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FREE BOUNDARY REGULARITY FOR A MULTIPHASE SHAPE
OPTIMIZATION PROBLEM

LUCA SPOLAOR, BAPTISTE TREY, BOZHIDAR VELICHKOV

ABSTRACT. In this paper we prove a C*'® regularity result in dimension two for almost-minimizers
of the constrained one-phase Alt-Caffarelli and the two-phase Alt-Caffarelli-Friedman functionals
for an energy with variable coefficients. As a consequence, we deduce the complete regularity
of solutions of a multiphase shape optimization problem for the first eigenvalue of the Dirichlet-
Laplacian up to the fixed boundary. Omne of the main ingredient is a new application of the
epiperimetric-inequality of [18] up to the boundary. While the framework that leads to this ap-
plication is valid in every dimension, the epiperimetric inequality is known only in dimension two,
thus the restriction on the dimension.

1. INTRODUCTION

In [12] David and Toro studied properties of the free boundaries for almost-minimizers of the
one-phase Alt-Caffarelli and the two-phase Alt-Caffarelli-Friedman functionals considered in [1]
and [2] respectively. They proved that, in any dimension, almost-minimizers are non-degenerate
and Lipschitz continuous (see also [17]). More recently, David-Engelstein-Toro proved in [11] that,
under suitable assumption, the free boundaries of almost-minimizers are uniformly rectifiable for
both functionals, and almost everywhere given as the graph of a C® function for the one-phase
functional.

In this paper we extend these regularity results in dimension two, proving general C'h* regu-
larity results for the free boundary associated to:

(oP) Almost-minimizers of the one-phase Alt-Caffarelli functional for an operator with variable
coefficients, which may also satisfy a further geometric inclusion constraint (Theorem and
Corollary [1.3));

(TP) Almost-minimizers of the two-phase Alt-Caffarelli-Friedman functional for an operator

with variable coefficients (Theorem [1.5).
As pointed out by David-Toro, the difficulty of dealing with almost-minimizers is that they do
not satisfy an equation. To overcome this, the approach we follow in this paper is different
from the one given in [11] and relies on an epiperimetric inequality (see [18]) and on a Weiss’
almost-monotonicity formula, both of which are variational techniques. We stress out that the
only obstruction to a generalization of this proof to any dimension comes from the fact that
epiperimetric inequality is only known in dimension two.

The second purpose of this paper is a regularity result for solutions of a multiphase shape opti-
mization problem for the first eigenvalue of the Dirichlet-Laplacian. In [3] Bogosel and Velichkov
proved properties concerning the optimal shapes, such that the lack of triple points, and the
Lipschitz continuity of the corresponding eigenfunctions. In this paper we prove, using the above
results for almost-minimizers of the one-phase and the two-phase functionals, that if (1,...,,)
is an optimal shape, then the entire boundary 99Q;, i = 1,...,n, is Cb* regular (Theorem .
This line of study has become increasingly important in recent years, where regularity results
for solutions of free-boundary problems, and in particular almost-minimizers, have been applied
to study the regularity of shape optimization problems involving eigenvalues of the Dirichlet-
Laplacian (see for instance [16 [14] [15](9]).

1.1. Regularity for almost-minimizers. Throughout this paper we will use the following no-
tations. We fix a matrix valued function A = (a;;);; : B2 — Sym;, where Syml{gF denotes the
1
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family of the real positive symmetric k£ x k matrices, for which there are constants 9§, Cy, My > 0
such that
laij(x) — aij(y)| < Calz — y\‘s, for every 4,5 and x,y € Bg;

MNP <€ Ax)é = Z &i&jai(x) < Myl€]?, forevery z € B, and & €R”
i,j=1
We fix Qop, Q. and Q.. to be three different 6-Holder continuous functions on Bg, for which
there is a constant Cq > 0 such that Cg 1< Qop, Qi.,Qr < Cq on By, Finally, for every function
u: R? = R, we will use the following standard notations

ug (7) := max{du(z),0}, Q,:={u#0}, QF:={u>0} and Q = {u<0}.

We are now in position to state our main free boundary regularity results.
The one-phase free boundaries. For every u € H'(Bz), 79 € By and r € (0,1), we define the
one-phase functional

au ou
Jop u » Lo, T / (o) Z zg &Tz &T] QOP( )]l{u>0}) dx.

Here and after B,(z) denotes the ball Wlth center x € R? and radius r > 0 and we will write
B, := B,.(0). Let AT (B ) be the admissible set

AT (B,)={ue H'(B,) : u>0in B,, u=0on B, \ B/},

where H stands for the upper half-plane H := {(:17, y) €eR? : y > 0} and B;f := B, N H. We say
that the nonnegative function u : By — R is a almost-minimizer of the one-phase functional Jop
in the upper half-disk B;’, if u € AT(Bs) and there are constants r; > 0, C; > 0 and d; > 0 such
that, for every xp € By N9, and r € (0,71), we have

(1.1) Jop(u, z0,7) < (1 + Clr‘sl)JOP(v,xo,r) + Cyr¥ta
for every v € AT (By) such that u = v on By \ B,(x0).

We have the following result for the almost-minimizers of the one-phase Alt-Caffarelli functional
Jop constrained in the upper half-disk B;’ .

Theorem 1.1 (Regularity of the constrained one-phase free boundaries). Let By C R? and
u : By = R be a non-negative and Lipschitz continuous function. If u is a almost-minimizer
of the functional Jop in A*(Bs), then the free boundary By N OSY, is locally the graph of a C1@
function.

Remark 1.2. The Holder continuity of the (exterior) normal vector ng is the best regularity result
that one can expect. Indeed, recently Chang-Lara and Savin [10] showed that even for minimizers
the regularity of the constrained free boundaries cannot exceed C'+'/2. Moreover, we notice that
the result analogous to Theorem [I.1] was proved in any dimension in [10], by a viscosity approach,
but only for minimizers of the functional J,p.

Analogously, we say that the nonnegative function u : By — R is a almost-minimizer of the
one-phase functional Jop in By, if u € Hl(Bg) and there are constants 1 > 0, C7 > 0 and 61 >0
such that, for every z¢g € By N0, and r € (0,r1), we have

(1.2) Jop(u, 29, 7) < (1 + Clr‘sl)JOP(v, xo,7) + Cyrto
for every v € H'(By) such that v = v on By \ By(x0).

The regularity of the unconstrained one-phase free boundary 0, follows directly by Theorem
For the sake of completeness, we give the precise statement in Corollary below.

Corollary 1.3 (Regularity of the unconstrained one-phase free boundaries). Let By C R? and
u : By — R be a non-negative and Lipschitz continuous function. If u is a almost-minimizer of
the functional Jo, in Ba, then the free boundary By N 0K, is locally the graph of a CY% function.
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Remark 1.4. We notice that the regularity of the free boundaries of the one-phase (unconstrained)
almost-minimizers is already proved by David, Engelstein and Toro in [II] in every dimension
and by a different approach.

The two-phase free boundaries. For every v € H'(B3), 29 € By and r € (0,1), we define the
two-phase functional

ou Ou
Tantzo) = s () 2 2L Qb () Lo + Qe @)Ly ) i
( ) Br(z0) <%: ]( )8332 aﬂjj ( ) {u>0} ( ) { <0}>

We say that the function u € H'(By) is a almost-minimizer of the two-phase functional Jy, in
Bo, if there are constants ro > 0, Co > 0 and d2 > 0 such that, for every xg € B N 982, and
r € (0,72), we have

(1.3) Jep (U, o, 1) < (1 + 027‘52)JTP(U, xo,7) + Cor?t02
for every v € H'(By) such that v = v on By \ B,(z0).
Then, we have the following result:

Theorem 1.5 (Regularity of the two-phase free boundaries). Let Bo C R? and let u : By — R
be Lipschitz continuous such that the functions u+ are solutions of the PDEs

—div(AVuy) = fr  in QN By,

where fi : ﬁf — R are Hélder continuous functions and A is fized as above. If u is a almost-
minimizer of the two-phase functional J.p in Bs, then the free boundaries BN and By NoQ,
are locally graphs of C functions.

Remark 1.6. In particular, we improve from C! to C%® the regularity of the free boundaries
proved by Alt, Caffarelli and Friedman [2] for minimizers in the case A = Id.

