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Abstract
Many complex phenomena occurring in physics, chemistry, biology, finance, etc can be reduced, by
some projection process, to a 1-d stochastic Differential equation (SDE) for the variable of interest.
Typically, this SDE is both non-linear and non-Markovian, so a Fokker Planck equation (FPE), for the
probability density function (PDF), is generally not obtainable.However, a FPE is desirable because it
is themain tool to obtain relevant analytical statistical information such as stationary PDF and First
Passage Time. This problemhas been addressed bymany authors in the past, but due to an incorrect
use of the interaction picture (the standard tool to obtain a reduced FPE) previous theoretical results
were incorrect, as confirmed by direct numerical simulation of the SDE. The pitfall lies in the rapid
diverging behavior of the backward evolution of the trajectories for strong dissipative flows.Wewill
show, in general, how to address this problem andwewill derive the correct best FPE from a
cumulant-perturbation approach. The specific perturbationmethod followed gives general validity to
the results obtained, beyond the simple case of exponentially correlatedGaussian driving used here as
an example: it can be applied even to nonGaussian drivings with a generic time correlation.

1. Introduction

In the present workwe are interested in non-linear 1-d SDEs of the form:

( ) ( ) ( ) x= - + X C X t . 1

whereX is the variable of interest,−C(X) is the unperturbed drift field, ξ(t) is the stochastic Gaussian
perturbationwith zeromean and autocorrelation function ( ) ( ) ( )j x x x¢ = á ¢ ñ á ñt t t t, 2 , the parameter ò
controls the intensity of the perturbation, and 〈...〉 implies average over the ξ realizations. The SDE in (1) is
ubiquitous inmany researchfields [1].

We consider here a simple additive andGaussian SDE becausewewant to focus on aflaw that plagued
previous applications of the perturbationmethod to dissipative systems, andwhich is solved here.However, the
extension of the present approach to the case ofmultiplicative correlated noise, possibly non-Gaussian, is
straightforward, although it presents some subtleties, and it will be dealt with in a later work.

It is a standard result in statistical physics that when the stochastic forcing ξ is a ‘white noise’, ( ) ( )x xá ¢ ñ =t t
( )d - ¢t t2 , (1) leads to aflow for the Probability Density Function (PDF)P(X; t) of the variableX equivalent to

the probability flow given by the following Fokker Planck equation (FPE) (where∂X≔∂/∂X,D0=ò2 .):

( ) ( ) ( ) ( ) ( )¶ = ¶ + ¶P X t C X P X t D P X t; ; ; . 2t X X0
2

From (2), the stationary PDF is given by

( ) ( )
( )ò= -P X

Z
e

1
3W eq

dy
,

X
C y
D0

whereZ is a normalization constant.
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However, white noise is often an oversimplification of the real driving acting on a systemof interest.
Correlated noise (termed ‘colored’ in the literature) ismore common in continuous systems, and its importance
has been recognized in a large number of very different situations, like for instance statistical properties of dye
lasers [2–5] and laser technology [6], chemical reaction rate [7–10], optical bistability [11, 12], stochastic
resonance [13] large scaleOcean/Atmosphere dynamics [14, 15], nonlinear energy harvesting systems [16],
sensors design [17], ecosystems [18–20], medical sciences [21–23], neural systems [24, 25], material science
[26, 27] andmany others.

Wewill assume that the stochastic process ξ(t) is characterized by a ‘finite’ correlation time τ3 and unitary
intensity 〈ξ2〉τ=1. It is well known that if the unperturbed driftfield is linear, regardless of the number of
dimensions, theGaussian property of a generic colored noise ξ(t) is ‘linearly’ transferred to the systemof interest,
so the FPE structure does not break (see, e.g., [10, 28]). On the contrary, in the case of non linear SDE and/or
nonGaussian noise, forfinite values of τ the FPE structure breaks down. This is the case of interest here, and the
aimof this paper is to recover in some appropriate limits a FPE structure, obtaining an effective FPEwith a state
dependent diffusion coefficient:

( ) ( ) ( ) ( ) ( ) ( )¶ = ¶ + ¶P X t C X P X t D X P X t; ; ; 4t X X
2

2

that, with a good approximation, could describe the evolution and the stationary properties ofP(X; t). Given
D(X), the stationary PDF of the FPE of (4) is then easily obtained

( )
( )

( )
( )
( )

