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Abstract

Ideas, information, viruses: all of them, with their mechanisms, spread over the complex
social information, viruses: all tissues described by our interpersonal relations. Usually,
to simulate and understand the unfolding of such complex phenomena are used
general mathematical models; these models act agnostically from the object of which
they simulate the diffusion, thus considering spreading of virus, ideas and innovations
alike. Indeed, such degree of abstraction makes it easier to define a standard set of
tools that can be applied to heterogeneous contexts; however, it can also lead to
biased, incorrect, simulation outcomes. In this work we introduce the concepts of
active and passive diffusion to discriminate the degree in which individuals choice
affect the overall spreading of content over a social graph. Moving from the analysis of
a well-known passive diffusion schema, the Threshold model (that can be used to
model peer-pressure related processes), we introduce two novel approaches whose
aim is to provide active and mixed schemas applicable in the context of
innovations/ideas diffusion simulation.

Our analysis, performed both in synthetic and real-world data, underline that the
adoption of exclusively passive/active models leads to conflicting results, thus
highlighting the need of mixed approaches to capture the real complexity of the
simulated system better.

Keywords: Diffusion processes, Complex networks, Diffusion of information

Introduction

Information, ideas, viruses all of them have something in common: they describe dif-
ferent kinds of “contents” that need to be vehiculated by interacting agents to diffuse.
Agents can be either individuals or animals as well as computers or other technologi-
cal devices connected by a complex network describing their relations. Even if similar
at a high abstraction level, diffusion process have their characteristics that profoundly
affect the way they evolve. One such characteristic is undoubtedly tied to the degree of
activeness of the agents they aimed to reach. Agents can be passive and doomed to suf-
fer a diffusion process (e.g., during an outbreak of influenza) or active and voluntarily
adopt a given behavior or idea just because they feel it right. Moreover, agents can also
show both of such behaviors: in some circumstances a content can need both a certain
degree of exposure of actors as well as their interest to be adopted. Indeed, such ambiva-
lence is strictly tied to specific contents and contexts and can be modeled using different
approaches.
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The activeness distinction regards prevalently phenomena of social contagion, where
the diffusing object is either an idea or a piece of information. Social contagions are often
modeled using a classical approach, the Threshold model (Granovetter 1978) introduced
by Granovetter in 1978. In this model the adoption of ideas or information by an indi-
vidual is subject to a personal threshold; these approaches, however, tend to capture only
the passive component of the diffusion, ignoring the user interests concerning the infor-
mation. However, peer pressure is not the only component that acts as the linchpin for
individual’s adoption: personal interest plays a relevant role, an active impulse that - once
the subject is aware of the existence of the content - disregarding the peer pressure volume
can inhibit/facilitate the diffusive process.

Indeed, the active-passive dichotomy have not yet been adequately addressed nor for-
mal models considering active users in network diffusion proposed: for this reason in this
study we describe variants of the threshold model aimed to start filling such gap. More-
over, in the real world exist some people that decide autonomously to adopt an idea or
information without peer pressure from their friends and others that decide not to adopt
that ideas. So in this work, we modeled also the spontaneous adoption phenomenon and
the presence of blocked nodes.

After having characterized active and passive diffusion schema, we tackle the problem
of understanding if, and how, spontaneous adoption and blocked nodes affect the dif-
fusion of innovations/ideas. Indeed, a plethora of diffusion models can be designed to
capture such behaviors - some of them even interchangeably, assigning different seman-
tics to the variables they expose. To overcome such issue, in this work we decided to
perform a simple distinction: we model passive approaches through deterministic diffu-
sion rules (i.e., individual thresholds that mimic peer-pressure phenomena) and active
ones through probabilistic ones (i.e., individual profiles that depends only on the interest
of the subject into the diffusing content).

The paper is organized as follows. In Section “Related works” are introduced and
discussed related works on diffusion process modeling. In Section “Social diffusion
conundrum” we formalize our problem definition, characterizing the different diffusion
scenarios we will analyze, namely active, passive and mixed diffusion. There we also intro-
duce the algorithmic schema we used to simulate such scenarios. In Section “Exper-
imental analysis” we approach the analytical part of our investigation: there the datasets,
methodology and experimental results — for all the identified scenarios and network
settings — are introduced and discussed. Finally, Section “Conclusion” concludes the

paper.

