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Abstract: Cable-stayed structures are widely employed in several fields of civil, industrial, electrical
and ocean engineering. Typical applications are cable-stayed building roofs, bridges, guyed masts,
overhead electrical lines, and floating device anchorages. Since the cable behavior is often highly
nonlinear, suitable equivalent mechanical cable models are often adopted in analyzing this kind
of structures. Usually, like in the classical Dischinger’s approach, stays are treated as straight
rods offering an equivalent axial tangent stiffness, so that each of them can be substituted with an
appropriate equivalent nonlinear spring or truss element. Formulae expressing equivalent stiffness
provided by classical methods are satisfactory only when the cable is highly stressed, and therefore
its sag is small with respect to its chord; on the contrary, when the cable is slack, they give often
contradictory or meaningless results. Aiming to remove that limitation, a more refined approach
based on the application of the virtual work principle is discussed. Important products of that original
rational criterion are accurate and closed form innovative expressions of the tangent stiffness of the
cable, whose field of application is independent on the sag to chord ratio of the cable, as well as on
the magnitude of the normal stresses. Referring to some relevant case studies, the results obtained
applying these new formulae are critically discussed for cables made of different materials, also in
comparison with the approximate expressions provided by simplified methods.

Keywords: stay; cable; equivalent stiffness; Dischinger’s modulus; catenary; nonlinear behavior;
virtual work principle; cable stayed; overhead lines

1. Introduction

Cable-stayed structures, like cable-stayed building roofs, bridges, extradosed bridges, overhead
electrical lines, guyed masts, anchorage of floating devices, cable trusses, etc., are widely used in
several engineering fields. From the structural point of view, these structures are extremely appealing;
however, since they are often characterized by highly nonlinear behavior, their analysis requires the
introduction of refined mechanical models. A very effective simplified mechanical model is commonly
considered to simulate the behavior of the stays, where each of them is substituted with a suitable
equivalent nonlinear spring or truss element.

In the classical approach, as proposed by Dischinger [1,2] or Ernst [3], the stay is modeled as an
equivalent straight bar connecting its ends. The equivalence criterion is that the axial stiffness of the
substitutive rod equals the apparent global stiffness of the stay along its chord, i.e., the line connecting
its ends.

Assuming that the influences of the bending stiffness of the cable on the deformed configuration is
negligible with respect to the axial stiffness of the cable, the traditional treatment of the problem is based
on the equilibrium equation of a deformed cable, with horizontal chord, subjected to the self-weight.

Let
→
p be the weight of the cable per unit length; since the deformed configuration of the cable

belongs to the π plane defined by the two cable ends and by the vector
→
p lying on it, classical simplified

formulae have been deduced, simulating the cable behavior in terms of an equivalent axial stiffness.
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The so-called equivalent modulus can be expressed in form of an equivalent tangent elastic
modulus or an equivalent secant elastic modulus. Let a be the length of the cable chord; A0 the area of

the cross section of the cable; E the elastic modulus of the material;
→

N the tensile force in the cable,

whose horizontal and vertical components are N0, and Ny, respectively;
→

N =
(
N0, Ny

)
, the equivalent

elastic modulus of a horizontal stay; Et,eq(σ0), is thus given by the so called Dischinger’s formula,

Et,eq(σ0) =
dσ0

dε
=

E

1 + (γ a)2

12 σ3
0

E
(1)

which is widely used for structural design purposes. In Equation (1), σ0 is the horizontal component of
the cable tension, dε is the equivalent strain variation in the chord direction and γ is the ratio between
the unit weight p and the area A0, i.e., the specific weight of the cable material. As known, N0, and σ0,
are independent on the abscissa of the considered section.

Of course, since the problem is governed by geometric nonlinearity only, the material is assumed
linear elastic, therefore E is independent on σ0.