=
ò-

P X
Z

e

D X

1
5s

dY
X C Y

D Y

Several techniques have been developed to deal with the correlation time of the noise in nonlinear SDE, with
the aimof eventually obtaining this effective FPE. They can be grouped in threemain categories that correspond
to three general techniques: the cumulant expansion technique [29–31], the functional-calculus approach
[21, 32–38] and the projection-perturbationmethods(e.g., [9, 39–41]). Each of thesemethods leads to a
formally exact evolution equation for the PDF of the driven process, and the different descriptions are therefore
equivalent. The exact formal results do not lend themselves to calculations nor give a FPE structure, therefore
they require that approximations bemade. The approximationsmadewithin these various formalisms involve
truncations and/or partial resummations of infinite power series with respect to ò and τ, which are typically the
small parameters in the problem.Not surprisingly, it has been argued [38] that the effective FPE obtained from
the different techniques are identical, if the same approximations aremade (time scale separation, weak
perturbation, Gaussian noise etc.). The results of the approximations can be grouped in three categories: the
‘Best Fokker Plank equation’ (BFPE) obtained by Lopez,West and Lindenberg [38] from a standard
perturbationmethod, where ò is the small parameter and τ isfinite but (in general)not limited, the ‘Local
LinearizationAssumption’ (LLA) FPE, that formally can be considered as a small τ expansion of the BFPE (see
section 4), and that has been obtained in different ways, e.g., byGrigolini [42], exploiting an ad-hoc projection
procedure, or by Fox [33, 34], Hänggi [35–37] and the Barcelona group [43–46], using functional-calculus, and,
finally, the gen-FPE, thatmakes use ofmoments of the unknown response PDF [21, 32] and that, improving the
old cited functional-calculus approach, leads to anon linear FPE for values of ò2τ enough large to include all cases
of interest. It is alsoworthmentioning theUnifiedColoredNoise Approximation (UCNA) [47, 48], afiltering
approach introduced by Yung andHänggi for a general stochastic dynamic systems driven by aGaussian red
noise (aOrnstein-Uhlenbeck process). TheUCNAapproach is based on two steps: taking advantage of the
simple characteristics of red noise, the number of degrees of freedom is increased, so to obtain a
multidimensionalwhite noise SDE. Then, under the condition of small or large correlation times τ, the number
of degrees of freedom is reduced back to the original one, holding thewhite nature of the noise. In the limit of
small τ the equivalent FPE coincides, of course, with the LLA one, but for large τ it is different. However, it is
notable that the stationary PDFof theUCNAFPE always coincides with that of the LLA FPE [36, chap.IV]. Apart
from the limitations, already highlighted, of theUCNAmethod,filtering approaches have the inherent
drawback of increasing the degrees of freedom in the FPE equationwhen an accurate approximation is needed.
A separate consideration deserves some interesting recent works on the gen-FPE [49, 50]. The approximation
scheme is based on an extension of theNovikov–Furutsu theorem and on a stochastic Volterra–Taylor
functional expansion around the instantaneous values of appropriate responsemoments [50]. The results are
not limited to the red noise case and are in excellent agreement with numerical simulations of the SDE in both
the transient and long-time regimes, for any correlation function of the stochastic perturbation (assuming the

3
The general prescription is that there is a time τ such that, for any time t, the instances of ξ at times t¢ > +t t are ‘almost statistically

uncorrelated’with the instances of ξ at times ¢ <t t . For ‘almost statistically uncorrelated’wemean that the joint probability density
functions factorizes up to termsO(τ): ( )x x x x x¢ ¢ ¢ +p t t t t t, ; , ;...; , ; , ;...; ,n k k k n h1 1 2 2 1 1 ( ) ( ) ( )x x x x x t= ¢ ¢ ¢ ++p t t t p t t O, ; , ;...; , , ;...; ,k k k h k n h1 1 2 2 1 1

with Î k h n, , , k+ h=n and t¢ > +t ti j . For example, ( ) ( ) ( ) ( )x x x x t¢ = ¢ +p t t p t p t O, ; , , ,2 1 2 1 1 1 2 .

2

J. Phys. Commun. 4 (2020) 105019 MBianucci andRMannella



system is stable). But, they are intrinsically limited to the case of 1-d correlatedGaussian noise and the gen-FPE
has a nonlinear/non-local structure. Although this latter fact does not posemany difficulties in the numerical
simulations (the nonlinearity and the non-locality appear in the diffusion coefficient(s)), it does not allow to
directly use standard simple analytical tools developed for linear FPE as the eigenvalues approach or theMean
First Passage techniques (see, e.g., [51, Chap. 5]).

In this workwe focus our attention to the linear FPE to be associated, with good approximation, to SDEwith
general correlatedGaussian noise.Moreover wewant to use an approach that leaves open the possibility of
including nonGaussian perturbations. Thus, the BFPE looks as the perfect candidate.

Although, asmentioned, the LLAFPE can be formally considered a small τ expansion, strangely enough, the
BFPE often fails when comparedwith numerical simulations, even for relatively weak perturbations, while the
LLA FPEusually works better.

In section 2wewill shortly review the perturbation approach that leads to the BFPE, stressing that caremust
be takenwhen using the interaction picture in strongly dissipative systems: the pitfalls wewill point out are the
sources of the problemswith the original formulation of the BFPE. Section 3 is themain section of the present
work: wewill showhow to cure the shortcomings of the BFPEpointed out in section 2. Section 4 is devoted to a
comparisonwith the LLA results. In section 5we present the conclusions.

