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ABSTRACT
We propose a general formalism for polarizable embedding models that can be applied to either continuum or atomistic polarizable models.
After deriving such a formalism for both variational and non-variational models, we address the problem of coupling two polarizable models
among themselves and to a quantum mechanical (QM) description in the spirit of multiscale quantum chemistry. We discuss general model
independent coupling hypotheses and derive coupled polarization equations for all combinations of variational and non-variational models
and discuss the embedding contributions to the analytical derivatives of the energy, with a particular focus on the elements of the Fock
or Kohn–Sham matrix. We apply the general formalism to the derivation of the working equations for a three-layered, fully polarizable
QM/MM/continuum strategy using the non-variational atomic multipole optimized energetics for biomolecular applications polarizable force
field and domain-decomposition conductor-like screening model.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0035165., s

I. INTRODUCTION

Polarizable embedding models1–12 (PEMs) are a powerful tool
in the arsenal of a computational quantum chemist. Continuum
solvation models6,13 have been part of the standard quantum
chemistry toolbox for more than 20 years and are widely available
in the majority of the quantum chemistry software packages. Polar-
izable molecular mechanics (PMM) based embedding schemes14–21

are also rapidly gaining in popularity and are widely employed in the
modeling, prediction, and rationalization of spectroscopies, photo-
physical and photochemical processes, and reactivity. From a merely
formal point of view, atomistic and polarizable embedding mod-
els present very strong analogies. Both families of models introduce
mutual polarization between the quantum mechanical (QM) density
and a polarization density of charge that, in turn, introduces a non-
linear term into the QM Hamiltonian.22 The polarization density is
obtained by solving a set of polarization equations where the right-
hand side is some electrostatic property, which is linear in the QM
density. In the vast majority of cases, the polarization equations are
also linear. While non-linear models exist, for instance, continuum
models based on the Poisson–Boltzmann equation,23 their appli-
cation in quantum chemistry is not as widespread as that of their

linear counterparts. We, therefore, focus this contribution on linear
models.

In the last decade, various implementations that couple a polar-
izable continuum model to an atomistic, polarizable embedding
strategy have been presented.24–32 Coupled multiscale models are
attractive as they combine the strengths of both approaches, for
instance, by being able at the same time to describe specific, local
interactions and take care of long-range electrostatic effects. The
formulation and implementation of a polarizable multiscale model
comes with some formal difficulties. Deriving the coupled equa-
tions requires one to be particularly careful of the way the coupling
is treated so that double-counting is avoided and, from a thermo-
dynamical point of view, the total energy of the system takes into
account the work required to polarize the environment. Such diffi-
culties are exacerbated when two polarizable schemes are coupled
together as the number of mutual polarization interactions to be
taken into account increases.

A powerful and general strategy to treat polarizable mod-
els relies on a variational formulation,22,33 where the polar-
ization energy is expressed as a variational functional of the
polarization degrees of freedom. Polarization equations can then
be easily derived by imposing that such an energy functional
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is stationary with respect to the polarization degrees of free-
dom.34 This, in turn, makes the derivation of analytical derivatives
straightforward.

However, not all polarizable embedding models are based on a
variational energy definition.35–37 A polarizable model can be non-
variational if the interaction energy is defined in terms of an elec-
trostatic property that is different from the one that induces the
polarization or if the polarization equations are defined in terms
of a non-symmetric matrix or operator. Furthermore, continuum
models can be variational in their exact, continuous formulation
but loose this property when discretized, as the commutation prop-
erties of the integral operators that define the polarization equa-
tions are not retained after discretization.38–40 For non-variational
models, the machinery described in the last paragraph cannot be
employed, and the derivation of coupled QM/PEM equations or
QM/PEM analytical derivatives can become cumbersome or require
ad hoc reasoning and complex physical arguments. The situation
becomes even more complex when two polarizable models are used
in the embedding scheme at the same time. Despite these compli-
cations, QM/PEM schemes based on non-variational models are
available,41,42 sometimes including analytical gradients or higher
order derivatives.39,43–46 To the best of our knowledge, only one
attempt has been done at coupling two non-variational polarizable
models, namely, the Atomic Multipole Optimized Energetics for
Biomolecular Applications (AMOEBA

Q2
) force field and the domain-

decomposition formulation of COSMO (ddCOSMO), albeit in a
purely classical framework.30 In such an example, the coupling has
been achieved using a valid but heuristic argument, where only the
AMOEBA polarization was treated as an independent degree of free-
dom, while the ddCOSMO polarization was introduced always as
the formal solution of the ddCOSMO equation. As a consequence,
the derivation of analytical derivatives was very cumbersome and
needed to be verified numerically in order to validate the heuristic
coupling arguments.

In this contribution, we define rigorously the characteristic of
a polarizable model that makes it variational, and we discuss a gen-
eral Lagrangian strategy to deal with non-variational cases. We then
deal with the problem of coupling two polarizable models in gen-
eral terms, including when two non-variational models are involved.
In order to do this, we first discuss how to describe the interac-
tion between polarization degrees of freedom in a general way and
give a precise definition of the coupling hypotheses. We finally pro-
pose a general Lagrangian that can be used to obtain the coupled
equations and the analytical derivatives of the energy. Finally, to
show the potentialities of such a general strategy, we derive the
coupled QM/classical equations for a QM/AMOEBA/ddCOSMO
multiscale model and compare our results to the one already
obtained by us. Thanks to the generality of the formalism devel-
oped in this contribution, even the coupling of the two afore-
mentioned models can be achieved in a simple, straightforward
way.

II. GENERAL THEORY OF POLARIZABLE EMBEDDING
MODELS

In this section, we derive a general formalism for a PEM
coupled to a quantum mechanical level of theory based on the

self-consistent field (SCF) algorithm, such as Hartree–Fock (HF) or
Kohn–Sham (KS) density functional theory (DFT). First, we con-
sider a PEM based on a variational energy functional, and then we
detail the case of non-variational models, with particular attention
to the connection between the two and the hypotheses that a model
needs to satisfy to be variational.