As summarized in the following, Equation (1) was derived by Dischinger [1,2] starting from the
expression of the strain variation along the chord direction

dε = dεe + dε∗ (2)

where dεe is the variation of the elastic strain, and dε∗ is the apparent variation of the strain.
Following Dischinger, when an inextensible cable, whose length is L, is stretched, the cable

configuration changes. If the chord length a increases, the sag and the difference (L− a) reduce and
vice versa, i.e., if the chord length a decreases, the sag and the difference (L− a) increase; in any case,
this causes the apparent strain variation dε∗. Obviously, it is

dεe =
dσ0

E
, dε∗ =

dσ0

E∗(σ0)
, (3)

being E∗ the apparent elastic modulus resulting from the variation of the inextensible cable configuration.
From Equations (2) and (3) it follows

Et,eq(σ0) =
dσ0

dε
=

dσ0

dεe + dε f
=

E
1 + E

E∗(σ0)

, (4)

Hypothesizing a parabolic deformed configuration, and assuming the cable sag d much smaller
than the chord a, i.e., d < 0.1 a, the length L of an inextensible cable can be approximated by

L � a +
8 d2

3 a
. (5)

Recalling that the cable sag depends on N0 through the equilibrium equation,

d =
p a2

8 N0
, (6)

the contribution to the chord variation due to the modification of the cable configuration induced by
dN0·da∗ can be expressed by

da∗ = −
d(L− a)

dN0
dN0 � −

16 d
3 a

d
dN0

(
p a2

8 N0

)
dN0 =

p2 a3

12 N3
0

dN0. (7)
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Finally, setting da∗ = a dε f and simplifying, Equation (7) provides

1
E f

=
dε f

dσ0
=
γ2 a2

12 σ3
0

. (8)

Remarking E f = E∗(σ0), Dischinger deduces thus the equivalent modulus, expressed by
Equation (1), simply substituting Equation (8) in Equation (4).

When a large stress variation needs to be taken into account in the cable, it is common practice to
consider, rather than the tangent modulus, the equivalent secant elastic modulus, Es,eq. Let σ01 be the
normal stresses at the initial point of the given loading process and σ02 the normal stress at the final
point of the given loading process; ∆σ0 = σ02 − σ01, Es,eq can be expressed by

Es,eq =
∆σ0

∆ε
=

E

1 + (γ a)2

24 σ3
01

1+σ
σ2 E

, (9)

where σ = σ02/σ01.
According to Ernst [3], Equation (9) is obtained using the Dischinger approach and considering

the chord length variation, ∆a∗, resulting from a large variation, ∆N0 = N02 −N01, of the horizontal
component of the tensile force. By integrating Equation (7), after some elementary passages, it results

∆a∗ =
N02∫

N01

p2 a3

12 N3
0

dN0 =
p2 a3

24

(
1

N2
01
−

1
N2

02

)
=

γ2 a3

24

(
1
σ2

01
−

1
σ2

02

)
=

γ2 a3

24

(
σ2

02−σ
2
01

σ2
01 σ

2
02

)
=

γ2 a3

24 σ3
01

1+σ
σ2 ∆σ,

(10)

and, consequently,
∆σ0

∆ε f
=

1
E∗s(σ01, σ02)

=
γ2 a2

24 σ3
01

1 + σ

σ2 . (11)

As a matter of fact, these solutions are satisfactory only when the cable highly stressed and,
therefore, the cable sag is small with respect to its chord; consequently, several theoretical and numerical
studies have been devoted to refine the solutions, aiming to enlarge their field of application [4–15].

Among them, particularly remarkable appear the approach adopted by Irvine [11], who introduced
the characteristic parameter of a suspended cable, λ2, including both the shape and the deformational
properties of the cable. The abovementioned parameter λ2 is defined by

λ2 =

(
γ a
σ0

)2 a E
σ0 Le

, (12)

where Le,

Le =

a∫
0

(
ds
dx

)3

dx, (13)

is a relevant property of the cable, usually known as virtual length.
When the chord length, a, is much bigger than the sag of the cable, d, Le can be acceptably

estimated as

Le � a

1 + 8
(

d
a

)2. (14)

For cable-stayed bridges, the parameter λ2 is usually smaller than one, but for long stays it can be
even bigger than three. For suspension bridges, λ2 is usually bigger than 100 [6].
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Following Irvine [11], it is possible to estimate the equivalent modulus, Et,eq1, using the
simplified expression

Et,eq1 =
dσ
dε

=
E

1 + λ2

12

. (15)

When applicable, Equation (15) is much more precise than Equation (1), although, due to the
approximations introduced in deriving it, it leads to some surprisingly bizarre results when σ0 is small,
a is great and the virtual length Le is calculated via exact integration of Equation (13), and not applying
the simplified Equation (14).

Although arriving at simple and easy to handle formulae, the application of classical methods is
subject to severe restrictions, which limit their fields of application, especially for flabby cables. In fact,
these approaches do not completely consider the effect of the variation of the cable configuration upon
the arrangement of external loads. To allow a general application of the equivalent modulus concept,
exact closed form solutions are thus necessary.