Remark 1.7 (Remark on the Lipschitz continuity). In Theorem [[.3] and Theorem we assume
that the function w is Lipschitz continuous. In the case of the Laplacian, David and Toro [12]
proved that the Lipschitz continuity is a consequence of the the almost-minimality condition. It
is of course natural to expect that the same will hold when the operator involved has variable
coefficients. We will not address this question in the present paper since our main motivation
comes from the application to shape optimization problems as (L.4]), for which the Lipschitz
continuity is often already known. Actually, in the case of (L.4l), the Lipschitz continuity of the
eigenfunctions is used to deduce the almost-minimality (see Section [7]).

1.2. Multiphase shape optimization problem for the first eigenvalue. As a consequence
of Theorem [[.1] and Theorem [[.5] we get the complete regularity of the following multiphase
shape optimization problem

n
(1.4) min { Z (M (%) + @|]) = Q,...,Q, are disjoint open subsets of D} ,
i=1
where, we will use the following notations:
el <neN and 0<q; €R, foreveryi=1,...,n;
e D C R? is a bounded open planar set with C? regular boundary;
e || denotes the Lebesgue measure of ;
e \1(9) is the first eigenvalue of the Dirichlet Laplacian on €.

Theorem 1.8. Let (Q2,...,Q,) be a solution of (IL4). Then, all the sets Q;, 1 = 1,...,n, are
bounded open sets with CH* regular boundary.

We notice that, in the above theorem, the entire boundary 0€;, i = 1,...,n, is regular. In
particular, this holds at the contact points with the other phases €;, j # ¢, and also with the
boundary of the box dD.
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Remark 1.9 (On the regularity of the box). We state the regularity result of Theorem [[.8 (and of
the corollary below) with a box D of class C2. However, it is possible to weaken this assumption,
with exactly the same proof, by assuming that D is a bounded open set of class C1® such that
the solution w to the PDE

—Aw=11in D, w € HY (D),
is a Lipschitz continuous function in R?. It is for instance the case if D is C1! regular.

Moreover, note that, in the special case n = 1, (I.4]) reduces to the classical shape optimization
problem

(1.5) min {1 (Q) + A|Q| : Q open, Q@ C D}.

The existence in the class of open sets and the regularity of the free boundary (precisely, of the
part contained in the open set D) was proved by Briangon and Lamboley in [4]. As a direct
corollary of our Theorem [[.8, we obtain that the entire boundary is C1'® regular.

Corollary 1.10 (Regularity of the optimal sets for the first eigenvalue). Let D C R? be a bounded
open set of class C? and let A > 0. Then, there is o € (0,1) such that every solution Q C D of
@3) is CH* regular.

1.3. Organization of the paper. In Section [2] we recall the definitions of the Weiss’ boundary
adjusted energies and the statements of the epiperimetric inequalities. Moreover, we show how to
use the algebraic properties of these quantities to deduce the rate of convergence of the blow-up
sequences and the uniqueness of the blow-up limits. In Section [3] we prove a technical lemma
that reduces the one-phase and two-phase problems to the case of the Laplacian, which allows us
to apply the results of Section 2l Section [lis dedicated to the classification of the blow-up limits
for the one-phase and the two-phase problems. In Section Bl and Section [ we prove Theorem [T.1]
and Theorem [ respectively. In Section [l we prove that the (eigenfunctions associated to the)
solutions of the multiphase problem (4] are locally almost-minimizers of the one-phase or the
two-phase problems, and we prove Theorem [[.8l

2. BOUNDARY ADJUSTED ENERGY AND EPIPERIMETRIC INEQUALITY

All the arguments in this section hold in every dimension d > 2, except the epiperimetric
inequalities Theorem and Theorem 2.3 which are known only in dimension two.

2.1. One-homogeneous rescaling and excess. Let d > 2 and u € H! (R%). For » > 0 and

loc
xo € R?, we define the one-homogeneous rescaling of v as
u(xo +ra)
r

(2.1) Ugp,r(T) 1= for every z € RY.

Then, uy,, € H. (RY) and for almost every r > 0, E(uy, ) is well defined, where we set
(2.2) E(v) := / |z - Vo — o> dH L,
0B

where z € 9B is the exterior normal derivative to dB; at the point z € R? and H% ! stands
for the (d — 1)-dimensional Hausdorff measure. The excess function e(r) = E(uy, ) controls the
asymptotic behavior, as  — 0T, of the one parameter family ug, , € L?(0By). Precisely, we have
the following elementary estimate.

Lemma 2.1. Let u € Hlloc(Rd) and o € R, Suppose that there are constants ro > 0, v € (0,1)
and I > 0 such that

"0 E(ugo,r)

Then, there is a unique function uy, € L?(0By) such that

[ um0||%2(831) <~ for every e (0,70).
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Proof. We set for simplicity, o = 0 and u, := ug,,. Let 0 <r < R < ry. Notice that, for any
x € 0By, we have

u(Rz) u(rz) _ /TR (m (Vu)(sz) u(sm)) ds — E/TR (z - Vus(2) — us(x)) ds.

R r s 52 s

Thus, by the Cauchy-Schwarz inequality, we obtain

R q 2
/ lug — up|? dH < / </ —|x-Vus—us|ds> dH!
0By 0B1 r S
R R 1
< / </ 37_1d3> </ =z Vus — u8]2d3> dH!
0B1 r r S v

Yy (R Y 7o
< RY —r E(uy) ds < R_/ E(uy) ds,
v ; sl+y v Jo sl+v
which implies the claim by a standard argument. O

2.2. The one-phase boundary adjusted energy. Let d > 2 and u € H'(By). For any A > 0,
we define the one-phase Weiss’ boundary adjusted energy as

(2.4) W (1) ::/ |Vu|2d:17—/ W2 dHE 4 Al fu > 0} 0 By,
B1 0B1

Let r >0, 20 e RZand u € H lloc(Rd). The relation between Wy, and the excess FE is given by the

following formula, which holds for any function u and can be obtained by a direct computation
(see [19] and [16]).

0 d 1
(2.5) EWCP(uﬁfOﬂ“) = ;(WOP(Z:UM) - WOP(Uxo,r)) + ;E(U:co,r)7
where 2, , denotes the one-homogeneous extension of the trace of ug,, in By, that is,
x
(2.6) Zgo.r(X) 1= |@] Ugy r (¥/l2]) = ‘T—’ u(re/jz|) , for every x € Bj.

Theorem 2.2 (Epiperimetric inequality for Wop). Let d = 2. Let Cyp > 0 be a given con-
stant. There exists a constant € > 0 such that: for every non-negative ¢ € H'(0By) satisfying

/ cdH' > Cy, there exists a non-negative function h € H'(By) such that h = ¢ on 0B, and
0By

(2.7) Wop(h) — Ag <(1-¢) (Wop(z) - Ag) ,
where Wop is given by Z4) and z € H*(B;) denotes the one-homogeneous extension of ¢ into
By. Moreover, the competitor h has the following properties:
(a) There is a universal numerical constant C > 0 such that ||h| g1,y < Cllell g1 (a,)-
(b) If Hy,, = {x eR?: (x —x0) v > 0}, for some xo € R? and v € OBy, is a half-plane
such that
(2.8) 0€ Hyyo and z2=0 on R*\ H,,,
then we can choose h such that h =0 on R? \ Hyy o

2.3. The two-phase boundary adjusted energy. For every Ay, Ay > 0 and v € H'(By), we
define the two-phase Weiss’ boundary adjusted energy as

(2.9) Wip(v) = / |Vo|? da —/ 02 dHI + Aj|{v > 0} N By| 4+ Agl{v < 0} N By|.
B1 0B1

As in the one phase case, we have

0

d 1
(2.10) EWTP(ULE(),T‘) = ;(WTP('Z:E(),T) - WTP(UmO,r)) + ;E(Ugco,r),
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where 2, , is given by (2.6).
Theorem 2.3 (Epiperimetric inequality for Wip). Let d = 2. For every Cy > 0 there is e > 0

such that: for every c € H(0B1) such that ctdH > Cy and ¢~ dH' > Cy, there exists
0B; 0B1
a function h € HY(By) with h = ¢ on OBy such that

(2.11) Was(h) — (A; + A2)g <(1-¢) (WTP(Z) (A + Ag)g) ,

where z € HY(By) is the one-homogeneous extension of the trace of ¢ to By. Moreover, there is
a universal numerical constant C > 0 such that [|h| g1 (p,) < Cllel g omy)-

2.4. Almost-monotonicity and almost-minimality. Let u € H lloc(Rd) and zo € R%. For any
r > 0, the function ug,, and z,,, are defined as in (2.1 and (2.0]), respectively. In the next
lemma we will show that a almost-minimality of u, with respect to radial perturbations, implies

that the function r — Wg(uw‘) is monotone up to a small error term (O stands for OP or TP).

