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Abstract

Many complex phenomena occurring in physics, chemistry, biology, finance, etc can be reduced, by
some projection process, to a 1-d stochastic Differential equation (SDE) for the variable of interest.
Typically, this SDE is both non-linear and non-Markovian, so a Fokker Planck equation (FPE), for the
probability density function (PDF), is generally not obtainable. However, a FPE is desirable because it
is the main tool to obtain relevant analytical statistical information such as stationary PDF and First
Passage Time. This problem has been addressed by many authors in the past, but due to an incorrect
use of the interaction picture (the standard tool to obtain a reduced FPE) previous theoretical results
were incorrect, as confirmed by direct numerical simulation of the SDE. The pitfall lies in the rapid
diverging behavior of the backward evolution of the trajectories for strong dissipative flows. We will
show, in general, how to address this problem and we will derive the correct best FPE from a
cumulant-perturbation approach. The specific perturbation method followed gives general validity to
the results obtained, beyond the simple case of exponentially correlated Gaussian driving used here as
an example: it can be applied even to non Gaussian drivings with a generic time correlation.

1. Introduction

In the present work we are interested in non-linear 1-d SDEs of the form:
X =—-CX) + €(1). (D

where X is the variable of interest, — C(X) is the unperturbed drift field, £(¢) is the stochastic Gaussian
perturbation with zero mean and autocorrelation function (¢, ) = (£(¢)&(t")) /(£2), the parameter e
controls the intensity of the perturbation, and (...) implies average over the £ realizations. The SDE in (1) is
ubiquitous in many research fields [1].

We consider here a simple additive and Gaussian SDE because we want to focus on a flaw that plagued
previous applications of the perturbation method to dissipative systems, and which is solved here. However, the
extension of the present approach to the case of multiplicative correlated noise, possibly non-Gaussian, is
straightforward, although it presents some subtleties, and it will be dealt with in a later work.

Itis a standard result in statistical physics that when the stochastic forcing £ is a ‘white noise’, (£ (1) £ (') =
2 6(t — t'),(1)leads to a flow for the Probability Density Function (PDF) P(X; t) of the variable X equivalent to
the probability flow given by the following Fokker Planck equation (FPE) (where Ox := 0/0X, Dy = €>.):

OP(X; t) = OxC(X)P(X; t) + Dy OXP(X; ). ()
From (2), the stationary PDF is given by
Py = e | ©)

where Zis a normalization constant.

© 2020 The Author(s). Published by IOP Publishing Ltd
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However, white noise is often an oversimplification of the real driving acting on a system of interest.
Correlated noise (termed ‘colored’ in the literature) is more common in continuous systems, and its importance
has been recognized in a large number of very different situations, like for instance statistical properties of dye
lasers [2—5] and laser technology [6], chemical reaction rate [7—10], optical bistability [ 11, 12], stochastic
resonance [13] large scale Ocean/Atmosphere dynamics [14, 15], nonlinear energy harvesting systems [16],
sensors design [17], ecosystems [ 18—20], medical sciences [21-23], neural systems [24, 25], material science
[26,27] and many others.

We will assume that the stochastic process £(f) is characterized by a ‘finite’ correlation time 7 and unitary
intensity (€*)7 = 1.Itis well known that if the unperturbed drift field is linear, regardless of the number of
dimensions, the Gaussian property of a generic colored noise £(#) is ‘linearly’ transferred to the system of interest,
so the FPE structure does not break (see, e.g., [ 10, 28]). On the contrary, in the case of non linear SDE and/or
non Gaussian noise, for finite values of 7 the FPE structure breaks down. This is the case of interest here, and the
aim of this paper is to recover in some appropriate limits a FPE structure, obtaining an effective FPE with a state
dependent diffusion coefficient:

OP(X5 1) = OxCX)P(X; 1) + 05.DX)P(X; 1) (C))

that, with a good approximation, could describe the evolution and the stationary properties of P(X; ). Given
D(X), the stationary PDF of the FPE of (4) is then easily obtained

1 e_fx%dy
R(X) = 7 DX &)