In a previous paper [16], we suggested an original method, based on the virtual work theorem,
to find the equivalent tangent modulus of an inclined stay, taking into account the effect of its self-weight.
Assuming a deformed catenary shape of the cable, that method allowed to derive accurate closed-form
solutions describing the nonlinear behavior of the cable, in terms of equivalent tangent stiffness. Since
deduced considering all relevant aspects of the problem, the formulae proposed in [16] are valid on
the whole field of interest, independently on the inclination of the cable, on the stress level, on the
sag of the catenary, and on the cable material, so allowing a generalized application of the equivalent
stiffness approach. That method provides different expressions, depending on the nature of the relative
displacement between the extremities of the cable, i.e., depending on whether both end sections
are fixed, or one end section is fixed and the other can moves during the loading process; in other
words, depending on whether the cable length is fixed or not during the loading process. Moreover,
the solutions are so refined that, in case both cable ends are fixed, they are function of the absolute
sign of the vertical component, dh, of the relative displacement between the cable ends themselves,
that governs the work done by the self-weight of the cable as a result of that relative displacement.
In fact, in [16] (page 1098), where k = dh/da indicates the ratio between the vertical and the horizontal
components of the relative displacement of the cable ends A and B, and σ the normal stress in the cable
whose horizontal component is σ0, it is remarked that: “It must also be emphasized that the apparent
modulus can result larger, even significantly, than E, for example when k·dh > 0 in A, because of the
weight of the cable. In this case, for σ→∞ , the curves E f t,eqA = E f t,eqA(σ) and E f t,eqB = E f t,eqB(σ)

approach the horizontal asymptote E f t,eqA = E from above and from below, respectively. In addition,
an in-depth examination of the formula (36.b) induces to infer that negative values of the apparent
modulus at the cable end B cannot be excluded, for example when σ0 is small and k > 0, and that
the region where the apparent modulus is negative raises as the span increases. Negative values of
the apparent modulus, clearly unacceptable in design practice, happen when increase of the chord
length implies decrease of the stress at the cable end, or vice versa: this is again due to the cable weight.
These results suggest resorting to a more operational definition of the equivalent modulus, in some
way accounting for the weight effects described before. In fact, in the usual mechanical model the
cable is replaced by a weightless straight rod, and the weight of the cable is concentrated at the ends of
the equivalent rod. From now on, an improved equivalence can be established subtracting from the
work done by the cable weight for the end displacement dh, the work amount associated with rigid
body motion, Wpr, ( . . . ...)”. For a more exhaustive illustration of these relevant aspects, the interested
reader can refer to [16].

More recently, several research works tackled the question [17–20], suggesting improvements of
classical formulae, mainly aiming to define appropriate cable elements to be implemented in finite
element models. Anyhow, as it can be easily ascertained comparing the proposed solutions with those
reported in [16], all these works arrive to approximate formulae, because, in solving the problem,
some parameters, especially relevant in the low stress region, are disregarded. In addition, all these
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studies do not consider that the solution is also depending on the nature of the relative displacement
of cable ends.

In view of the implementation of suitable elements in the finite element method, another actual
research topic focuses on the influence of bending and shear stiffness on the cable behavior [21,22].
Nevertheless, as they are relevant only in peculiar situations, bending stiffness and shear stiffness can
be often interpreted as local perturbations of the general solution, obtained by neglecting them.

Horizontal stays can be seen as a particular case of inclined cables, so that their equivalent
axial stiffness can be derived from the general expressions given in [16], considering the cable ends
at the same level, so setting to zero the difference h between their elevations. Unfortunately, these
general expressions are extremely intricate and composed by many terms, most of which assume
an indeterminate form for h tending to zero. Consequently, although representing in principle the
simplest practical situation, application of the general formulae to horizontal stays require cumbersome
calculations; moreover, the complexity of the expression contributes to confuse the influence of
different parameters.

The aim of the study is to illustrate how the equations of the equivalent stiffness of horizontal stays
can be deduced implementing the procedure based on the virtual work theorem, already successfully
applied in the general case for inclined cables [16].

The outcomes of the procedure are new expressions of the equivalent tangent modulus of the
cable, depending on the nature of the boundary conditions. As they accurately consider all influencing
parameters, these rather compact innovative formulae can be again applied without restrictions.