In general, a PEM presents two densities of charge, a fixed
one M, for instance, a collection of point charges or higher order
multipoles, and a polarization one X. Assuming that the PEM is
linear, the polarization density X is determined by solving a linear
equation

AX = −ΘMM(M) −ΘQM(ρ), (1)

where A is a model-dependent polarization matrix and Θ is a lin-
ear function of either the classical density M or the QM one ρ.
Note that the QM density ρ is the sum of a nuclear and an elec-
tronic part. For the sake of simplicity, we assume here that we are
working with the discretized version of PEMs that are formulated
in terms of a continuous polarization density, i.e., the polariza-
tion degrees of freedom X are always a finite collection of values
or, in other words, the vector space where we are working is Rn

for some finite n ∈ N, which, endowed with the canonical scalar
product ⟨⋅, ⋅⟩, is a Hilbert space. Finally, we also assume that all
the densities interact in a pairwise, classical fashion, i.e., the inter-
actions between the various densities can be written as bilinear
forms

E(ρ,M) = ⟨Φ(ρ),M⟩,
E(ρ,X) = ⟨ΨQM(ρ),X⟩,
E(M,X) = ⟨ΨMM(M),X⟩.

(2)

In Eq. (2), the linear function Φ(ρ) is the appropriate electrostatic
property that describes the interaction of the QM density ρ with
the fixed classical one M (e.g., if M is a distribution of charges,
Φ is the electrostatic potential produced by the QM density at
the aformentioned charges). Analogously, Ψ is the linear func-
tion of either the QM density ρ or the fixed, classical one M that
describes the interaction of such density with the induced polar-
ization density X. Applying the functions Θ, Ψ, and Φ to the QM
density ρ results in two contributions, one from the nuclei and
one from the electronic density. As an example, we consider the
function

Θ(ρ) = Θnuc(Z) +∑
μν

PμνΘμν, (3)

where Z is the collection of nuclei, Pμν is the μν element of the elec-
tronic density, and Θμν is a one-electron integral. Analogous expres-
sions can be written for Ψ and Φ. However, in the following, we put
Θ = ΘQM + ΘMM and Ψ = ΨQM + ΨMM to keep the notation sim-
ple. For the sake of generality, we note here that some polarizable
models impose additional constraints on the polarization degrees of
freedom—for instance, in fluctuating charge models, a total charge
constraint has to be explicitly considered. From a practical point of
view, assuming that the constraints are linear, this has little effect
on the theory, as the constraints are easily handled by using a set of
Lagrange multipliers. In order to keep the notation as simple as pos-
sible, we will ignore this possibility, which can be easily introduced
without altering the overall formalism.
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In Table I, we provide a few model-specific definitions of all the
aforementioned quantities. More detailed expressions can be found
in the relevant literature.

A. Variational embedding models
A polarizable model is variational if the following two proper-

ties hold:
1. The linear functions Θ and Ψ coincide, i.e., ΘMM(M)

= ΨMM(M) and ΘQM(ρ) = ΨQM(ρ).
2. The matrix A is symmetric and positive definite.

If these two hypotheses are satisfied, then the unique solution to
the polarization equation (1) is also the unique minimizer of the
following energy functional:

E pol(X) = 1
2
⟨X,AX⟩ + ⟨X,Ψ⟩. (4)

The main advantage of having a variational formulation is that ana-
lytical derivatives of the polarization energy can be obtained triv-
ially. In fact, as the functional in Eq. (4) is stationary with respect
to X, one simply gets, differentiating with respect to an arbitrary
parameter ξ,

dE pol(X)
dξ

= ∂E pol(X)
∂ξ

= 1
2
⟨X,

∂A
∂ξ

X⟩ + ⟨X,
∂Ψ
∂ξ
⟩. (5)

Let us now consider the coupled QM/PEM equations, where the QM
subsystem is described at the SCF level of theory. The total, multi-
scale energy is the sum of the QM energy of the isolated QM subsys-
tem, the self-interaction energy of the classical charge distribution
M, the interaction energy of M and ρ, and the energy

Q3

functional in
Eq. (4), i.e.,

E (ρ,X) = tr hP +
1
2

tr PG (P) + Enuc + Eself(M)

+ ⟨Φ(ρ),M⟩ +
1
2
⟨X, AX⟩ + ⟨X,Ψ⟩. (6)

In order to derive the coupled QM/PEM equations, we just differ-
entiate Eq. (6) with respect to a density matrix element Pμν to obtain
the QM/PEM Fock (KS) matrix F̃, which defines the Roothaan equa-
tions, and with respect to the polarization degrees of freedom in
order to obtain the polarization equations,

F̃(P,X) = ∂E (ρ,X)
∂Pμν

= hμν + Gμν(P) + ⟨Φμν,M⟩ + ⟨Ψμν,X⟩,

F̃(P,X)C = SCE,
∂E (ρ,X)

∂X
= AX + Ψ = 0.

(7)

The total energy can then be computed using Eq. (6), where we sub-
stitute the solution to the coupled equations (7). It is worth here
to note that the polarization energy functional (4), computed in its
minimum, i.e., for X satisfying the polarization equations, simplifies
into the following expression for the polarization energy:

Epol = 1
2
⟨X,Ψ⟩. (8)

B. Non-variational embedding models
In Sec. II A, we stated the conditions under which a PEM is

variational, which are not always satisfied. The main issue with non-
variational models is the computation of analytical derivatives of
the energy, including contributions to the Fock (KS) matrix. If the
energy is not variational in the polarization density, computing the
analytical derivatives requires the computation of additional terms
coming from the chain rule. Fortunately, as shown by Poier et al. in
Ref. 37, it is always possible to introduce a Lagrangian for these mod-
els, which is stationary when the polarization equations are solved.
The price to pay is that one needs to introduce an auxiliary polariza-
tion degree of freedom, which, in practice, means that, in order to
compute an analytical derivative, two independent sets of equations
need to be solved. Let us detail this case.