2. The standardBFPE

From (1) it follows that, for any realization of the process ξ(u), with 0�u�t, the time-evolution of the PDF of
thewhole system,whichwe indicate with Pξ(X; t), satisfies the following PDE:

( ) ( ) ( ) ( ) ( )x¶ = +x x x P X t P X t t P X t; ; ; 6t a I

inwhich the unperturbed Liouville operator a is

≔ ( ) ( )¶ C X 7a X

and the Liouville perturbation operator is

≔ ( )¶ . 8I X

A standard step of the perturbationmethod is to introduce the interaction representation, bywhich (6) becomes

˜ ( ) ( ) ˜ ( ) ˜ ( ) ( )x¶ =x x P X t t t P X t; ; , 9t I

where

˜ ( ) ≔ ( ) ( )x x
-P X t e P X t; ; , 10ta

and

˜ ( ) ≔ [ ] ( )=- - ´
    t e e e , 11I

t
I

t t
I

a a a

where, for any couple of operators  and  , we have defined [ ] ≔ [ ] = -́     , . The last step in
(11) is easily proved by induction and it is known as theHadamard’s lemma for exponentials of operators. In
[31] ˜ ( ) tI of (11) is also called the Lie evolution of the operator I along the Liouvillian a, for a time −t. For
further use, we note that the Lie evolution of a product of operators is the product of the Lie evolution of the
individual operators:

[ ] [ ] [ ] ( )=´ ´ ´    e e e . 12t t t

Integrating (9) and averaging over the realization of ξ(t), we get

˜( ) ( ) ˜ ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥ò x= á¬¾ ñ P X t du u u P X; exp ; 0 13

t

I
0

where [ ]¬¾exp ... is the standard chronological ordered exponential (from right to left),P(X;t)≔〈Pξ(X;t)〉 and
we assumed thatPξ (X; 0)=P(X; 0), i.e. at the initial time t=0Pξ (X; 0) does not depend on the possible values
of the process ξ, or that wewait long enough tomake the initial conditions irrelevant. The result of (13) is exact,
no approximations have been introduced at this level.

The r.h.s. of (9) can be considered as a sort of generalizedmoment generating function for thefluctuating
operator ( ) ˜x u I towhich it is possible to associate a generalized cumulant generating function [52]:

( ) ˜ ( ) ( ) ≔ [ ( )] ( ) ( )
⎡
⎣⎢

⎤
⎦⎥ò x¬¾ ¬¾  du u u P X t P Xexp ; 0 exp , ; 0 14

t

I
0

with ( ) ( )= å =
¥  t t, i

i
i1 . Keeping up to the second generalized cumulant ( ) ≔ ò ò t u ud d

t u
2 0 1 0 2

1

( ) ˜ ( ) ( ) ˜ ( )x xá ñ u u u uI I1 1 2 2 , assumingwithout loss of generality that 〈ξ〉=0, and exploiting (13)we arrive to
the following result [52, see the example in section 4.4.2] (note that from the assumption 〈ξ2〉τ=1 it follows

3
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〈ξ2〉=1/τ)

˜( ) ( ( )) ˜( ) ˜ ( ) ˜ ( ) ( ) ˜( ) ( )òt
j¶ = ¶ =   P X t t P X t t du u t u P X t; ;

1
, ; 15t t I

t

I2
2

0

which coincideswith the usual one obtained using a second order in ò, Zwanzig projection approach
[9, 40, 41, 53, 54].

Getting rid of the interaction picture and exploiting (8) and (11), from (15)we obtain

( ) ( ) [ ] ( ) ( ) ( )òt
j¶ = + ¶ ¶

´ P X t P X t du e u P X t; ;
1

; , 16t a X

t
u

X
2

0

a

wherej(u)≔j(t,t−u) and, for the sake of simplicity, we have discarded the possible transient regime that
wouldmake non stationary the statistics of ξ(t).We stress again that the result (16) is standard in the sense that it
can be obtained starting from (6) and using any perturbation approach, where ò is the small parameter (assuming
afinite, but not necessarily small, correlation time τ), as the Zwanzig projectionmethod hereafter cited.We have
used the generalized cumulant approach, that is based on the identification of the r.h.s. of (13)with a generalized
(operator value) characteristic function, because, according to the theory developed in [52], it gives a sound
justification of the second order truncation of the full series of generalized cumulants. In otherwords, the
generalized cumulant approach guarantees that the error introduced by using the SDE(15) for the PDF(13)
isO(ò4τ3).

The next step is to rewrite, if possible, (16) as the FPE of (4). To go from (16) to the FPEof (4), the crucial
term is the operator [ ]¶́e u

Xa . Inmost papers using the Zwanzig projectionmethod (e.g., [39]), the explicit FPE
is obtained from (16) assuming that τ, identifiedwith the decay time of the correlation functionj(t), ismuch
smaller than the time scale of the unperturbed dynamics driven by the Liouvillian a. In this case it is possible to
replace, in (16), the power expansion (note the shorthand ( ( )) ≔ ( )¶ ¢C X C XX )

