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Collective behavior strongly influences the charging dynamics of quantum batteries (QBs). Here,
we study the impact of nonlocal correlations on the energy stored in a system of N QBs. A unitary
charging protocol based on a Sachdev-Ye-Kitaev (SYK) quench Hamiltonian is thus introduced and
analyzed. SYK models describe strongly interacting systems with nonlocal correlations and fast
thermalization properties. Here, we demonstrate that, once charged, the average energy stored in
the QB is very stable, realizing an ultraprecise charging protocol. By studying fluctuations of the
average energy stored, we show that temporal fluctuations are strongly suppressed by the presence
of nonlocal correlations at all time scales. A comparison with other paradigmatic examples of many-
body QBs shows that this is linked to the collective dynamics of the SYK model and its high level
of entanglement. We argue that such feature relies on the fast scrambling property of the SYK
Hamiltonian, and on its fast thermalization properties, promoting this as an ideal model for the
ultimate temporal stability of a generic QB. Finally, we show that the temporal evolution of the
ergotropy, a quantity that characterizes the amount of extractable work from a QB, can be a useful
probe to infer the thermalization properties of a many-body quantum system.

I. INTRODUCTION

Recent advances in technological miniaturization and
fabrication processes have led to the emergence of a new
branch of research, dubbed “quantum thermodynam-
ics” [1–6]. The study of thermodynamic concepts, such as
work and heat, at the nanoscale, and the interplay with
the laws of quantum mechanics, is crucial both from a
fundamental and a technological point of view. A key
goal here is to find new strategies to precisely control,
store and manipulate work and energy [1, 7], with im-
proved performances, eventually thanks to the presence
of quantum coherence [8–14].
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FIG. 1. The charging protocol of a QB made of N spin-1/2
cells. In the left panel, the battery is charged via a single-
body charging protocol. The resulting charging protocol dis-
plays huge temporal fluctuations. By switching on a SYK-like
quench the charging protocol turns out to be collective in na-
ture, and intrinsic nonlocal correlations drastically suppress
charging temporal fluctuations.

In this framework, quantum batteries (QBs) have been
introduced [15, 16] as small quantum systems able to
temporarily store energy, to be used at a later stage.
Different figures of merit, such as the charging time, the
associated power, and the amount of extractable work,
have been analyzed [17–23] and bounds on their per-
formances have been inspected, depending on the pre-
cise charging protocols [24–28]. These usually rely on
an external charger, interacting with one or more cells
of the QB [21, 22, 29], or on unitary (local or global)
evolution of the closed system in a nonequilibrium set-
ting, i.e. by exciting degrees of freedom with a quantum
quench [16, 18–20, 24, 30].

It has been shown that the presence of correlations and
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entanglement between quantum cells can have a non-
trivial impact on both the charging power and the ex-
tractable work of QBs [18, 19, 24, 27, 31]. Indeed, part
of the energy stored in the QB can be locked by internal
correlations, giving access only to a subset of the whole
QB for useable work. This has been quantified by intro-
ducing the so-called ergotropy [10, 27]. Although many-
body effects can enhance charging performances [24, 30],
strong and nonlocal correlations are required to achieve
a true quantum advantage for QBs. Recently, the role
of random disorder and its impact on charging perfor-
mances have been also inspected, showing that QBs ex-
hibit typical behavior in the large N limit given the spec-
tral properties of the driving systems [32, 33].

Moreover, after an initial growth, the average energy
stored in a QB during the charging protocol inevitably
undergoes fluctuations, which usually undermine its sub-
sequent use. It is thus of great importance to find proto-
cols able to stabilize energy storage [25, 34] or, even bet-
ter, systems which intrinsically suppress these unwanted
fluctuations.

In this work, we show that nonlocal and strongly
chaotic correlations greatly help in improving charging
stability of QBs, by suppressing temporal fluctuations
associated to the average energy stored in a QB. To elu-
cidate this point, we investigate a paradigmatic example
of a strongly correlated chaotic system with nonlocal in-
teractions, i.e. we introduce and study QBs based on the
so-called Sachdev-Ye-Kitaev (SYK) model.

SYK models [35–40] are currently receiving a lot of
attention from very different communities. They de-
scribe strongly correlated quantum systems of (Majo-
rana or Dirac) fermions with random all-to-all interac-
tions. Interestingly, it has been shown [35, 38, 39], that,
in the limit of large number of fermions, many interest-
ing quantities (such as the n-point correlation functions)
can be exactly calculated. Subsequently, the non-Fermi
liquid behavior of SYK models has been studied [41–44]
and, in a completely different context, intriguing con-
nections with black-hole physics and quantum gravity
via holography have been explored [45–48]. Moreover,
and in parallel, it has been shown that nonlocal corre-
lations and random disorder result in highly chaotic dy-
namics, making these models extremely popular in the
quantum chaos community too. The chaotic properties
of the SYK models have been extensively investigated
both from a random matrix theory point of view, start-
ing from Ref. [49, 50], and by studying the so-called out-
of-time-order correlators [35, 38]. The latter result in the
saturation of the Maldacena-Shenker-Stanford bound on
the Lyapunov exponent [51], thus promoting the SYK
models as concrete examples of systems satisfying the
“fast scrambling” conjecture [52], i.e. with the Liapunov
exponent saturating the bound λL ≤ 2π/β, with β de-
noting the inverse temperature. In passing, we note that
possible realizations of SYK have been proposed both in
atomic [53, 54] and solid-state physics [55–57].

We consider an SYK system of N QBs under a unitary

charging protocol, as pictorially sketched in Fig. 1. We
argue that nonlocal and chaotic correlations, after the
initial quench, lead to a very fast– and homogeneous–
excitation of many energy levels, with huge creation of
entanglement [58, 59] and, more importantly, in a collec-
tive fashion. By characterizing fluctuations of the aver-
age energy stored, we show that this collective behavior
is reflected in an exponential suppression of the temporal
fluctuations at all time scales, leading to an ultra precise
charging of the QB. To corroborate these results we per-
form extensive numerical simulations, based on exact di-
agonalization, showing also a systematic comparison with
a prototipical quantum system with many-body local cor-
relations, i.e. a one-dimensional spin chain in the Ander-
son, ergodic or many-body localized (MBL) phase [60].

This paper is organized as follows. In Sec. II we
introduce the unitary charging protocol, its model-
independent features and some preliminary definitions.
In Sec. III and Sec. IV we introduce the SYK model un-
der investigation and we compare its behavior to a spin
chain in the MBL phase. We analyze energy fluctuations
of different kinds, i.e. disorder, quantum, and temporal
fluctuations, showing comparison between SYK and spin-
chain (MBL or Anderson) based QBs. In particular, we
demonstrate that SYK-based QBs result in exponentially
suppressed temporal fluctuations at all times, a peculiar
feature that can be linked to the collective and nonlocal
nature of the system and to its chaotic, and fast thermal-
izing, property. In Sec. V we inspect the role played by
quantum chaos in suppressing the temporal fluctuations.
We will argue that the suppression of the temporal fluc-
tuations of a generic, chaotic, QB can be linked to the
spectral rigidity of the corresponding quench Hamilto-
nian. On this respect, the very high degree of spectral
rigidity of the SYK Hamiltonian, as observed in [61], ex-
plains the great performance of the corresponding SYK
QBs. In Sec. VI we make a digression and we study
the amount of extractable energy from a SYK-like QB,
i.e. its ergotropy. We show that in general a SYK QB dis-
plays very low values of ergotropy, a feature that can be
traced back to its highly entangling dynamics. Interest-
ingly, we argue that by inspecting the time evolution of
this quantity one can infer the thermalization time scale
of a quantum system. Sec. VII contains a summary of
our main findings.