TABLE I. Expressions for the functions Θ and Ψ, for the matrix A, and for the energy in the case of various PEMs using the notation that appears in the literature. The
non-variational models are marked with a †. FQ: fluctuating charges and IPD: induced point dipoles. V and E are, respectively, the electric potential and field, Φ and Ψ are the
ddCOSMO functions (see Ref. 41 for the detailed expressions), and Ψ̄ is defined as Ψ, but it is not scaled by the COSMO factor. χ is the collection of atomic electronegativities.14

S and D are the discretized single and double layer operators of pulsed-code modulation (PCM) theory;39,40 note that D is discretized differently in the case of ddPCM.49 L is the
ddCOSMO matrix.44 J and T are, respectively, the interaction matrices between fluctuating charges29 and induced dipoles.52 σ is the discretized surface charge of PCM, that
is, the collection of the PCM charges,38–40 and X is the representation of the reaction potential in the case of ddCOSMO.44 q collects the fluctuating charges.29 μ and μd are
induced dipole collections.51,53

Model Θ Ψ A Energy

COSMO47 V V S 1/2⟨σ,V⟩
IEFPCM†48 V V (2π −D)−1(2π

ε + 1
ε − 1

−D)S 1/2⟨σ,V⟩
ddCOSMO†36,41 Φ Ψ L 1

2 ⟨Ψ,X⟩
ddPCM†46,49 Φ Ψ̄ (2π −D)−1(2π

ε + 1
ε − 1

−D)L 1
2 ⟨Ψ̄,X⟩

FQ12,50 V + χ V + χ J 1
2 ⟨q,V + χ⟩

IPD51 −E(ρ) − E(q) −E(ρ) − E(q) T − 1
2 ⟨μ,E(ρ) + E(q)⟩

AMOEBA35,42 −E(ρ) − Ep(M) −E(ρ) − Ed(M) T − 1
2 ⟨μd,E(ρ) + Ep(M)⟩
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Let us assume that the polarization equations are defined in
terms of a non-symmetric matrix (operator) A, according to Eq. (1),
and Θ is different from Ψ. In this case, the variational Lagrangian is
as follows:

L pol(X, S) = 1
2
⟨X,Ψ⟩ +

1
2
⟨S,AX + Θ⟩, (9)

where S are Lagrange multipliers. The corresponding Euler–
Lagrange equations are

∂L pol

∂S
= AX + Θ = 0,

∂L pol

∂X
= A†S + Ψ = 0. (10)

When computed in its stationary point, the Lagrangian value that
corresponds to the polarization energy. We note that the Euler–
Lagrange equation obtained by differentiating the Lagrangian with
respect to the Lagrange multipliers S enforces the polarization equa-
tions. Differentiating with respect to X gives rise to a set of adjoint
equations that need to be solved in order to compute the deriva-
tives of the energy in an efficient way. Once these have been solved,
the energy derivatives with respect to a generic parameter ξ are
assembled as

dL pol

dξ
= 1

2
⟨X,

∂Ψ
∂ξ
⟩ +

1
2
⟨S,

∂A
∂ξ

X +
∂Θ
∂ξ
⟩, (11)

which does not involve derivatives of either the polarization degrees
of freedom or the Lagrange multipliers. We note here that there is an
evident analogy with the so-called “Z-vector” method54 in quantum
chemistry.

Equation (11) is the key to solve the problem of coupling
a non-variational polarizable embedding model to the HF (DFT)
method. In fact, the total Fock (KS) matrix can always be written
as the derivative of the total energy Lagrangian [i.e., the polarization
Lagrangian plus the HF (DFT) energy plus the interaction energy
between the static distribution M and the QM density] with respect
to density, which can be computed by introducing the Lagrangian in
Eq. (9), i.e.,

F̃μν =
∂L (P,X, S)

∂Pμν
= hμν + Gμν(P) + ⟨M,Φμν⟩

+
1
2
⟨X,Ψμν⟩ +

1
2
⟨S,Θμν⟩, (12)

where we have used the same notation as in Eq. (3) for the one-
electron integrals. From a practical point of view, Eq. (12) implies
that for a non-variational embedding model, at each SCF iteration,
one has to solve two linear systems of polarization equations, one for
X and one for S, effectively doubling the computational cost associ-
ated with embedding. The same procedure applies to the computa-
tion of any other analytical energy derivatives included, as detailed
in Ref. 37, the computation of the forces.

We conclude this section by considering the connection
between the Lagrangian and variational formulations. Starting from
the Lagrangian in Eq. (9) and imposing the variational conditions,
i.e., Θ = Ψ and A† = A, we get

L pol(X, S) = 1
2
⟨X,Ψ⟩ +

1
2
⟨S,AX + Ψ⟩. (13)

Let us now consider the associated Euler–Lagrange equations. Look-
ing at the adjoint equation, we get

∂L pol

∂S
= AX + Ψ = 0,

∂L pol

∂X
= A†S + Ψ = 0. (14)

As A† = A, X and S satisfy the same linear equation and are therefore
equal due to the unicity of the solution. By setting S = X in Eq. (13),
we recover the variational energy functional in Eq. (4) and, therefore,
the two formulations are consistent with each other.

III. COUPLING TWO POLARIZABLE MODELS
Coupling two polarizable models, in particular, an atomistic

model with a continuum one, is an attractive task, as it allows one
to combine the strengths of an atomistic model, namely, its ability
to describe specific interactions and a strongly anisotropic environ-
ment, with the ones of a continuum model, i.e., taking care in a very
effective way of long-range interactions. In this section, we explore
in a general fashion the coupling of variational and non-variational
models.