Lemma 2.4 (Monotonicity of Wn). Let u € H. (RY) and z9 € RY. Suppose that there are
constants rg > 0, C' > 0 and § > 0 such that

(2.12) Wio(tgyr) < Woi(2a,r) + Crd  for every e (0,70),
where O stands for op or TP. Then, the function

d
(2.13) 7= Wo(ugyr) + %T‘S,

is non-decreasing on the interval (0,rg).

Proof. Using (23] for O =op (resp. (ZI0) for O =Tp), and the condition (Z.I12) we get

0 d _
EWD(umo,r) > - (WD(zmo,r) - WD(uwo,r)) > Cdr’ 1,

which gives ([2.13]). O
2.5. Epiperimetric inequality and energy decay. In this section we show how to use the
epiperimetric inequality to obtain at once the decay for the energy Wi(uy, ) and the convergence

of Uz, in L?(0By). The argument is very general and we treat the cases [ = oP and (0 = TP
simultaneously.

Lemma 2.5. Letu € H} (R?), zg € R? and Wg be as in (24), if O = oP, and ZJ), if O = TP.

Suppose that there are constants ro € (0,1), C >0, § >0 and ¢ € (0, ﬁ) such that:
(a) 212) holds and the limit Og := liné Wo(ugy,r) (which exists due to Lemma[2.4) is finite;
r—

(b) for every r € (0,7q) there is a function hy,, € H'(B1) such that
(2.14) Wa(uag.r) < Wa(haor) + CT°,
and we have the epiperimetric inequality
(2.15) WD(hxo,r) -0 < (1—¢) (WD(zmo,r) — @[}).
Then, there is a unique function uz, € L*(0B) such that
l[trz — Um0||%2(331) <y Y for every 1€ (0,r),

—_— d -
where v = 1d_—€e and I = TOW(WD(Umo,To) - 65) + 5 _C 7“8 g
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Proof. We use (2.5)) for O =oP (resp. (2.I0) for 0 =TP), then the epiperimetric inequality ([2.15)
and the almost-minimality condition (2.14]).

2(VVD(UQUO,T) - ®D) > d <(WD(ZQU0,T) - @D) - (WD(uxo,r) - @D)>

or r
= g(l i - (WD(hIOJ’) - GD) - (WD(USL‘O,T’) - GD))
> g(l : — (Wt r) = O0) — cré),

which implies that the function

. WD(uwo,T‘) - @D dC 5—~
f('l") - Y + 5 o ,YT

is non-decreasing on (0, rg) for v = ldT‘fe, where we notice that v < % due to the choice € <

In particular, using again (Z3]) (resp. ([2.I0)), we get

1
f(r) = mE(Umo,r%

9
2d+5

which integrated gives
T0 1
F0) = 1) 2 [ Bl )

for every s € (0,79). Now, notice that, up to choosing a bigger constant C' in (2.14]), Lemma 2.4]
implies that f(s) > 0 for every s > 0. Thus, we get

70 1
f(ro) = /0 mE(uwo,r) dr,
which is precisely [23]) with I := f(ro). O

3. CHANGE OF VARIABLES AND FREEZING OF THE COEFFICIENTS

The arguments of the previous section, the monotonicity formula and the decay of the blow-up
sequences, can be applied only in the case when the operator in Jy, (resp. Jyp) is the identity.
Thus, in order to prove the regularity results Theorem [[.T] and Theorem we need to change
the coordinates and reduce to the case A = Id. We prove the main estimate of this section in
Lemma below, but before we will introduce several notations.

Let A = (a;j)ij : B2 — Symg and Qop, @, Qr : B2 — RT be as in the Introduction and note
that we have
HA;FH < Mi2 and HA;I/QH < Miﬁ for every x € Bs,
where ||A[| = sup {|Au| : u € R?, |u| =1}.

Remark 3.1. We recall that if M € Sym:{, then there is an orthogonal matrix P such that
PMP! = diag(\1,...,\q), where P! is the transpose of P and diag(\1,...,\q) is the diagonal
matrix with eigenvalues \Aq, ..., A\q. We set D = diag(v/Aq, ...,V \q) and define M'? .= PtDP.

For xg € By and r > 0 we define the functionals

JE(v,r) = / (\VUF + Qoy(azo)]l{wo},) dz ;
B,

Ty = [ (90 + Qb0 pmop + Qunlen)pcop) do-
For every xg € By, we define the function
(3.1) Fyo(a) := xo + A% (z)
and the half-plane H,, = {a; ER?: F (x) e > 0} , where ey = (0,1).
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Lemma 3.2. Let L > 0. There are constants C > 0 and 9 € (0,1) (depending only on Cy, Cq,
My, Mq,8a,0q,61,C1 and L) and § = min{ds,dq, 01} such that: if u € HY(By) is a nonnegative
L-Lipschitz continuous function and a almost-minimizer of Jop in B; , xog € By, NOQy, and
u=wuoFy, (Fy, is defined in BI)) above), then for every r € (0,79),

(3-2) Jio(,r) < (14 Cro)J3e (v, r) + Cr* ™,

oP
for every © € H'(B,) such that @ — © € H}(B,) and © =0 on R?\ Hy,.

Moreover, there is a numerical constant Cy > 0, such that

= 2 1)
Wop(hy) + Co(MaL* + Mg)Cr°,

for every v € (0,79), where C is the constant from B.2), u,(z) = a(rz), 2 is the one homo-

geneous extension of U, in Bi, h, is the competitor given by Theorem [Z.8 and A = Qop(x0) in

24).

Proof. Let xg € 02, N By, r > 0 and p = M;/zr and notice that this implies Fy(B,) C B,(zo).
Let & = uo F,, and v = vo F,,. Then, the Holder continuity of A and @ := Q. and the ellipticity
of A give

oo p) o= [ (o) g+ Qg ) e < o)
By(zo

+ Oy My p°A / a;j(x) Oyu djudx + CoMqpQ / Q)1 >0y dx
Bp(xo) By(zo)

< (14 Cr)Jop (u, o, p),

for some positive constant C' > 0. Analogously, we get the following estimate from below:

(33) joP('nymp) > (1 - Cr5)J()P(U7$07p)'
Putting the two estimates together and using the almost-minimality of u, we get
14 Cr?

Jow (1, 20, p) < (1+ C1p™) Jow (v, g, p) + C1 (1 + Cr0)p* o1,

1—Cro
Now, notice that by the choice of the function F;, we have the identity

Val* () = aij(w0) Ou(Fay (2)) Qju(Fay (), @€ By

Therefore, a change of coordinates and the estimate ([3.3]) give

/Fl(B (o) <‘VU’2 + Q(azo)]l{u>0}> dxr = det (A_l/z)j (u, o, p)
p\Z0

< (140 / (IV9 + Qao)t sy ) dr + Cr2+7,
Feg (By(wo))

for some other positive constant C' > 0. Finally, observing that B, C F. _1(Bp(:170)) we get

Joo(a,r) < (14 Cr0)J3e (0,r) + Cr¥0 + CroJ50 (u, vy /27"),

which gives ([8.:2]) since u is Lipschitz continuous with Lipschitz constant ||Va||pe = M ;/ °L.

We next notice that we have the scaling

Jow (Ur, 1) = Jéﬂé)( r).
Thus, the almost-minimality inequality (B.2]) translates in
(3.4) J2 (@, 1) < (14 Cr®)J= (3, 1) 4 Cr.
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Let Cg > 0 be the constant from Theorem Then, since u is Lipschitz continuous, we have
/ |Vh,|? do < CE/ (|Va,[* + a2) de < CoMaL?,
B1 8Bl

where C is a numerical constant and h, is the competitor from Theorem Taking h, as a
competitor in (3.4]), we obtain

JE0 @y, 1) < Jgg(hr,1)+cr5(/ Vi di 4+ Q(a0)|Bi]) + O
By

< T3 (hy,1) + Cr (CoMAL? + Mgl Bi|) + O,
which concludes the proof, the case v, = z,. being analogous. O
An analogous result, with essentially the same proof holds in the two-phase case.

