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Abstract—This paper discusses the hardware implementation
and experimental validation of a model-based battery state
estimator. The model parameters are identified online using
the moving window least squares method. The estimator is
implemented in a field programmable gate array device as a
hardware block, which interacts with the embedded processor
to form a system on a chip battery management system (BMS).
As a case study, the BMS is applied to the battery pack of an
e-bike. Road tests show that the implemented estimator may
provide very good performance in terms of maximum and rms
estimation errors. This work also proposes a new methodology
to assess the performance of a battery state estimator.

I. INTRODUCTION

Lithium-ion batteries allow the implementation of light on-
board energy storage systems (ESS), thanks to their high
power and energy densities. The ESS must be equipped with
a battery management system (BMS) in order to ensure a
reliable and safe operation of the battery. The BMS monitors
and controls the charge and discharge phases by estimating
the battery state. The most important state variables are the
battery state of charge (SOC) and state of health (SOH). SOC
is related to the residual charge stored in the battery and SOH
quantifies its degradation in terms of capacity fading and the
increase of the internal resistance [1], [2].

The BMS executes algorithms that use quantities directly
observable on the cells, i.e., their voltage, current and tempera-
ture. Many algorithms have been proposed for SOC estimation,
starting from the Coulomb Counting (CC), which is based on
the integration over time of the battery current. The integration
result is normalized with respect to the cell capacity. The
CC must be initialized with the correct value of the SOC
and the current must be measured by a high accuracy sensor,
in order to avoid the intrinsic divergence in the integration.
Another simple method is based on the open circuit voltage
(VOC) measurement. In fact, VOC mainly depends on SOC
and slightly on other factors, such as temperature, ageing and
current rate [3]. However, the cell voltage relaxes to VOC

a long time after the cell current is interrupted. Thus, this
technique cannot be used in highly dynamic systems [4].

High accuracy and reliability are required in automotive
applications, in order to guarantee the safety standard and a
good estimation of the vehicle autonomy. Furthermore, the
algorithms must be executed in real-time in an embedded
system, like the BMS. Model-based algorithms, such as the
Extended Kalman Filter (EKF) [5], [6], the Mix Algorithm
[7] and the Adaptive Mix Algorithm (AMA) [4] are adopted.
A model-based technique is a closed-loop method in which the

model is used to correct the estimated SOC, by comparing the
voltage predicted by the model with the measured one. Various
kinds of model can be used [8], but an Electrical Circuit Model
(ECM) has some benefits when used in a real-time embedded
system [9]. The accuracy of the SOC estimate depends on the
ECM capability to predict the cell voltage, in all the operating
conditions and for the entire battery life. A good approach is
to track the variation of the operating condition online, which
is the solution adopted in the EKF and AMA techniques.

The AMA uses an enhanced version of the Mix Algorithm,
in which SOC estimation is corrected by using an ECM
where the parameters are updated online by using the Moving
Window Least Squares (MWLS) method [10], [11], instead
of taking them constant, like in the original algorithm. The
performance of this algorithm has been evaluated by com-
paring it to the EKF method [4], [12], which is the most
used in this field. The comparison, carried out with current
and voltage profiles obtained from the Urban Dynamometer
Driving Schedule (UDDS) driving cycle, defined by the U.S.
Environmental Protection Agency [13], shows that both meth-
ods provide good estimation of both parameters and SOC.
Both EKF and AMA are suitable for an embedded system
implementation.

An attractive solution for industrial and automotive ap-
plications is the use of a low-cost field-programmable gate
array (FPGA). The estimators can be implemented on the
FPGA as hardware accelerators beside the processor, which
is fully dedicated to the other BMS functionalities. A first
hardware implementation of the non adaptive version of the
Mix algorithm is reported in [14]. A hardware-in-the-Loop
(HiL) simulation framework used to test and compare the
AMA and EKF, implemented in hardware on an FPGA, is
presented in [15]. In this framework, a multi-cell battery is
simulated using an accurate model.