A. Coupling two variational models
Let X and Y be the polarization degrees of freedom of the two

models, respectively, and let

E pol
1 (X) =

1
2
⟨X,AX⟩ + ⟨X,Ψ1⟩,

E pol
2 (Y) =

1
2
⟨Y ,BY⟩ + ⟨Y ,Ψ2⟩

(15)

be the corresponding energy functionals, where, for brevity, we
put again Ψ1 = ΨMM

1 (M) + ΨQM
1 (ρ) and Ψ2 = ΨMM

2 (M)
+ ΨQM

2 (ρ). In order to couple the two models, the only ingredi-
ent needed is the interaction energy between the two polarization
densities. Note that, for notation simplicity, we do not distinguish
the non-polarizable distributions M1 and M2 associated with the
two models, as the distinction is anyways inessential. We assume
that the interaction between X and Y can be expressed as a bilinear
form

Eint(X,Y) = ⟨Y , ΩX⟩ (16)

and that the matrix Ω describes a positive definite interaction.
Both assumptions are trivially satisfied if the interaction is the
classic Coulombic interaction, which is normally always the case.
Under these hypotheses, a global, variational energy functional can
be simply obtained as the sum of the QM energy, the two non-
interacting energy functionals in Eq. (15), and the interaction energy
in Eq. (16),

E (ρ,X,Y) =EQM(ρ) + Eself(M) + ⟨Φ(ρ),M⟩ +
1
2
⟨X,AX⟩

+ ⟨X,Ψ1⟩ +
1
2
⟨Y ,BY⟩ + ⟨Y ,Ψ2⟩ + ⟨Y , ΩX⟩. (17)
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The coupled polarization equations are easily obtained by imposing
the stationarity conditions of the functional in Eq. (17) with respect
to both X and Y. Rearranging, the following linear equations are
obtained:

(A Ω†

Ω B)(
X
Y) = −(

Ψ1
Ψ2
). (18)

Furthermore, the embedded Fock (KS) matrix is

F̃(P,X,Y) = dE (ρ,X)
dPμν

=hμν + Gμν(P) + ⟨Φμν,M⟩

+ ⟨Ψ1,μν,X⟩ + ⟨Ψ2,μν,Y⟩. (19)

The variational formalism makes it straightforward to achieve full
mutual polarization between all the involved densities, as well as to
derive the working equations. The variational strategy has already
been used in the literature to couple two variational PEMs, for
instance, the fluctuating charge model (FQ) and C-PCM

Q4
.29

B. Coupling a variational model
to a non-variational one

Let us now assume that the first model is variational, while the
second is not, i.e., they are described, respectively, by the energy
functional and Lagrangian

E pol
1 (X) =

1
2
⟨X,AX⟩ + ⟨X,Ψ1⟩,

L pol
2 (Y ,Z) = 1

2
⟨Y ,Ψ2⟩ +

1
2
⟨Z,BY + Θ2⟩.

(20)

We introduce the following coupling hypotheses:

● The two polarization densities interact with the same bilin-
ear form used for the variational case, i.e., we add to the total
interaction energy a contribution

Eint = 1
2
⟨Y , ΩX⟩,

where the 1/2 factor has been introduced for later conve-
nience.

● We enforce mutual polarization by adding an explicit depen-
dence on X to the right-hand side of the equation for Y.
This is achieved by replacing Θ2 with Θ2 + ΞX, where Ξ is
a matrix, i.e., the dependence on X is linear.

We remark that while the first condition modifies the total energy,
the second one modifies the constraint imposed on the non-
variational model: this is consistent with the mixed nature of the two
models that need to be coupled. In other words, the energy func-
tional for X is modified with a contribution that depends on Y, while
the Lagrangian condition for Y is modified with a term that depends
linearly on X. The two coupled models are thus described by the
following global polarization Lagrangian:

L pol(X,Y ,Z) = 1
2
⟨X,AX⟩ + ⟨X,Ψ1⟩ +

1
2
⟨Y , ΩX⟩

+
1
2
⟨Y ,Ψ2⟩ +

1
2
⟨Z,BY + Θ2 + ΞX⟩. (21)

By differentiating with respect to X, Y, and Z and by imposing
the stationarity conditions, we get the following set of coupled
equations:

⎛
⎜⎜
⎝

A 1
2 Ω† 1

2Ξ
†

Ω 0 B†

Ξ B 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

X
Y
Z

⎞
⎟⎟
⎠
= −
⎛
⎜⎜
⎝

Ψ1

Ψ2

Θ2

⎞
⎟⎟
⎠

. (22)

The matrix in Eq. (22) is almost symmetric, where the symme-
try is broken by the presence of the 1/2 factors. Such factors are
needed in order to maintain a consistent definition of the interaction
energy for each model taken independently and cannot be absorbed
into other quantities in the Lagrangian without altering the defini-
tion of the right-hand sides for the non-variational model. How-
ever, a symmetric matrix can be easily obtained by solving for Y/2
and Z/2,

⎛
⎜⎜
⎝

A Ω† Ξ†

Ω 0 2B†

Ξ 2B 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

X
1
2Y
1
2Z

⎞
⎟⎟
⎠
= −
⎛
⎜⎜
⎝

Ψ1

Ψ2

Θ2

⎞
⎟⎟
⎠

. (23)

It

Q5

is again interesting to check the consistency of the Lagrangian
in Eq. (21) with the energy functional in Eq. (17) by imposing the
variational conditions to Eq. (21). The condition Ψ2 = Θ2 applied
to our coupling hypotheses implies that Ω = Ξ, and the symmetry
of the B matrix implies that Y = Z. Therefore, once again, the two
formulations are consistent.

We conclude this section deriving the embedding contribu-
tion to the Fock matrix, which is obtained by differentiating the
Lagrangian in Eq. (21) with respect to the density matrix. We
first note that, thanks to the stationarity conditions imposed, its
analytical derivative with respect to an arbitrary parameter ξ is
given by

dL pol

dξ
= 1

2
⟨X,

∂A
∂ξ

X⟩ + ⟨X,
∂Ψ1

∂ξ
⟩ +

1
2
⟨Y ,

∂Ω
∂ξ

X⟩

+
1
2
⟨Y ,

∂Ψ2

∂ξ
⟩ +

1
2
⟨Z,

∂B
∂ξ

Y +
∂Θ2

∂ξ
+
∂Ξ
∂ξ

X⟩. (24)

This expression can then be used to derive the Fock matrix, which
takes into account also the QM energy and the interaction of the QM
density with the fixed distribution M,

F̃ =hμν + Gμν(P) + ⟨Φμν,M⟩ + ⟨Ψ1,μν,X⟩ +
1
2
⟨Ψ2,μν,Y⟩ +

1
2
⟨Θ2,μν,Z⟩.