II. CHARGING PROTOCOL AND ENERGY
FLUCTUATIONS

We study the charging mechanism of a QB, following
a unitary protocol based on a double-sudden quench [16,
18–20]. The system is initially assumed to be in the
ground state |0〉 of a given time-independent Hamilto-

nian, Ĥ0 (empty battery). Subsequently, it evolves under
the Hamiltonian

Ĥ(t) = Ĥ0 + κλ(t) Ĥ1 , (1)
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where Ĥ1 is a time-independent driving Hamiltonian
and the dimensionless parameter κ controls the relative
strength between Ĥ0 and Ĥ1. The function λ(t) describes
the charging time interval and is defined by

λ(t) = 0 , t < 0 and t > τ ,

λ(t) = 1 , 0 < t < τ , (2)

with τ being the charging time. Denoting by |ψ(t)〉 the
evolved state under the total Hamiltonian (1) (in this
work we set ~ = 1), the averaged energy stored in the
QB at the end of the charging time is

E(τ) ≡ 〈Ĥ0〉τ − 〈Ĥ0〉0 , (3)

where we defined 〈Ĥ0〉τ ≡ 〈ψ(τ)| Ĥ0 |ψ(τ)〉.
Unless specified, we will always consider many-body

QBs composed of N cells (in our case N qubits) whose
static Hamiltonian is given by

Ĥ0 = h

N∑
j=1

σ̂zj , (4)

σ̂αj (α = x, y, z) denoting the usual spin-1/2 Pauli op-
erators corresponding to the jth qubit, and h being the

QB energy scale. We will also indicate with Ĥ(M)
0 =

h
∑M
j=1 σ̂

z
j a local portion of the QB, once restricted to

M < N cells.
In a many-body QB, the stored energy E(τ) may dis-

play some universal features as a function of τ : it under-
goes an initial growth for small τ , while at larger times
it fluctuates in time around an average value [30]

Ē(τ1, τ2) =
1

τ2 − τ1

∫ τ2

τ1

dτ 〈Ĥ0〉τ , (5)

whose precise value depends on the specific model of QB
considered. In order to analyze the speed and perfor-
mance of the charging protocol, we define an optimal
charging time τ̄ as the one at which the energy stored
in the QB reaches a value equal to a fixed fraction of
the average energy. Notice that, since temporal fluctua-
tions are always present, the usual definition of τ̄ as the
time at which the energy stored in the battery reaches
its maximum value is not well defined.

The charging precision of a QB is influenced by differ-
ent and independent factors that may be responsible for
temporal, disorder and quantum fluctuations. The first
kind of fluctuations can be quantified by computing[
σ
(t)
N (τ1, τ2)

]2 ≡ 〈〈[ ∫ τ2

τ1

dτ

τ2 − τ1
〈Ĥ0〉

2

τ

]
− Ē2(τ1, τ2)

〉〉
.

(6)
Hereafter we will use the symbol 〈〈·〉〉 in order to denote
the average over different realizations of the charging
Hamiltonian Ĥ1, which may depend on some parame-
ters drawn according to a given probability distribution.
We also define the dimensionless quantity

Σ
(t)
N (τ1, τ2) ≡ σ

(t)
N (τ1, τ2)

∆Ĥ0
/2

, (7)

where ∆Ĥ0
= Nh is the bandwidth of Ĥ0 in Eq. (4).

More in general, the bandwidth of an Hermitian operator

Ô is defined as the norm ∆Ô ≡ µ
(max)

Ô
− µ(min)

Ô
, where

µ
(max)

Ô
(µ

(min)

Ô
) is its maximum (minimum) eigenvalue.

Disorder fluctuations may be responsible for an inde-
termination in E(τ) due to imperfections in the fabrica-
tion of the QB, which can be modeled as suitable random
parameters entering the full Hamiltonian Ĥ. These fluc-
tuations are defined by[

σ
(d)
N (τ)

]2 ≡ 〈〈 〈Ĥ0〉
2

τ

〉〉
−
〈〈
〈Ĥ0〉τ

〉〉2
. (8)

On the other hand, quantum fluctuations are caused by
quantum indetermination, which is intrinsically present
in the charging process, since |ψ(τ)〉 is not an eigenstate

of Ĥ0. These can be quantified by[
σ
(q)
N (τ)

]2 ≡ 〈〈 〈Ĥ2
0〉τ − 〈Ĥ0〉

2

τ

〉〉
. (9)

As before, we introduce the dimensionless quantities

Σ
(d, q)
N (τ) ≡ σ

(d, q)
N (τ)

∆Ĥ0
/2

. (10)

It would be desirable to find models of QBs able to
reach high values of Ē and, at the same time, minimiz-
ing the various fluctuations. While an overall rescaling of
the whole Hamiltonian (Ĥ → αĤ) only implies a redefi-
nition of times, and thus can be easily taken into account,
the role played by the relative strength κ of the charging
Hamiltonian is less trivial [see Eq. (1)]. A small value of κ

makes Ĥ1 to be a small perturbation of the global Hamil-
tonian Ĥ, thus resulting in a low value of Ē. In contrast,
by increasing κ, the charging Hamiltonian Ĥ1 becomes a
strong perturbation and may induce transitions from |0〉
to the highly excited states of Ĥ0.

III. MODELS

To unveil the role played by the many-body charac-
ter of a QB on its charging precision, we have studied
a variety of Hamiltonians, which can be seen as one-
dimensional spin-1/2 chains (each spin representing a
quantum cell, as discussed above). These include in-
teractions among the various spins and disorder in the
coupling strengths: as we shall see below, the interplay
between two such ingredients is crucial to stabilize the
process of energy injection and thus to any reliable defi-
nition of many-body QB.

The first class of charging Hamiltonians is given by

Ĥ(MBL)
1 =

N∑
j=1

(
− Jj σ̂xj σ̂xj+1 + J2 σ̂

x
j σ̂

x
j+2

)
. (11)

The first term in the right-hand-side stands for a nearest-
neighbor Ising coupling, where the coefficients Jj are
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composed of a constant piece plus a static random fluc-
tuation term, Jj = J + δJj , with δJj sampled over a
uniform distribution with support in [−δJ , δJ ]. The
second term describes a next-to-nearest-neighbor inter-
action with fixed coupling constant J2. The Hamilto-
nian in Eq. (11), together with the static QB model (4),
constitutes a many-body system that exhibits a variety
of different quantum phases, ranging from the Ander-
son localized (AL) to the many-body localized (MBL),
as well as to the ergodic phase. The phase diagram

of Ĥ0 + Ĥ(MBL)
1 has been extensively studied, since it

represents one of the prototypical models of many-body
localization-delocalization transition [60, 62–64].