An experiment not common in literature that can provide
final results is to test the estimators in a real application. This
allows an effective measurement of the estimator performance,
as well as the analysis of the issues arising from its integration
in a real system. The aim of this paper is to present the results
obtained using the AMA in a real application, i.e., on an e-
bike. A simple BMS provided with the AMA battery state esti-
mator has been implemented as a system on chip on an Altera
Cyclone® V. The algorithm details and the hardware/software
partitioning of the system are discussed in Section II. The
experimental testbed description is reported In Section III,
while Section IV describes the methodology applied to assess
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Fig. 1. Adaptive Mix Algorithm block diagram.
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Fig. 2. Electric circuit model.

the estimator performance. The results obtained from road tests
are discussed in Section V and finally conclusions are drawn
in Section VI.

II. STATE ESTIMATOR

A. The Adaptive Mix Algorithm

The AMA is based on the combination of the Mix Algo-
rithm and the MWLS method used with the AutoRegressive
eXogenous (ARX) structure of the ECM. A basic block
diagram of AMA is shown in Fig. 1. The Mix Algorithm is
a simple model-based SOC estimation method (blue square
in Fig. 1), which uses a constant parameter ECM in order to
correct the estimated SOC variable. A general representation
of the ECM is shown in Fig. 2 and a single RC branch
version is used in this work. The voltages vn on the RC
branches model the relaxation effects. A single RC group
reduces complexity maintaining good accuracy, particularly
when fast transients are dominant. The cell terminal voltage
vM is generated as a sum of the voltage v1, the open-circuit
voltage VOC and the voltage across the internal resistance
R0iL. The VOC-SOC relationship is modelled as a controlled
generator VOC = f(SOC), implemented with a Look-up
Table (LUT). The left-hand side of the ECM models the cell
capacity and SOC. The latter is expressed as Q/Qn, where Q
is the residual cell charge and Qn is the normalization value
corresponding to the maximum charge that can be stored in
the cell, expressed in Coulomb.

The model cell voltage vM is subtracted to the measured cell
voltage vT yielding an error signal, which is firstly amplified
by the observer gain L and then used to correct the measured
cell current iL. Finally, SOC is the result of the integration
over time of the corrected current signal. The observer gain
L is chosen to strongly reduce the effects due to bad SOC
initialization and current measurement uncertainty [14].

The estimation accuracy depends on the capability of the
ECM to reproduce the cell behaviour. For this reason, the ECM
parameters are updated online by the Parameter Identification
block, which implements the MWLS algorithm. In this way,
the algorithm takes into account the parameter variations due
to the battery ageing, the operation conditions (as cell SOC
and temperature) and the manufacturing process tolerances.

The ARX structure can be obtained starting from the cell
time-domain state space model:

dSOC

dt
= − iL

Qn

dv1
dt

= −v1
τ1

+
iL
C1

vM = VOC −R0iL − v1

(1)

where τ1 = R1C1. The cell operating point slowly changes
over time, so that the model can be linearised around it,
considering the parameters constant in the identification win-
dow. The VOC-SOC relationship is thus approximated by a
piecewise linear curve VOC = α0 + α1SOC, where α0 and
α1 depend on the operating point. The discrete-time transfer
function is obtained by the application of the bilinear transform
to the transfer function from the current input to the cell
voltage output, as obtained from (1). Then, the discrete-time
relationship between the input and output samples becomes:

y(k) = − a1y(k − 1) − a2y(k − 2) + α0(1 + a1 + a2)

+ b0u(k) + b1u(k − 1) + b2u(k − 2)
(2)

which is a second order ARX model of the cell. The coeffi-
cients of the ARX model depend on the ECM parameters and
we can simply verify that 1 + a1 + a2 = 0, so (2) is reduced
to:
y(k) − y(k − 2) =a1(y(k − 2) − y(k − 1)) + b0u(k)

+ b1u(k − 1) + b2u(k − 2)
(3)

Eq. (3) is used to build an overdetermined system by using the
current and voltage samples within a given time window. This
window is shifted in time to track the parameter variations
during the cell operation. In this way, a different system is
obtained at every shift, which is solved by the Least Squares
(LS) method. Finally, the resulting vector [a1, b0, b1, b2] is used
to compute the ECM parameters [R0, R1, C1].