Related works

Generally, diffusion processes can be roughly broken down into three components: (i) the
population on which they unfold, (ii) the mechanisms that describe their evolution, and
(iii) the content of the diffusion. All those components are equally important to model,
understand, simulate a diffusion process: in particular, the content spread represents
the real discriminant among active/passive diffusion. Commonly, the phrase ‘epidemic
spreading” is used to imply the diffusion of contagious diseases caused by biological
pathogens, like influenza, measles, chickenpox as well as sexually transmitted diseases.
However, a plethora of phenomena can be linked to the concept of the epidemic: examples
are the spread of computer viruses (Szor 2004), as well as the spread of mobile phone virus
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(Havlin 2009; Wang et al. 2013), or the diffusion of knowledge, innovations, products in
an online social network (Burt 1987).

Indeed, there are analogies between spreading phenomena involving different con-
tents, the most important being their unfolding over complex networks whose nodes
are characterized by their infectious state and links representing the interaction between
nodes.

In this paper, we focus on a specific content of diffusion: innovations/ideas. The diffu-
sion of innovation theory, developed by Rogers in 1962 (Rogers 2003), is one of the oldest
social science theories: it aims to explain how an idea or product gains force and diffuses
through a specific population or social system. The adoption of a new idea, behavior or
product does not happen simultaneously in a social system; it is a process whereby some
people are more suitable to adopt the innovation than others. To address the diffusion
of innovation problem are often adopted variants of the Threshold Model (Granovetter
1978): in such model an individual has two distinct and mutually exclusive behavioral
alternatives, the decision to do or not do something — i.e., adopt or not a given behavior —
a decision tied on how many other people have made the same choice. Such behavior is
modeled by employing individual thresholds to account for social pressure — e.g., a per-
son’s threshold for adopting a behavior can be defined as the proportion of the group he
would have to see adopted before he would do so.

In Watts (2002), for instance, was shown that while applying such model in a network
a global diffusion cascade can occur due to the interactions between nodes and individ-
ual thresholds. However, such model presents some limitations: (i) diffusion process is
ignited by a single node status perturbation, while there are many situations where mul-
tiple sources of perturbation concur to the spreading (e.g., external impulses can arrive
from the mass media, advertising, friends), (ii) it does not consider the presence of indi-
viduals reluctant to adopt. When complex perturbations lie behind diffusion processes,
we talk about Complex contagion, in which multiple sources of exposure to innovation are
required before an individual adopts the change of behavior (Watts 2002; Backstrom et al.
2006; Gleeson and Cahalane 2007; Romero et al. 2011; Bakshy et al. 2012; Singh et al. 2013;
Centola 2010; 2011). In such contexts, beyond the conventional threshold mechanism,
recently were also investigated the effect of homophily (Aral et al. 2009; Bakshy et al.
2012; Suri and Watts 2011) and the role of external media influence (Toole et al. 2012).
Conversely, the presence of reluctant individuals was addressed in Ruan et al. (2015)
where was introduced a threshold-based model that includes blocked nodes as well
as spontaneous adopters. The concepts of active and passive diffusion was tackled in
Milli et al. (2017); in this paper was introduced two approaches whose aim is to pro-
vide active and mixed schemas applicable in the context of innovations/behaviors/ideas
diffusion simulation in the static case, also introducing the concept of blocked nodes.

Social diffusion conundrum
In this work, we tackle a particular typology of network spreading, the diffusion of innova-
tions/behaviors/ideas: in the following, we will use such terms interchangeably and refer
collectively to them as contents of diffusion processes.

The phrase diffusion of innovations is often used to describe an active process: scenarios
in which, conversely from what happens in disease spreading, each agent autonomously
decide to adopt/advertise a given content. Our daily experience suggests us that the
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number of the individual that got involved in the process of innovation’s diffusion and
the way in which contents spread depend by several conditions. The structure of the
social network individuals are part of as well as their sensitivity to peer pressure and/or
to media advertising campaigns are examples of constraints that deeply affect such kind
of phenomena.

