LPH for short, if it has the following properties: if < , then

() < (); and, if an interval [,] is split into
[,] and [,], respectively, the corresponding interval
[() , ()] must be split into [() , ()]
and [() , ()].

Such property of the hash function simplifies the lookup of
range values: starting from the lower bound of the request, the
nodes of the DHT can be queried in sequence; whenever a value
greater than the upper bound is obtained, all the desired results
are also obtained. Similarly to LORM [4], we define the locality
preserving hash function as:

= (−)
(− 1)

(−)
,

where π is the attribute value in the range [,] and d
is the max allowed value in the hash domain. In the global DHT
and in the clusters that do not manage attributes with numeric
values, a standard hash function, e.g. SHA-1 [11], can be
adopted, hereafter H for short. It is worth to note that the pro-
posed architecture is general enough to be realized using any
DHT implementation. In our prototype, for instance, we ex-
ploited Pastry for both the clusters and the global DHT.

The overlay architecture shown in Figure 1 is a logical archi-
tecture that allows efficient storage and lookup of multiple at-
tributes. Its implementation exploiting actual Fog devices, how-
ever, must take into account also other requirements. Primarily,
the implementation should consider that Fog nodes are physical
devices characterized by heterogeneous computation and stor-
age capabilities [12]. For this reason, in order to obtain an effi-
cient distribution of data, each Fog node should join a number
of clusters proportional to its capabilities. Secondly, the imple-
mentation should support the dynamic management of attrib-
utes. Considering that the set of attributes might change over
time, the implementation is required to support the introduction
(deletion) of new (existing) attributes efficiently.

In order to support such requirements, the implementation of
the logical architecture has been designed to allow Fog devices
to host multiple DHT nodes at the same time. The DHT nodes
to be hosted could be selected based on applications’ preference,
for example an application that often retrieves resources based
on their location might want to manage Latitude and Longitude
attributes. The overall structure of a Fog device is illustrated in
Figure 2. The Fog device instantiates multiple DHT nodes join-
ing different clusters, one for each attribute that the Fog device
is configured to manage. Each logical node communicates with
the other DHT nodes of the cluster to manage the look-up re-
quests that involve the attribute of the cluster. Logical nodes are
managed by a Manager node (MGN), which is responsible for

dynamically creating or destroying new or existing instances of
logical nodes upon request. In addition to this, the manager is
responsible for handling the dispatch of the lookup requests orig-
inated from the local applications to the proper cluster. To this
aim, the manager provides an interface that allows applications
executed locally on the Fog device to issue lookup requests,
which are then dispatched to the proper cluster. In order to man-
age lookup requests involving attributes for which a local node
does not exist, the manager node joins the global DHT. The
global DHT contains a list of selected manager nodes, called
Cluster Master nodes (CMT), that are selected as last resort to
resolve lookup requests for a specific attribute. To this aim, for
each attribute one CMT is selected among all the MGNs that
have a connection with that cluster. Each CMT is published in
the global DHT using as key its attribute, e.g. “Battery Level”,
allowing a MGN to locate the CMT of an attribute through a
simple lookup query on the attribute name. After retrieving the
CMT, the MGN can forward the request, which is processed by
the CMT using the local DHT node connected to the cluster of
the attribute.

Let us explain further the procedure through an example. Let
us suppose that a Fog device (Nx) is running a local application,
which is interested in retrieving resources based on their loca-
tion. In order to minimize the response delay, the Manager node
(Nx-MNG) decides to manage locally the two attributes, i.e. lat-
itude and longitude, creating two logical nodes, Nx-Lat and Nx-
Long, that join the latitude and longitude clusters, respectively.
Exploiting the APIs exposed by the Nx-MNG, the application
can perform queries on the latitude and the longitude, which are
handled locally by the Nx-MNG that forwards the requests to
Nx-Lat or Nx-Long. If, instead, the application performs a query
involving another attribute, e.g. battery, the Nx-MNG can inter-
rogate the global DHT to retrieve the CMT responsible for such
attribute, in this case the battery, and then forward the request.
The CMT that receives the request handles the query contacting
the local cluster node that manages the battery attribute and then
sends back the response.