The second class of charging Hamiltonian that we an-
alyze is a highly nonlocal model inspired by the so-called
“Kourkoulou-Maldacena” SYK model [65]. In its original
formulation, the SYK model describes a strongly inter-
acting system of 2N Majorana fermions, coupled through
a fully nonlocal, all-to-all, random interaction. Denot-

ing with γ̂j the jth Majorana fermion (γ̂j = γ̂†j , with

j = 1, . . . , 2N), such that {γ̂i, γ̂j} = δij , the SYK charg-
ing Hamiltonian writes

Ĥ(SYK)
1 =

∑
i<j<k<l

Jijkl γ̂iγ̂j γ̂kγ̂l . (12)

The couplings Jijkl of the quartic term are randomly
Gaussian distributed, with null mean values and variance

〈〈J2
ijkl〉〉 =

3 J2

4N3
. (13)

The above Hamiltonian can be cast in the spin-1/2
setting by employing a Jordan-Wigner transformation
(JWT),

γ̂2j−1 =
1√
2

(
j−1∏
i=1

σ̂zi

)
σ̂xj , (14a)

γ̂2j =
1√
2

(
j−1∏
i=1

σ̂zi

)
σ̂yj . (14b)

Once rewritten in this language, the SYK model looks
highly nonlocal and interacting, contrary to the charging
Hamiltonian of the MBL spin chain [Eq. (11)], which
instead couples next-to-nearest neighbors, at most. On
the opposite hand, the static “Kourkoulou-Maldacena”
Hamiltonian Ĥ0, which in the Majorana language reads

Ĥ0 = −2i h
∑
j odd

γ̂j γ̂j+1 , (15)

is equivalent to the spin-1/2 Hamiltonian of Eq. (4), af-
ter using the above JWT. Each quantum cell of the QB
thus corresponds to a couple of neighboring Majorana
fermions.

As we shall see in the next sections, these two classes
of models exhibit radically different behaviors in terms of
QB charging stability. The reason intimately resides in

the nonlocality of SYK, and on its highly chaotic nature,
with respect to a nearest neighbor or next-to-nearest
neighbor spin chain models.

IV. EMERGENCE OF FLUCTUATIONS IN THE
CHARGING PROCESS OF A QB

We now present the results on the different kinds
of fluctuations that may emerge during QB charging,
namely temporal, disorder and quantum fluctuations.
To this purpose, we focus on three different models of
charging Hamiltonian, which can be obtained either with
Eq. (11) or Eq. (12), after suitably tuning the various
defining parameters. For the sake of clarity, in the pre-
sentation we will always express energies in units of h.
The situations to whom results shown below refer are:
(i) the AL model, corresponding to Eq. (11) with J2 = 0,
J , δJ = 8.33h; (ii) the MBL model (11) with J = 1.67h,
δJ = 8.33h, and J2 = 0.5h; (iii) the SYK model in
Eq. (12) with J = h.

These particular values of the parameters, for the cases
(i) and (ii), have been chosen to coincide with the values
considered in [30]. However, we have extensively cheched
that all the results shown and discussed hereafter are
qualitatively the same with respect to the specific choice
of the Hamiltonian parameters, within the same class of
model.

A. Temporal fluctuations

We first focus on the temporal fluctuations of the aver-
age energy E(τ) stored in the QB through the charging
protocol. To give a hint on the importance of such kind
of noise in the charging performance, we analyze the time
behavior of the ratio R(τ) between the energy stored in

the QB and the bandwidth of Ĥ0,

R(τ) ≡ E(τ)

∆Ĥ0

. (16)

Figure 2 displays some representative results for the
indicator R(τ) as a function of the charging time τ , for
a single ensemble realization, in the AL, the MBL, and
the SYK cases. The numerical data have been obtained
by exact diagonalization and discrete time evolution, us-
ing logarithmic time step intervals. We checked that the
time step intervals were sufficiently small to ensure the
convergence of the results. The various curves stand for
different values of the dimensionless parameter κ in the
charging Hamiltonian (1). We observe that all the curves
grow as a function of time τ until they saturate to a value
corresponding to Ē, whose precise value depends on κ.
Moreover, by increasing κ, Ē increases as well, up to the
value R(τ) ∼ 1/2, while any larger κ does not help in
further increasing Ē, while it simply reduces the value of
τ̄ . This means that, when κ is strong enough, the quench
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FIG. 2. The charging ratio R(τ) as a function of τ (measured in units of h), for a single ensemble realization of the AL spin
chain [panel (a)], the MBL spin chain [panel (b)], and the SYK Hamiltonian [panel (c)]. The different curves in the three plots
stand for various values of κ, as indicated in the legends, and all are for a QB with N = 15 quantum cells.

Hamiltonian induces a transition from |0〉 to a superpo-

sition involving several eigenstates of Ĥ0, symmetrically
distributed around the center of the bandwidth of Ĥ0,
thus ensuring that Ē ∼ ∆Ĥ0

/2. On the other hand, the
temporal fluctuations are mostly unaffected by κ and one
has to find smarter ways to reduce them. This set of fluc-
tuations will be the main focus of the analysis, and we
will show how they can be efficiently suppressed. As we
will see, the internal structure of Ĥ1 will play a crucial
role for this task.

In Ref. [30], it was argued that the presence of interac-

tions in Ĥ1 can help in reducing the temporal fluctuations
during the charging of the QB. Here we show that, while
local interactions have only limited effects on the fluctua-
tions, nonlocal correlations allow to build models of QBs
with high temporal stability in Ē. These qualitative fea-
tures are already visible from Fig.2, where we clearly see
that by increasing the non locality degree of the inter-
actions (from left to right panel) temporal fluctuations
are greatly reduced. One of the main goals of this paper
will be to explain such behavior and to quantitatively
describe it.

We now fix the value of κ and first comment on the
optimal charging time of the QB, 〈〈τ̄〉〉, evaluated as the
time at which the energy stored in the QB reaches a value
equal to 99% of the average energy (we have tested that
the results are not affected by the arbitrary choice of this
cutoff), as well as the corresponding energy 〈〈Ē〉〉. We
now refer to quantities averaged over several realizations
of Ĥ1. Our numerical simulations indicate (not shown)
that, for all the three cases considered, the optimal charg-
ing time is a decreasing function with the number N of
cells, while the averaged energy stored in the battery at
the optimal time scales linearly with the number of sites.
The last property easily follows from the fact that, as
already pointed out in Sec. II, when κ is large enough,
〈〈Ē〉〉 is determined by the bandwidth of Ĥ0, which scales
linearly with N . These two observations agree with the
results obtained in Ref. [30] for the MBL model, and cer-
tify that all our models are indeed able to properly charge
the battery.