Although often treated as similar processes, diffusion of information and epidemic
spreading can be easily distinguished by a peculiar feature: the degree of activeness of the
subjects they affect. Indeed, the spreading process of a virus does not require an active
participation of the individuals that catch it (i.e., even though some behavior acts as con-
tagion facilitators — scarce hygiene, moist and crowded environment — we can assume
that no one chooses to get the flu on purpose); conversely, we can argue that the diffusion
of an idea, an innovation, or a behavior strictly depends not only on the social pressure
but also on individual choices.

Such context dependent dichotomy leads to our problem definition:

Definition 1 (Active-Passive Conundrum) Given a social context — described as a
graph G = (V,E), where a node v € V is an individual and an edge (u,v) € E identifies
a social tie among u,v € V — a content \ and a set of adopters I, C 'V of : how can be
modeled, and what characterize, passive and active diffusion processes of  over G?

To address diffusive phenomena related to the typology of content we are interested
in this work are often adopted variants of the Threshold Model in which adoptions per-
formed by individuals are subject to personal thresholds (identified as the peer pressure
exercised by each friend or, theoretically drawn by a given distribution). We can argue that
these approaches are only able to capture the passive component of the diffusion since
they ignore the user interest concerning the content v, thus assimilating information
diffusion to a special case of biological contagion.

To address the active-passive conundrum, in the following we introduce three concep-
tual scenarios that will act as guidelines for designing and comparing different diffusion
models applicable to our specific context.

Passive, active and mixed scenarios

Since we aim to compare alternative modeling choices able to simulate both pas-
sive and/or active diffusion processes we first need to characterize the scenarios such
approaches should describe.

S1: Passive diffusion. This scenario assumes that a generic diffusion process takes
place independently on the willingness of the individuals. Diffusion relies only on Peer
Pressure: the more an individual is exposed to a given content the more likely it will
adopt it. In such settings, social contagion acts like the virus spreading since, once a suf-
ficient peer pressure is reached the spreading content will affect a target user, leaving no
alternatives to individual preferences.

$2: Active diffusion. Conversely from the passive diffusion scenario, active spreading
assumes that the diffusion process is only apparent; each node decides to adopt or not a
given content - once known its existence from a peer - only by its interests, completely
ruling out peer pressure. Diffusion will then rely only on the adopter Preference.

$3: Mixed diffusion. This scenario combines passive and active processes so to shape
content diffusion as a mix of the two. In such settings, we assume that individual’s interests
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act as a preferential schema for adoptions but, at the same time, do not neglect the role
of peer-pressure mechanisms. Novel contents are evaluated by individual preference only
when a sufficient peer pressure (exposition) is reached.

Indeed the identified scenarios represent macro-categories that can be studied by
applying very different algorithmic models. Moreover, all the models that implement
such scenarios are also subject to other dynamics peculiar of social contexts, i.e., (i)
spontaneous adoptions and (ii) evolution of the social tissue.

In real-world contexts, individuals can adopt a given content even without the need of
being exposed to it through their social circle. All those adoptions that are not endoge-
nous w.r.t. the observed social structure can be considered spontaneous (even though they
can also be ascribed as results of exogenous phenomena not captured by the modeled sys-
tem, e.g., news channels, advertising, online/offline media). Spontaneous adoptions can
act as diffusion linchpins since their presence, or absence, deeply affect the unfolding of
diffusive phenomena.

In the following, we will detail the algorithmic choices made to provide simulations of
the sketched scenarios considering the presence/absence of spontaneous adoptions and
the presence/absence of blocked nodes.