(25)

To the best of our knowledge, the use of a mixed Lagrangian/
variational strategy as the one presented in this section has not
been reported in the literature. Nevertheless, variational and non-
variational models have been coupled before, including in a mul-
tiscale QM/classical context.27,30,55 The strategy introduced here
allows one to derive the coupled equations in a black-box and
in a rigorous way, easing the way of new developments in this
direction. An example, namely, the derivation of the coupled
MMPol/ddCOSMO equations, can be found in Sec. IV.
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C. Coupling two non-variational models
The most general task, i.e., coupling two non-variational mod-

els, requires some general considerations:

● Relaxing the variational hypotheses on the first model dou-
bles the overall number of degrees of freedom; this means
that the second model needs to be coupled to both the
polarization degrees of freedom X and the correspond-
ing Lagrange multipliers S. This requires four degrees of
freedom within the second model, namely, YX , ZX , YS,
and ZS.

● The equations for S and for X need to be uncoupled, as those
for the couple YX and ZX and those for the couple YS and
ZS, as they correspond to a set of polarization equations and
a set of Lagrange multipliers equations that are independent
due to the linearity of the overall problem. This requires that
no term in the Lagrangian can couple YX with X or YS with
S.

● The same linear coupling hypotheses used for the previous
cases need to hold, i.e., all couplings are bilinear forms.

The latter condition needs to take into account that there are two
polarizations for the second model and that they need to interact
with both X and S, which, together with the second consideration,
leads to the following expression for the interaction energy:

Eint = 1
4
(⟨YS, ΩX⟩ + ⟨YX , ΩS⟩). (26)

Starting from these hypotheses, the following Lagrangian can be
written as

L pol(X, S,YX ,ZX ,YS,ZS) = 1
2
⟨X,Ψ1⟩ +

1
4
⟨YX + YS,Ψ2⟩

+
1
4
(⟨YS, ΩX⟩ + ⟨YX , ΩS⟩)

+
1
2
⟨S,AX+Θ1⟩+

1
4
⟨ZS,BYX+Θ2 + ΞX⟩

+
1
4
⟨ZX ,BYS + Θ2 + ΞS⟩. (27)

The first two terms in the Lagrangian represent the interaction
energy of the two PEMs with the sources, the third term is the
interaction energy between the polarizations, and all the latter terms
enforce the constraints on the polarizations. The first set of coupled
Euler–Lagrange equations is obtained by differentiation with respect
to S, YS, and ZS,

⎛
⎜⎜
⎝

A Ω† Ξ†

Ω 0 2B†

Ξ 2B 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

X
1
2Y

X

1
2Z

X

⎞
⎟⎟
⎠
= −
⎛
⎜⎜
⎝

Θ1

Ψ2

Θ2

⎞
⎟⎟
⎠

, (28)

where we use the symmetrized form of the equations as in Eq. (23).
By differentiating with respect to X, YX , and ZX , we get the second
set of coupled Euler–Lagrange equations,

⎛
⎜⎜
⎝

A† Ω† Ξ†

Ω 0 2B†

Ξ 2B 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

S
1
2Y

S

1
2Z

S

⎞
⎟⎟
⎠
= −
⎛
⎜⎜
⎝

Ψ1

Ψ2

Θ2

⎞
⎟⎟
⎠

. (29)

We note that, consistently with S, YS, and ZS playing the role of
Lagrange multipliers, the matrix in Eq. (29) is the adjoint of the
one in Eq. (28). The two linear systems (28) and (29) fully deter-
mine the mutually polarized densities of the two models and both
need to be solved even to compute the energy, as the latter depends
on YX and YS. The consistency of the general Lagrangian with the
variational subcases is easily checked. Let us assume that the varia-
tional hypotheses hold for the first model. We see immediately that
as A† = A and Ψ1 = Θ1, the two linear systems (28) and (29) become
identical, and thus, we get S = X, YS = YX , and ZS = ZX . By insert-
ing this result in Lagrangian (27), we get the Lagrangian in Eq. (21),
which we have already shown to be consistent with the fully varia-
tional case. Let us derive now the analytical derivatives of the energy
with respect to an arbitrary parameter ξ,

dL
dξ

= 1
2
⟨X,

∂Ψ1

∂ξ
⟩ +

1
4
⟨YX + YS,

∂Ψ2

∂ξ
⟩

+
1
4
(⟨YS,

∂Ω
∂ξ

X⟩ + ⟨YX ,
∂Ω
∂ξ

S⟩)

+
1
2
⟨S,

∂A
∂ξ

X +
∂Θ1

∂ξ
⟩ +

1
4
⟨ZS,

∂B
∂ξ

YX +
∂Θ2

∂ξ
+
∂Ξ
∂ξ

X⟩

+
1
4
⟨ZX ,

∂B
∂ξ

YS +
∂Θ2

∂ξ
+
∂Ξ
∂ξ

S⟩. (30)

We can once again get the Fock (KS) matrix including the contri-
bution of the polarizable environment as a derivative of Lagrangian
(27) with respect to the density matrix after adding the QM energy
and the interaction energy between the fixed distribution M and the
QM density. We get

F̃μν = hμν + Gμν(P) + ⟨Φμν,M⟩ +
1
2
(⟨Ψ1,μν,X⟩ + ⟨Θ1,μν, S⟩)

+
1
4
(⟨Ψ2,μν,XY + YS⟩ + ⟨Θ2,μν, SY + SZ⟩). (31)

The general strategy presented in this section is applied in Sec. IV to
the derivation of the coupled QM/AMOEBA/ddCOSMO equations.