To obtain a more quantitative assessment of the role
of temporal fluctuations in the QB charging mechanism,
we have performed further extensive simulations for the
MBL and the SYK model, by fixing the constant κ. The
corresponding analysis of the AL model is not reported
in the main text, since already from Fig. 2 is clear that it
shows huge temporal fluctuations at all times. For sake
of completeness, this is reported in App. B.

In order to make fair comparisons between these mod-
els, we have set the constant κ in the MBL QB equal to
one, while for the SYK QB it has been fixed in such a way
that the two quench Hamiltonians have the same band-
width, ∆ĤMBL

1
= ∆Ĥ(SYK)

1
. The results of our analysis

are reported in Fig. 3.
The upper part of panels 3(a) and 3(b) display the ratio

R(τ) of Eq. (16), for a single ensemble realization of the
MBL spin chain and the SYK battery, respectively. We
immediately recognize that, compared to the analogous
plot for the Anderson spin chain [c.f. Fig. 2(a), the green
curve], the MBL battery is able to partially reduce the
temporal fluctuations at late times, i.e. for times much
larger than the optimal charging time τ � 〈〈τ̄〉〉. How-
ever, at early times, i.e. for times roughly included in
the light grey areas in the panels,

1 .
τ

〈〈τ̄〉〉 . 20 , (early-time window), (17)

fluctuations are still very large. On the contrary, the plot
clearly shows that the SYK battery is extremely precise
and stable at any time scale: all the temporal fluctua-
tions, after reaching 〈〈τ̄〉〉, are completely removed. To
analyze this fact we shall also define the following time
interval, identified by the dark grey areas in the panels,

120 .
τ

〈〈τ̄〉〉 . 600 , (late-time window). (18)

It should be stressed that the early-time window is very
relevant for energy storage purposes, since one would like
to have a great control of the charging precision immedi-
ately after reaching the saturation of the energy stored.
We stress that the precise values of the early and late
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FIG. 3. Analysis of the temporal fluctuations during the QB charging protocol through the MBL model with N = 15 spins
(left panels) and the SYK model with 2N = 30 Majorana fermions (right panels). Panels (a) and (b): The functions R(τ)
(upper part) and σk in the various energy sectors (lower part) as a function of time, for a single realization of the random
variables. Shaded areas denote the time intervals for the early- and late-time window (light grey and dark grey, respectively)
analyzed below — see text. Here τ̄ = 0.14 and 0.12, in the two panels. Panels (c) and (d): The early- and late-time temporal

fluctuations, Σ
(t)
N (τ1, τ2) of Eq. (7), for the MBL and the SYK models, as a function of the number N of QB cells. Continuous

lines correspond to the fits (25)-(26) and (27), respectively. Results in the two bottom panels have been obtained by averaging
over 500 (c) and 100 (d) ensemble realizations.

time windows are not important, and the details of these
choices do not affect qualitatively the behaviors we are
discussing.

The two plots 3(a) and 3(b) clearly unveil the qual-
itative advantage of the SYK model, and confirm the
intuition that nonlocal correlations play a crucial role
in the charging dynamics. Thus, a strongly interacting,
nonlocal, quench (like the SYK model) represents a per-
fect candidate to build models of very stable QBs with
high charging precision. Moreover, in Sec. V we show
that nonlocality alone in Ĥ1 is not enough, and that the
highly chaotic dynamics of the SYK system is crucial in
order to efficiently suppress the temporal fluctuations.
In Appendix A we analyze the role of the static Hamil-

tonian Ĥ0, by making a comparison with another kind
of SYK-like QB with a nonlocal Ĥ0 and showing that
the two models are qualitatively analogous. Therefore
the precise form of Ĥ0 does not play a major role in the
charging dynamics.

1. Fluctuations in terms of transition amplitudes

Let us now have a closer inspection at the microscopic
origin of the improved efficiency and charging stability,
in the presence of nonlocal correlations. In general, tem-
poral energy fluctuations are caused by transitions of the
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probability amplitudes

ck,i ≡ 〈k, i |ψ(t)〉 , (19)

between eigenstates with different energies. Here {|k, i〉}
denote the eigenstates of Ĥ0; the index k labels the en-
ergy level Ek, while i = 1, . . . , dk counts the different
degenerate eigenstates within the same eigenspace (dk is
the corresponding degeneracy degree). Such transitions
cause a large fluctuation of the energy stored if both the
following conditions are met: (i) The eigenstates have
very different energies; and (ii) The probability ampli-
tudes of being in the eigenstates involved in the transition
are large.

The first condition is immediate to understand: if two
eigenstates have similar energies, the energy stored in
the battery will not vary much after the transition (the
extreme case would be a transition between degenerate
eigenstates).

The second condition is more subtle: let us consider
the limit case in which the evolved ket, |ψ(t)〉, can be

written as a superposition of all the eigenstates of Ĥ0

with approximately the same probability amplitudes

ck,i ∼
1√
D

, (20)

where D is the dimension of the system’s Hilbert space.
Since D = 2N is exponentially large in the number N of
cells, all the coefficients ck,i will be very small. In this
case, a transition between eigenstates, even with very dif-
ferent energies, will not be reflected in large fluctuations.
Indeed, since the bandwidth of Ĥ0 scales linearly in N ,
the fluctuation

∆E(t) ∼ c2k,iN ∼ O
(
2−N

)
, (21)

will be, at most, exponentially small in N . In contrast, in
the situation where only just few (of order N) eigenstates

of Ĥ0 are involved in the expansion of the evolved state,
some of the coefficients ck,i can be relatively large

ck,i ∼
1√
N

, for some k, i , (22)

and a transition including one of these states will cause
a large fluctuation in the energy stored.

Given these considerations, we expect that in the MBL
case the evolved state at early times should have non
vanishing overlap with just few eigenstates of Ĥ0 (for
each energy level), while involving more and more states
at late times, thus reducing the associated fluctuations.
On the contrary, for the SYK model the evolved state
should involve a large portion of the Hilbert space of Ĥ0

from the very early times.
To corroborate this hypothesis, we first notice that the

energy spectrum of Ĥ0 is formed by several lines, well
separated from each other. Each line having energy Ek
has a degeneracy degree dk counted by the number of
configurations with the right number of aligned spins.

Hence, to estimate if, for a given energy eigenvalue, the
evolved state has non vanishing overlap with just few or
many eigenstates of Ĥ0, we consider the quantity

aik(τ) ≡ | 〈k, i |ψ(τ)〉 |2 , (23)

which expresses the probability of measuring the evolved
state in one of the eigenstates |k, i〉 associated to the level
Ek. We have taken into account all of such eigenstates,
i.e. with fixed k and varying i = 1, . . . , dk, and computed
the standard deviation associated to the corresponding
quantities (23), divided by their average value. Namely,

σk(τ) =
1

ak(τ)

√√√√ 1

dk − 1

dk∑
i=1

[
aik(τ)− ak(τ)

]2
, (24)

with ak(τ) =
[∑dk

i=1 a
i
k(τ)

]
/dk.