Diffusion models
To understand the differences between the proposed scenarios we simulate them with the
following diffusion models:

S1: Threshold model. We employ the classic Threshold Model (Granovetter 1978) to
simulate a passive adoption process by using a theoretical distribution for the adoption
threshold as done in Watts (2002). In the Threshold model during an epidemic, a node has
two distinct and mutually exclusive behavioral alternatives, e.g., it can adopt or not the
spread content. The decision to adopt depends only on the percentage of node’s neighbors
that have already adopted the content. As shown in Algorithm 1, the model works as
follows:

Algorithm 1 Threshold
Require: I;,: infection seeds, k: number of iterations, t: nodes’ thresholds
1: foreacht; € {1,...,k}do

2 Iy =1y,

3: for eachn € V do

4 if n ¢ I, , and neighbors(n) N I;,_, # ¢ then

5: An = |neighbors(n) N1y, |

6: if A, > 1, then > Threshold evaluation
7: add 7 to Iy,

8: yield 7, > Return iteration status

i) Each node starts with its own threshold 7 and status (infected or susceptible);

ii) During each iteration ¢; € T, every node n € V is observed: iff the percentage of n
neighbors that were infected until time ¢ — 1 is greater than its threshold t,, n
becomes infected as well.
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$2: Node Profile model. We design a novel model, called Node Profile, to simulate
active adoptions. In such model, each adopter chooses to adopt the given content based
only on his personal preferences. Each node carries its profile y describing the degree by
which it is likely to accept a content similar to the one that is currently spreading. The
diffusion process starts from a set of nodes that have already adopted the content . For
each of the susceptible nodes in the neighborhood of a node # that has already adopted
¥, a random value v in [0,1] is extracted; if v > y, the node adopts the content, other-
wise the node refuses to adopt. Susceptible nodes are allowed to change their opinions
during every iteration. We also implemented a variant of such model which contemplates
blocked nodes, e.g., nodes that after having refused the adoption, with probability p decide
to stick with their choices permanently. The pseudo-code for the introduced approach is
described in Algorithm 2.

Algorithm 2 Node Profile
Require: I;: infection seeds, k: number of iterations, y: nodes’ profiles, p: immunization

probability

1. B=1{} > Blocked nodes
2: for eacht; € {1,...,k} do

3 Iy =1,

4 for eachn € V do

5: ifn ¢ Iy, , and n ¢ B and neighbors(n) N I;,_, # ¥ then

6: ry = rand(0,1)

7: if r, > y, then > Profile evaluation
8: add n to I,

9: else
10: q = rand(0,1)
1 if g < p then > Blocked node evaluation
12: addnto B
13: yield /;;, B > Return iteration status

S3: Profile-Threshold model. To support mixed behaviors we implement a Node
Profile-Threshold model that combines the previously described Node Profile model with
the peer pressure information (i.e., classic threshold model). This model firstly eval-
uates if the peer pressure a node receives is enough to overcome its threshold, then
if such a constraint is satisfied, it evaluates the node profile. As for the Node Pro-
file model, we implemented a variant that contemplates blocked nodes. Pseudocode for
Profile-Threshold model is shown in Algorithm 3.

To model spontaneous adoptions we introduced, as the first step before each simula-
tion iteration, a node-wise stochastic process that with a fixed probability p transform a
susceptible node into an infected one.

All the described diffusion models, have been implemented and made available within
the python library “NDIib”! (Rossetti et al. 2017; Rossetti et al. 2018).

Experimental analysis
To compare the impacts of active and passive scenarios, we carried out a data-driven
investigation modeling the social graph with both synthetic networks as well as with real-
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Algorithm 3 Profile-Threshold
Require: I;: infection seeds, k: number of iterations, y: nodes’ profiles, T: nodes’

thresholds, p: immunization probability

1 B={} > Blocked nodes
2: for each t; € {1,...,k} do

3 Iy =1y,

4 for eachn € V do

5: ifn ¢ I, , and n ¢ B and neighbors(n) NI, ; # ¢ then

6: An = |neighbors(n) N1Iy_, |

7: if A, > 1, then > Threshold evaluation
8: 1y = rand(0, 1)

9: if r, > y, then > Profile evaluation
10: add n to Iy,

11: else

12: q = rand(0, 1)
13: if g < p then > Blocked node evaluation
14 addnto B

15: yield I;;, B > Return iteration status

world network datasets, as described in Datasets. The analytical protocol we adopted is
described in Analytical protocol and the evaluation in Analysis.