Finally, the mapping of the logical overlay into the physical
architecture considered in the example is presented in Figure 3.
In this example, three physical Fog devices, represented using
different shapes, implement the distributed discovery service.
Three different clusters are created to handle the information re-
lated with three different attributes, Latitude, Longitude and Bat-
tery, respectively. As can be seen, device1 and device2 decide
to manage the Latitude and Longitude attributes, creating two

Figure 2: Node internal architecture

MGN

Lat Lon

Physical Node

Cluster Node Manager Node

To the latitude
cluster

To the longitude
cluster

To the global DHTApplication API

Figure 1: Two-tier Architecture

Inner DHT
(global)

outer DHTs
(clusters)

Figure 3: System Architecture

M

M

M

M

Manager

Device 1

Device 2

Device 3

Lat

Lon

Bat

Cluster Master

logical nodes that join Latitude and Longitude clusters. Device3,
instead, decides to manage only Battery Level, creating a local
node that joins the corresponding cluster. Every Fog device runs
a Manager node that joins the global DHT. Among them, the
Manager node of device1 is selected as Master Cluster for Lati-
tude and Longitude, while the Manager node of device3 is se-
lected as Master Cluster for Battery.

The proposed architecture can be exploited to dynamically
add attributes at runtime. Instead of having a predefined set of
clusters, when an application wants to register a new attribute,
which is not already available in the system, the Manager node
can create a new cluster, and thus the new attribute. This oppor-
tunity is particularly suited to handle the dynamicity typical of
dynamic environments, such as ITS, handling changes in the en-
vironment in a seamless manner. Although it is not evaluated in
this work, detachment between physical and logical nodes can
be exploited to dynamically re-distribute data at runtime. Spe-
cifically, logical nodes can be migrated along with their data
from one Fog device to another, thus providing the required flex-
ibility to handle load variations. For instance, if a device is run-
ning out of storage, it can decide to request the migration of
some of its DHT nodes to other devices that, instead, are less
loaded, thus balancing the distribution of data.

IV. INFORMATION FLOW

In order to describe in details the operations performed by
the discovery service, in this section we present a detailed de-
scription of the information flow exchanged in every operation.
The description is based on the APIs exposed by each single
DHT module that are summarized in Table I. It is worth to high-
light that these APIs can be realized through any DHT concrete
implementation.

The first operation performed by a new Fog device is the
procedure required to join the discovery service. Without loss of
generality, we assume that at least one device has already joined
the system and its address is known to devices that wants to join.
The procedure required is depicted in Figure 4. The new node
(Nx) sends a join request to one of the devices that have already
joined (Ny), that in turn forwards the request to the global DHT.
The global DHT returns all the information regarding the nodes
that are already part of the system, information exploited by the
Nx to build the local routing table and configure the Manager
Node (Nx-MNG).

Subsequently, the node selects the attributes that want to
manage and trigger the Manager to create the logical nodes, one
for each attribute. In Figure 5 it is shown the information flow
of a device Nx that wants to join the “Longitude” cluster (Lon
for short). First, the Nx-MNG sends a lookup request to the
global DHT for the key “Lon” to retrieve the address of the
Cluster Master node for the Longitude attribute (CMT-Lon).
Then, the Nx-MNG triggers the local DHT node to join the Lon-
gitude cluster contacting the CMT-Lon. In case the attribute is
not available, the lookup to the global DHT fails. Consequently,
the Nx-MNG creates a new logical node and performs the in-
sertGlobal(H(“Lon”)) to add itself as CMT-Lon in the global
DHT. From now on, the Nx-MNG will act as Cluster Master
node of the Longitude attribute.

To add a new resource associated with an attribute, we must
distinguish between two cases – as shown in Figure 6: i) the pub-
lishing node already has a virtual node in the cluster of the at-
tribute, or ii) the publishing node does not have a virtual node in
the cluster of the attribute. In the first case, let us suppose that
Nx wants to add a new resource into the “Longitude” cluster for
which it exists the Nx-Lon logical node. Nx-MNG forwards the
request to its Nx-Lon node that publishes the new value in the
DHT. In the second case, instead, since Nx does not have any
virtual node in the “Battery Level” cluster, the Nx-MNG for-
wards the insert request to the Cluster Master of the Battery-
Level attribute which, in turn, will insert the value into the Bat-
tery-Level cluster.