We can thus determine if the expansion of |ψ(τ)〉 in
the degenerate eigenstates for a given energy level is in-
volving many or few of the eigenstates, with the former
case corresponding to small values σk and the latter as-
sociated to large values of σk. The results are reported in
the lower parts of panels 3(a) and 3(b), for the MBL and
the SYK model, and confirm our conjecture: the MBL
system shows at early times huge values of σk for each
energy sector, and in correspondence with these peaks
we can clearly trace a huge temporal fluctuation of the
average energy stored in the battery (see the upper panel
of the figure). This behavior gets reduced by increasing
time and, after bouncing for a while, the system reaches
low values for all the σks. On the other hand, from the
very beginning, the SYK model displays low values for σk
(around one order of magnitude smaller), clearly showing

that in this model many more eigenstates of Ĥ0, for each
energy level, are rapidly involved in the expansion of the
evolved state. Hence, the charging protocol turns out
to be very stable, and this is reflected in the very small
temporal fluctuations. It should be emphasized that the
low values of all the σks, for the SYK model, are reached
at a time scale which is even shorter than the optimal
charging time, 〈〈τ̄〉〉, thus ensuring the total absence of
temporal fluctuations.

This microscopic argument confirms that temporal
fluctuations get suppressed when an initially localized
state (in the eigenbasis of Ĥ0) spreads and covers a very

large portion of the eigenstates of Ĥ0 and, as such, we
think that it could be naturally linked to the physics of
scrambling and of thermalization. Indeed, the thermal-
ization properties of the SYK model have been already
investigated in Refs. [66, 67], where it has been demon-
strated that this model shows thermalization, even with-
out long time averaging. This fact corresponds to a quan-
tum version of mixing, a much stronger phenomenon as
compared to ergodicity [67]. On the other hand, a MBL
system does not thermalize in the thermodynamic limit.
Hence, we expect that the huge suppression of the tem-
poral fluctuations at late times, in this case, should be
a finite N effect: by increasing the size of the system,
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the time at which the fluctuations are highly suppressed
should tend to infinity. This is consistent with the results,
reported in Fig. 4(b), of Ref. [30], where an increase in
the temporal fluctuations of the MBL model (without
separating early and late times) could be observed at the
largest values of N .

2. Temporal fluctuations of the charging energy in the
early- and late-time windows

So far we have argued that, in general, during the
charging process of a generic QB, two different time win-
dows can be identified: after reaching the optimal charg-
ing time, 〈〈τ̄〉〉, we have an “early-time” window, in which
the averaged energy stored in the battery, E(τ), under-
goes huge temporal fluctuations, the expansion of the
evolved state |ψ(τ)〉 on the basis of the eigenstates of

Ĥ0 involves just few eigenstates for each energy level.
On much larger time scales, the dynamics turns to a
“late-time” window, in which the energy E(τ) displays
suppressed temporal fluctuations, the evolved state has
spread to cover a large portion of the eigenstates of Ĥ0.
We have also argued that the time of crossover, between
the early time and the late time behavior, is connected
with the thermalization properties of the system under
investigation and, as such, it is model-dependent.

We now turn to a more explicit evaluation of the tem-
poral fluctuations in the charging energy, [cf. Eq. (6)], in
the two time windows defined before. To be precise, we

address the dimensionless quantity Σ
(t)
N (τ1, τ2) of Eq. (7)

in the two time windows (early and late) over which we
take the time integral. In Fig. 3(c) we plot the results for
the MBL spin chain. The behavior for different N , of (7),
at early and late times is qualitatively different: while at
late times Σ is fastly decreasing with N , at early time Σ
instead shows a much slower decrease. In Fig. 3(d) we
plot the results for the SYK battery. Here, the situation
is different: both the early and late time fluctuations are
rapidly suppressed in N

These observations can be made quantitative: in the
MBL case, the early time curve is greatly reproduced by
the function

Σ
(t)
N =

a√
N

+ b , (25)

with a and b being fitting parameters. On the other hand,
the late time behavior is well reproduced by

Σ
(t)
N = aN2 2−N + b , (26)

which shows that the late time temporal fluctuations are
exponentially suppressed with N .

The numerical data for the SYK case instead can be
reproduced by the function

Σ
(t)
N = aN2.5 2−N + b . (27)

In summary, this shows that the temporal fluctuations,
in the SYK model, both at early and late times, are ex-
ponentially suppressed by increasing the size of the bat-
tery. On the other hand, the MBL battery, shows this
exponential suppression only at late times, while at early
times it follows a 1/

√
N suppression factor, only. The

exponential suppression, at early times, of SYK battery,
makes clear that with this model it is possible to obtain
very stable charging protocols, in which the average en-
ergy stored in the battery is essentially determined with
very high precision, even with relatively small batteries.

It has been shown in [68] (in the similar context of work

extraction) that precisely an exponential and a 1/
√
N

suppression factors are associated to, respectively, collec-
tive processes, i.e. processes in which all the cells are
collectively controlled in the protocol, and single cells
protocols, in which each cell is individually processed. It
is then natural to expect that, due to the nonlocal na-
ture of its hamiltonian, the SYK has a genuine collective
dynamics from the very early times, shorter than the op-
timal charging time 〈〈τ̄〉〉, while the MBL battery needs
a certain amount of time to start a collective dynamics,
with an initial single-body behavior. On this respect, we
conclude that an integrable Hamiltonian, like the AL spin
chain in the left panel of Fig. 2, never reaches a collec-
tive dynamics. In Sec. V we will confirm this intuition,
by showing that the presence of quantum chaos in the
quench Hamiltonian is necessary to ensure the exponen-
tial suppression of the fluctuations.

This is in perfect agreement with the microscopic
description of the fluctuations we have provided in
Sec. IV A 1, and with the findinds of Sec. VI, where we
show that the MBL battery needs a large amount of time
in order to involve a large portion of the eigenstates of
Ĥ0 in the expansion of the evolved state |ψ(τ)〉. More-
over, the absence of a crossover in the SYK system can be
again understood in terms of the microscopic description
of Sec. IV, where we observed that for the SYK system
|ψ(τ)〉 involves a large portion of the Hilbert space from
times which are smaller than the optimal charging time,
thus ensuring that all the temporal fluctuations are ex-
ponentially suppressed.

B. Disorder and quantum fluctuations

We now move to the discussion of the disorder and
quantum fluctuations for all the three models considered.
From (8) and (9), we see that both these quantities have
to be evaluated at a definite time, τ . Hence, we have
chosen two fixed values of the time, one in the early time
window and one in the late time window, to evaluate
them.

The results for the disorder fluctuations Σ
(d)
N (τ), cf.