B. Hardware implementation

The AMA is fully developed as a hardware mod-
ule and implemented on an Altera Cyclone® V SoC
5CSXFC6D6F31C6N device, by using the Altera SoCkit de-
velopment board. The hardware implementation enables a high



TABLE I
ESTIMATOR RESOURCE USAGE AND PERFORMANCE

Logic utilization (in ALMs) 17244/41910 (41%)
Variable-precision DSP Block 36/112 (32%)
Memory bits 723 Kb/5530 Kb (13%)

Execution time 61 µs (@50MHz)

throughput and low latency estimation in an embedded system,
in spite of the computational complexity of the algorithm.

The algorithm is described as a Simulink model and then
automatically synthesized to a low-level hardware description,
by using the Altera DSP Builder tool. This development
environment optimizes the hardware module performance and
resource usage depending on the tool parameter settings. The
module is also provided with a Memory Mapped (MM) inter-
face. The latter consists of input and output registers which
are used by the companion processor to write the algorithm
inputs and to read the computed results. The estimator FPGA
resource usage and execution time are shown in Table I. The
time required to estimate both SOC and the parameters, for a
clock frequency of 50 MHz, is very short. Therefore, the BMS
is capable of estimating the state of a large number of cells
by using the estimator in Time Division Multiplexing (TDM)
across multiple cells. This feature is very useful in high-power
applications, where the batteries consist of hundreds of cells.

III. CASE STUDY

The demonstration system is built on an electrically assisted
bike, equipped with a 10 cell battery pack. This solution
allows us to verify the estimator on more than one cell in
real road tests. Two photos of the demonstrator are shown in
Fig. 3. The electric bike is an Atala E-Scape (see Fig. 3(a)),
a city bike with aluminum frame. The bike is equipped with
a brushless DC motor with a nominal power of 250 W. The
battery pack consists of 10 Lithium-ion series-connected cells,
yielding a nominal voltage of 36 V and a rated capacity 10 A h.
The entire setup, including the battery pack, was arranged
on the bike rack, as shown in Fig. 3(b). A 14-pin connector
allows us to access the battery cells’ terminals. A Hall effect
current sensor from Allegro Microsystems is used to measure
the battery current. Its full scale range is ±12.5 A, with an
internal resistance of 1.2 mΩ and a sensitivity of 110 mV/A
(for a supply voltage of 3.3 V). The cells and current sensor
output voltages are acquired by a DC1894B demo board. This
Linear Technology board is equipped with an LTC6804 battery
stack monitor capable of measuring up to 12 series connected
cells with a total measurement error of less than 1.2 mV. The
LTC6804 is also provided with two auxiliary analog inputs,
which are used to accurately acquire the output and supply
voltages of the current sensor. All the measurements take
11 ms to complete.

The battery was preliminary characterized in the laboratory
with a Pulsed Current Test (PCT) profile at 25 ◦C [4]. The
input current and the output voltages during the test are
used to determine the AMA initialization parameters, i.e.,

(a)

(b)

Fig. 3. Photographs of the demonstrator setup.
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Fig. 4. Open circuit voltage VOC, as a function of SOC.

the VOC-SOC relationship, the capacity of the cells and the
initialization values of the ECM parameters. The VOC-SOC
curve is considered invariant for every cell [3] and it is shown
in Fig. 4. The extracted cell capacities are very similar to
each other and are around the rated value of 10 A h, except
for the second cell which has a 9.4 A h capacity. This result,
together with the average values of the ECM parameters
(R0 = 24.5 mΩ, R1 = 13.3 mΩ and C1 = 6945 F), are used
to initialize the algorithm implemented on the FPGA.

The Allegro current sensor, the DC1894B and SoCkit boards
form a basic BMS, useful to test the hardware estimator. Fig. 5
shows a block diagram of it. The SoCkit Cyclone V SoC
FPGA contains a dual-core ARM® Cortex™-A9 Hardware
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Fig. 5. Basic BMS block diagram.