Datasets

For our simulations, we use a real-world dataset, the FB network. This is a sample of the
WOSN2009 (Viswanath et al. 2009) dataset and describes online interactions between
Facebook users. The FB graph is composed of 31 daily snapshots covering the month of
January 2007: statistics of the graph are reported in Table 1. We conduct our experimen-
tation analysis on the static scenario, so we collapsed all FB snapshot graphs in a single
network composed by the union of individual node and edge sets.

Moreover we simulate the introduced diffusion models also on three synthetic network
generator models: (i) Barabdasi-Albert (1999), (ii) Erdés-Renyi (1959) and (iii) Wats-
Strogatz (1998). To have “comparable networks” to the real one, we fix the number of
nodes and the average degree such as the characteristics reported in Table 1. So the gener-
ated networks have 63392 nodes each, and are obtained by setting the following parameter
values:

e Barabasi-Albert graph: number of connections per new node m = 13;
e Erdds-Renyi graph: edge creation probability p = 0.0004;
e Wats-Strogatz graph: node neighbors k = 13, rewiring probability p = 0.01.

Table 1 Base statistics of the analyzed Facebook graphs

Nodes Interactions Edges CcC #0Observation Average degree
63392 304392 816 886 13 365 days 13

CC identifies the number of connected components
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Analytical protocol
To compare the diffusion scenarios previously described, we designed the following

analytical protocol:
i. For each dataset we randomly selected 100 sets of nodes each one covering 5% of V:

such sets identify, for each scenario and model, 100 different initial seeds of infection
configuration — I,;

ii. For each dataset, scenario and I, we executed the active, passive and mixed diffusion
models previously introduced for an equal, fixed, number of iterations (30 for all the
networks);

iti. Finally, we compared the models by analyzing the obtained infection trends as well as
the percentage of infected nodes at the end of each simulation.

To mitigate the effects of initial seed set selection, we considered as infection trend for
each configuration the iteration wise average of the runs over the executions performed
while varying the seeds. The same strategy is also applied to identify the final percentage
of infected nodes at the end of each configuration simulation.

Finally, to understand the impact of different values of model parameters have on the
diffusion process, we simulated the three scenarios with several configurations of the
node threshold, 7, and node profile y. Moreover, we also varied the immunization proba-
bility value, p, and spontaneous adoption rate, a. As a result, we instantiated all the — valid
— parameter combinations for the selected models, varying their values in the following

ranges:

Threshold, 7: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

Node Profile, y: [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

e Dercentage of blocked nodes, p: [0, 0.1, 0.2, 0.3]

Probability of spontaneous adoption, a: [0, 0.001, 0.005, 0.01]

Analysis

The typical strategy to resolve this diffusion problem is to use a Threshold model (a pas-
sive approach). But the question is: “a passive approach is the right way to resolve the
diffusion of information problem?”.

To answer this question, in the following, we report the diffusion trends obtained after
our simulations for all the networks in a simple scenario — without immunization and
spontaneous adoptions. All other scenarios (in which p # 0 and/or a # 0) are detailed
only for the Facebook graph.

Results

To better characterize the obtained results we analyze separately models that contem-
plate blocked nodes from the ones that do not. We treat similarly the results obtained in
presence/absence of spontaneous adoptions.

Without immunization, without spontaneous adoptions. In this scenario fall the
standard implementation of the three methods; we analyze separately networks to better
characterize the differences between the methods.

Barabasi Albert graph. The diffusion trends obtained with the simulation of the three
methods on the Barabasi Albert graph are shown in Fig. 1.

As we can observe, if we fix the threshold (r) equal to 0.1, with low values for the
Node Profile (y) the diffusion trends obtained with the three methods are very similar
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(Fig. 1a, b). The three models show a fast grow; after only four iterations almost all the
nodes of the network are infected. If we change the value of y, and we fix it to 0.8, as shown
in Fig. 1c the growth of the number of infected nodes obtained with the Profile model is
slower compared to the previous figures; only at the end of the observation period, the
trend reaches the total number of infected nodes. This result shows that the peer pressure
is significant; even if the people do not like the content spread (every people has the 20%
of percentage to accept a content similar to the one that is currently spreading), they end
up adopting it. With only a threshold equal 0.2 the spread does not start; in average, each
node has 13 neighbors and with the choice of threshold equal 0.2 the node can become
infected after three infected neighbors (Fig. 1d).