Lemma 3.3. Let L > 0. There are constants C > 0 and 9 € (0,1) (depending only on Cy, Cq,
My, Mq,6a,0q,01,Co and L) and 6 = min{ds,dq,d2} such that: if u € H*(By) is a L-Lipschitz
continuous function and a almost-minimizer of J.p in Ba, xo € By, N0y, and t = wo Fy, then
we have that for every r € (0,7¢),

(3.5) JE (1) < (14 Cr)J20 (3,1) + Cr2¥,
for every 5 € H'(B,) such that @ — v € H}(B,).

Moreover, there is a numerical constant Cy > 0 such that

= 2 )
Wi (1) < WTP(?) + CO(MAL2+ MQ)CT5,
Wie(hy) + Co(Ma L + Mq)Cr®,

for every r € (0,79), where C is the constant from BH), @, (z) := a(rz), z, is the one homo-

geneous extension of U, in By, h, is the competitor given by Theorem [Z.3 and Ay = QI (z0),
A2 = Q;P(xo) m ([ZQI)

Remark 3.4 (On the non-degeneracy). In [12] David and Toro proved that Lipschitz continuous
almost-minimizers to the one-phase and the two-phase functionals for the Laplacian are non
degenerate (see [12, Theorem 10.1]). Note that their definition of almost-minimizer is slightly
different from ours. However, their proof still holds in our case with small changes which come
from the additional term Cr2%9 of our definition. It follows from Lemma 3.2 and Lemma B3] that
if u is a almost-minimizer of the functional J,, (resp. w is a almost-minmizer of J;,) then u (resp.
u4 ) is non-degenerate with respect to A in the sense of the following definition.

Definition 3.5 (Non-degeneracy). Let d > 2 and A : R — Sym;r be a given function. We
say that the non-negative function uw € H'(By) is non-degenerate (with respect to A), if there are
constants n > 0, € € (0,1) and ro > 0 such that, for every xo € By and r € (0,1¢), the following
implication holds:

/ wo Fyy dH™t < nre = uoFy, =0 in B (xp),
OB

where Fy,(x) := xo + A;/(f(x)

4. BLOW-UP SEQUENCES AND BLOW-UP LIMITS

Let u € H(Bsy) be a Lipschitz continuous function. Let (x,),>1 be a sequence of points in
By N0, converging to some zg € By N 0y, and (7,),>1 be an infinitesimal sequence in (0, 1).
Then, the sequence uy,, ,, is uniformly Lipschitz in every compact subset of R2. Thus, up to
extracting a subsequence, there is a Lipschitz function ug : R? — R such that

(4.1) lim wug, ., = uo,
n—o0
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where u;, ;, is defined in (2.]) and the convergence is uniform on every compact subset of R2.

Definition 4.1. If @) holds, we will say that ug, ,, is a blow up sequence (with fized center,
if ©n, = xo, for everyn > 1). If the center is fized, we will say that uy is a blow-up limit at xg.

We summarize the main properties of the blow-up sequences and the blow-up limits in the
following two propositions. We notice that Proposition holds in every dimension d > 2, while
Proposition 4.3] is known to hold only for 2 < d < 4.

Proposition 4.2 (Convergence of the blow-up sequences). Let u € H'(Bs) be as in Theorem
(21 or Theorem[1.3 and let uy, = uy, 4, be a blow-up sequence converging to some ug € H} (R?).
Then:

e sequence u, converges strongly to ug in

1) th trongly t H] (R?);

(2) the sequences of characteristic functions 1, >0y and 1y, <0y converge in Ll (R?) to
Liuo>0y and Tguo<o} respectively.

Proposition 4.3 (Classification of the blow-up limits). Let u € H(Bz) be as in Theorem L1l or
Theorem [L.3. Let xg € 092, N By and ug € Hlloc(}Rz) be a blow-up limit of u at xg.

(OP) Ifu is as in Theorem[I1l and xo € 0Qy, N By, then ug is of the form

(4.2) up(z) = QL (z0) max {0,z - A_l/z[ |}, where vedB;.
(OP-¢) If u is as in Theorem L1 and xo € 02, NOH N By, then ug is of the form

(4.3) up(z) = pmax {0, - A_l/z[ 1},

where j1 > Qé/f(mo) and v € 0By is such that A;O/ [v] is normal to OH and pointing
mwards.
(TP) Ifu is as in Theorem .3 and xo € 0QF N O, N By, then ug is of the form

(4.4) uo(x) = iy max {0,z - A7 [V]} + p_min {0,z - A7 2[v]},

for some v € By and some pi,p— > 0 such that p2 — p? = Qi (20) — Qm(20) and
Wi = Qii(z0), 12 = Qr(o).

The proof of Proposition follows by a standard variational argument that only uses the
almost-minimality of u; for more details, we refer to [I] (see also [16]). Proposition 3 follows by
the optimality of the blow-up limits and the Weiss’ monotonicity formula (Lemma [2.4]). We will
need the following definition.

Definition 4.4 (Global solutions). Let u: R* — R, u € H. (R?) be given.

(OP) We say that u is a global solution of the one-phase Bernoulli problem, if: w > 0 and, for
every ball B := Br(z¢) C R?, we have

(4.5) / IVl dz + Al{u > 0} N B| < / Vo2 dz + Al{v > 0} 1 B|,
B B

for every v € HY(B) such that u —v € H}(B).
(OP-c) We say that u is a global solution of the one-phase constrained Bernoulli problem in
H,ifu>0o0nH,u=0 onR?\ H and [@3) holds, for every ball B := Bg(x¢) C R? and
every v € HY(B) such that u—v € H}(B) and {v > 0} C H.
(TP) We say that u is a global solution of the two-phase Bernoulli problem if, for every ball
B := Bg(zo) C R?, we have

(4.6) /B (‘VUF + Al]l{u>0} + Ag]l{u<0}> dx < /B (‘V?)P + Al]l{v>0} + Ag]l{v<0}) dzx,

for every v € HY(B) such that u — v € H}(B).
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Lemma 4.5 (Optimality of the blow-up limits). Let u € H*(Bs) be as in Theorem[L1l or Theorem
and let u, == uy, z, be a blow-up sequence converging to the blow-up limit ug € H} (R?).
Then, we have:
(OP) If u is as in Theorem [I1l and zo € 9y, N By, then ug o A;/OQ is a global solution of the
one-phase problem with A = Qop(x0).
(OP-c) If u is as in Theorem [I1 and x¢ € 0, NOH N By, then, up to a rotation, ug o A;/OQ s a
global solution of the constrained one-phase problem with A = Qop(x0).
(TP) If u is as in Theorem[13 and xo € O N AN, N By, then ug o A;/(f is a global solution of
the two-phase problem with A1 = Q7 (x¢) and Ay = Q7 (xo).

Recall that the function @ = u o F,, where Fy, is as in (3], is a almost-minimizer of the
functional JZ? (Lemma B.2]). We then refer to Lemma 4.6 in [16] applied to @ for the proof of
Lemma It is also worth mentioning that the strong convergence of the blow-up sequences
and the optimality of the blow-up limits are equivalent.

Lemma 4.6 (Homogeneity of the blow-up limits). Let u € H(By) be as in Theorem [l or
Theorem [L.3. Let xg € By N 0K, and let ug,,, be a blow-up sequence converging to a blow-up
limit ug. Then, ug is one-homogeneous.