Processor System (HPS). When the board is turned on, the
Linux Ångström distribution, based on a real-time kernel, is
booted from a partition on the mini SD card and the main
application is launched. The application manages the acquisi-
tion of the cell data, their logging and the communication with
the user interface. The current and voltage samples are read
from the battery stack monitor connected to an SPI port. The
samples are then sent to the estimator, implemented on the
FPGA, via the MM interface, and the computation is started.
The operation is cyclically executed every 0.1 s, yielding an
acquisition sample rate of 10 Hz. When all the cell states are
computed, the application saves the samples and the estimation
results in a log file, which can be downloaded directly from the
SD card or by using the Secure Copy Protocol (SCP) through
the Ethernet port. The user interacts with the system via the
push buttons on the board. Other data are shown on the LCD
display and LEDs on the development board. The bike speed,
useful for a better analysis of the data, is captured by a GPS
unit.

IV. VALIDATION METHODOLOGY

As a valuable contribution of this work, the implemented
SOC estimator is validated in field tests, i.e., riding the e-bike
as in every day use. To evaluate the SOC estimation error, the
SOC estimate needs to be compared with a reference value
[16]. The common approach is to use the CC technique to
obtain the SOC reference value, as shown in (4).

SOCref(t) = SOC0 −
1

Qn

∫ t

0

iL(τ)dτ (4)

Eq. (4) can provide a reliable SOC reference SOCref , as-
suming that the initial SOC value SOC0, the normalization
capacity Qn and the battery current iL are known precisely.

The battery current should therefore be acquired by a highly
accurate current sensor, different from the one used within the
BMS, which feeds the SOC estimator. This is an important
aspect, often neglected in literature, which makes it possible
to assess the robustness of the estimator against errors in the
current measurement effectively. In this work, iL in (4) is
measured by a National Instrument (NI) 9227 module mounted
on a NI cDAQ-9178 chassis. The latter is also equipped with
three NI 9215 modules, which are used to acquire the voltage
of the 10 cells and to verify the LTC6804 stack monitor
behavior (see Fig. 3(b)). The cDAQ-9178 is powered by a
supplementary battery and connected to a laptop, carried by
the cyclist in a backpack, which runs a LabVIEW application
for data acquisition and logging (see Fig. 3(a)).

SOC0 is taken equal to 100 %, as tests are started after
a full charge of the battery. Qn is assumed to be equal to
either the rated battery capacity or the capacity measured in a
preliminary characterization test. These assumptions however
may lead to inaccuracies in the computation of SOCref .
Inhomogeneities in the cells of the battery pack can cause not
all the cells to be fully charged to 100 % SOC. Moreover, the
maximum charge that can be extracted from each cell during
a validation test (we refer to this value as the real capacity)
may differ from that measured during a characterization test,
because of different discharge rates and temperature.

To overcome these problems, we propose to combine the CC
and VOC estimation techniques for computing SOCref . These
two techniques are used to define two alternative metrics for
assessing the SOC estimator errors [16], whereas here they
are merged in a unique definition of SOCref . The basic idea
is to set SOC0 and Qn in (4), so that SOC computed by
(4) coincides with the estimate obtained through VOC at the
beginning and end of the validation test. This does not require
any specific condition during the execution of the test, apart
from the fact that the test starts with the battery in a rested
state and ends in an SOC region where it is possible to reliably
extract SOC from the VOC-SOC relationship, once the battery
has reached the steady state after discharge.

Let VOC = f(SOC) express the VOC-SOC relationship
shown in Fig. 4. For each cell, we can compute SOC be-
fore and after the validation test by inverting the VOC-SOC
relationship, i.e., SOC0 = f−1(V start

OC ) and SOCend =
f−1(V end

OC ), where V start
OC and V end

OC are the cell voltages
measured, when the battery is in a steady state, before and after
the validation test, respectively. Given the above definition, we
can compute the real cell capacity related to a validation test,
which coincides with the desired normalization capacity to be
used in (4), by the following equation [17].

Qreal =

∫ tend
t0

iL(t)dt

SOC0 − SOCend
(5)
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Fig. 6. Electric power and speed during the discussed validation test.
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V. EXPERIMENTAL RESULTS

Several road tests have been carried out, proving both
the functionality of the basic BMS provided with the AMA
estimator and the effectiveness of the designed experimental
set-up. As a representative example, we discuss the results
obtained during a validation test, consisting of the repetitions
of a cycling period followed by a rest pause. The electric
power Pe provided by the battery pack and the speed measured
by the GPS data logger during the test are shown in Fig. 6.