Erdés-Renyi graph. As we can see from the Fig. 2 the behavior of the diffusion trend
for the Erdds-Renyi graph is very similar to the results obtained with the Barabasi Alberth
graph.

Wats-Strogatz graph. The diffusion trends for the Wats-Strogatz graph are shown in
Fig. 3. For this network, the diffusion process is slower compared to the other networks; in
this case, we do not have particular nodes, such as hubs that speed up the diffusion, nor an
evident small-world effect (due to the chosen parameter values). In fact, we fix p = 0.01
and the network is more similar to a lattice than a random network, so the results of the
three diffusion models are little dependent from the initial infected node sets I;,. For this
network, differently from the previous graphs, with a value of threshold equal 0.2, the
diffusion process starts. As shown in Fig. 3d, even if the number of infected nodes is less
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Fig. 2 Diffusion trends for the Erdds-Renyi graph. Diffusion trends for Threshold, ProfileThreshold and Profile
model with a = 0 and p = 0 and with different valuesof y andt.ay = 0.1, =0.1by = 04,7 = 0.1
cy=08t=01dy =04,17=02

than the number obtained with the Profile model (with y = 0.4) the two models with the
threshold reach around the 70% of infected nodes at the end of the process. Conversely,
with a threshold equal to 0.3 only the 16% of node became infected and with t = 0.4 the
diffusion process does not start.

Facebook graph. Also for the real network, we obtain results similar to the synthetic
networks; with low values for y and t the trends of the three methods are very similar as
we can see in the Fig. 4.

For the real network and for the Wats-Strogatz graph we obtain an expected result: the
active diffusion trends show the fastest growth; conversely, the passive diffusion trends
seem to be tied to a slower start. Such results are somehow expected: the former model
assumes that a susceptible node can decide to adopt when it discovers the existence of
a given information (e.g., when at least a single of its neighbors has already adopted it)
while the latter fixes an exposure threshold below which the node does not come in con-
tact with the information. Particular attention should be reserved to the mixed approach,
described by the Profile-Threshold model: for the first two synthetic networks, the mixed
and passive models behave alike while in the Facebook and Wats-Strogatz network the

Profile-Threshold trend stands below the Threshold one.

This result is also expected: with that approach, first, a susceptible node has to over-
come the exposure threshold to come in contact with the information, after, he has to

decide to adopt it. So to adopt the information, two conditions are necessary: (i) the node
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has to have a sufficient number of adopted neighbor and (ii) he has to autonomously
decide to adopt the information because he loves it.

Without immunization, with spontaneous adoptions. For this scenario we show in
Fig. 5 the heatmap obtained with the three methods on the real network Facebook. Every
cell of the heatmap represents the percentage of infected nodes at the end of the observed
period (in our case at the end of the 31st day) for different parameters. The cells with a
darker shade of red have a percentage of infected node high; the cells with a lighter shade
of red have a low percentage. We expected that with the introduction of the spontaneous
adoptions the percentage of infected nodes increase. We can observe this result for all the
methods.

For the Threshold model (Fig. 5b) in the x-axis we have the t parameter and in the
y-axis the spontaneous adoption rate a. On the top of the heatmap, the percentage of
infected nodes is greater compared to the bottom, where the value of 4 is small (the range
of a is from 0 to 0.01). For the Profile model (Fig. 5f), differently from the previous case,
in the x-axis we put the y parameter. In this case with each value of y and with p = 0 the
percentage of infected nodes is high; as observed previously with the diffusion trend, the
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value of the threshold impact mainly the diffusion process. If the percentage of neighbors
is below the fixed threshold, the node does not come into contact with the information;

he can adopt the idea only spontaneously. This result can be observed also in the Fig. 5i:
if y has a big value (i.e. > 0.4) the diffusion process can not start; this phenomenon is
mitigated from the introduction of adopter spontaneous (Fig. 5j).

Also in this case, we find the previous result: the active diffusion trends show the fastest
growth after we have the trend obtained with passive approach and finally the mixed
approach.