Several techniques have been developed to deal with the correlation time of the noise in nonlinear SDE, with
the aim of eventually obtaining this effective FPE. They can be grouped in three main categories that correspond
to three general techniques: the cumulant expansion technique [29-31], the functional-calculus approach
[21, 32-38] and the projection-perturbation methods (e.g., [9, 39—41]). Each of these methodsleadsto a
formally exact evolution equation for the PDF of the driven process, and the different descriptions are therefore
equivalent. The exact formal results do not lend themselves to calculations nor give a FPE structure, therefore
they require that approximations be made. The approximations made within these various formalisms involve
truncations and/or partial resummations of infinite power series with respect to e and 7, which are typically the
small parameters in the problem. Not surprisingly, it has been argued [38] that the effective FPE obtained from
the different techniques are identical, if the same approximations are made (time scale separation, weak
perturbation, Gaussian noise etc.). The results of the approximations can be grouped in three categories: the
‘Best Fokker Plank equation’ (BFPE) obtained by Lopez, West and Lindenberg [38] from a standard
perturbation method, where € is the small parameter and 7 is finite but (in general) not limited, the ‘Local
Linearization Assumption’ (LLA) FPE, that formally can be considered as a small 7 expansion of the BFPE (see
section 4), and that has been obtained in different ways, e.g., by Grigolini [42], exploiting an ad-hoc projection
procedure, or by Fox [33, 34], Hinggi [35—37] and the Barcelona group [43—46], using functional-calculus, and,
finally, the gen-FPE, that makes use of moments of the unknown response PDF [21, 32] and that, improving the
old cited functional-calculus approach, leads to anon linear FPE for values of €7 enough large to include all cases
of interest. It is also worth mentioning the Unified Colored Noise Approximation (UCNA) [47, 48], a filtering
approach introduced by Yung and Hinggi for a general stochastic dynamic systems driven by a Gaussian red
noise (a Ornstein-Uhlenbeck process). The UCNA approach is based on two steps: taking advantage of the
simple characteristics of red noise, the number of degrees of freedom is increased, so to obtain a
multidimensional white noise SDE. Then, under the condition of small or large correlation times 7, the number
of degrees of freedom is reduced back to the original one, holding the white nature of the noise. In the limit of
small 7 the equivalent FPE coincides, of course, with the LLA one, but for large 7 it is different. However, it is
notable that the stationary PDF of the UCNA FPE always coincides with that of the LLA FPE [36, chap.IV]. Apart
from the limitations, already highlighted, of the UCNA method, filtering approaches have the inherent
drawback of increasing the degrees of freedom in the FPE equation when an accurate approximation is needed.
A separate consideration deserves some interesting recent works on the gen-FPE [49, 50]. The approximation
scheme is based on an extension of the Novikov—Furutsu theorem and on a stochastic Volterra-Taylor
functional expansion around the instantaneous values of appropriate response moments [50]. The results are
notlimited to the red noise case and are in excellent agreement with numerical simulations of the SDE in both
the transient and long-time regimes, for any correlation function of the stochastic perturbation (assuming the

3 e s . . . . . P .

The general prescription is that there is a time 7 such that, for any time f, the instances of { at times ¢’ > ¢ + 7 are ‘almost statistically
uncorrelated’ with the instances of  at times ¢/ < ¢. For ‘almost statistically uncorrelated’ we mean that the joint probability density
functions factorizes up to terms O(7): p, (&, t; & tz/;...;fk, s Eevp 155 ) = pr(&p t; & tz/;...;fk, t,!)ph(gkﬂ, 3.5, ) + O(T)
with k, b, n € Nyk+h = nandt;/ > t; + 7.Forexample, p,(&, t'; &, t) = p,(&, t)p, (&, 1) + O(T).
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system is stable). But, they are intrinsically limited to the case of 1-d correlated Gaussian noise and the gen-FPE
has a nonlinear/non-local structure. Although this latter fact does not pose many difficulties in the numerical
simulations (the nonlinearity and the non-locality appear in the diffusion coefficient(s)), it does not allow to
directly use standard simple analytical tools developed for linear FPE as the eigenvalues approach or the Mean
First Passage techniques (see, e.g., [51, Chap. 5]).

In this work we focus our attention to the linear FPE to be associated, with good approximation, to SDE with
general correlated Gaussian noise. Moreover we want to use an approach that leaves open the possibility of
including non Gaussian perturbations. Thus, the BFPE looks as the perfect candidate.

Although, as mentioned, the LLA FPE can be formally considered a small 7 expansion, strangely enough, the
BFPE often fails when compared with numerical simulations, even for relatively weak perturbations, while the
LLA FPE usually works better.

In section 2 we will shortly review the perturbation approach that leads to the BFPE, stressing that care must
be taken when using the interaction picture in strongly dissipative systems: the pitfalls we will point out are the
sources of the problems with the original formulation of the BFPE. Section 3 is the main section of the present
work: we will show how to cure the shortcomings of the BFPE pointed out in section 2. Section 4 is devoted to a
comparison with the LLA results. In section 5 we present the conclusions.