[ ] [ ] ( ) ( ) ( ) ( )¶ = ¶ + ¶ + = ¶ - ¶ ¢ +
´

e u O u C X u O u, . 17u
X X a X X X

2 2a

that leads to a FPEwith a state dependent diffusion coefficient, given by a series of ‘moments’ of the time u,
weightedwith the correlation functionj(u). However, such a series, as it is apparent from (17), contains secular
terms and is (generally)not absolutely convergent. This is clearly shown in the example considered infigure 1. A
way to avoid this problem is to solve, without approximations, the Lie evolution of the differential operator∂X

along the Liouvillian a. In [31] this was done for the general case ofmultidimensional systems and
multiplicative forcing. In the present simpler one-dimensional case, recalling that ( )= ¶ C Xa X , the Lie
evolution of∂X, without approximations, can be obtained directly as follows:

[ ] ( )
( )

[ ]
( )

( )
( ( ))

( )
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥¶ = ¶ = = ¶

-
´ ´ ´ ´

   e e C X
C X

e e
C X

C X
C X X u

1 1 1

;
18u

X
u

X
u

a
u

X
0

a a a a

where ( ) ≔ [ ] ( )- = -´ + X X u e X e X; u u
0 a a is the unperturbed backward evolution, for a time u, of the variable

of interest, starting from theX position at the initial time u=0. In the last part of (18)wehave used two trivial
facts (see again [31] for details and generalizations):

Figure 1.The case where ( ) ( )=C X Xsinh , and 〈ξ2〉=1, ( ) ( )j t= -t texp , τ=0.8 and ò=0.3. The graphs are the PDFs
obtained from (5), inwhich the state dependent diffusion coefficientD(X) is evaluated from (16) supplementedwith the series
expansion of (17) truncated at the fifth order. The solid lines refer to even orders: zeroth (blue), second (red) and fourth (green) one.
The dashed lines refer to odd orders: first (blue), third (red) andfifth (green) one.

4
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• given two operators and  ,  does not Lie-evolve along  when [ ] = , 0, thus [ ] =
´  e u

a aa ,

• the Lie evolution along a deterministic (first order partial differential operator) Liouvillian of a regular
functionC(X), is just the back-time evolution ofC(X) along theflow generated by the same Liouvillian:

[ ( )] ( ( )) ( )= -
´e C X C X X u; . 19u

0a

Inserting (18) in (16)we get, in a clear and straight way, a generalization of the BFPE of Lopez,West and
Lindenberg [38] 4:

( ) ( ) ( )
( ( ))

( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟òt

j¶ = + ¶
-

P X t P X t C X du
C X X u

u P X t; ;
1 1

;
; , 20t a X

t
2 2

0 0

namely, the FPEof (4)with the state and time dependent diffusion coefficient

( ) ( )
( ( ))

( ) ( )
⎛
⎝⎜

⎞
⎠⎟òt

j=
-

D X t C X du
C X X u

u,
1 1

;
21BFPE

t
2

0 0

that, for large times, becomes

( ) ( )
( ( ))

( ) ( )
⎛
⎝⎜

⎞
⎠⎟òt

j¥ =
-

¥
D X C X du

C X X u
u,

1 1

;
. 22BFPE

2

0 0

Forweak enough noise intensity ò, the BFPE looks like the best possible approximationwe can get from a
perturbation approach to the SDE of (1). However, this is not the case: the diffusion coefficient in (22) turns out
to bewrong, as we are going to show.

It is actually known that inmanycasesof interest thediffusioncoefficientD(X,∞)BFPE, given in (22), becomes
negative, giving rise to anonphysical negativePDF.A simple examplemay serve for illustration. Let us consider the case
inwhich ( ) ( )a=C X kXsinh and ( ) ( )j t= -t texp ,withα>0.ThecorrespondingSDE is related to awell
knownchemical reaction scheme, see [55]. A straightforward calculation leads to ( ) ( ( ))- =C X C X X u;0

( ) ( ) ( )a a-ku kX kucosh cosh sinh ,which inserted in (22), for times t?τ/(1−αkτ), gives (θ≔αkτ)

( ) ( ) ( )q
q

¥ =
-

-
D X

kX
,

1 cosh

1
, 23BFPE

2

with the constraint θ<1. From (23)we see that for ˜= X X , with ˜ ≔ ( )q q- +X
k

ln 12

, the diffusion coefficient

of the BFPE vanishes and for ∣ ∣ ˜>X X it is negative which is clearly unphysical. Using (23) in (5), we obtain the
stationary PDF:

( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

q
q

=
-

-

q t
t

- - 


P X
Z

kX1 1 cosh

1
24s BFPE

BFPE

k
k

1 2 2 2 2
2 2

that is affected by the same problem for ∣ ∣ ˜>X X . The standardway to cure thisflaw of the BFPE is to restrict the
support of the PDF [38, 55]. In this case, for example, thefirst and the second derivatives of (24) vanish in
∣ ∣ ˜=X X , therefore one could limit the support of the PDF of (24) to ( ˜ ˜ )Î -X X X, . However, from figure 2 it is
clear that by increasing ò, the result of (24) does not agreewell with that obtained from the numerical simulation
of the SDEof (1). Only for very small values of τ ò the result is good (i.e, when thewidth of the PDF is small
compared to X̃2 ). The same problem is present when other drift fieldsC(X) are considered: the case of
C(X)=X3 is shown in appendix, other examples can be found in the literature [42, 56–58].