Referring to some relevant case studies, the results obtained adopting the proposed approach are
critically discussed, also in comparison with the outcomes of classical simplified methods.

2. The Bernoulli Equation of the Catenary

To facilitate the reading, in the following, the classical derivation of the Bernoulli catenary equation
is shortly summarized.

As known, disregarding elastic deformations, or, equivalently, assuming E = ∞, the deformed
shape cable of constant cross section A0, fixed at its ends A and B, and subject to the self-weight
(Figure 1), can be obtained from the equilibrium equation of a part of the cable, indicated with [A, C] in
Figure 2:

→

0 =
→

RA +

s′∫
0

→
p (s)ds +

→

N(s′). (16)
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In Equation (16)
→

RA is the reaction at the cable extremity A,
→
p (s) is the self-weight of the cable per

unit length, and
→

N(s’) the tensile force at the end C of the considered part of the cable.
Differentiating it with respect to s’, Equation (16) becomes

→

0 =
→
p +

d
→

N(s)
ds

(17)

thus leading, in a Cartesian coordinate system with vertical y-axis, to d(N cosθ)
ds = 0

d(N sinθ)
ds = p

(18)

where θ = arctan(dy/dx), N0 the horizontal component of
→

N, and y = y(x) the equation of the cable
configuration. Obviously, since N0 = N cosθ, N0 is not depending on s.

Duly combining the two Equations (18) we find

N0
d
ds tanθ = p →

d
ds tanθ =

p
N0

→
dy′

ds =
p

N0
→

dy′

dx
dx
ds =

p
N0

→ y”

= −
p

N0

√
1 + y′2,

(19)

whose solution is the classical Bernoulli’s catenary equation

y(x) = −
N0

p
cosh

(
p

N0
x + C1

)
+ C2, (20)

where the constants C1 and C2 depend on the boundary conditions.
Let the origin of the coordinate system be at the extremity A of the cable; considering that the

length of the horizontal chord is a, and the boundary conditions are y(0) = 0 and y(a) = 0, in the
current situation, Equation (20) becomes

y(x) = −
N0

p

[
cosh

(
p

N0
x−

p a
2 N0

)
− cosh

(
−

p a
2 N0

)]
, (21)

while the cable length L results

L =

a∫
0

√
1 + y′2dx = −

N0

p

a∫
0

y”dx = −

a∫
0

cosh
(

p
N0

x−
p a

2 N0

)
dx = 2

N0

p
sinh

(
p a

2 N0

)
, (22)

expressions that are given in every book of rational mechanics.
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According to Irvine [11], introducing the Hooke’s law for the cable, Equation (20) can be suitably
modified to take into account also elastic deformations, so that inextensibility assumption is not
necessary. Moreover, elastic deformations must be explicitly considered only when the solution
depends on them, that is when the initial unstrained length of the cable is smaller than the chord length,
and the cable requires some additional pre-strain to be installed. In all other cases, Equation (20) is still
applicable, on the condition that it is expressed considering the final configuration, and the value of
the unit self-weight p(s) is calculated considering the length of the stretched cable.

3. The Virtual Work Theorem for the Cable

The nonlinear behavior of the cable can be studied by means of the theorem of virtual works,
following the advanced method already adopted by the author in [16].

Starting from the deformed configuration of the cable, the virtual work theorem is applied
considering a virtual horizontal relative displacement dx between the cable extremities, A, and B.
Obviously, the resulting equation can be also derived assuming that the end A is fixed and the relative
displacement is concentrated in the end B, or vice versa.

When the cable end B is shift by dxB, in B′, two significant cases can occur, depending on the
actual constraint at the cable end B: in fact, the virtual displacement can affect the length of the cable,
or the length of the chord. In the former case, which also reproduces the tensioning phase of a real
cable, the cable itself is assumed to run over a fixed pulley in B (Figure 3): in this case, the length of the
chord is not affected by the displacement dxB, which entirely results in a variation dL of the cable length
L. On the contrary, in the latter case, which represents the most frequent operational condition of a
structural cable, the cable extremities are assumed fixed in A and in B: consequently, the displacement
dxB is entirely converted in a variation da of the cable chord (Figure 4).
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Recalling that the cable ordinate y(x) is expressed by Equation (21), in both situations,
the expression of the virtual work equation is

(
→

NB + d
→

NB

)
·d
→
x B +

L∫
0

→
p ·d
→
y ds =

∫
V

σdε dV, (23)

where σ is the normal stress, dε the variation of the longitudinal strain, V the volume of the cable,
and d

→
y the variation of y(x) caused by the modification of the shape of the cable itself.