With immunization, without spontaneous adoptions. When we introduce the con-
cept of “blocked nodes” the diffusion patterns change. In this case, we want to simulate
a random immunization; the nodes that will become immune are pick up at random.
As expected the percentage of infected nodes of the three models experience dumping
compared to that observed in the previous analysis. In particular, especially for the Pro-
file model (Fig. 5e), we can observe that after the same period the percentage of infected
nodes halves compared to the simulation with p = 0 (the row at the bottom of the heat
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Fig. 5 Heatmap for the Facebook graph. Heatmap for the Facebook network of the percentage of infected
nodes at the end of the observed period in the static case. In the first row the results obtained with the
Threshold model; in the x-axis we have the T parameter and in the y-axis the spontaneous adoption rate g,
for (b) and (d) and the immunization probability p for (@) and (c). In the center row the results obtained with
the Profile model; in the x-axis we have the y parameter and in the y-axis the spontaneous adoption rate g,
for (f) and (h) and the immunization probability p for (e) and (g).Finally, in the bottom row the results
obtained with the ProfileThreshold model; in the x-axis we have the t parameter and in the y-axis the y
parameter. In this case, for each heatmap we fix at the same time the values of spontaneous adoption rate a
and for the immunization probability p as reported in the captions (i-I)

map). Indeed, our experiments underline a linear correlation between the value chosen
for p and the observed reduction of the infected population.

With immunization, with spontaneous adoptions. When we introduce the concept
of “blocked nodes” and “spontaneous adoption” the diffusion pattern that we obtain are
those expected. With the increase of the a value, the percentage of infected nodes grows;
conversely with the increase of the p value the percentage decrease, as we can observe in
Fig. 5¢,d, g, h, k, L.

Conclusion
In this work we tackled the problem of activeness of diffusion phenomena describing
different scenarios.

So far, both epidemic spreading and information diffusion have been studied using
a common modeling framework. Among the models defined to simulate diffusive pro-
cesses, we focused our attention on the Threshold one, aiming to describe the diffusion
of specific classes of contents: innovations, ideas, behaviors.

Differently from compartmental models (e.g., SI, SIR, SIS) the Threshold model once
given an initial infection status produces a deterministic evolution of the diffusion: the
lack of a stochastic component, along with the model rationale, makes the diffusion pro-
duced by the observed model passive, i.e., a process during which the nodes involved
do not play any active role. We pointed out how such approach is able only to capture
one of the components that regulate the diffusion of contents in a social context (e.g.,
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peer-pressure), giving no credit to another important component: individual preferences.
Moreover, we underlined that such limitation, although acceptable when dealing with
disease spreading, deeply simplifies the processes that regulate diffusion in our specific
settings.

To cope with such limitation, we designed two stochastic models that reintroduce an
active role for the nodes: namely, Profile and Profile-Threshold. In our experimentation,
we showed how passive and active strategies impact both the speed and overall width of
the diffusion process. Moreover, we underline the need for a mixed approach that better
simulate the real mechanics of information spreading, modeling both the effect of peer-
pressure and individual interest in the content spread.

Moreover, we also analyzed how the presence of spontaneous adopters (i.e., individuals
that become “infected” due to exogenous factors) as well as extremists (i.e., individu-
als who categorically refuse to adopt/change their mind on a given content) can speed
up/dampen the diffusion process.

As future work, since social networks are constantly evolving realities where indi-
viduals, as well as interactions among them, rise and fall, we plan to reformulate our
approaches for dynamic topologies. We plan also to extend our modeling framework to
understand better the implications that diffusion processes have on network topology. We
will aim to propose a comprehensive double feedback loop system in which the two kinds
of evolutive patterns (on and of network) are considered from a holistic perspective, thus
allowing to understand better and characterize complex network phenomena. Finally we
plan to extend the study of our methods when we introduce the targeted immunization;
in fact, the random immunization of nodes has been shown incapable of protecting the
population when the contacts distribution is wide.

Endnotes
I NDIib: https://github.com/GiulioRossetti/ndlib
2SoBigData: http://www.sobigdata.eu
3SoBigData: http://www.sobigdata.eu
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