3. The curedBFPE

We show in this section that the flaws of the BFPE are due to an incorrect implementation of the perturbation
procedure, andwewill cure this situation.

Notefirst that the possibly negativeDBFPE value of (22) is due to the fact that the kernel of the integral can be
negative for someX values.

Considering oncemore the case of ( ) ( )a=C X kXsinh , we see fromfigure 3, solid lines, that, after a given
time ¯ ( )u X , the functionC(X)/C(X0(X;−u)) becomes negative. Note also that the larger theX value, the shorter
the time ¯ ( )u X . Thus, whatever the correlation decay time τä(0,1/αk), there will always be a certain X̃ value
such thatD(X,∞)BFPE of (22) is negative for ∣ ∣ ˜>X X (the greater the τ value, the smaller the X̃ value).

4
Actually, the derivation shownhere is a generalization, sincewe do not assume that ( ) ( )j t= -t texp andwe do not take the limit

t→∞ in the time integration.

5
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Depending onC(X), wemay have rather different scenario: for example, whenC(X)=X3 for ∣ ∣ ˜>X X , the
kernel of theD(X,∞)BFPE of (22), turns out to be a complex number; see appendix andfigure 4. Therefore, in
this case it would be seem that the BFPEdoes not exist at all.

Other interesting examples are the case whenC(X)=−X+αX3 (see figure 5), where, depending on the
initialX, the kernel can go negative (|X>1|) or stay positive (|X<1|); and the case when ( ) ( )a=C X kXsin ,
where the kernel is always positive (see figure 6).

The shortcomings of the BFPE are however artifacts, introduced by an unappropriate use of the interaction
picture, and they can befixed.

Whenwe go to the interaction picture and then return to the normal representation, we time evolve the
variable of interest forth and back, along the flow generated by the−C(X) drift field.

Figure 2. Solid black lines: the stationary PDF from the numerical simulation of the SDEof (1)with ( ) ( )a=C X kXsinh and
α=k=1. Dashed gray lines: the BFPE stationary PDF Ps(X)BFPE from (23), the interval ˜ ˜- < <X X X is the support of this PDF (see
text). Dotted blue lines: the cBFPE stationary PDF Ps(X)cBFPE (discussed further down in this paper) obtained from (5) usingD(X)=
D(X,∞)cBFPE of (28). Note how the BFPEPDF completely fails when, increasing ò, thewidth of the PDF becomes comparable (or
larger) than the interval width X̃2 , whereas there is an excellent agreement between simulations and cBFPEPDF for τ and ò
considered.

Figure 3.Case ( ) ( )=C X Xsinh . Solid colored lines: the function ( ) ( ( )) ( ) ( ) ( )- = -C X C X X u u u X; cosh sinh cosh0 for different

initial positionsX0(X; 0)=X. Dashed colored lines: the back time evolution ( )( )( )- = - -X X u e; 2 coth cothu X
0

1
2

, for the same

different initial valuesX0(X; 0)=X. Thin gray vertical lines: asymptotes at the corresponding time values ( )¯( ) ( )
( )

= +
-

u X ln X

X

cosh 1

cosh 1
.

At the time value ¯ ( )u X where the back time evolutionX0(X;−u) diverges, the functionC(X)/C(X0(X;−u)) vanishes. For larger
times it is a negative number.
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The backward evolution is indicated byX0=X0(X;−u). Using (1)we can easily invert this relation, to get
( )

( )ò=u X X dy,
X

X

C y0
10 .We define theX dependent time ¯ ( )u X as the time it takes the unperturbed evolution,

starting fromX, to go toX0→∞, namely

¯ ( ) ≔ ( )
( )

( )ò¥ =
¥

u X u X
C y

dy,
1

25
X

For a dissipative flow asymptotically limited by a linear function, i.e. with ( ) ⪅¥C X XlimX
h, with h�1, u is

clearly infinite: starting from any positionX, it takes an infinite time to go backward toX0→∞. From (25)we
see that ¯ ( )u X is infinite alsowhenC(X) has at least one root for some finite value X̃ and ˜<X X . However, if in
the range (X,∞) there are no roots of the drift fieldC and if ( ) >¥C X XlimX

h, h>1, thenwe have afinite
value for ¯ ( )u X : going back in time, the trajectoryX0(X;−u) in afinite time ¯ ( )u X reaches all possible values,
greater thanX. For example, in the case where ( ) ( )a=C X kXsinh we show infigure 3, dashed lines, that

( )( )( )- = a- -X X u e; coth coth
k

ku kX
0

2 1
2

has an asymptote at ( )¯( ) ≔ ( )
( )

=
a

+
-

u u X ln
k

kX

kX

1 cosh 1

cosh 1
(the case

C(X)=X3 is shown in figure 4, and the caseC(X)=−X+αX3 infigure 5). For ‘preceding’ times −uwith

Figure 4.CaseC(X)=αX3 withα=1. Solid colored lines: the function ( ) ( ( )) ( ( )- = - -C X C X X u e X u; 2 sinhu
0

2 2

( ) ( )+u usinh cosh 3 2 for different initial positionsX0(X; 0)=X. Dashed colored lines: the back time evolution ( )- =X X u;0

( )- + +-X X e X1u2 2 2 , for the same initial valuesX0(X; 0)=X. Thin gray vertical lines: asymptotes at the corresponding time

values ( )¯ ( ) = +u X ln X

X

1

2

12

2 . At the times ū when the back time evolutionX0(X;−u) diverges, the functionC(X)/C(X0(X;−u))

vanishes, while for larger times it is a complex number.