D. Quasi-variational models
As a note to the whole section, it is interesting to consider the

case of a non-variational model in which the matrix A is symmetric.
If the non-variational polarization equations are defined in terms
of a symmetric matrix, the Lagrangian in Eq. (9) can be rewritten
in a form where X and S appear in a symmetric fashion. We call
a PEM defined in terms of a symmetric matrix quasi-variational.
Assuming that A = A†, in fact, the polarization X, its Lagrangian S,
and their sum X + S satisfy independently variational conditions,
i.e., as noted in Ref. 30, they minimize the following three energy
functionals:

E (X) = 1
2
⟨X,AX⟩ + ⟨X,Θ⟩,

E (S) = 1
2
⟨S,AS⟩ + ⟨S,Ψ⟩,

E (X + S) = 1
2
⟨X + S,A(X + S)⟩ + ⟨X + S,Θ + Ψ⟩.
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We can therefore combine the three functionals into the following
Lagrangian of X and S:

2 L (X, S) = 1
2
⟨X + S,A(X + S)⟩ + ⟨X + S,Ψ + Θ⟩

− (1
2
⟨X,AX⟩ + ⟨Θ,X⟩) − (1

2
⟨S,AS⟩ + ⟨Ψ, S⟩). (32)

As it can easily be verified, imposing the stationarity condition on
Eq. (32), one gets Eq. (10), where in the equation for S, there is no
adjoint as the matrix is symmetric. Besides the fact that Eq. (32)
is manifestly symmetrical, it is written as the difference of three
variational energy functionals. This allows one to extend the valid-
ity of such a Lagrangian also for values of X and S that do not
solve the corresponding equations, which can be used, for instance,
to define an extended Lagrangian used to propagate X and S dur-
ing a molecular dynamics simulation in the spirit of Car–Parrinello
MD.29,56,57 Therefore, quasi-variational models enjoy some of the
properties of variational ones; however, they keep being associated
with two sets of polarization degrees of freedom and, therefore, a
doubled computational cost with respect to the strictly variational
models.

Let us now consider the coupling between a quasi-variational
model and a non-variational one, as it is the case for the
AMOEBA polarizable force field and the ddCOSMO CSM. The
Lagrangian

2 Lpol
qv = 1

2
⟨X+S,A(X + S)⟩+⟨X+S,Θ1 +Ψ1⟩

+
1
2
⟨YX + YS, Ω(X + S) + 2Ψ2⟩

+
1
2
⟨ZX + ZS,B(YX + YS) + 2Θ2 + Ξ(X + S)⟩

− (1
2
⟨X,AX⟩ + ⟨X,Θ1⟩ +

1
2
⟨YX , ΩX + Ψ2⟩

+
1
2
⟨ZX ,BYX + Θ2 + ΞX) − (1

2
⟨S,AS⟩ + ⟨S,Ψ1⟩

+
1
2
⟨YS, ΩS + Ψ2⟩ +

1
2
⟨ZS,BYS + Θ2 + ΞS) (33)

gives the same Euler–Lagrange equations (28) and (29) with the
only difference that, in Eq. (29), the A matrix does not need the
adjoint sign, as it is symmetric. In other words, the matrix defin-
ing both sets of equations is the same. The Lagrangian in Eq. (33)
is symmetric in X and S, and in a way, they are coupled to the
second model. Furthermore, it can also be viewed as the com-
bination of three quasi-variational Lagrangians for the sum of X
and S, X and S, respectively, each one coupled accordingly with
the second model. In other words, some of the same conclusions
hold than for an uncoupled quasi-variational model; it is, in prin-
ciple, possible to propagate the degrees of freedom X and S dur-
ing a MD simulation in a Car–Parrinello fashion. However, at
each step, the equations for the second model have to be solved
exactly.

The quasi-variational Lagrangian in Eq. (33) is the result that
most closely resembles in spirit the energy functional proposed by
one of us and co-workers in Ref. 30, where the degrees of free-
dom of the second model were not considered explicitly but rather
inserted in an energy expression under the condition that the cor-
responding polarization and adjoint equations had been solved. As

the Euler–Lagrange obtained here, as well as the analytical deriva-
tives that can be easily derived for Lagrangian (33), matches the
ones originally proposed in Ref. 30, we can consider these results
as a rigorous proof of the ones obtained heuristically in the previous
paper.

IV. A FULLY POLARIZABLE QM/AMOEBA/DDCOSMO
MODEL

In this section, we use the Lagrangian in Eq. (27) to derive
the working equations for a coupled QM/AMOEBA/ddCOSMO
model. We then show, as a subcase, the coupling of the varia-
tional MMPol model with ddCOSMO. A schematic representation
of the QM/AMOEBA/ddCOSMO three-layered multiscale strategy
is given in Fig. 1. A discussion of the standalone AMOEBA and
ddCOSMO is given in the supplementary material; here, we limit
the discussion to the coupled scheme, recalling just the necessary
equations from the standalone models.

AMOEBA35 is an advanced polarizable force field whose
energy functional accounts for bonded interactions for dispersion–
repulsion interactions through a 7–14 functional form and for the
electrostatic interactions through an accurate parametrization.35

Each classical atom is endowed of a set of fixed multipoles (charge,
dipole, and quadrupole) M and an isotropic polarizability. In this
work, we do not discuss contributions beyond the electrostatic and
polarization ones, as they are simple additional contributions to
the total energy, which can be added a posteriori and are particu-
larly relevant only for the total forces. The total polarization and
electrostatic energy, in the presence of a QM density,58 can be
written as

E ele/pol =E self(M) + ⟨q,V(ρ)⟩ − ⟨μs,E(ρ)⟩ + ⟨Θ,G(ρ)⟩

− 1
2
⟨μd,Ep(M) + E(ρ)⟩. (34)

FIG. 1. Representation of the QM/AMOEBA/ddCOSMO approach. The QM
molecule is represented in bold orange, the AMOEBA atoms are represented in
a color scale of the color depending on the fixed charge [yellow (positive) and blue
(negative)], and the ddCOSMO cavity is drawn schematically with dark gray lines.
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Here, the first term is the self-interaction of the fixed multipoles, the
three following terms are the interactions between the fixed mul-
tipoles and the QM density, and the last term is the polarization
energy. q, μs, Θ, and μd are, respectively, the collections of charges,
fixed dipoles, quadrupoles, and induced dipoles. The dipoles are
computed according to