Obviously, when the deformations of the cable are disregarded, i.e., the cable is assumed to be
inextensible, the left-hand side of Equation (23) is zero.

Since d
→

NB·d
→
x B is negligible with respect to

→

NB·d
→
x B, and

→
p is parallel to

→
y , Equation (23) can be

reduced to
→

NB·d
→
x B +

L∫
0

p dy ds =

∫
V

σdε dV. (24)

Let x be the abscissa of an arbitrary point of the cable, we can remark that the variation dy of the
ordinate of that point is the result of the relative displacement component along the cable chord, da,
as well as of the variation dN0 of the horizontal component of the axial force. The total variation, dy,
can be interpreted as the sum of two contributions: one, dyinex, associated with the modification of the
shape of the cable, assumed to be inextensible; the other, dye, due to the variation of the elastic strain
produced by dN0:

dy = dyinex + dye. (25)

The variation dyinex associated with the configuration change can be obtained by differentiating
Equation (25) and considering that, for a given abscissa x, y(x) depends only on N0 and on a.
Consequently, dyinex results:

dyinex =
∂y
∂a

da +
∂y
∂N0

dN0. (26)

Obviously, in case the chord length is fixed, i.e., a is constant, Equation (26) reduces to:

dyinex =
dy

dN0
dN0. (27)

On the other hand, the variation dye due to the elastic strain variation is a function of the vertical
component of the axial force only. That contribution can be implicitly taken into account in the
expression of the cable’s equation, assuming that the length of the “inextensible” cable is equal to its
final, deformed length. The variation of the cable ordinate dye can be easily derived recalling that,
according to Irvine [11], the contribution of elastic strain variations to the final configuration of a cable,
made with a linear elastic material, is

∆ye(s) =
N0

E A0
s y
′(0)
− p

s2

2 E A0
. (28)

In fact, differentiating Equation (28) with respect to N0, dye finally results

dye =

(
y′(0)
E A0

+
N0

E A0

dy′(0)
dN0

)
s dN0 (29)

It must be underlined that in the present study effects of the elastic deformations are properly
considered, being disregarded, as usual, only the effect of the elastic variation of the cable length on
the integration limits.
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4. Equivalent Stiffness of Stays Running over a Fixed Pulley on One End

Cables running around a fixed pulley on one end are considered first (Figure 3). In that case,
the chord length a is not varying, and dyinex is given by Equation (27). Hypothesizing a linear elastic
material, Equation (24) becomes

NB dL +

L∫
0

p
dy

dN0
dN0 ds =

L∫
0

N
EA0

dN ds. (30)

Recalling Equations (19) and (29), Equation (30) converts in

N0

√
1 + y′(a)2 dL +

L∫
0

p ∂ye
∂N0

ds dN0 +
a∫

0
p dy

dN0
dN0

√
1 + y′2 dx

= N0 dN0
EA0

a∫
0

(
1 + y′2

) 3
2 dx.

(31)

Given that

dy
dN0

=−
cosh

( p a
2 N0
−

p x
N0

)
p

+
cosh

( p a
2 N0

)
p

−

(
x− a

2

)
sinh

( p a
2 N0
−

p x
N0

)
N0

−

a sin h
( p a

2 N0

)
2 N0

, (32)

and that
L∫

0
p ∂ye
∂N0

ds = p
(

y′(0)
E A0

+ N0
E A0

dy′(0)
dN0

) L∫
0

s ds

=
p L2

2 E A0

(
sinh

( p a
2 N0

)
−

p a
2 N0

cosh
( p a

2 N0

))
,

(33)

Equation (31) reduces to

N0 cosh
( p a

2 N0

)
dL +

p L2 dN0
2 E A0

[
sinh

( p a
2 N0

)
−

p a
2 N0

cosh
( p a

2 N0

)]
−

a∫
0

{
cosh

( p a
2 N0
−

p x
N0

)[ p a
2 N0

sinh
( p a

2 N0

)
−

( p a
2 N0
−

p x
N0

)
sinh

( p a
2 N0
−

p x
N0

)
+ cosh

( p a
2 N0
−

p x
N0

)
− cosh

( p a
2 N0

)]}
dx dN0 = N0 dN0

EA0

a∫
0

cosh3
( p a

2 N0
−

p x
N0

)
dx,

(34)

which, integrating and simplifying, leads to

cosh
( p a

2 N0

)
dL +

[
1

4 p sin h
( p a

N0

)
−

a
4 N0

cos h
( p a

N0

)]
dN0

= N0
6 EA0 p

[
9 sin h

( p a
2 N0

)
+ sin h

( 3 p a
2 N0

)
−24 sinh3

( p a
2 N0

)
+ 6 p a

N0
sin h

( p a
2 N0

)
sin h

( p a
N0

)]
dN0.