2. The standard BFPE

From (1) it follows that, for any realization of the process £(u), with 0 < u < t, the time-evolution of the PDF of
the whole system, which we indicate with P¢(X; 1), satisfies the following PDE:

OP: (X5 1) = Lo Pe(X5 1) + € E@) Ly Pe(X5 1) 6)
in which the unperturbed Liouville operator £, is
L, = 0xC(X) ()
and the Liouville perturbation operator is
L := Ox. (8)
A standard step of the perturbation method is to introduce the interaction representation, by which (6) becomes
OP(X; 1) = €O L1 P(X; 1), ©)
where
Pe(X; t) = e 5 Pe(X5 1), (10)
and
Li(t) = e Lot Lrelat = e Lt [ L], (11)

where, for any couple of operators 4 and 3, we have defined A[B] := [A, B] = AB — BA. Thelaststepin
(11)is easily proved by induction and it is known as the Hadamard’s lemma for exponentials of operators. In
[31] £;(¢) of (11)is also called the Lie evolution of the operator £; along the Liouvillian £, foratime — t.For
further use, we note that the Lie evolution of a product of operators is the product of the Lie evolution of the
individual operators:

e [BC] = eX[B] eA[C]. (12)

Integrating (9) and averaging over the realization of £(¢), we get
t ~
PG 1) = (exp [ef du f(u)ﬁ;(u)])P(X; 0) (13)
0

where %[...] is the standard chronological ordered exponential (from right to left), P(X; 1) :== (P«(X; t)) and
we assumed that P; (X; 0) = P(X; 0), i.e. at the initial time ¢ = 0 P¢(X; 0) does not depend on the possible values
of the process &, or that we wait long enough to make the initial conditions irrelevant. The result of (13) is exact,
no approximations have been introduced at this level.

The r.h.s. of (9) can be considered as a sort of generalized moment generating function for the fluctuating
operator & (1) L; to which it is possible to associate a generalized cumulant generating function [52]:

<%[eft du 5(u)2,(u)]>P(x; 0) := exp [K(e, )]P(X; 0) (14)
0

with K(e, t) = 3°3°, €'Ki(t). Keeping up to the second generalized cumulant C,(t) = fo ' duy J; “ du,

(&(w) Li(n) € (1) El(u2)>, assuming without loss of generality that ({) = 0, and exploiting (13) we arrive to
the following result [52, see the example in section 4.4.2] (note that from the assumption (€%)7 = 1 it follows

3
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Figure 1. The case where C(X) = sinh(X),and (€%) = 1, p(t) = exp(—t/7), 7 = 0.8and ¢ = 0.3. The graphs are the PDFs
obtained from (5), in which the state dependent diffusion coefficient D(X) is evaluated from (16) supplemented with the series
expansion of (17) truncated at the fifth order. The solid lines refer to even orders: zeroth (blue), second (red) and fourth (green) one.
The dashed lines refer to odd orders: first (blue), third (red) and fifth (green) one.

(& =17
&ﬂ&wzﬁmamﬂkn:ﬂzmﬁjﬂwzwwmmﬂ&w (15)
T 0

which coincides with the usual one obtained using a second order in €, Zwanzig projection approach
[9,40,41, 53, 54].
Getting rid of the interaction picture and exploiting (8) and (11), from (15) we obtain

PG 1) = LPOG 1) + ¢20x + [ du 41051 p () POS; 1), (16)
T J0

where (1) == (t, t — u) and, for the sake of simplicity, we have discarded the possible transient regime that
would make non stationary the statistics of £(f). We stress again that the result (16) is standard in the sense that it
can be obtained starting from (6) and using any perturbation approach, where € is the small parameter (assuming
afinite, but not necessarily small, correlation time 7), as the Zwanzig projection method hereafter cited. We have
used the generalized cumulant approach, that is based on the identification of the r.h.s. of (13) with a generalized
(operator value) characteristic function, because, according to the theory developed in [52], it gives a sound
justification of the second order truncation of the full series of generalized cumulants. In other words, the
generalized cumulant approach guarantees that the error introduced by using the SDE (15) for the PDF (13)

is O(e*).