Tμd = Ed(M) + E(ρ), (35)

where the right-hand side is the inducing field and T is the damped
dipole–dipole interaction matrix.59 A peculiarity of the AMOEBA
force field is that the dipoles are computed according to a field
Ed, which is different from the field with which they interact Ep.
The two fields are different since they are computed according to
two different exclusion rules to avoid overpolarization. In other
words, AMOEBA is a quasi-variational model, with Θ = Ed and
Ψ = Ep>. In order to write the AMOEBA Lagrangian, an addi-
tional condition has to be enforced through a set of Lagrange
multipliers μp,

L (μp,μd) = E self + ⟨q,V(ρ)⟩ − ⟨μs,E(ρ)⟩ + ⟨Θ,G(ρ)⟩

− 1
2
⟨μd,Ep(M) + E(ρ)⟩

+
1
2
⟨μp,Tμd − Ed(M) − E(ρ)⟩. (36)

The Lagrange multipliers are obtained by imposing the stationarity
with respect to μd,

Tμp = Ep(M) + E(ρ). (37)

An extensive discussion about ddCOSMO can be found else-
where,36,41,60,61 and an introduction is provided in the supplementary
material. Briefly, given the solute’s potential at the cavity Φ,
ddCOSMO solves a linear system to find the reaction potential at
the cavity X. Then, the latter can be used to compute the solvation
energy. The linear system reads

LX = −Φ, (38)

where each quantity is discretized over the spheres i and over the
spherical harmonic indices ` and m. The energy is written as the
scalar product between a function of the solute density Ψ and the
reaction field at the cavity X,

E sol = 1
2
⟨Ψ(ρsol),X⟩. (39)

Again, this expression is not variational because (i) L is not symmet-
ric and (ii) Ψ and Φ are different functions. A Lagrangian can be
easily built according to Sec. II B by introducing a set of Lagrange
multipliers S,

L (X, S) = 1
2
⟨Ψ,X⟩ +

1
2
⟨S,LX + Φ⟩. (40)

The Lagrange multipliers are obtained by imposing the stationarity
of Eq. (40) with respect to X,

L†S = −Ψ. (41)

Note that the RHS of this last equation has the opposite sign with
respect to the ddCOSMO/ddPCM literature. However, in the fol-
lowing discussion, we prefer to keep Eqs. (40) and (41) in this way

so that the coupled AMOEBA/ddCOSMO linear system can be
written in the same form of Eqs. (28) and (29).

The first step to derive the working equations for a
QM/AMOEBA/ddCOSMO scheme is to build the complete
Lagrangian as in Eq. (27). Here, it is expressed using the notation
presented for AMOEBA and ddCOSMO,

L pol = E self +⟨q,V(ρ)⟩−⟨μs,E(ρ)⟩+⟨Θ,G(ρ)⟩+ 1
2
⟨μd,E(ρ)+Ep(M)⟩

+
1
4
⟨Xp + Xd,Ψ(ρ) + Ψ(M)⟩ +

1
4
(⟨Xp, Ωμd⟩ + ⟨Xd, Ωμp⟩)

+
1
2
⟨μp,Tμd − E(ρ) − Ed(M)⟩ +

1
4
⟨Sp,LXd + Φ(ρ)

+Φ(M) + Ξμd⟩ +
1
4
⟨Sd,LXp + Φ(ρ) + Φ(M) + Ξμp⟩. (42)

It is important to note that both the MM and QM atoms are the
solute in the ddCOSMO model, so the ddCOSMO quantities will
belong to a vector space of size (total number of atoms) × (`max +1)2,
where `max is a parameter decided by the user, and the AMOEBA
quantities will belong to a vector space of size (number of AMOEBA
atoms) × N, where N = 1 for charge and potential arrays, N = 3 for
dipole and field arrays, and N = 6 for quadrupoles and field gradi-
ent arrays. The new quantities, not present in the standalone models,
are the coupling matrices Ω and Ξ, as well as the functions Ψ and Φ
applied to the fixed multipolar distribution M. We describe here the
main characteristics of Eq. (42), leaving the cumbersome details to
the supplementary material. First, applying the matrices Ω and Ξ to
a dipole array μ is equivalent to computing Ψ(μ) and −Φ(μ), respec-
tively, so it is a special case of the computation of Ψ(M) and Φ(M).
Second, the coupling terms are linear functions in M, so they can
be written as matrix–vector products. Third, the coupling matrices
are rectangular since they send AMOEBA quantities into ddCOSMO
quantities and vice versa if transposed.

The equations that determine the polarizations are obtained
by imposing the stationarity of Lagrangian (42) with respect to all
the degrees of freedom. By imposing the stationarity with respect
to μd, Xd, and Sd, we get three coupled linear equations that can be
written as

⎛
⎜⎜
⎝

T Ω† Ξ†

Ω 0 2L†

Ξ 2L 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

μd
Xd
2
Sd
2

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

E(ρ) + Ed(M)
−Ψ(ρ) −Ψ(M)
−Φ(ρ) −Φ(M)

⎞
⎟⎟
⎠

. (43)

By imposing the stationarity with respect to μp, Xp, and Sp, the
second set of equations is obtained,

⎛
⎜⎜
⎝

T Ω† Ξ†

Ω 0 2L†

Ξ 2L 0

⎞
⎟⎟
⎠

⎛
⎜⎜⎜
⎝

μp
Xp

2
Sp
2

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜
⎝

E(ρ) + Ep(M)
−Ψ(ρ) −Ψ(M)
−Φ(ρ) −Φ(M)

⎞
⎟⎟
⎠

. (44)

Once the linear systems in Eqs. (43) and (44) are solved, the polar-
izations are fully determined and can be used to compute the energy
and properties. We first discuss the computation of the Fock matrix
leaving the discussion of energy to

Q6

Sec. IV A. The Fock matrix is
obtained by differentiation of Lagrangian (42) with respect to the
density matrix P. For the element μν, the Fock matrix reads
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Fμν = ⟨q,Vμν⟩ − ⟨μs,Eμν⟩ + ⟨Θ,Gμν⟩ −
1
4
⟨μd + μp,Eμν⟩

+
1
4
⟨Xp + Xd,Ψμν⟩ +

1
4
⟨Sp + Sd,Φμν⟩. (45)

A. Expression for the energy
At the stationary point, the terms of Lagrangian (42) cor-

responding to the two ddCOSMO constraints vanish. One gets,
therefore, the following expression for the polarization energy:

E = E self(M) + ⟨q,V(ρ)⟩ − ⟨μs,E(ρ)⟩ + ⟨Θ,G(ρ)⟩

− 1
2
⟨μd,E(ρ) + Ep(M)⟩ +

1
4
(⟨Xp,Ψ(ρ) + Ψ(M) + Ωμd⟩

+ ⟨Xd,Ψ(ρ) + Ψ(M) + Ωμp⟩) +
1
2
⟨μp,Tμd − E(ρ) − Ed(M)⟩.