Eq. (10), are reported in Fig. 4. In agreement with the
previous results, disorder fluctuations for the SYK model
are always small, both at early times and at late times.
Similarly, by considering the Anderson model, we see that
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FIG. 4. (a): The disorder fluctuations at early times, as

measured by Σ(d) and as functions of the lattice size. (b):
Same quantity for for the late time window. The results
are obtained by averaging over 500 (up to N = 11), 250
(N = 12, 13) and 100 (N = 14) ensemble realizations. We
have chosen the following values of the time, τ1 ≡ 1.5 τ̄ for
the early time window and τ2 ≡ 0.5 τ̄max for the late time
window, with τmax the final time, τ = 600.

the disorder fluctuations are always large, both at early
and late time. Finally, the MBL system shows a crossover
when passing from the early time window to the late time
window: it shows a behavior similar to the Anderson
spin chain at early times and it moves to a behavior very
similar to the SYK model at late times.

Moving to quantum fluctuations, Σ
(q)
N (τ), cf. Eq. (10),

the results are reported in Fig. 5. Again, we find that
the MBL model shows a crossover when moving from
the early time window to the late time window, becom-
ing more similar to the SYK behavior only at late times.
We also see that the quantum fluctuations for the SYK
model are larger than for all the other models we have
considered. Furthermore, it is worth to notice that for
all the three models, the values of the temporal and dis-
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FIG. 5. (a): The quantum fluctuations at early times, as

measured by Σ(q) and as functions of the lattice size. (b):
Same quantity for for the late time window. The results
are obtained by averaging over 500 (up to N = 11), 250
(N = 12, 13) and 100 (N = 14) ensemble realizations.We
have chosen the following values of the time, τ1 ≡ 1.5 τ̄ for
the early time window and τ2 ≡ 0.5 τ̄max for the late time
window, with τmax the final time, τ = 600.

order fluctuations are quite similar, while the quantum
fluctuations are always larger than the other sources of
fluctuations, reaching the largest value of ∼ 0.50 for the
SYK battery. This large value of quantum fluctuations
for the SYK model could be put in relation with its high
charging power, [69], since it has been recently observed
in Ref. [26] that high levels of quantum fluctuations are
necessary in order to increase the charging power of a
QB.

For both the disorder and the quantum fluctuations,
we see that they are suppressed by increasing the size of
the battery.
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V. THE ROLE OF QUANTUM CHAOS ON THE
CHARGING STABILITY

We now elucidate the role that quantum chaos plays
in the suppression of the temporal fluctuations, i.e. in
the charging stability of a QB.

To this end, it is instructive to consider two slightly dif-
ferent models of QBs. In both cases, the unitary charging
protocol is given by:

ĤSYK2
≡ Ĥ0 + κλ(t) Ĥs2 , (28)

where Ĥ0 is the local constant Hamiltonian (4). The

quench terms Ĥs2 with s = F,B, instead, are random
mass Hamiltonians, that means quadratic in the field
operators, the two differing for their fermionic/bosonic

statistics (see below). The case ĤF
2 is defined by

ĤF
2 = i

∑
i<j

Kij γ̂iγ̂j , (29)

with the random couplings Kij having null mean values
and variances

〈〈K2
ij〉〉 =

1

2N
. (30)

On the other hand, ĤB
2 is built using the following, real,

hard-core bosonic operators, χ̂i, with i = 1, . . . , 2N ,
which satisfy the following algebra:

{χ̂a, χ̂b} =

{
0 if (a, b) = (2i− 1, 2i) for 1 ≤ i ≤ N
1 if a = b[

χ̂a, χ̂b
]

=
{

0 otherwise. (31)

The bosonic quench Hamiltonian is then given by

ĤB
2 =

∑
i<j

(i)s(i,j)Kij χ̂iχ̂j , (32)

with the same random coupling constants Kij as in (30).
The factor s(i, j) reads

s(i, j) ≡ (1 + (−1)j) δi+1, j , (33)

and it ensures that ĤB
2 is Hermitian.

Although very similar, being both quadratic in the
field operators, the two quench Hamiltonians (29) and
(32) have very different properties: the fermionic system
is indeed integrable, while the bosonic model is chaotic.
This can be verified by inspecting simple quantum chaos
diagnostics, like the so-called r-statistics [70], as we show
in App. C 1.

This difference has a direct consequence on the QB
performance, as shown in Fig. 6 where the charging for
a single realization of the coupling constants Kij is re-
ported. As usual, we have fixed the constant κ to en-
sure that ĤB

2 and ĤF
2 have the same bandwidth. From

0.1 1 10 100 600
τ

0.0

0.2

0.4

R

ĤF
2

ĤB
2

FIG. 6. The charging ratio R(τ) —see Eq. (16)— as a func-
tion of τ , for a QB described by the Hamiltonian in Eq. (28).
We study a single realization of the coupling constantsKij , for
both the bosonic quadratic model, Eq. (32), and the fermionic
model, Eq. (29), for N = 15.

the figure, one can clearly see that, despite the strik-
ing similarity of the two models, the temporal stabilities
are completely different, with the bosonic model, being
chaotic, which efficiently truncates the fluctuations while
the fermionic one shows large fluctuations even at late
time. This shows that quantum chaos is needed to reach
charging stability. Given this result, a natural question
which arises is whether more conventional chaotic mod-
els, like spin chain models in the ergodic phase, show the
same level of charging stability of the SYK quench de-
fined in (12). As shown in App. C 2, however, it turns
out that the charging stability of the SYK QB is ex-
ceptional and definitely larger than the level of charging
stability reached by an ergodic spin chain.

It thus remains to understand which particular feature
of the chaotic SYK Hamiltonian is responsible for the
extremely efficient suppression of the temporal fluctua-
tions. While a detailed understanding of this point is
beyond the scope of the paper, we observe here that the
short-range chaos observables, like the r-statistics, sim-
ply tell us whether a certain Hamiltonian, at very small
energy scales (or equivalently for very long times), shows
the same spectral correlations as predicted by random
matrix theory (RMT). However, they say nothing about
how large in energy, or equivalently how short in time,
the agreement with RMT persists.

To address this issue, which in a sense defines how
strong is the chaotic nature of a system, one has to study
the so-called long range chaos diagnostics, like the spec-
tral rigidity or the associated spectral form factor [71].
On this respect, in [61] and [72], it has been observed
that the Thouless time, which is the time scale at which
the agreement with RMT becomes manifest, for the SYK
model is very small, of order logN , while for more canon-
ical spin chain models is parametrically larger, of order
N or N2. This in turn implies that the SYK model
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FIG. 7. The charging ratio R(τ) —see Eq. (16)— as a
function of τ , for a single realization of the coupling constants
Jijkl, for both the quartic, local, SYK model, (12), and a
random Hamiltonian extracted from GUE. Both the models
are computed for N = 15.

has a much larger spectral rigidity than the most con-
ventional spin chain ergodic models, i.e. it is strongly
chaotic. We believe that the very large spectral rigidity
of the SYK Hamiltonian is the key ingredient behind the
excellent performance of the SYK QB. As a concluding
remark on this aspect, to further corroborate the agree-
ment with RMT, we can compare the SYK performance
with the one of a QB in which the quench Hamiltonian
is extracted directly from the Gaussian unitary ensem-
ble (GUE), i.e. in which the quench Hamiltonian is a
random hermitian matrix, although such a QB does not
represent any physical model by itself. For the reasons
just explained, i.e. for the role played by the spectral
rigidity, the GUE based QB would represents the upper
limit to the possible charging stability of a generic QB,
since the spectral rigidity of a GUE matrix is, by defi-
nition, maximal. This comparison is reported in Fig. 7.
Interestingly, we see that the performance of the SYK QB
is very similar to the GUE QB, thus suggesting that the
SYK QB, with its high level of spectral rigidity [76], is
likely to reach the upper bound on the possible charging
stability of a generic, physical, QB.