The next step is to rewrite, if possible, (16) as the FPE of (4). To go from (16) to the FPE of (4), the crucial
term is the operator e [Jy]. In most papers using the Zwanzig projection method (e.g., [39]), the explicit FPE
is obtained from (16) assuming that 7, identified with the decay time of the correlation function (%), is much
smaller than the time scale of the unperturbed dynamics driven by the Liouvillian £,. In this case it is possible to
replace, in (16), the power expansion (note the shorthand (0xC (X)) := C'(X))

eLau[fy] = Ox + [La Oxl u + OW?) = dx — dx C'X)u + O®u?). (17)

thatleads to a FPE with a state dependent diffusion coefficient, given by a series of ‘moments’ of the time u,
weighted with the correlation function ¢(u). However, such a series, as it is apparent from (17), contains secular
terms and is (generally) not absolutely convergent. This is clearly shown in the example considered in figure 1. A
way to avoid this problem is to solve, without approximations, the Lie evolution of the differential operator Ox
along the Liouvillian £,. In [31] this was done for the general case of multidimensional systems and
multiplicative forcing. In the present simpler one-dimensional case, recalling that £, = 0xC(X), the Lie
evolution of Oy, without approximations, can be obtained directly as follows:

— 0y C(X)— (18)

CX) C(X)] CXo(X5 —u))

where Xo(X; —u) := e£i[X] = (e £eX) is the unperturbed backward evolution, for a time u, of the variable
of interest, starting from the X position at the initial time u = 0. In the last part of (18) we have used two trivial
facts (see again [31] for details and generalizations):

el [Ox] = eﬁﬁw[aXC(X)—l ] = L[ L,] eﬁiu[

4
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+ given two operators .4 and B, B does not Lie-evolve along .A when [ A, B] = 0, thus el [ L] = Lo,

+ the Lie evolution along a deterministic (first order partial differential operator) Liouvillian of a regular
function C(X), is just the back-time evolution of C(X) along the flow generated by the same Liouvillian:

eLt[C(X)] = C(Xo(X; —u)). (19)

Inserting (18) in (16) we get, in a clear and straight way, a generalization of the BFPE of Lopez, West and
Lindenberg [38]*:

OP(X; 1) = LP(X; 1) + €2 0% iC(X)( w(u))P(X; t), (20)
T

[l
0o CXo(X; —u))

namely, the FPE of (4) with the state and time dependent diffusion coefficient

1 ! 1
D(X =e2—C(X _ 21
(X, e = €*—C( )(fo e _u))so(u)) @1
that, for large times, becomes
_ 21 * 1
DX, o)ure = ¢ TC(X)( S o _u))sow)). 22)

For weak enough noise intensity ¢, the BFPE looks like the best possible approximation we can get from a
perturbation approach to the SDE of (1). However, this is not the case: the diffusion coefficient in (22) turns out
to be wrong, as we are going to show.

Itis actually known that in many cases of interest the diffusion coefficient D(X,00)rpg, given in (22), becomes
negative, giving rise to a non physical negative PDF. A simple example may serve for illustration. Let us consider the case
inwhich C(X) = asinh(kX) and ¢ (t) = exp(—t/7), with @ > 0. The corresponding SDE is related to a well
known chemical reaction scheme, see [55]. A straightforward calculation leads to C(X) /C (Xo(X; —u)) =
cosh(aku) — cosh(kX)sinh(aku), which inserted in (22), for times t > 7/(1 — akr), gives (0 := akT)

D(X, oo)pppg = €2 w, (23)

with the constraint @ < 1. From (23) we see that for X = +X, with X := e 92; L0

of the BFPE vanishes and for | X| > X it is negative which is clearly unphysical. Using (23) in (5), we obtain the
stationary PDF:

, the diffusion coefficient

1-62 k2722

1 (1 — 6 cosh(kX) )k
BFPE 1-10

that s affected by the same problem for | X| > X. The standard way to cure this flaw of the BEPE is to restrict the
support of the PDF [38, 55]. In this case, for example, the first and the second fierivatives of (24) vanish in

|X] = X, therefore one could limit the support of the PDF of (24) to X € (—X, X). However, from figure 2 it is
clear that by increasing e, the result of (24) does not agree well with that obtained from the numerical simulation
of the SDE of (1). Only for very small values of 7 € the result is good (i.e, when the width of the PDF is small
compared to 2X). The same problem is present when other drift fields C(X) are considered: the case of

C(X) = X’ is shown in appendix, other examples can be found in the literature [42, 56-58].

P.(X)prpg = 24

3. The cured BFPE

We show in this section that the flaws of the BFPE are due to an incorrect implementation of the perturbation
procedure, and we will cure this situation.

Note first that the possibly negative Dgrpg value of (22) is due to the fact that the kernel of the integral can be
negative for some X values.

Considering once more the case of C(X) = « sinh(kX), we see from figure 3, solid lines, that, after a given
time #(X), the function C(X)/ C(X,(X; — u)) becomes negative. Note also that the larger the X value, the shorter
the time i (X ). Thus, whatever the correlation decay time 7 € (0, 1/ak), there will always be a certain X value
such that D(X, 0o )gppg of (22) is negative for |X| > X (the greater the 7 value, the smaller the X value).