Proof. Assume that xp = 0 and set © = u o F,,. Then

4|

(rz)
—
We first notice that by Lemma[3.2] Lemma 2.4l and the Lipschitz continuity of u, we get that the
limit O := }1_)11% Wa(a,), O = op, TP, exists and is finite. Now the strong convergence of @, to

_ —1 —
Ugg,r = Uy O AIO/2 ) where Up(x) ==

g := Ug © A;/OZ (Proposition [£.2]) implies that, for every s > 0, we have
Op = lim Wo(@,) = lim Wa(4,, ) = lim Wo(iy,s) = lim Wo((@,)s) = Wa((do)s).
r—0 n—00 n—00 n—00
In particular, s — Wpg(tg, s) is constant. Now, since ug is a global solution (Lemma [L.1]), (2.5)

and (ZI0) imply that E((dg)s) = 0, for every s > 0. Thus we have x - Viig = @ in R?, which
implies that g (and thus, ug) is one-homogeneous. O

Proof of Proposition 4.3l We now notice that g = ug o A;/(f : By — R is one-homogeneous
and harmonic on the cone B1N{@y # 0}. Thus, the trace of %y on the sphere satisfies the equation

—Aslig = (d - 1)@0 on S 'n {Z_Lo #* 0},
where in dimension two the spherical Laplacian Ag is simply the second derivative and d—1 = 1.
Thus, g is of the form () = sin(d + 6), & € S?, for some constant #y. This implies that
{tp # 0} is a union of intervals of length 7. In the one-phase case, since u is non-degenerate (see
Remark [3.7)), this implies that g is of the form ([42]), for some constant u(xg). Now, an internal
variation argument (see [I]) implies that u(xzg) = Q:)/f(xo), if 1o € HN By, and p(wg) > Q:f(xo),
if xg € OH N B;. The two-phase case follows again by an internal variation argument (see [2]). O

Finally, we prove a uniqueness result for the one- and two-phase (Theorem [I.T] and Theorem
[LE) blow-up limits. This is the only result of this section that cannot be immediately extended
to higher dimension. This is due to the fact that the epiperimetric inequality (Theorem and
Theorem 2.3]) is known (for the moment) only in dimension two.

Proposition 4.7 (Uniqueness of the blow-up and rate of convergence of the blow-up sequences).
Let u : By — R be as in Theorem [I1] or Theorem [I.3. There are constants C > 0, v > 0 and
ro > 0 such that the following claims do hold.

(OP) If u is as in Theorem [I1l, then for every xog € 0, N Bi, there is a unique blow-up
Uy : R?2 — R (of the form [@2) or [@3)) such that

(4.7) Ug,r — Uao |l Lo (By) < Cr7 for every € (0,70).
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(TP) Ifu is as in Theorem[L3, then for every xo € O NN, N By, there is a unique blow-up
Uy, R?2 — R (of the form ([@&4)) such that

(4.8) [Uzg,r — Uzl oo By < Cr7 for every 1 € (0,70).

Proof. Let u be as in (OP) and zg € 0, N B;. We set @ = uo Fy, and u,(x) := ﬂ(:x), and we
notice that 4, = g, , © A;/OZ . By Lemma and Lemma 24, r — Wo,(@,) + Cr? is monotone.
On the other hand, the homogeneity of the blow-up limits, imply that

@OP = lim WOP('L_LT) = z620P($0)-
r—0 2

Thus, by the epiperimetric inequality (Theorem 2.2)), Lemma and Lemma 2.5 we have that
there exists a one-homogeneous function g such that, for » > 0 small enough,

[ty — tiol| 2 (o) < Cr7/2,
where 7y is the constant from Lemma Integrating in r, we get that
|ty — aollz2(,) < Cro/2,
Now, since u, = Uy, © A;OZ and A;/OZ is invertible, we get
[ umoHL?(Bl) < Cryo/z,

where u,, = g o A;{f . Finally, we notice that the Lipschitz continuity of w implies that there
is an universal bound on ||V r||pe(p,) and |[[Vug, ||z (p,)- Thus, we get (A1) with v = ~0/4.
The proof of (TP) is analogous. O

Remark 4.8. We notice that the above result does not hold at the one-phase points zo € 9Q;\9Q;,
of the solutions u of the two-phase problem (Theorem [[H). This is due to the fact that the
positive part u4 is not a solution of the one-phase problem in the balls B,(zg) that have non-
empty intersection with the negative phase €2, . In fact, the blow-up limit u,, (of u at z¢) is still
unique, but the decay estimate (7)) holds only for r < Zdist(zg, Q7).

5. RECULARITY OF THE ONE-PHASE FREE BOUNDARIES. PROOF OF THEOREM [[.1]

Let u € H'(By), u > 0, be as in Theorem [Tl By Proposition 7] we have that, for every
xo € 08, N By, there is a unique blow-up limit of u at x3. We denote it by

gy (2) = plieo) max{0, v, - a},

where v, is of the form A;/Oz [v], for some v € OB1; and pu(xg) is such that Qup(zg) < p?(xg) <
M, L?, where L is the Lipschitz constant of u. We also notice that

p(xo) = Q:f(xo) whenever x € 9Q, N By
Moreover, for every point xg € 02, N By, we define the half-plane
Hyy = {z €R? : z-vy, >0}
We first prove the following:

Lemma 5.1. Let u be as in Theorem [l There are constants C > 0, v > 0 and rg > 0 such
that, for every xg € 9, N B1, we have

(5.1) QrNBID{ze€B) : x vy >Cr’} and Qo N{x € By : x-1vy, < —Cr’} =10,

for every r € (0,r), where Qg , == {ug, , > 0}.
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Proof. The first part of (5.1 follows by the uniform convergence of the blow-up sequence g,
(Proposition 7] equation ([4.7))) and the form of the blow-up limit ug,. The second part of (5.1])
follows again by (4.7)), the fact that u,, = 0 on B \ Hy, and by the non-degeneracy of u, which
can be written as

If g, (yo) >0, then |ug, llre(s,(y)) = Cs, forevery se(0,1),
for some C' > 0. O

Lemma 5.2. Let u be as in Theorem[I1l. There are constants R,« € (0,1) and C > 0 such that,
for every xo,yo € 00y, N Br, we have

(5.2) [Vao — vyol < Clzo —wol®  and  [u(zo) — p(yo)| < Cloo — ol
Proof. Let v € (0,1) be the exponent from Proposition .7 and let o := ﬁ Let zo,y0 €

Br Mo, where we choose R such that (2R)!~ < rg, where r( is the constant from Proposition
@7 We set 7 := |29 — yo|* . Recall that u is Lipschitz continuous and set L = ||Vu| . Then,
for every x € By, we have

To — Yo
‘7,7?” = L|zg — yo|“.

[tz () = Uyo,r(2)] = %!U(xo +rx) —u(yo +rz)| < L
and then, by an integration on By, we get
[t — ol 2(5y) < |B1l72L|zo — yo|*.
On the other hand, by the choice of R, we have that r < rq; applying Proposition 4.7 we get
[ttag,r — s || L2(By) < CT7 and l[tgo,r — wyollL2(By) < CT7.

Thus, by the triangular inequality and the fact that r7 = |z¢ — yo|®, we obtain
(5.3) [ty = gl L2y < (1B1]7*L +2C) g — ol

The conclusion now follows by a general argument. Indeed, for any pair of vectors vy, vy € R2,
we have
2 2
lvg —wva| = <—/ vy -$—v2-x|2dx>
s B

(5.4 §<AJ@r@+—@r$MP@>W+(AJ@y@_—@T$LFwyh

=2<4Jwy@+—wmxnﬁw)w.

Applying the above estimate to v1 = p(xo)va, and va = p(yo)vy,, and using (B.3)), we get (5.2). O

Proof of Theorem [IT.I1 We first claim that, for every ¢ > 0, there exists p > 0 such that, for
xo € 082, N B, we have

(5.5) u>0 on C*(zg,e) N By(zo) and u=20 on C™ (xg,¢) N By(xo),

where
C*(zg,¢) == {z e R2\{0} : Hvy, - (2 — 20) > €l — o} .