Finally, the lookup procedure is similar to the insertion re-
ported in Figure 6; the only difference is that insertCluster re-
quests are replaced by lookupCluster requests. When multi-at-
tribute lookup queries are requested, they are divided into differ-
ent single attribute sub-queries and resolved in parallel, thus re-
ducing the overall response time. Specifically, each sub-query is
executed in the corresponding cluster. The source node receives

Figure 5: Cluster join

Table I: APIs
API Description

joinGlobal() Join to the global DHT.
insertGlobal(H(at-
tributeName), info)

Add the information of the Cluster
Master node to the global DHT.

joinCluster() Join to a cluster.

lookupGlobal(
H(attributeName))

Retrieve the Cluster Master node for
the attributeName in the global DHT.

lookupCluster(
LPH(attributeValue))

Retrieve the info stored in the cluster
for the attributeValue

insertCluster(at-
tributeValue, info)

Add a new value to the cluster with its
associated information.

rangeLookup(
LPH(minValue),
LPH(maxValue))

Retrieve the info stored in the cluster,
for values in the range.

Figure 4: Manager Node creation

all the results and aggregates the resulting information that is
then sent back to the application.

Range query requests are managed similarly to regular
lookup requests, as the range is handled locally inside each clus-
ter. The overall procedure is illustrated in Figure 7 by means of
an example. In the example, a range query for the Latitude at-
tribute, managed by the local Nx-Lat node, is issued for the range
[,]. First, Nx-Lat issues a rangeLookup request for
[,], which is routed to the node identified by

(), Ny-Lat in the example. The range lookup returns
all the values stored locally by Ny-Lat and in addition the list of
successor nodes in the cluster, if is greater than the maxi-
mum value stored locally. Based on such information, Nx-Lat
can send the same range lookup to all the successors,
{ … }, until the value is retrieved. It is worth to
note that all the range lookup requests (except the first) could be
performed in parallel to reduce the overall time required to per-
form the range lookup operation. To this aim, the list of succes-
sors is updated using the result of each response.

V. PERFORMANCE EVALUATION

In order to validate the proposed solution, a prototype has
been implemented. The software implements the proposed
discovery architecture using Pastry. A set of experiments is then
executed to assess the performance of the proposed solution.
Different distributed physical devices are emulated on the same
hardware using the Linux Container framework (LXC). LXC is
a lightweight operating-system level virtualization framework
that allows to run multiple isolated systems on a single host
through the use of separate isolated containers [10]. In order to
simulate the interconnection of different devices through
Internet links the Dummynet software has been exploited [9].

Dummynet is a live network emulation tool that can be used to
add custom delays in the stack buffers at the kernel level.
Specifically each physical device is emulated through a
dedicated container and, through Dummynet, we emulated a
communication delay of 80ms, in order to simulate a real use
case scenario. The tests are executed on an Intel Quad-core 3
GHz processor with 8 GB of RAM.

For each test the total number of managed attributes is fixed
to 20; consequently 20 clusters are created, for each one 1000
resources are registered with a value of the attribute selected
randomly in the range [0-100]. In all tests, requests are
generated following a Poisson generation process with a rate of
one request every 200ms. Each experiment is run until 100
requests are issued. In order to obtain statistically sound results,
ten independent replicas for each scenarios are run, and metrics
of interest are then estimated for each scenario along with a
95% confidence interval.

In the first set of experiments, we configure each node to
manage a variable number C of attributes, thus creating C
logical nodes, each one deployed in a specific cluster. We vary
the number of physical devices to assess the response time of
our architecture. It is worth to note that the overall number of
logical nodes in the network is equal to (+ 1), where n is
the number of connected devices. Each device has C logic
nodes plus the Manager Node. The performance of the system
is assessed measuring the response time of a lookup operation,
defined as the time between the generation of a request and the
reception of the response.

In Figure 8, we show the response time of the lookup
operation for a single attribute versus the number of connected
devices with two different values of C, i.e = 5, and = 10,
respectively. As can be seen, the response time grows with the
number of connected devices. The increase of the response time
is in line with the complexity of the retrieval of information in
DHT systems, in which the number of hops increases as

(log), with n equal to the number of logical nodes. It is
worth to node that 100 devices with 10 attributes per device
results in a total of 1120 logical nodes deployed in the system.
On the other hand, when more attributes per device are
involved, it is more likely that each device has a logical node in
the requested attribute cluster: this avoids to interrogate the

Figure 8: Response Time vs Number of nodes

Figure 6: Insert a new value in a cluster

Figure 7: Range Lookup

global DHT to retrieve the Cluster Master. For this reason,
when C is equal to 10, we can notice a lower response delay.