Actually, the derivation shown here is a generalization, since we do notassume that ¢ () = exp(—t/7) and we do not take the limit
t — oo inthe time integration.
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Figure 2. Solid black lines: the stationary PDF from the numerical simulation of the SDE of (1) with C(X) = « sinh(kX) and

a = k = 1.Dashed gray lines: the BFPE stationary PDF P,(X)gpp from (23), the interval —X < X < X is the support of this PDF (see
text). Dotted blue lines: the cBFPE stationary PDF Py(X) grpr (discussed further down in this paper) obtained from (5) using D(X) =
D(X, 00 )cprpr of (28). Note how the BFPE PDF completely fails when, increasing e, the width of the PDF becomes comparable (or
larger) than the interval width 2X, whereas there is an excellent agreement between simulations and cBFPE PDF for 7 and €

considered.

5 . 1 1
! ! .' !
I I _
4 ! I | ! —_— X=0.2
] I / 1 — X=05
1 1
3 / /) J — X=1.0
/
Y / J/ J —_— X=2.0

Figure 3. Case C(X) = sinh(X). Solid colored lines: the function C(X)/C(X¢(X; —u)) = cosh(u) — sinh(u)cosh(X) for different
initial positions X(X; 0) = X. Dashed colored lines: the back time evolution Xo(X; —u) = 2 coth™! (e”‘ coth (%) ), for the same
cosh(X) +1

different initial values Xo(X; 0) = X. Thin gray vertical lines: asymptotes at the corresponding time values #(X) = In ( B0 -1 )

At the time value i (X) where the back time evolution Xo(X; — u) diverges, the function C(X)/C(Xo(X; — u)) vanishes. For larger

times it is a negative number.

Depending on C(X), we may have rather different scenario: for example, when C(X) = X for [X] > X, the
kernel of the D(X, 00 )prpg 0f (22), turns out to be a complex number; see appendix and figure 4. Therefore, in

this case it would be seem that the BFPE does not exist at all.
Other interesting examples are the case when C(X) = — X + aX° (see figure 5), where, depending on the

initial X, the kernel can go negative (|X > 1|) or stay positive (| X < 1|); and the case when C(X) = «a sin(kX),

where the kernel is always positive (see figure 6).
The shortcomings of the BFPE are however artifacts, introduced by an unappropriate use of the interaction

picture, and they can be fixed.
When we go to the interaction picture and then return to the normal representation, we time evolve the

variable of interest forth and back, along the flow generated by the —C(X) drift field.
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1 1 1 — X=0.2 1
| i ! |
1 1 ! — X=0.5 H
4.0 1 1 1 1
! H 1 — X=1.0 !
1
I i | _ 1
1 1 H — X=2.0 1
I i | 1
1 ! h 1
! | ' !
I ]
!

Figure 4. Case C(X) = aX° with a = 1. Solid colored lines: the function C (X) /C (Xo(X; —u)) = e*/2(—2X? sinh(u) —
sinh(u) + cosh(u)*/? for different initial positions Xo(X; 0) = X. Dashed colored lines: the back time evolution X,(X; —u) =
X2 + e 2(1 + X?), for the same initial values X((X; 0) = X. Thin gray vertical lines: asymptotes at the corresponding time

),
). At the times @ when the back time evolution Xo(X; — u) diverges, the function C(X)/C(Xo(X; — u))

x/J-
2

values #(X) = lln(x er !
2 X

vanishes, while for larger times it is a complex number.

; j = X=02
' / ; X=05
/ X=08
! — x=15

30f y 4 / y
4 . P 4 — X=20

/ == X=30

s X=4.0

Figure 5. Case C(X) = — X + aX’, & = 1.Solid colored lines: C(X)/C(XO(X; —u)) = e*(ya(e™? — 1)X? + 1 )*for different
).For |X| < 1thebackward

ax?

initial positions X(X; 0) = X. Dashed colored lines: Xo(X; —u) = e7“X/\/a(e 2 — 1)X? + 1 for the same initial values
ax?
— L

Xo(X;0) = X. Thin gray vertical lines: asymptotes at the corresponding time values &1 = % In (
trajectories do not diverge at all and the function C(X)/C(Xo(X; — u) is always positive.