Figure 5.CaseC(X)=−X+αX3,α=1. Solid colored lines: ( ) ( ( )) ( ( ) )a- = - +-C X C X X u e e X; 1 1u u
0

2 2 3 for different

initial positionsX0(X; 0)=X. Dashed colored lines: ( ) ( )a- = - +- -X X u e X e X; 1 1u u
0

2 2 for the same initial values

X0(X; 0)=X. Thin gray vertical lines: asymptotes at the corresponding time values ( )¯ = a
a -

u ln X

X

1

2 1.

2

2 . For |X|<1 the backward

trajectories do not diverge at all and the functionC(X)/C(X0(X;−u) is always positive.
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¯ ( )>u u X there are no points in the state-space that are connected toX by theflowgenerated by the drift field
−C(X). This is obviously due to the strong irreversible nature of the flow, that shrinks the state space. In essence,
this implies that for such strongly dissipative flows, the backward evolutionmust be limited to times ¯ ( )<u u X ,
i.e.wemustmultiply any function of X0(X;−u) by theHeaviside function ( ¯ ( ) )Q -u X u . Therefore, the BFPE
state dependent diffusion coefficient of equations (21)–(22)must be corrected as follows (cBFPE stands for
corrected BFPE):

( ) ( ) ( ¯ ( ) )
( ( ))

( ) ( )
⎛
⎝⎜

⎞
⎠⎟òt

j=
Q -

-
D X t C X du

u X u

C X X u
u,

1

;
26cBFPE

t
2

0 0

( ) ( )
( ( ))

( ) ( ¯ ( )) ( )
¯( )⎛

⎝⎜
⎞
⎠⎟òt

j¥ =
-

=D X C X du
C X X u

u D X u X,
1 1

;
, 27cBFPE

u X

BFPE
2

0 0

equations (26)–(27) are themain result of the present work. Concerning the stationary PDF, the correct result is
obtained using (27) in (5).

For the case ( ) ( )a=C X kXsinh , from (27)we get:

( )
( )

( ( ) ) ( )

( )
( )

⎛
⎝⎜

⎞
⎠⎟a t t

a t
¥ =

+ - +

-

a t
a t

+


D X

k kX kX

k
,

cosh 1 tanh cosh 1

1
. 28cBFPE

kX2
2

2

k
k

1

The state dependent diffusion coefficientD(X,∞)cBFPE of (28) is always positive. The stationary PDF for this
case is obtained using (28) in (5). Because of the integral in the exponent in (5), an analytical expression cannot
be obtained: the results of numerical integration, for different values of τ and ò, are shown infigure 2.We can see
that the stationary PDFs of the corrected BFPE are quite close to those obtained from the numerical integration
of the SDE, even for large τ values and relatively large ò. In the case ofC(X)=X3,D(X,∞)cBFPE of (27) and the
corresponding stationary PDF are now real quantities, see appendix andfigures A1 andA2.

Wewould like to add a few comments about the divergence of the backward evolutionX0(X;−u): we have
seen that there are drift fieldsC(X) such that for any initial positionX0(X; 0)=X, the backward evolution
diverges with an asymptote at a given finite time ¯ ( )

( )ò=
¥

u X dy
X C y

1 . This behaviour is shown infigures 3 and

4. These are cases whereC(X) has not roots and ( ) >¥C X XlimX
h with h>1.However, whenC(X)has

näN roots at ˜ ˜ ˜< < <X X X... n1 2 , then the possible divergence of the backward evolution depends onX. In fact,

for ˜<  X X i n, 1i wehave ( )
( )ò= = ¥u X X dy, i X

X

C y

1i , fromwhich (see the definition (25))

¯ ( ) = ¥u X , while forX>Xn the divergence of the backward evolution depends on the asymptotic behavior
(X→∞) ofC(X). In other words, the possible correction of the BFPE can depend on the variable of interestX. A
case of this type is shown infigure 5.

On the other hand, the important case of Brownianmotion in a periodic potential, a heuristicmodel with
applications in various branches of science and technology, like the diffusive dynamics of atoms andmolecules
on crystal surfaces [59], modelled using ( ) ( )a=C X kXsin , is such that ¯ ( ) = ¥u X ∀X. In fact, the function
C(X)/C(X0(X;−u)) is always positive and simply increases with u as e kα u. Therefore in this case the ‘standard’
BFPE formula of (21) for the diffusion coefficient is correct.