We then analyse the range lookup performance.
Specifically, we vary the requested attribute range from [0,10]
to [0, 100]. The overall number of connected nodes and the C
value (5 attributes per node or 10 attributes per node) are also
changed. Results are reported in Figure 9, which shows the
response delay versus the size of the range. As expected, when
the number of connected nodes is low (light blue and black) the
variation in the range does not influence significantly the
overall delay. On the other hand, with 100 physical nodes (red
and green) the delay increases as the range dimension increases.
This can be explained by the fact that more nodes needs to be
queried in sequence and in the worst case all nodes in a cluster
are queried.

Finally, we mix the range query with the multi attribute
feature. To this aim, the number of physical devices is fixed to
100, and the overall number of attributes to 20 and = 5, (620
logical nodes). We perform different requests, varying the
number of involved attributes from 5 to 20 (the maximum
value) and the range of every attribute. Results are reported in
Figure 10. As can be seen, the red line reports the results
obtained in the scenario in which 5 attributes are requested
simultaneously and, for each attribute, the requested range
varies from 0 to X. As expected, the delay significantly

increases as the number of involved attributes increases or the
requested range increases. However, it is worth to note that,
parallelizzation helps in reducing the overall delay for multi-
attribute lookup, since doubling the number of attributes does
not result in a doubled response delay.

VI. CONCLUSIONS

In this work we designed a DHT architecture, with multi-
attribute and range queries capabilities, to provide a fog-based
distributed lookup service that can be exploited to efficiently
discover resources in ITS systems. We design our architecture
to dynamically adapt to changing in the environment, both in
terms of participating resource attributes as well as in term of
participating devices. We assessed the performance of our ar-
chitecture by means of a prototype and a set of experiments.
Results show that the proposed solution scale with the number
of nodes allowing to be effectively exploited to provide a dis-
tributed lookup service on large scale.

As future work, we plan to extend the proposed solution by
exploiting virtualization techniques even inside each device, al-
lowing to migrate logical nodes from one device to another, to
enable a load balancing mechanism that can be adapted to dy-
namic load changes.

REFERENCES
[1] M. Cai, M. Frank, J. Chen, and P. Szekely, “MAAN: A Multi-Attribute

Addressable Network for grid information services”, Journal of Grid
Computing, vol. 2, no. 1, pp.3 – 14, 2004.

[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In
Proceedings of ACM SIGCOMM 2001, 2001.

[3] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
scalable multi-attribute range queries. In Proc. of ACM SIGCOMM,
pages 353–366, 2004.

[4] Shen H, Xu C. Leveraging a compound graph-based dht for multi-
attribute range queries with performance analysis. IEEE Transactions on
Computers, 2012, 61(4): 433–447

[5] H. Shen and C. Z. Xu, "Leveraging a Compound Graph-Based DHT for
Multi-Attribute Range Queries with Performance Analysis," in IEEE
Transactions on Computers, vol. 61, no. 4, pp. 433-447, April 2012.

[6] F. Dressler, H. Hartenstein, O. Altintas and O. K. Tonguz, "Inter-vehicle
communication: Quo vadis," in IEEE Communications Magazine, vol. 52,
no. 6, pp. 170-177, June 2014.

[7] W. He, G. Yan and L. D. Xu, "Developing Vehicular Data Cloud Services
in the IoT Environment," in IEEE Transactions on Industrial Informatics,
vol. 10, no. 2, pp. 1587-1595, May 2014.

[8] M. Tao, K. Ota and M. Dong, "Foud: Integrating fog and Cloud for 5G-
Enabled V2G Networks," in IEEE Network, vol. 31, no. 2, pp. 8-13,
March/April 2017.

[9] L.Rizzo, Dummynet: a simple approach to the evaluation of network
protocols, ACM SIGCOMM Computer Communication Review, 31-41,
1997

[10] https://linuxcontainers.org/

[11] RFC 3174: US Secure Hash Algorithm 1 (SHA1) (September 2001) by
D. Eastlake

[12] Vaquero, Luis M., and Luis Rodero-Merino. "Finding your way in the
fog: Towards a comprehensive definition of fog computing." ACM
SIGCOMM Computer Communication Review 44.5 (2014): 27-32.

[13] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012.
Fog computing and its role in the internet of things. In Proceedings of the
first edition of the MCC workshop on Mobile cloud computing (MCC
'12). ACM, New York, NY, USA, 13-16.

Figure 9: Response Time for range query

Figure 10: Multi Attribute lookup