VI. THE ERGOTROPY AS A MEASURE OF
THERMALIZATION

Another important quantity, which characterizes the
performance of a QB, is the so-called ergotropy, E [10, 27].
Let us recall that it quantifies the amount of extractable
work from a QB after the charging protocol [10, 16, 27].
Indeed, if one assume to have access to just M < N cells
of the full QB, part of the energy stored will be locked
by internal correlations, thus reducing the efficiency of
the QB itself. Given a density matrix ρ, representing the
evolved state |ψ(τ)〉 after tracing out the useless N −M
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FIG. 8. The ratio XM,N (τ), as defined in (34), for a SYK
battery (a) and for a MBL battery (b). Upper parts of the
two panels: we fix N = 14 cells and reduced to M = 3 or
M = 2 cells; lower parts of the two panels: N = 8, 10, 11, 14
cells and reduced to M = 3 cells. Results are obtained by
averaging over 750 (up to N = 11), 500 (N = 12, 13) and 200
(N = 14) ensemble realizations.

cells, the associated ergotropy is:

E(N)
M ≡ Tr[Ĥ(M)

0 ρ]−minÛ

{
Tr[Ĥ(M)

0 ÛρÛ†]
}
, (34)

where Ĥ(M)
0 denotes the local portion of the Hamiltonian,

(1), once restricted to the M cells (we are assuming that

Ĥ0 can be written as a sum of local terms, such that it

makes sense to define Ĥ(M)
0 ) and the minimization runs

over all the possible unitaries, Û , acting on ρ.
It is known that the ergotropy is severely affected by

the presence of entanglement, [27]: if the evolved state
|ψ(τ)〉 is highly entangled, the resulting density matrix
ρ will be highly mixed, and the corresponding levels of
ergotropy will be very low, thus showing that, in this
case, the amount of extractable energy from a subset of
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M cells is low. An interesting quantity to study is the
following

XM,N (τ) ≡
〈〈E(N)

M (τ)/M

EN (τ)/N

〉〉
, (35)

which quantifies the fraction of energy, per cell, that can
be extracted from a reduced battery of M cells, out of
the initial N cells. It is particularly worth to study the
behavior of XM,N (τ), both as a function of M , at fixed
N , and as a function of N , at M fixed.

We have studied, for both the MBL and the SYK QBs,
XM,N (τ) for N = 14 and very small values of M , and
also for M = 3 and various values of N . The results are
depicted in Fig. 8. From the upper panel of Fig. 8(a) we
see that XM,14(τ), for the SYK battery, is very low. This
result follows from the fact that the SYK Hamiltonian is
highly entangling, as discussed in Ref. [58, 59]. Moreover,
from the lower panel of Fig. 8(a) we learn that the value
of XM,N (τ), at a given value of M , is highly affected by
the size of the full battery, with X3,N (τ) which decreases
by increasing the dimension of the battery.

Summarizing, the fact that Eq. (27) signals an expo-
nential suppression of fluctuations, together with the ob-
servation that the ergotropy decreases with N , suggests
that it is not convenient to build big batteries based on
the SYK protocol and just keep a small portion of them
at the end of the charging, while it is much more conve-
nient to work directly with small batteries.

Moving to the MBL case, the situation is very different:
from the upper panel of Fig. 8(b) we see that the amount
of extractable energy is by far higher in agreement with
the results of Ref. [30], where it was observed that the
levels of ergotropy for the MBL system are generally very
high, a feature that can be traced back to the low level
of entanglement typical of the MBL phase. Much more
interesting is the time behavior which can be observed in
the lower panel of Fig. 8(b): at early times we clearly see
that the amount of extractable energy per cell is, essen-
tially, independent of the value of N , a behavior which is
in striking contrast with what we observed for the SYK
battery. However, moving to later times, the situation
changes and the amount of extractable energy per cell
becomes N -dependent, and in particular it gets reduced
by increasing N , showing a behavior qualitatively similar
to the SYK battery.

This observation confirms the picture we outlined in
the previous section: the dynamics of the MBL battery
shows a clear change when passing from early times to
late times. The behavior at early times is similar to the
one expected for an integrable system, while at late times
it becomes more similar to the behavior of a chaotic sys-
tem. The crossover between the two behaviors is in cor-
respondence with the thermalization of the system and,
once again, we stress that it should tend to infinity in
the thermodynamic limit for the MBL system contrary
to the SYK, for which the thermalization properties have
been studied in the large N limit, see Refs. [66, 67].

VII. SUMMARY AND OUTLOOK

In this paper, we have introduced a new class of quan-
tum batteries, in which the unitary charging protocol is
realized via a sudden quench with a SYK-like Hamilto-
nian. We have argued, and shown via extensive numer-
ical computations, that such a charging protocol is able
to dramatically suppress the strength of the temporal
fluctuations.

As a byproduct, we have found evidence that a new
interesting time scale can be uncovered during the charg-
ing of a quantum battery; namely the time scale at which
the charging protocol turns to be collective, which corre-
sponds to the time at which one can observe a transition
in the strength of the temporal fluctuations as a func-
tion of the size of the system. We have also provided a
microscopic understanding of this new time scale, as the
one at which an initially localized state (in the eigenbasis
of the constant Hamiltonian) has spread to cover a large
portion of the eigenbasis of the constant Hamiltonian.

By making use of this last point of view, and using
also the temporal evolution of the ergotropy as a further
probe, we then conjecture that the high stability of the
charging protocol based on the SYK model is just another
manifestation of the fast scrambling (and fast thermaliz-
ing) property of the SYK Hamiltonian, thus suggesting
that the stability reached by the SYK quench puts an up-
per bound on the level of stability that a QB can show.

Of course, there are many open points which would be
worth to explore. It would be desirable to find further
evidences for the conjecture that the charging stability of
the SYK QBs is an upper bound for the charging stability
of a generic QB. The results of our paper suggest an inter-
esting connection between the charging stability and the
degree of the spectral rigidity of a chaotic quench Hamil-
tonian, promoting the latter as another useful quantity to
determine how strong is its chaotic behaviour and hence
the related performance of a generic QB. Another promis-
ing line of research would be to study the charging proto-
col described in this paper from the holographic point of
view, perhaps along the lines of [73]. Such an approach
could be also relevant both to confirm the presence of an
upper bound on the possible charging stability of a quan-
tum battery and also to find its possible implications in
the physics of the black holes.
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Appendix A: The role of the battery Hamiltonian Ĥ0

An interesting check to perform is to investigate the
role of the local term in the Hamiltonian, Ĥ0, on the
charging performance of a given QB. To this end, we can
study a slightly different version of the SYK model, usu-
ally called “mass-deformed” SYK model (m-SYK), stud-
ied in [74–76]. In this model, the quench Hamiltonian,

Ĥ1, is the usual quartic Hamiltonian of the SYK model,
as defined in (12), while the constant term is given by
the nonlocal random mass term, defined in (29).