X,
uX, Xo) = [* &
starting from X, to go to Xy — 0o , namely

o0

L_l(X) = M(X’ OO) = .,/; C(y)

The backward evolution is indicated by Xy = Xo(X; — u). Using (1) we can easily invert this relation, to get
dy. We define the X dependent time # (X) as the time it takes the unperturbed evolution,

(25)

For a dissipative flow asymptotically limited by a linear function, i.e. with limy_,,, C(X) § X" withh < 1, uis
clearly infinite: starting from any position X, it takes an infinite time to go backward to Xy — oo . From (25) we
see that (X)) is infinite also when C(X) has at least one root for some finite value X and X < X.However, ifin
the range (X, oo ) there are no roots of the drift field Cand if limx ., C(X) > X", h > 1, then we have a finite

value for i (X): going back in time, the trajectory Xo(X; — u)in a finite time # (X) reaches all possible values,
greater than X. For example, in the case where C(X) = « sinh(kX) we show in figure 3, dashed lines, that
Xo(X; —u) = % coth™! (e’“k” coth (%)) hasan asymptoteat u = @ (X) := i In ( l% ) (the case

C(X) = X’ is shown in figure 4, and the case C(X) = — X 4 X’ in figure 5). For ‘preceding’ times — u with

7
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u

Figure 6. Semi-log plot for the case C(X) = asin(kX), @ = k = 1.Solid colored lines: C(X)/C(Xo(X; —u)) = cosh(kau) —
sinh(kau) cos(kX) for different initial positions Xo(X; 0) = X. Dashed colored lines: the back time evolution

Xo(X; —u) = 2cot’! (e’k‘”‘ cot (%))/k,for the same initial values X(X; 0) = X.

u > i (X) there are no points in the state-space that are connected to X by the flow generated by the drift field
—C(X). This is obviously due to the strong irreversible nature of the flow, that shrinks the state space. In essence,
this implies that for such strongly dissipative flows, the backward evolution must be limited to times u < #(X),
i.e. we must multiply any function of Xo(X; — u) by the Heaviside function © (i (X) — u). Therefore, the BFPE
state dependent diffusion coefficient of equations (21)—(22) must be corrected as follows (cBFPE stands for
corrected BFPE):

Nt C o O®aX) — u)
DX, tesrr = € Tcoo( I oo _u))wu)) (26)
DX, o = >~ C0| [ o —L o) = DX A 27)
T T 0 C(Xo(X; —u)) ’

equations (26)—(27) are the main result of the present work. Concerning the stationary PDF, the correct result is
obtained using (27) in (5).
For the case C(X) = « sinh(kX), from (27) we get:

akr+1

" _ rcosh(kX) + 1)

ez(akT(COSh(kX) + 1)‘ tanh (I%X)

D(X, 00)eprpE = (28)

1 — (akT)?

The state dependent diffusion coefficient D(X, 0o ).grpg 0f (28) is always positive. The stationary PDF for this
case is obtained using (28) in (5). Because of the integral in the exponent in (5), an analytical expression cannot
be obtained: the results of numerical integration, for different values of 7 and ¢, are shown in figure 2. We can see
that the stationary PDFs of the corrected BFPE are quite close to those obtained from the numerical integration
of the SDE, even for large 7 values and relatively large e. In the case of C(X) = X°, D(X, 00 )gpp of (27) and the
corresponding stationary PDF are now real quantities, see appendix and figures Al and A2.

We would like to add a few comments about the divergence of the backward evolution X(X; — u): we have
seen that there are drift fields C(X) such that for any initial position X(X; 0) = X, the backward evolution

diverges with an asymptote at a given finite time #(X) = fxoo o

4. These are cases where C(X) has not roots and limy_, ., C(X) > X"with h > 1. However, when C(X) has
n € Nrootsat X; < X,< ... <X,, then the possible divergence of the backward evolution depends on X. In fact,

for X < X;, 1 <i < nwehaveu(X, X;) = fxxi %}/) dy = oo, from which (see the definition (25))

i1(X) = oo, while for X > X, the divergence of the backward evolution depends on the asymptotic behavior
(X — 00) of C(X). In other words, the possible correction of the BFPE can depend on the variable of interest X. A
case of this type is shown in figure 5.

—_ dy. This behaviour is shown in figures 3 and

On the other hand, the important case of Brownian motion in a periodic potential, a heuristic model with
applications in various branches of science and technology, like the diffusive dynamics of atoms and molecules
on crystal surfaces [59], modelled using C (X) = « sin(kX), is such that i#(X) = oo VX. In fact, the function
C(X)/C(Xo(X; — u))is always positive and simply increases with u as e kau Therefore in this case the ‘standard’
BFPE formula of (21) for the diffusion coefficient is correct.
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e=0.1

=05 =0l

Figure 7. The same as figure 2 but without the Py(X)prpr and with inserted the P(X); 4. Solid black lines: the stationary PDF from the
numerical simulations of the SDE of (1) with C(X) = sinh(X). Dotted blue lines: the cBFPE stationary PDF P(X) prpr obtained from
(5) using D(X) = D(X, 00 ).rpg 0f (28). Dashed red lines (barely visible close or under the solid lines): P(X).14 of (34). The three
columns correspond to three different values for 7, while the three rows corresponds to three different values for e. Note the excellent
agreement between simulations and LLA PDF.