(46)

In order to evaluate Eq. (46), an expensive matrix–vector product
(Tμd) has to be computed. It is possible to obtain a simpler expres-
sion that can be evaluated more efficiently by using some interme-
diate quantities that are available during the iterative solution to the
coupled polarization equations. We report in Algorithm 1 a possi-
ble iterative strategy, where we use a macro/micro iteration scheme
to solve the coupled linear systems. The macroiteration is done on
the AMOEBA degrees of freedom (μd and μp), and at each macroi-
teration, we solve iteratively (microiterations) for the ddCOSMO
degrees of freedom (Xd, Sd, Xp, and Sp). Using such a strategy, we
can avoid the computation of the Tμd matrix vector product in the
last term by noting that

Tμd − E(ρ) − Ed(M) = −ΩXd − ΞSd. (47)

As ΩXd and ΞSd are available from the iterative solver, we can
rewrite the expression for the energy as

E = E self(M) + ⟨q,V(ρ)⟩ − ⟨μs,E(ρ)⟩ + ⟨Θ,G(ρ)⟩

− 1
2
⟨μd,E(ρ) + Ep(M)⟩ +

1
4
(⟨Xp,Ψ(ρ) + Ψ(M) + Ωμd⟩

+ ⟨Xd,Ψ(ρ) + Ψ(M) + Ωμp⟩) −
1
2
⟨μp, ΩXd + ΞSd⟩. (48)

ALGORITHM 1. Macro/micro iteration scheme for coupled AMOEBA/ddCOSMO.

1: while μp, μd not converged do
2: Compute Ξμd, Ξμp
3: Compute Ωμd, Ωμp
4: Solve direct ddCOSMO: LXd = –Φ – Ξμd, LXp = –Φ – Ξμp
5: Solve adjoint ddCOSMO: L†Sd = –Ψ – Ωμd, L†Sp = –Ψ – Ωμp
6: Compute Ω†Xd, Ω†Xp

7: Compute Ξ†Sd, Ξ†Sp
8: Assemble AMOEBA RHS: Ed –ΩXd – ΞSd, Ep –ΩXp – ΞSp
9: Do a Jacobi iteration on the μd, μp dipoles

10: Check for convergence on μd, μp

B. A special case: A variational–non-variational
formulation

A special case of the AMOEBA/ddCOSMO coupling just pre-
sented is obtained by replacing the AMOEBA force field with a vari-
ational one, such as Wang’s polarizable Amber-like force field.62 The
coupling of such a scheme, called MMPol,51 with either the polariz-
able continuum model or ddCOSMO has already been reported in
the literature.27,55 Here, we consider the coupling of MMPol with
ddCOSMO and compare it with the AMOEBA/ddCOSMO cou-
pled embedding model. The differences are few: (i) the energy of
the atomistic model is defined in such a way that it is variational
and (ii) each classical atom bears only a charge and an isotropic
polarizability. According to Sec. III B, the Lagrangian takes the form

L (μ,X, S) = E self(q) + ⟨q,V(ρ)⟩ − ⟨μ,E(ρ) + E(q)⟩ +
1
2
⟨μ,Tμ⟩

+
1
2
⟨X, Ωμ⟩ +

1
2
⟨X,Ψ(ρ) + Ψ(q)⟩

+
1
2
⟨S,LX + Φ(ρ) + Ψ(q) + Ξμ⟩. (49)

By imposing the stationarity, we get

⎛
⎜⎜
⎝

T Ω† Ξ†

Ω 0 2L†

Ξ 2L 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

μ
X
2
S
2

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

E(ρ) + E(q)
−Ψ(ρ) −Ψ(q)
−Φ(ρ) −Φ(q)

⎞
⎟⎟
⎠

. (50)

The expressions for the coupling matrices and for Ψ(q) and Φ(q)
are a special case of those reported for AMOEBA in the supplemen-
tary material, as, in this case, the induced dipoles are analogous to
the AMOEBA ones and the fixed multipoles are restricted to charges
only.

V. CONCLUSIONS AND PERSPECTIVES
In this contribution, we presented a general formalism to treat

polarizable electrostatics for both atomistic and continuum models
in the context of multiscale QM/classical calculations. The formal-
ism can be used for both variational and non-variational models,
and the two formulations have been shown to be consistent, i.e.,
the variational case can be obtained systematically as a subcase of
the non-variational one. We then discussed in a general fashion
the coupling between polarizable models by introducing a general
set of coupling rules in terms of interaction energy (for variational
models) or modified right-hand sides for the polarization equations
(for non-variational ones). We used these hypotheses to derive the
coupled polarization energy and equations for all possible combina-
tions of variational and non-variational models. In order to show the
possibilities of the formalism, we showed that deriving the coupled
equations for either a variational and a non-variational (MMPol and
ddCOSMO) or even two non-variational models (AMOEBA and
ddCOSMO) becomes an easy exercise, which includes the deriva-
tion of the coupling with a self-consistent field quantum mechanical
treatment.

We hope that this general formalism will be helpful to the com-
munity of developers of polarizable models, both in the context of
multiscale QM/classical schemes and in one of the purely classical
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simulations, allowing to easily derive the polarization equations for
new models or to couple new and existing models for the first
time.

SUPPLEMENTARY MATERIAL

See the supplementary material for more information on
AMOEBA and ddCOSMO and their implementation and for the
explicit expression of the AMOEBA/ddCOSMO coupling terms.
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