Figure 6. Semi-log plot for the case ( ) ( )a=C X kXsin ,α=k=1. Solid colored lines: ( ) ( ( )) ( )a- = -C X C X X u k u; cosh0

( ) ( )ak u kXsinh cos for different initial positionsX0(X; 0)=X. Dashed colored lines: the back time evolution

( )( )( )- = a- -X X u e k; 2 cot cotk u kX
0

1
2

, for the same initial valuesX0(X; 0)=X.
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4. A comparisonwith the Local LinearizationApproach

Aswementioned in the Introduction, very often the LLA FPE turns out to be fairly close to the numerical
simulations. This is shown infigure 7, for the case ( ) ( )a=C X kXsinh .We are going to show that this is not a
coincidence: as amatter of fact, the LLAFPE is an excellent approximation of the cBFPE,when the latter is
applicable (i.e., typically, small ò andfinite, but not small, τ).

We need to briefly go through the derivation of the LLAFPE.West et al have shown [38] that the LLA FPE
can be formally derived from the BFPE of (20) as follows:

a. there is a large enough time-scale separation between the unperturbed dynamics and the decay time of the
correlation functionj(t), so that the unperturbed dynamicsX0(X;−u) can be considered close to the
initial positionX;

b. given the point "a" above, rather than expanding
( ( ))-C X X u

1

;0
in powers of u (which would give rise to the

same secular terms as the expansion in (17)), expand its logarithm

( ( )) ( ( )) ( )
( ) ( ) ( ) ( )

( )

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥-

=
-

= - ¢ -  +
C X X u C X X u C X

C X u C X C X u O u
1

;
exp ln

1

;
exp ln

1 1

2

29

0 0

2 3

and truncate the series at the first order.

Using point b in (20), we are led to the LLAFPE (here generalized tofinite times and to a generic correlation
function of the noise):

( ) ( ) ( ) ( ) ( )( )⎜ ⎟⎛
⎝

⎞
⎠òt

j¶ ~ + ¶ - ¢P X t P X t du e u P X t; ;
1

; . 30t a X

t
C X u2 2

0

Note that forC(X)=γX, the series expansion of the r.h.s. of (29) stops exactly at the first order in u, while
this does not happen expanding the term1/C(X0(X;−u)). Therefore, instead of using theWest et al approach
(given by a–b above) to go from the BFPE to the LLA FPE, the latter can be directly obtained by replacing the
functionC(X)/C(X0(X;−u))with an exponential functionwith state dependent decay coefficient ( )¢C X :

( ) ( ( )) ( ( ) )-  - ¢C X C X X u C X u; exp0 ). From (30)we get the following result for the state dependent

Figure 7.The same asfigure 2 butwithout thePs(X)BFPE andwith inserted thePs(X)LLA. Solid black lines: the stationary PDF from the
numerical simulations of the SDEof (1)with ( ) ( )=C X Xsinh . Dotted blue lines: the cBFPE stationary PDF Ps(X)cBFPE obtained from
(5) usingD(X)=D(X,∞)cBFPE of (28). Dashed red lines (barely visible close or under the solid lines):Ps(X)LLA of (34). The three
columns correspond to three different values for τ, while the three rows corresponds to three different values for ò. Note the excellent
agreement between simulations and LLAPDF.
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diffusion coefficient of the FPE:

( ) ( ) ( )( )⎜ ⎟⎛
⎝

⎞
⎠òt

j= - ¢D X t du e u,
1

31LLA

t
C X u2

0

that, for large times becomes

( ) ˆ ( ( )) ( )j
t

¥ =
¢D X

C X
, 32LLA

2

where ĵ stands for Laplace transformofj. From (32) it turns out thatD(X,∞)LLA exists and is positive under
fairly general conditions. For example, considering again the case ( ) ( )a=C X kXsinh , from (32)we easily get

( )
( )

( )
a t

¥ =
+


D X

k kX
,

1 cosh
, 33LLA

2

where the only constraint is that the flow is not divergent (i.e.α>0). Using (33) in (5)we obtain the LLA
stationary PDF for this case:

( )
( ) ( ) ( ( ) )

( )
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

a t
a t

a a t a t
=

+
+

´ -
+ +


P X

Z

k kX

k

k k kX

k

1 1 cosh

1
exp

sinh cosh 2
34s LLA

LLA

kX2
2

2

In appendixwe report the LLA results for the cubic case. Infigure 7we can see the stationary PDFs of the LLA
FPE, togetherwith the results from the cBFPE: the agreementwith the numerical integration of the SDE of (1) is
very good.

Figure 8 compares the kernels of the cBFPE and of the LLA for the cases ( ) ( )a=C X kXsinh and
C(X)=αX3. It turns out that the LLA kernel (dotted lines) is an excellent approximation of the cBFPE kernel. It
is hence not surprising that the LLAPDF is as close to the simulations as it is the cBFPEPDF.

This is a nice explanation of what has been downheuristically in the literature: the LLA approach ofGrigolini
[42, 60] is indeed based on the assumption that, for any value ofX, we can safely replace the unperturbed
backward evolution of the function f (X,u)≔C(X)/C(X0(X;−u)), with an exponential function of the time u,
with theX dependent exponent: ( ) [ ( ) ]~ - ¢f X u C X u, exp . For one-dimensional dissipative systems, the
exponential behavior of such a back time evolution is typical.