4. A comparison with the Local Linearization Approach

As we mentioned in the Introduction, very often the LLA FPE turns out to be fairly close to the numerical
simulations. This is shown in figure 7, for the case C(X) = « sinh(kX). We are going to show that thisisnota
coincidence: as a matter of fact, the LLA FPE is an excellent approximation of the cBFPE, when the latter is
applicable (i.e., typically, small € and finite, but not small, 7).

We need to briefly go through the derivation of the LLA FPE. West et al have shown [38] that the LLA FPE
can be formally derived from the BFPE of (20) as follows:

a. there is a large enough time-scale separation between the unperturbed dynamics and the decay time of the
correlation function ¢(f), so that the unperturbed dynamics Xo(X; — u) can be considered close to the
initial position X;

b. given the point "a" above, rather than expanding m
0lA; —

same secular terms as the expansion in (17)), expand its logarithm

1 1 1 1
- = 1 - - — 1 — |- clx — ZC(X)C"(X 2 3
X exp[n(C(Xo(X;—u)))] exp[n(c(x)) C'(0u = ZCEOC" 0w + O )]

in powers of u (which would give rise to the

(29)
and truncate the series at the first order.
Using point b in (20), we are led to the LLA FPE (here generalized to finite times and to a generic correlation
function of the noise):
t
OP(X; 1) ~ L,PX 1) + € 2163(( f du e*C'(X)”ap(u))P(X; f). (30)
T 0

Note that for C(X) = X, the series expansion of the r.h.s. of (29) stops exactly at the first order in u, while
this does not happen expanding the term 1/C(Xo(X; — u)). Therefore, instead of using the West et al approach
(given by a—b above) to go from the BFPE to the LLA FPE, the latter can be directly obtained by replacing the
function C(X)/C(Xo(X; — u)) with an exponential function with state dependent decay coefficient C'(X):
C(X)/C(Xo(X; —u)) — exp(—C'(X)u)). From (30) we get the following result for the state dependent
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! p C(X)=asin(kX) I =x=0] ° !/ J X=ax® [}
-—= X=1.0

X=0.5
-—= X=0.2

0.0 0.5 1.0 1.5

Figure 8. Left (right), the same of figure 3 (figure 4) but in log scale. The dotted black lines correspond to the LLA approximation. We
can see that the deviation from the exponential decay of the function C(X)/C(Xo(X; — u)) (solid lines) is relevant only in the final part,
where the value of the function is relatively small.

diffusion coefficient of the FPE:
t
DX, ia = ezl(f du e*C/(X)“cp(u)) (31)
T 0

that, for large times becomes

2 PC'C0)
T

D(X, oo)ira = (32)

where { stands for Laplace transform of . From (32) it turns out that D(X, 0o);14 exists and is positive under
fairly general conditions. For example, considering again the case C(X) = « sinh(kX), from (32) we easily get

€2

D(X, oo = , 33
( Jrza 1 + akT cosh(kX) 3
where the only constraint is that the flow is not divergent (i.e. « > 0). Using (33) in (5) we obtain the LLA
stationary PDF for this case:
o (kx
1 (1 + akr cosh(kX) a sinh (7> (akT + akt cosh(kX) + 2)
P(X)r1a = X exp| — > (34)
ZLLA 1+ akt ke

In appendix we report the LLA results for the cubic case. In figure 7 we can see the stationary PDFs of the LLA
FPE, together with the results from the cBFPE: the agreement with the numerical integration of the SDE of (1) is
very good.

Figure 8 compares the kernels of the cBFPE and of the LLA for the cases C(X) = « sinh(kX) and
C(X) = aX’.Itturns out that the LLA kernel (dotted lines) is an excellent approximation of the cBFPE kernel. It
is hence not surprising that the LLA PDF is as close to the simulations as it is the cBFPE PDF.

This is a nice explanation of what has been down heuristically in the literature: the LLA approach of Grigolini
[42,60]is indeed based on the assumption that, for any value of X, we can safely replace the unperturbed
backward evolution of the function f(X, u) == C(X)/C(Xo(X; — u)), with an exponential function of the time u,
with the X dependent exponent: f (X, u) ~ exp[—C’(X)u]. For one-dimensional dissipative systems, the
exponential behavior of such a back time evolution is typical.