(35)

Referring the deformation to the x axis, the apparent variation of the chord length dxB equals the
variation of the cable length dL, dxB = dL, so that a kind of equivalent tangent elastic modulus, Ept,eq,
can be derived

1
Ept,eq

= dεx
dσ0

= 1

cosh
(
γ a

2 σ0

) { σ0
6 a E γ

[
9 sin h

( γ a
2 σ0

)
+sinh

( 3 γ a
2 σ0

)
− 24 sinh3

( γ a
2 σ0

)
+ 6 γ a

σ0
sin h

( γ a
2 σ0

)
sin h

(γ a
σ0

)]
−

1
4 a γ sin h

(γ a
σ0

)
+ 1

4 σ0
cos h

(γ a
σ0

)} (36)
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where dεx is the apparent strain variation of the chord, σ0 the horizontal component of the tension and
γ the specific weight of the cable material:

dεx =
dxB

a
, σ0 =

N0

A0
, γ =

p
A0

(37)

5. Equivalent Stiffness of Stays Fixed at Their Ends

If the cable is fixed at its ends (Figure 4), obviously it is dxB = da; therefore, by applying Equations
(25), (26) and (29), dy results

N0 da +

L∫
0

p
∂ye

∂N0
ds dN0 +

a∫
0

p
(
∂y
∂N0

dN0 +
∂y
∂a

da
) √

1 + y′2 dx=
N0 dN0

EA0

a∫
0

(
1 + y′2

) 3
2 dx. (38)

Recalling the results of the previous section, and considering that

a∫
0

p∂y
∂a

√
1 + y′2 dx da =

p
2

a∫
0

cosh
( p a

2 N0
−

p x
N0

)
cosh

( p a
2 N0
−

p x
2 N0

)
sinh

( p a
2 N0

)
dx da

= N0 sinh2
( p a

2 N0

)
da,

(39)

Equation (24) assumes the form

cosh2
( p a

2 N0

)
dL +

[
1

4 p sin h
( p a

N0

)
−

a
4 N0

cos h
( p a

N0

)]
dN0

= N0
6 EA0 p

[
9 sin h

( p a
2 N0

)
+ sin h

( 3 p a
2 N0

)
−24 sinh3

( p a
2 N0

)
+ 6 p a

N0
sin h

( p a
2 N0

)
sin h

( p a
N0

)]
dN0,

(40)

from which one derives

1
E f t,eq

= dεx
dσ0

= 1

cosh2
(
γ a

2 σ0

) { σ0
6 a E γ

[
9 sin h

( γ a
2 σ0

)
+sinh

( 3 γ a
2 σ0

)
− 24 sinh3

( γ a
2 σ0

)
+ 6 γ a

σ0
sin h

( γ a
2 σ0

)
sin h

(γ a
σ0

)]
−

1
4 a γ sin h

(γ a
σ0

)
+ 1

4 σ0
cos h

(γ a
σ0

)}
.

(41)

A comparison of Equation (41) with Equation (36) demonstrates that the equivalent along the
chord stiffness of the cable fixed at its ends is always bigger than the equivalent stiffness of the cable,
having the same characteristics, running over a pulley. In fact, as γa/σ0 > 0, the ratio ω between E f t,eq
and Ept,eq is always bigger than one:

ω =
E f t,eq

Ept,eq
= cosh

(
γ a
2 σ0

)
> 1. (42)

Evidently, it is
lim
σ0→∞

ω = 1, (43)

therefore, confirming that the cable behavior tends to be independent on the end conditions for “flat”
and highly stressed cables.

The dependence of ω on the product γa and on the horizontal component of the normal stress, σ0,
is illustrated in Figure 5, where curves are parameterized according the value of the horizontal stress
component σ0.
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In the diagram, considering that σ0 > 500 MPa implies ω ≈ 1, values of σ0 have been selected
in the range 50–500 MPa. More generally, it can be remarked that ω differs significantly from one
only when the stress level is low or γa is high. To exemplify, considering a steel cable having a chord
length a = 1000 m, for which γa = 78.5 MPa, it results ω < 1.1, provided that the horizontal stress
component satisfies the inequality σ0 > 88.5 MPa.