First of all, we compute the initial SOC and the real capacity
of each cell of the battery pack from the data acquired by the
NI cDAQ-9178 chassis. Then, we evaluate the corresponding
SOC reference using (4). Fig. 7 shows the real cell capacity,
for the discussed test, and compares it to the value obtained
in the PCT characterization test. Apart from the second cell,
which presents a pronounced degradation of the cell capacity,
there is only a slight difference between the PCT, rated
and real cell capacities, as expected by the high Coulombic
efficiency provided by the Lithium-ion battery technology. The
computed SOCref(t) for each cell is reported in Fig. 8, where
it is evident that the SOC of the second cell corresponds to
the battery SOC, as the second cell is the first cell to reach
the discharge cut-off voltage.

With the availability of the SOC reference, we can calculate
the estimation error introduced by the AMA. The AMA
SOC estimate for the second cell is shown in Fig. 9 and is
very close to the reference value during all the test. On the
contrary, the pure uncompensated CC drifts over time. This
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Fig. 8. SOC behavior of the 10 cells during the discussed validation test.
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Fig. 9. Comparison of the SOC estimation results for the second cell.

clearly demonstrates that the AMA is capable of correcting
the uncertainties in the current measurement (especially the
offset of the current sensor) and in the real capacity of the
cell.

Table II shows the maximum and rms errors of the AMA
and CC SOC estimations. The AMA provides a more reliable
estimation than CC, being its rms error below 2 % and the
maximum absolute error around 3 %, for all the battery cells.
This is a valuable achievement, as it is obtained in road tests,
when the battery is subjected to the real application load. In
fact, if we consider the SOC estimation errors reported in
[6] for a similar application, AMA outperforms EKF, as the
latter introduces a maximum SOC error well above 5 %. Better
performance in terms of maximum error is obtained in [6]
using an Adaptive EKF, at the expense of higher complexity.
It is worth noting that the results reported in [6] refer to
laboratory tests and not to road tests, as in this work.

Finally, Fig. 10 shows the R0 and τ1 ECM parameters
identified by the AMA for the second cell. While the R0

identification is robust against the choice of the window length,
τ1 identification seems to be sensitive to this choice. The
results reported in Fig. 10 refer to a window length of 20 min
and an LS matrix with 30 rows. This implies that the ECM



TABLE II
SOC ESTIMATION ERRORS

AMA CC
Max (%) rms (%) Max (%) rms (%)

Cell 1 2.4 1.2 2.7 1.5
Cell 2 3.0 1.7 9.3 5.9
Cell 3 3.2 1.7 2.8 1.6
Cell 4 2.2 1.1 3.1 1.8
Cell 5 3.2 1.5 2.4 1.3
Cell 6 3.4 1.7 3.1 1.8
Cell 7 3.1 1.6 3.4 2.0
Cell 8 2.6 1.3 2.5 1.4
Cell 9 2.7 1.3 2.1 1.1
Cell 10 2.5 1.2 3.2 1.9
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Fig. 10. ECM parameters estimated online by the AMA for the second cell.

parameters are updated every 40 s. Even if the windows in
which the battery current is almost constant are discarded, the
identification of τ1 is less reliable, when the window overlaps
a rest period.

VI. CONCLUSIONS

This work has demonstrated the implementation of a battery
state estimator in an industrial FPGA. The estimator is based
on the AMA and is implemented as a hardware accelerator
block, which interacts to the processor embedded in the FPGA
to form a system on a chip BMS. Thanks to its effective
design, the estimator module can be used to estimate the state
of all the cells in the battery pack in a time multiplexing
fashion. As a case study, we have integrated the BMS into
the battery pack of an e-bike. This allowed us to validate the
estimator in a real application scenario, which represents a
significant achievement, as almost all the literature on this
topic reports on experimental results obtained in laboratory
tests and for a single cell. The road tests carried out have
shown the effectiveness of the designed BMS and experimental
set-up, and that the AMA estimator provides a very good
estimation comparable or even better than the well established
EKF.
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