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Abstract

This demo shows our ongoing work on the co-simulation of co-operative
Unmanned Aerial Vehicles (UAVs). The work is based on the INTO-
CPS co-simulation engine, which adopts the widely accepted Functional
Mockup Interface (FMI) standard for co-simulation, and the PVSioweb
prototyping tool, that extends a system simulator based on the PVS logic
language with a web-based graphical interface. Simple scenarios of Quad-
copters with assigned different tasks, such as rendez-vous and space cover-
age, are shown. We assumed a linearized dynamic model for Quadcopters
formalized in OpenModelica, and a linearized set of equations for the
flight control module written in C language. The co-ordination algorithm
is modeled in PVS, while PVSio-web is used for graphical rendering of the
co-simulation.

1 Introduction

Nowadays, the deployment of multi-UAVs systems is rapidly increasing in many
different applications, ranging from precision farming to surveillance, search and
rescue, etc. (e.g. [1], [4]). Given the recent introduction of a new co-simulation
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Figure 1: Black box schema of a quadcopter

standard, the Functional Mock-up Interface [2], and tool-kits to exploit such
a standard, such as INTO-CPS [5], we combined these technologies with tools
for formal modeling, such as PVS [8]. The result is a modular and flexible
framework that can be used to co-simulate UAV coordination algorithms dealing
with the heterogeneous nature of different UAV models. In this work, we will
show an example where the base elements of the FMI co-simulation, the FMUs
(Functional Mock-up Unit), are built using different tools (OpenModelica [3],
PVSio-web [6], and C code).

In the rest of this section, we provide basic background knowledge of quad-
copter representation and consensus algorithm used in the subsequent sections.

1.1 Background on Quadcopters

A quadrotor aircraft, or quadcopter, schematically consists in a cross-shaped
chassis supporting one rotor at the end of each arm. The quadcopter‘s move-
ments are determined by the resultant thrusts and torques of the rotors, which
in turn depend on their angular speeds ω1, ω2, ω3, ω4. The state of the quad-
copter is composed of 12 variables: (i) actual position (x, y, z); (ii) linear speeds
(ẋ, ẏ, ż); (iii) attitude, given by the 3 angles pitch, roll, and yaw (φ, θ, ψ respec-
tively); (iv) attitude angular speeds (φ̇, θ̇, ψ̇). The values of ω1, ω2, ω3, ω4 are
computed by the flight control module, which takes as input the desired target
(xd, yd, zd) and the actual state of the drone (actual position , linear speeds, at-
titude and attitude angular speeds) and produces the angular speeds of the four
rotors required to reach the target. A simple black box schema of a quadcopter
is shown in Figure 1.

1.2 Background on the Consensus Algorithm

We have studied a well-known algorithm proposed in [7] for accomplishing the
task of rendez-vous, gathering the drones in a position given by the average of
their initial ones. The consensus algorithm can be expressed with the following
equation:

xk+1

d (i) = xkd(i) + ǫ
∑

j∈Ni

(xkd(j)− xkd(i)) (1)
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where xkd(i) is the target position of the drone i at step k, ǫ ∈ (0, 1) is a
parameter of the algorithm, and Ni is the set of neighbors of drone i.

We will consider the case in which Ni is only composed of the preceding and
following drones, reducing (1) to

xk+1

d (i) = xkd(i) + ǫ(xkd(i− 1)− xkd(i)) + ǫ(xkd(i+ 1)− xkd(i)). (2)

2 Co-simulation environment

In this section, we will provide details on the implementation of the FMI co-
simulation used to validate the co-ordination algorithm. We have modeled a
system composed of many quadcopters, each represented by 3 different sub-
systems: (i) the physical part of the quadcopter; (ii) the flight control module;
(iii) the coordination algorithm.

The physical part of the quadcopter has been represented with a system
of linear differential equations for computing the acceleration, the speed, the
position and the attitude of the quadcopter based on the angular speed of the
four rotors. The system of equations has been written with OpenModelica,
which allows us the automatic generation of the FMU.

The flight control module implements a system of linear equations that com-
pute the angular speed of the rotors needed to move the quadcopter toward a
target point. The system of equations has been written in C language and
embedded in an FMU.

The coordination algorithm has been modeled in the PVS formal language.
The PVSio-web toolkit provides the simulation environment for the co-ordination
algorithm and the graphical animation of the interface. The PVS model, along
with the whole PVS package has been automatically embedded in an FMU us-
ing the approach proposed in [9]. The communications between quadcopters are
completely abstracted by connecting the output of the coordination algorithm
FMU not only with the flight control FMU of the same drone but also with the
coordination algorithm FMU of the other drones.

We have created a scenario to test our system with 5 drones and a fixed co-
simulation step-size of 0.05 seconds. The parameters of the scenario are shown
in Table 1 (Rendez-vous). More precisely, Figures 2a and 2b, show the beginning
and the end of the simulation where the drones start from different locations and
converge to the same x-coordinate, reaching a vertical arrangement over the final
target position on the ground. We may note that the consensus algorithm only
controls the movement on the horizontal plane, independently of movements in
the vertical directions.

The co-simulation environment is flexible and other co-ordination protocols
can be easily analyzed. As an example we have applied the framework to a
slight variant of the consensus algorithm above, obtaining an algorithm that
performs the task of space coverage along a line segment. We introduced the
assumption that the leftmost drone and the rightmost drone do not change
their position and they are placed at the endpoints of the line segment. In the
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Table 1: Parameters of the scenarios

Scenario Parameters Values

Duration 40 seconds
Rendez-vous ǫ 1

4

Initial position {0,1,2,5,10}
Duration 20 seconds

Space coverage 1 ǫ 1

4

Initial position {0,1,2,3,10}
Duration 20 seconds

Space coverage 2 ǫ 3

4

Initial position {0,1,2,3,10}

following formula, N is the number of drones, min and max are the endpoints
of the line segment, xkd(i) is the desired position of drone i at step k, and ǫ > 0
is the same parameter of the original algorithm:























xkd(1) = min, ∀ k

xkd(N) = max, ∀ k

xk+1

d (i) = xkd(i) + ǫ(xkd(i− 1)− xkd(i)) + ǫ(xkd(i+ 1)− xkd(i)), i ∈ [2, N − 1]

In the following, we show the results of the co-simulation in two scenarios
whose parameters are shown in Table 1 (Space coverage). Figures 3a and 3b
show the beginning and termination of the co-simulation for the first scenario
where the three middle drones started close to each other and end up equally
spaced on the x-axis.

Figures 4 show the termination of the co-simulation for the second scenario
where two drones collided and fell to the ground.

The two scenarios show how the value of the parameter ǫ affects the behavior
of the drones, which otherwise have the same initial position and are controlled
by the same algorithm in the two scenarios. From the simulation, we can see
that a large value of ǫ causes the drone coordination to fail. Conditions on the
admissible values of ǫ can be determined with the PVS theorem prover, which
is the object of further work.
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(a) Initial position of drones

(b) Final position of drones

Figure 2: Rendez-vous
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(a) Initial position of drones.

(b) Final position of drones.

Figure 3: Space coverage 1
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