Actually, there is another general argument, not related to the cBFPE, that leads us to speculate that typically
(but not always), the LLA FPEworkswell, also for strong perturbations. In fact it is possible to prove that the LLA
and the Fox functional-calculus [33, 34] corresponds to the AlmostGaussian Assumption for generalized
stochastic operators [52]: independently of the value of ò,when ξ(t) is aGaussian stochastic process, the LLA
typicallymakes almost vanishing all the terms, appearing in the projection/cumulant expansion, whichwould
destroy the FPE. Thismeans that often the LLA FPEwould be valid even for large ò values for which the cBFPE
breaks down.

On the other hand, if the stochastic process ξ(t) is notGaussian, or it is not at all stochastic (for example, it is
the degree of freedomof a chaotic dynamical system), then theAlmost GaussianAssumption or the Fox
functional calculus can no longer be advocated to give an a priori justification (althoughweak) to the LLA FPE. In
these cases, a small ò value and the cBFPEwould be the only possible approach for a proper FPE treatment, and
the LLAFPE could be, at the best, an approximation of the cBFPE.

Figure 8. Left (right), the same offigure 3 (figure 4) but in log scale. The dotted black lines correspond to the LLA approximation.We
can see that the deviation from the exponential decay of the functionC(X)/C(X0(X;−u)) (solid lines) is relevant only in thefinal part,
where the value of the function is relatively small.
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5. Conclusions

Bydefinition, theBFPE is thebest FPEwecanget fromaperturbation approach starting fromaSDE. In thisworkwe
are interested in the1-d casewith additivenoise as in (1), inwhich ò is the small parameter. For the1-d case theBFPE
wasobtainedmanyyears agobyLopez,West andLindenberg [38], but their result reveals unphysical features. In
particular, ifτ and ò arenot fairly small, itmay lead tonegative values bothof thediffusion coefficient andof thePDF,
in some regionof the state space. It is customary to cure this situationby simply restricting thedomainof supportof the
PDF to exclude these regions. It has beenargued that this unphysical result of theBFPEmightpoint toproblems in the
model used to represent thephysical system [61]. In thisworkwe show,on the contrary, that theseproblemsaredue to
an incorrectuseof theperturbation approach fordissipative systems. Inparticular, a properuseof the interaction
picturefixes theproblem.The cBFPEgives results that are close to thoseofnumerical simulationsof the SDEof (1),
even for values of ò andτwell beyond those allowedby the classicalBFPE.The stationaryPDF isnowsimilar also to
that obtained fromtheLLAFPEofGrigolini [42, 60] andFox [34].

Appendix. The cubic case

Webriefly present the results for the pure cubic caseC(X)=X3. This is an extremenon linear case because even
small oscillations arenon-linear. It is no coincidence that the standardBFPE cannot beused in this case (see below).

From (21)we obtain

( ) ( ( )

( )

⎡

⎣
⎢⎢⎢

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎤

⎦
⎥⎥⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

t

pt
t

t pt
t

t

= - + -

-
-

- - + -

t

-

-

-

t t

t

t

D X t e tX e tX X

X e
tX

X
e

X e
X

X

,
1

2
2 1 2 2 3 1

3 2 erfi

1

2
3 2 erfi

1

2
6 2 A.1

BFPE

t

2 2 2 2

3 2 3

1

2
2

3 2 3 2

t
X

X

X

1
2 2

1
2 2

1
2 2

that, for t>2X2 is a complex number: for large times it is not defined. Thismeans that for a cubic drift field, by
using the standard BFPE a stationary PDF cannot be obtained. The situation is different exploiting our
correction to the BFPE. In fact, for large times (t→∞), we have (see (27)

Figure A1.Diffusion coefficients for a pure cubic driftfield.TheBFPEgives an imaginary result, thus in this case cannot beused.Dashed
blue lines: theD(X,∞)cBFPEof (A.2) for different values of τ.Dottedorange line: theD(X,∞)LLAof (A.3) for the same values ofτ.
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( ) ( ¯ ( )) ( )
⎡
⎣⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦⎥t t

t
¥ = = + -D X D X u X X XF

X
, , 1 3 2

1

2
1 A.2cBFPE BFPE

2 2

where ( ) ≔ ( )ò = p- -F x e e dy e xerfix x y x
0 2

2 2 2
is theDawson function. The diffusion coefficient of (A.2) is now

positive andwell defined for anyX. Concerning the LLAdiffusion coefficient, from (32)we easily get:

( ) ( )
t

¥ =
+


D X

X
,

3 1
. A.3LLA

2

2

Infigure A1we compare the corrected BFPE and the LLAdiffusion coefficients, respectively. Inserting in (5) the
expressions in equations (A.2))–(A.3)), we obtain the stationary PDF shown infigure A2.We see that in this
extreme non linear case, where the standard BFPE cannot be used, our corrected BFPE gives results that, for
small ò, are in agreementwith numerical simulations of the SDE.Notice that, in this case, also the LLA fails for
large ò values.
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