We have compared, for the same realization of the dis-
order couplings Jijkl in both the models and for a realiza-
tion of Kij , the function R(τ) for both the SYK and the
m-SYK batteries. We have renormalized the bandwidth
of Ĥ2 such that the constraint ∆Ĥ0

= ∆Ĥ2
was satisfied.

From Fig. 9 we clearly see that the two performances
are almost the same, both in terms of the maximal value
reached by R(τ), and in terms of the strength of the
fluctuations, with a small advantage for the SYK model.
This shows that the role of the particular Ĥ0 term on the
charging performance is very limited, and that only the
quench Hamiltonian really matters in the unitary charg-
ing protocol.

8 10 12 14 16
N

0.12

0.13

0.14

0.15

0.16

Σ
(t

)

early
late

FIG. 10. The early and late time fluctuations, as measured by
Σ(t), for the Anderson spin chain, as a function of the lattice
size. Continuous lines correspond to the fit in Eq. (25). The
results have been obtained by averaging over 500 ensemble
realizations.

Appendix B: Temporal fluctuations in the AL phase

For completeness, we report in Fig. 10 the behaviour of
the temporal fluctuations for the Anderson model, anal-
ogous to the plots discussed in Figs. 3(c)-3(d). We see
that, in this case, in both time windows (early and late
time behaviours), the data are greatly reproduced by a
1√
N

-like function. This result is in line with our expecta-

tion, since the Anderson model does not thermalize and,
as discussed in Fig. 2, it shows huge temporal fluctua-
tions at all the time scales, contrary to what happens for
the other two models considered. This implies that in
the AL phase a collective behaviour, with a correspond-
ing exponential suppression of temporal fluctuations, is
never reached even at late times.

Appendix C: Chaotic properties and QB
performance

1. Chaotic properties of the quadratic SYK
Hamiltonians

In this section, we show that, despite being very simi-
lar, the two quadratic, SYK-like, Hamiltonians (29) and
(32) present very different properties, with the fermionic
Hamiltonian being integrable and the bosonic Hamilto-
nian being chaotic.

To this end, i.e. to show the chaotic/integrable nature
of the two models, it is sufficient to focus on a short-range
diagnostics of quantum chaos, i.e. testing the agreement
with the RMT preditions for very small energy separa-
tions, of order of the mean level spacing. In particular,
we consider the so-called r-statistics, also known as ad-
jacent gap ratio [70]. This quantity, which is equivalent
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FIG. 11. The values of the r-statistics, 〈〈ri〉〉, for both the

fermionic quadratic model, ĤF
2 , and the bosonic model as

well, ĤB
2 , for N = 15. The prediction of GUE and Poisson

are also reported. The values are averaged over 700 ensemble
realizations.

to the well-known nearest neighbor spacing distribution
defined, for example, in [77], has the advantage that it
does not require to rescale the spacings by the mean level
density. In other words, it does not require an unfolding
of the spectrum, that can be a delicate issue [70].

The r-statistics can be operatively defined as follows:
For a given Hamiltonian spectrum, the distinct energy
levels, Ei, are listed in ascending order

E1 ≤ E2 ≤ E3 . . . , (C1)

and the corresponding nearest level spacings are com-
puted as

δi ≡ Ei+1 − Ei . (C2)

Finally, one has the ratios

ri ≡
min(ri, ri+1)

max(ri, ri+1)
. (C3)

The ratios ri, once averaged over many ensemble re-
alizations, can be used as a short-range diagnostics of
quantum chaos. Indeed, it can be shown [78] that for a
non-chaotic model, the average values 〈〈ri〉〉 agree with
the predictions for a Poissonian spectrum, 〈〈ri〉〉 ∼ 0.386.
On the other hand, for a chaotic spectrum, the values of
〈〈ri〉〉 are larger than 0.5 and, more precisely, they agree
with the predictions of RMT, which are 〈〈ri〉〉 ∼ 0.536,
〈〈ri〉〉 ∼ 0.603 and 〈〈ri〉〉 ∼ 0.676 for the Gaussian orthog-
onal ensemble (GOE), Gaussian unitary ensemble (GUE)
and Gaussian symplectic ensemble (GSE), respectively.

Given these preliminaries, we have computed for both
the Hamiltonians (29) and (32) the r-statistics. The re-
sults are reported in Fig. 11, where we clearly see that

the quadratic fermionic Hamiltonian shows integrable be-
havior, while the bosonic Hamiltonian is clearly chaotic.

0.1 1 10 100 600
τ

0

0.2

0.4

R

l− SYK
ergodic

FIG. 12. The charging ratio R(τ) —see Eq. (16)— as a func-
tion of τ , for a single realization of the coupling constants, for
both the quartic local SYK model, (12), and the spin chain
model, (11), in the ergodic phase.

2. The charging stability for an ergodic spin chain

One may wonder whether a more conventional chaotic
Hamiltonian, instead of the SYK model, like the one in
(11) in the ergodic phase (obtained by setting J = δJ =
1.67h and J2 = 0.5h), can be as efficient as the SYK
Hamiltonian in reducing the temporal fluctuations.

In Fig. 12 we compare the charging protocol between
the ergodic spin chain (11) and the SYK protocol, for
N = 15 cells. It is immediate to see that the SYK QB
is much more efficient in suppressing the temporal fluc-
tuations, thus showing that quantum chaos, solely deter-
mined looking at the RMT predictions of the short-range
diagnostics of chaos, does not guarantee the same quality
of the SYK QB. We can study also for the ergodic spin
chain the suppression of the temporal fluctuation with

the number of cells N , i.e. the behavior of Σ
(t)
N , as done

for the MBL and the SYK models in (25) – (27), respec-
tively. As already noticed for the SYK QB, also in this
case the fluctuations at early and at late time are equiv-
alent, and more precisely, as we report in Fig. 13, we see
that the fluctuations are again exponentially truncated
by increasing the system size, but by comparing their
strength with the SYK fluctuations, as in Fig. 3(d) (and
reported here for convenience), we see that they are sig-
nificantly larger than in the SYK case. This suggests that
the exponential suppression of the temporal fluctuations
is a generic feature of quantum chaos, as diagnosed by
the short-range diagnostics, but that the strength of the
suppression with N is controlled by the level of spectral
rigidity.
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FIG. 13. The late time fluctuations, as measured by Σ(t), for
the ergodic spin chain, as a function of the lattice size. The
continuous line corresponds to the fit Σ(t) ≡ aN32−N + b,
with a and b being fitting parameters. The results have been
obtained by averaging over 500 ensemble realizations. For
comparison, the values of Σ(t) for the l-SYK battery are also
reported.
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