Indeed, the flatness estimate (B.I)) implies (B.5]) by taking p such that CpY < e, where C' and ~
are the constants from Lemma [5.11

We now fix zg € By N 08,. Without loss of generality we can suppose that ¢ = 0 and
H,, = {(s,t) € R? : t > 0}. Now, let € € (0,1) and p > 0 as in (55 and set § = pv/1 — 2. By
(B3] we have for every s € (=4, 9)

o the set S5 := {t € (—6,9) : u(s,t) > 0} contains the interval (pe,d);

e the set S§ := {t € (—=0,0) : u(s,t) =0} contains the interval (—d, —pe).
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This implies that the function
g(s) := max{t € R: u(s,t) > 0}
is well defined and such that
SQs N ={(s,1) € 5Qs5 : g(s) <t}  and  SQs5\ Dy ={(s,t) € 5Qs : g(s) > t},

where SQs = (—0,0) x (—=9,0). Now, the flatness condition (5.1) implies that g is differentiable
on (—d,60). Furthermore, since v is Holder continuous, we deduce that g is a function of class
C1@. This concludes the proof. O

6. REGULARITY OF THE TWO-PHASE FREE BOUNDARIES. PROOF OF THEOREM

Let u be as in Theorem Then, by Proposition .7}, at every point xy € 99, N By there is
a unique blow-up limit u,, given by
Ugo (T) = py(w0) max{0,x - vy, }, if g € Ty := (0QF\OQ, ) N By;
Upy (7) = p—(x0) min{0, @ - vy}, if wo € T := (92, \OQ}) N By;
Ugo () = pig (w0) Mmax{0, z - vz} + p—(20) min{0, 7 - v, }, if 29 € Ty := 0QF NOQ, N By,

where v, € R? is of the form A;OI/ *[v], for some v € OB, and p4 (o) and p_(zg) are positive
and such that Q% (zo) < p (zo) < MyL?, where L = ||Vul|f(p,) is the Lipschitz constant of u,
and

,u?c(xo) = Qi(xo), if xg € 'y

13 (x0) — 2 (x0) = Qi (w0) — Qrp(wo), if wo € Ty
Notice that Corollary [[.3] already implies that the one-phase free boundaries I'y and I'_ are
C1@ regular. Thus, it remains to prove that 9Q} and 92 are smooth in a neighborhood of I'y.

Lemma 6.1 (Flatness of the free boundary at the two-phase points). Let u be as in Theorem
[.3. There are constants C > 0, v > 0 and rq > 0 such that, for every xg € O, we have

(6.1) Qf . NBiD>{xeBy:x vy >Cr'} and Qp ,NBiD{zxeB:x vy,<-Cr},

zo,r

for every r € (0,70), where Q. := {ug,r > 0} and Q. = {ug,, < 0}.

To,r
Proof. Both the inclusions of (6.]) follow by the uniform convergence of ug, , (Proposition 1]
equation (£.8) to the blow-up limit wg,. (]

Lemma 6.2. Let u be as in Theorem[I3. There are constants R, € (0,1) and C > 0 such that,
for every xg,yo € Ol'y» N Br, we have

(6.2) Vzo — Vyol < Cloo —yol®  and  [pa(20) — pt(vo)| < Clzo — yol*
Proof. The proof follows step by step the one of Lemma O

Reasoning as in the one-phase case, and using Lemma and Lemma [6.2] one can prove that
the two-phase free boundary I'y, is contained in a C1® curve. Unfortunately, this result by itself
is not sufficient to deduce that 9QF are smooth. We now prove that the function u, (resp. u_)
is a solution of the one-phase free boundary problem

(6.3) —div(AVuy) = f1 in QF, ’A;/()QVU+‘($Q) = py(zg) for every x¢€ 0Q
where the boundary equation is understood in a classical sense. This is an immediate consequence

of the following lemma which states that uy is differentiable in ;7 up to the boundary.

Lemma 6.3 (Differentiability at points of the free boundary). Let u be as in Theorem [1.A.

We consider two cases.

(OP). For every xzo € (O} \ 0Q;,) N By, uy is differentiable at xo and there is r(xg) > 0 such
that

s () = s (20)(@ — @) - vy | < Cl — 20| for every @ € Byiyy(w0) N Q-
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(TP). There exists a universal constant ro > 0 such that for every xo € OQF NOQ, N By, uy is
differentiable in By, (zo) N, and

u
(6.4) luy (x) = py (o) ( — 0) - vy | < Cla — o™ for every € Byy(x0) N2
In particular, for every xoy € O N By, we have Vuy(z0) = p4(x0) Ve, -

Proof. The two cases are analogous. We will prove (TP). By Proposition 4.7] for every r < rq,
we have
| ma{0, e} — masc{O, sy Hloe () < Nt — o 1003 < €77

Thus, using the flatness of the free boundary (Lemma [6.1]), we get for every « € By N {uy,,» > 0}

| max{0, g (€)} — st (20) - V| < | max{0, ugy r(x)} — max{0, ug, ()}
+ i (20) [ min{0, z - vy }| < Cr7.

Now, taking r = |z — x| and rescaling the above inequality, we obtain (6.4)) O

We notice that at the two-phase free boundary point the estimate (6.4]) holds in a ball whose
radius does not depend on the point. Moreover, on the two-phase free boundary the gradient has
a universal modulus of continuity (see Lemma [6.2]). We next show that p, is Holder continuous
on Q.

Lemma 6.4. The function py : 00 — R is (locally) Holder continuous.

Proof. We infer that lemma is a consequence of the following claim: if (x,),>1 is a sequence

of one-phase points, z;,, € '}, converging to a two-phase point yg € I'yp, then i (yo) = Qf(yo),

where we set Q4 := Q.. Indeed, we we notice that:

e on the set 'y, we have yy, = Qf.
o for every y1,y2 € I'vp, we have [py (y1) — py(y2)| < Clyr — y2|*.

By the first bullet p is Holder continuous on the open subset ', of 02, N By. To prove that
p+ is Holder continuous on 'y, let yo € Ty and x,y € 9QF N By (yo); we have to show that
|+ () — pe(y)| < Clz — y|*. By the two bullets, it is obvious if either z,y € T'y or z,y € I'yp.
Then, assume that x € I'y and y € 'y, and denotes by y; the projection of y on the closed set T,
where I is the set of points z in I';, such that every neighborhood of z has non-empty intersection
with T'y. Note that, by definition of y;, we have |y; — y| < |z — y| and then |z — y1| < 2|z — y|.
Therefore, using the triangular inequality and the claim we get

1/ 1/o
s (@) = e )] < 1QF (@) = QL W)l + s (1) = ps ()] < Cla =yl
We now prove the claim. Up to a linear change of coordinates we may suppose that A,, = Id.
Denote by y, the projection of x, on the closed set 9} N dQ,, and set r, := |z, — yn|. Since
u 18 Lipschitz continuous, up to a subsequence, u, := u;{mm converges locally uniformly to some
function u~,. The absence of two-phase points in B, (x,) implies that u, is a solution of

—div(A,Vu,) =rpfn in {u, >0}N DBy, [Vu,| =¢q, on 0{u, >0}NDBy,

where A, (x) := A(zy + ), fo(x) = f+(z, +rp2) and g,(z) = Qf(mn + 702) Ve, 47|, Where

we recall that vy, 1., is of the form A;,/j +rozl?], for some 7 € 0B;. Passing to the limit as

n — 00, we obtain that us, is a viscosity solution to
. 1
~AUse =0 in {uo >0} NB1, [Vl = Q(o)lvy| on 0{us >0} N By.
On the other hand, for every £ € B;, we have

In —Y
ul‘nﬂ"n (5) = uynﬂ"n (g + gn) ’ where gn = % € 8Bl )
n
and, up to a subsequence, we can assume that &, converges to some &, € 0Bj. Since y, €
ot NoQ,, , Lemma [6.3] implies that, for every = € Ba,, (y,) N {u > 0}, we have

[u(x) — py (yn) max{0, (z — yn) - Vyn}’ <Clz - ynll—i_’y < Crrlz—i_’y'
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After rescaling, this gives

|ty (€ + €n) = p1- (yn) max{0, (§ + &) - vy, } < Cr) for every € € Bi N {ua,r, >0}

Moreover, by the continuity of py on Q. N OQ,, , we have that, for every & € By,
Jim [y (yn) max{0, (€ +&n) - vy, } — 14 (yo) max{0, (§ + &oo) - vy }| = 0.
Therefore, it follows that ug, r, (£) = y, r,(§ + &) converges to

Uoo (&) = p+(yo) max {0, €+ &) Vyo} for every ¢ € Bj.

Next we claim that £ - 1y, = 0. Indeed, if { - v, > 0, then u(0) > 0 which is in contradiction
with the uniform convergence of u,; on the other hand, if £ - ez, < 0, then uss = 0 in a
neighborhood of zero, which is in contradiction with the non-degeneracy of u,. Thus, we get

Uso (§) = p4 (yo) max {0,& - vy} for every & € By.

Now since |Viueo| = pit(y0), we get that py(yo) = Qf(yo). O

Theorem [[L5lis now a consequence of (6.3]), the Lemma [6.4] and a general result (Theorem [A.T])
on the regularity of the one-phase flat free boundaries, which is due to De Silva (see [13]). In the
appendix we state Theorem [A]in its full generality, for viscosity solutions of the problem (6.3)),

. . . . . . . ot
but in our case the function uy is a classical solution, differentiable everywhere on €2, .