Actually, there is another general argument, not related to the cBFPE, that leads us to speculate that typically
(but not always), the LLA FPE works well, also for strong perturbations. In fact it is possible to prove that the LLA
and the Fox functional-calculus [33, 34] corresponds to the Almost Gaussian Assumption for generalized
stochastic operators [52]: independently of the value of ¢, when £(¢) is a Gaussian stochastic process, the LLA
typically makes almost vanishing all the terms, appearing in the projection/cumulant expansion, which would
destroy the FPE. This means that often the LLA FPE would be valid even for large e values for which the cBFPE
breaks down.

On the other hand, if the stochastic process £(#) is not Gaussian, or it is not at all stochastic (for example, it is
the degree of freedom of a chaotic dynamical system), then the Almost Gaussian Assumption or the Fox
functional calculus can no longer be advocated to give an a priori justification (although weak) to the LLA FPE. In
these cases, a small € value and the cBFPE would be the only possible approach for a proper FPE treatment, and
the LLA FPE could be, at the best, an approximation of the cBFPE.
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5. Conclusions

By definition, the BFPE is the best FPE we can get from a perturbation approach starting from a SDE. In this work we
are interested in the 1-d case with additive noise as in (1), in which € is the small parameter. For the 1-d case the BFPE
was obtained many years ago by Lopez, West and Lindenberg [38], but their result reveals unphysical features. In
particular, if 7and € are not fairly small, it may lead to negative values both of the diffusion coefficient and of the PDF,
in some region of the state space. It is customary to cure this situation by simply restricting the domain of support of the
PDF to exclude these regions. It has been argued that this unphysical result of the BFPE might point to problems in the
model used to represent the physical system [61]. In this work we show, on the contrary, that these problems are due to
an incorrect use of the perturbation approach for dissipative systems. In particular, a proper use of the interaction
picture fixes the problem. The ¢cBFPE gives results that are close to those of numerical simulations of the SDE of (1),

even for values of € and 7 well beyond those allowed by the classical BFPE. The stationary PDF is now similar also to
that obtained from the LLA FPE of Grigolini [42, 60] and Fox [34].

Appendix. The cubic case

We briefly present the results for the pure cubic case C(X) = X°. This is an extreme non linear case because even

small oscillations are non-linear. It is no coincidence that the standard BFPE cannot be used in this case (see below).
From (21) we obtain

1,
D(X, t)grpe = €2 S QN1 — 26X ena 26X2 + 37X2 — 1)
5 — X2 1
— 320 323t/ erfi| A——— | e
JTX

L —327 72X e erﬁ(*) + 67X2 -2
2 V27X

that, for t > 2X* is a complex number: for large times it is not defined. This means that for a cubic drift field, by
using the standard BFPE a stationary PDF cannot be obtained. The situation is different exploiting our
correction to the BFPE. In fact, for large times (t — 00), we have (see (27)

(A.1)

Figure A1. Diffusion coefficients for a pure cubic drift field. The BFPE gives an imaginary result, thus in this case cannot be used. Dashed

bluelines: the D(X, 00).grpr of (A.2) for different values of 7. Dotted orange line: the D(X, 00);14 of (A.3) for the same values of .
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Figure A2. The stationary PDF for the SDE of (1) where C(X) = X>and £(f) is a Gaussian noise with correlation function

@ (t) = exp(—t /7). In this case the standard BFPE cannot be used because it leads to an imaginary diffusion coefficient D(X, 00)pgpg
(see text). The four columns correspond to four different values for 7, while the four rows corresponds to four different values for e.
Solid black lines: the results of the numerical simulation of the SDE. Dashed blue lines: the cBFPE results, the PDF of (5) where the
diffusion coefficient is given in (A.2). Dotted orange lines: the LLA result, the PDF of (5) where the diffusion coefficient is given in
(A3).

1
DX, 00)srpe = DX, #(X))prre = 62[1 + 3TX2(«/§«/?XF(W) - 1)] (A.2)
where F(x) := e’ j; F et dy = e*"zgerﬁ(x) is the Dawson function. The diffusion coefficient of (A.2) is now
positive and well defined for any X. Concerning the LLA diffusion coefficient, from (32) we easily get:

€2

3rX2 41
In figure A1 we compare the corrected BFPE and the LLA diffusion coefficients, respectively. Inserting in (5) the
expressions in equations (A.2))—(A.3)), we obtain the stationary PDF shown in figure A2. We see that in this
extreme non linear case, where the standard BFPE cannot be used, our corrected BFPE gives results that, for

small ¢, are in agreement with numerical simulations of the SDE. Notice that, in this case, also the LLA fails for
large € values.

D(X, co)r1a = (A.3)
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