7. PROOF OF THEOREM [L.8]

7.1. Preliminary results. In this subsection, we briefly recall the known results on the problem
(L4). The existence of a solution of (I4]) in the class of the almost-open subsets of D can be
proved by a general variational argument (we refer to [7] and to the book [5] for more details).
In the context of open sets, the existence of an optimal n-uple was proved in [3].

From now on, (Q4,...,%,) will be a solution of (L4) and u; : R? — R, for i = 1,...,n, will
denote the first normalized eigenfunction of the Dirichlet Laplacian on €2;, that is,

—A’LLZ' = Al(QZ)ul in QZ‘, Uy = 0 on R2 \QZ, / u? dr = 1,
Q;
where, for every i = 1,...,n,

fQi |Vu|? dx B sz |Vu|? da

ueHér(lflzin)\{o} sz wldr sz ul2 de

A () =
where H}(Q;) = {u € HY(R?) : u = 0 on R2\Q;}. In particular, u; > 0 on R? and €; = {u; > 0}.

Lipschitz continuity. The functions u; : R? — R are Lipschitz continuous on R?, that is, there is
a universal constant L > 0 such that [[Vu;||per2) < L, for every i = 1,...,n. We refer to [7] for
the general case and to [3] for a simplified version in dimension two.

Absence of triple points. For every 1 < i < j < k < n, we have that 9€; N 0Q; N9Qy, = 0 (see [7]
and [3] for a simpler proof in dimension two).

Absence of two-phase points on the boundary of the bozx. For every 1 < i < j < n, we have that
OQZ N aQ] NoD = (Z) (see [3])

As a consequence of the above properties, we have that, for every ¢ € {1,...,n}, the boundary
0%); can be decomposed as follows:

0Q; = | J(09; N 0Q) U (99 N 9D) UT (),
ki
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where o, (€2;) is the one-phase free boundary of €2;, determined by:
xg € Top(£2;) < there exists r > 0 such that B, (x¢) N ((R2 \D)uU U Qk) = (.
ki

We notice that already using the the regularity result of Briangon and Lamboley [4], the one-
phase free boundary (lying inside the open set D) is locally a C® curve. Thus, in order to prove
Theorem [} it will be sufficient to show that 0€; is C1'® in a neighborhood of the points of
0Q; N ID (Subsection [7.2)) and 9; N 9y, (Subsection [7.3)).

7.2. One-phase points at the boundary of the box. Let 1 < i < n and zg € 0D N 08;.
Then, there is a neighborhood U of z such that U N Q; = 0, for every j # i. For the sake of
simplicity, in this subsection, we will set

Q=Q;, u=w, =0 and D=Q,U((DNU).

It is well known that the eigenvalues of the Dirichlet Laplacian are variationally characterized by

)\1(9):/Q|Vu|2dx:min{/Q|Vv|2d:E:vGHol(Q),/Qv2dx:1}.

Moreover, {u > 0} =  and u is a solution of the following minimization problem:

(7.1) min{/[)\VU\2da:+A\{v>O}] ‘v € HY(D), /Dv2da;:1}.

We will show that the solution u of (7.I]) is an almost-minimizer of the one-phase functional J,.
A result in the same spirit was proved given in a more general case in [16, Proposition 2.1].

Lemma 7.1 (Almost-minimality of the eigenfunction). Let u : RY — R be a Lipschitz continuous
function, L = ||Vul||p be the Lipschitz constant of u and A\ () = / \Vul|?dz. If u is a
D

solution of the minimization problem ([1l), then there exists ro > 0 such that u satisfies the
following almost-minimality condition:

For every r € (0,79) and xg € 08y,

/ Vul?de + Ay 0 B, (20)] < (1+ C1r+2) / Vo[2 dz + AJQy N By(z0)] + Cor?,
Br'(xO) Bv"(xo)

for every v € HY(D) such that u=v on D\ B,(xg), where C; = 2L? and Cy = A1 (£2,)2L2.
0

Proof. Let xg € 0, r > 0 and v € H}(D) be such that u = v on D\ B,(zg). Then, define the
renormalization w = Hszzlv € H}(D) and notice that we have

1 —1
/ |Vw|? dz = (/ v? dm) / |Vo|? dx < <1 —/ u? dm) / |Vo|? da
D D D Br(z0) D
1 2 2,.d+2 2

where for the last inequality, we choose rg such that 2L2r6l+2 < 1 and we use the inequality

T—x <1+ 2X, for every X < 12, with X = L?r™2. Now use w as a test function in (Z.I)) to
get that

(7.2) / \Vul?dz + Al{u > 0}| < (1 +2L%r"2) / |Vo|? dx + Al{v > 0}],
D D

from which the claim easily follows since /

|Vo|? do = / Vu|>de < M\ (). O
D\Br(z0) D\ By (z0)
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We now notice that the C? regularity of 9D implies that there is a constant § > 0 and a
function ¢ : (—6,6) — R such that

DNSQs = {(21,22) € Qs : glx1) < a2},

where SQs = (—0,9) x (—9,d). Moreover, up to a rotation of the plane, we can assume that
g (0) = 0. Let ¢ : SQs C R? — R? be the function that straightens out the boundary of D and
let ¢ =1 :9(SQs) C R? — R? be its inverse:

(w1, @2) = (21,22 — g(21)),  ¢(x1,22) = (T1, 32 + g(21))-
We define the matrix-valued function A = (a;;);j : SQs — M?(R) by

_ (o) a2(@)) _ 1 —g'(z1) _
Ag 1= <a21(:13) a22(:17)> - <—g’(m1) 1+ (g’(:m))z) for every  x = (21,22) € 5Qs.

We recall that H = {(x1,22) € R? : 25 > 0}. By an elementary change of coordinates, we obtain
the following result.

Lemma 7.2. Let u and A be as above. There exist constants C1,Cy > 0 and ro > 0 such that
Bary C 9(SQs) and the function 4 = u o ¢ satisfies the following almost-minimality condition:

For every xo € 0Q4 N By, and r € (0,ry) we have

ou 0u
() 28 g AN B,
/Br(xo)a]($) 8$Z ax] dr + | N (330)|

< (14 Cyrit?) / a;j(x) v 9o dx + A% N By(20)] + Cor?™,
Br(mo) al‘l al‘j

for every © € H'(Ba,,) such that i =¥ on Bay, \ B.(z0) and Q; C H.
Proof. Let xg € By,, r € (0,79) and ¥ such that @ = @ on Ba,, \ B,(z0). Then, use v € H}(D)

defined by v = 9 0% in 1 ~1(By,,) and v = u otherwise, as a test function in Lemma [IT] to get

/ \Vul? dz+ Ay N Be,r (y0)| < (1+Clrd+2)/ Vol dz+ AQy N Be,, (o) |+ Crtt?,
Bcw(yo) B%r(yo)

where c4 is a positive constant depending only on ¢ such that ¢(B,(z0)) C Be,r(yo) and yo =
@(xo). Now, with a change of coordinates and noticing that u = v on ¢(B,(xg)) we have

/ aij (@) 2L 00 o Qs 1 By ()] = / Vul de + A2 1 6(B, (o)
By (20) Oz; Ox; #(Br(20))
< (14 Oyt / Vo|? dz + A9, N &(Br (x0))| + Car®+?
é(Br(x0))

= (14 Cyr*t?) / 08 OV 1o+ NI O By ()] + Cor 2,

oo ") B B,
where Cy = \1(22,,)C1 + C. This concludes the proof. O

Proof of Theorem (the one-phase boundary points). We are now in position to conclude the
regularity of the free boundary 9€2; in a neighborhood of any one-phase boundary point xy €
0Q; N 0D. Indeed, we may assume that xg = 0 and that 0D is the graph of a function g.
Reasoning as above, we have that @;(x1,z2) = w;(z1, 2 + g(x1)) satisfies the almost-minimality
condition from Lemma in a neighborhood of the origin. On the other hand, it is immediate
to check that @; is still Lipschitz continuous. Thus, we can apply Theorem [Tl obtaining that, in
a neighborhood of zero, 9€; is the graph of a C® function. (]
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7.3. Two-phase points. Let Q; and §2; be two different sets from the optimal n-uple (Q,...,$,),
solution of ([4). Let u; and u; be the first normalized eigenfunctions, respectively on €; and

2. Finally, let g € 9€; N 0€;. We know that there is a neighborhood U C D of ¢ such that

UNQy =0, for every k ¢ {i,j}. Setting D := Q; UQ; UU, we get that the function u := u; — u;

is the solution of the two-phase problem

(7.3) min{/ Vo2 dz + ¢|QF | + ¢;|Q, | : v e Hi(D), / v dr = / v? dr = 1}.
D D D
We next show that the solutions of (7.3)) satisfy a almost-minimality condition.

Lemma 7.3. Let D C R?, u ¢ H&(D) be a Lipschitz continuous function on R® and L its
Lipschitz constant. Suppose that u is a solution of the minimization problem (T3l). Then, there
is some ro > 0 such that u satisfies the following almost-minimality condition:

For every r € (0,79) and xg € 0y,

/ Vul? dz + Gl 0 By (x0)] + 4125 1 By (o)
By (z0)

< (1 + Clrd+2) / \VUF dr + ;| N B(x0)| + ¢;1%, N By(xo)| + Cordt?,
By (zo)

for every v € H} (D) such that u — v € HY(B,(0)), where C; = 2L? and Cy = C4 / \Vul|? d.
D

Proof. Follows precisely as in Lemma [T.1] O
We are now in position to complete the proof of Theorem [I.8

Proof of Theorem (the two-phase free boundary). We only need to notice that in a neighbor-
hood of any two-phase point xo N 9€; N0Q; ND, Lemma [[3] implies that u is a almost-minimizer
of Jrp, where the matrix A is the identity, @+ = ¢; and Q_ = ¢;. Thus, it is sufficient to apply
Theorem O

APPENDIX A. THE FLAT ONE-PHASE FREE BOUNDARIES ARE Cl’a

In this section we discuss a regularity theorem for viscosity solutions of the one-phase problem
(without constraint). We fix f : Bo — R to be a bounded and continuous function and A : By —
Sym:lr to be a matrix-valued coercive and bounded function with Holder continuous coefficients,
as in the Introduction. Before we state the result, we recall that the continuous function v : R% >
By — R, u > 0 is a viscosity solution of

(A1) ~div(AVu) = f in Q,NBi, |A?[Vy]|=g¢ on 09,N B,

if the first equation holds in the open set €2, and if, for every zy € 99, and every o € C>°(R%)
touching uo Fy, from above (below) at zero, we have that |V[(0) > g(xo) (resp. |Vp|(0) < g(xg)).
Recall that touching from above (below) means that ¢(0) = 0 and ¢ > wo Fy, (resp. ¢ < uo Fy)
in ©,,NB1. Moreover, we suppose that g is Hélder continuous and that there are constants n, > 0,
Cy > 0 and 0, > 0 such that

{|g<:c>—g<y>|§og|x—y|% for every x,y € 99, N By,

(A.2)
ng < g(z) for every x € 0Q, N By.

The following result follows immediately from the results proved in [13].

Theorem A.1 (Flat free boundaries are C%%). Suppose that u : By — R is a viscosity solution
of (A and that g : 9, — R satisfies (A2). Then, there exist € > 0 and p > 0 such that if
rg € 0, N By and u is such that

g(zg) max{0,z - v —ep} <wo Fy (x) < g(xg) max{0,z-v +ep} for every x€ B,
then 0, is CY* in By (o).
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Remark A.2. Notice that since in dimension two all the blow-up limits of u; (given by Theorem
[LE) are half-plane solutions (Proposition [4.3]), we have that the flatness assumption of the above
Theorem is satisfied at every point of the free boundary 9. We also notice that, in our case,
we have g = p4, which is Holder continuous by Lemma

Definition A.3 (Flatness). Let u: By — R be continuous, u > 0 and u € H*(By). We say that
u 1s (e,v)-flat, if there are a matriz-valued A : By — Sym;l|r with Holder continuous coefficients,
and a continuous f : By — R such that:

(A.3) —div(AVu) = f in Q, N By;
(A.4) [ fllee(Byy <€ and |lai; — 0ijllpe(my) < g2 forevery 1<i,j<d;
(A.5) 1-e2<|Vu| <1+ on 99,0 By;
(A.6) max{0,z - v —¢e} <wu(z) <max{0,x-v+e} forevery x¢€ By.

Remark A.4. The condition (A.f)) is intended in a viscosity sense, that is, for any ¢ € C*(By),
we have:

- if p(z0) = u(zg) for some zg € 9N, N By and ¢ > w in Q, N By, then |Vip(zg)| > 1

- if ¢(z9) = u(zp) for some zp € I, N By and ¢ < u in Q, N By, then |Vp(xp)| <1

In order to prove Theorem [A.T] one has to show that the flatness improves at lower scales, that
is, if u is (e,v)-flat, then a rescaling u, of u is (¢/2,1/)-flat for some 1/, which is close to v. Of
course, the essential (and hardest) part of the proof is to show the improvement of the geometric
flatness (AL6]). This was proved by De Silva in [13, Lemma 4.1].

Lemma A.5 (Improvement of the geometric flatness). There are universal constants C > 0,
ro > 0 and g9 > 0 such that if u is e-flat in the direction v, for some ¢ € (0,e9) and v € 0By,
then, for every r € (0,7q) there is some V' € OBy such that |v — V| < Ce? and

maX{Ox v —§}<ur( )Smax{o,x-l//—kg} for every x € By,

u(rzx)

Proof of Theorem [A.Tl We will first prove that the flatness condition (A3)-([A6]) improves at
smaller scales. We fix g € 92, N By and we consider the function @ = ﬁu o Fy, (recall that

Foo(z) =20+ A /2[ ]). Let € and r¢ be the constants from Lemma[A.5] We will prove that there
is r1 < rg such that: if 4 is (g, v)-flat, then for every r < ry, @, is (¢/2,1)-flat, for v/ given again
by Lemma[A.5l Tt is sufficient that the conditions (A.3]), (A.4) and (A.5)) are satisfied for @, with
the flatness parameter /2. We notice that @ is a viscosity solution of

where u, : B — R is the one-homogeneous rescaling u,(x) =

AT —div(AVa) = f in Qg APVia)| =g on 094,
( g
—1 —1 ~ 1 —1
where A, = A Ap, Az, f = g<x9>(f°)Fxo’ § = =590 Fyy and Ay 2 = Abfjo( : o Az
u\rx

Notice that 0 € 094 and set 4, (x) =

solution of
(A.8) —div(A,Va,) = f, in QzN B, |A2[Va,]| =g on 09N By,

where 4,(@) = A(ra), f,(z) = rf(re), 3.(x) = 3(ra) and A2() = AL o A7 Now, if i
(e,v)-flat, then the Holder continuity of the coefficients a;; and the boundedness of f imply that
(A.4) holds with ¢/2 and .., for any r < r1, where r1 < rg, is a universal constant depending on
the Holder norm of a;;. Now, in order to get (A.5]) for ¢/2 and a,, we suppose that ¢ € C*°(B;)
touches 4, from below at a point yo € By N d{a, > 0}. Thus, we have that

. Thus, for small enough r > 0, 4, is a viscosity

1/2 _1/2 < g(F-'EO(ryO))
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and so, if || - || = || - | ;e) stands for the space of d x d matrices, we have
_ F,, (ry0))
< A1/2 A 1/2 g( 0
IVe(yo)l < || on(Tyo)Hig(Fxo(o))

Now, by the Holder continuity (and the uniform boundedness from below) of g, we can choose r;
such that

9(Faq (TyO)) _2
o)~ 100

On the other hand, there are universal constants C and d > 0, depending only on the Holder
exponent 64 and the norm Cjy, of the matrix-valued function A, such that

_1 1 -1
142 0 AR ) = 1Al < A = A AR Il < Clrol’ < O

Choosing r; such that Cr‘f < % and using the triangular inequality, we get

2
Vot < 4o A= I m) (1 SN
>~ X0 Fxo (Tyo) g(Fxo (0)) 10 N |

which completes the proof of the improvement of flatness for 4, the case when ¢ touches from
above being analogous. Now, the claim follows by a standard argument, similar to the one we
used in Section [Bl O
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