It must be emphasized that expressions (36) and (41) are much more relevant than one might assume
at first sight. In fact, once assigned the initial stress, nonlinear constitutive equations σ0 = σ0(εx),
pertaining to the equivalent spring or truss element, can be accurately derived via numerical integration
of Equations (36) and (41), taking into account also the chord length variation, if required.

6. Some Relevant Examples

To highlight the refinements achieved by using the proposed approach, the new formula (41) has
been applied to evaluate the apparent stiffness E f t,eq in the relevant case of steel cables, considering chord
lengths varying in the range 10–3000 m. According to usual design assumptions, the following values
have been adopted for the specific weight and the elastic modulus of the steel cable: γ = 78.5 kN/m3;
E = 1.8 × 105 MPa, thus obtaining the results summarized in Figures 6 and 7.

In Figure 6, the E f t,eq = E f t,eq(σ0 ) curves are parameterized in terms of the chord length,
a; conversely, in Figure 7, E f t,eq = E f t,eq(a ) curves are parameterized in terms of the horizontal
component of the tension, σ0.

Inspection of the diagrams confirms that, when the stress σ0 is low and the chord length a is
large, the equivalent modulus E f t,eq can be significantly smaller than E. Obviously, the effect is further
intensified when the cable is running around a fixed pulley.

To facilitate the interpretation of the results, given the chord length a, it is useful to associate the
value of the stress component σ0 with the corresponding cable sag, d, or, better, with the corresponding
sag to chord ratio k, given by

k =
d
a
=
σ0

a γ

(
cosh

(
γ a
2 σ0

)
− 1

)
(44)

as illustrated in the bi-logarithmic graph of Figure 8. In Figure 8, curves have been derived considering
that, in practice, upper limits exist for the cable sag d, for example, due to the limited height of the
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pylons or to the limited elevation of the cable attachments over the roof, over the deck, or over the
valley floor. For that reason, in the considered examples, it has been assumed d ≤ 500 m, implying that
k− σ0 curves are limited on the right and that σ0 is bounded from below.
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7. Generalization of the Results 

Thus far, the results for the steel cables have been discussed. Despite its relevance, this is not the 
unique significant case that can be met in different fields of current design practice, where the use of 
many other traditional or innovative structural materials can be more suitable.  

Figure 8. σ0 − k curves for steel cables, parameterized in terms of chord length, a.

For instance, in the present case, where γ = 78.5 kN/m3, and d ≤ 500 m, the lower limit of σ0,
which is about 50 MPa when a = 1500 m, increases to about 85 MPa when a = 2000 m, to finally attain
values around 130 MPa and 180 MPa for a = 2500 m and a = 3000 m, respectively. Clearly, when cables
are made with materials other than steel, lower limits of σ0 vary, depending on the specific weight, γ,
of the cable material itself.

To check the capability of the classical Dischinger’s formula to predict the effective behavior
of steel cables, the ratios Et,eq/E f t,eq between the Dischinger modulus, Et,eq (Equation (1)), and that
predicted with the proposed formula, E f t,eq (Equation (41), are plotted against the chord length a
and the horizontal stress component σ0 in Figures 9 and 10, respectively. Curves are consequently
parameterized in terms of σ0 in Figure 9 and in terms of a in Figure 10.
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The diagrams demonstrate that the equivalent stiffness derived via the classical Dischinger’s
formula is regularly lower than the one derived with the formulation proposed here and that the error
increases as soon as the stress in the cable decreases, or, evenly, the sag to chord ratio, k, increases.

7. Generalization of the Results

Thus far, the results for the steel cables have been discussed. Despite its relevance, this is not the
unique significant case that can be met in different fields of current design practice, where the use of
many other traditional or innovative structural materials can be more suitable.

A discussion about the applications of these materials is outside the scope of the study, even if
cables made with innovative structural materials are increasingly proposed not only for cable-stayed
and suspension bridges [23,24], but also for general structural applications [25,26], as well as in the
framework of strengthening, restoration and repair interventions [27]. Further studies consider hybrid
solutions too [28].

It is known that the efficiency of cables made by different materials can be efficiently compared
through two particularly relevant properties: the specific strength, ft/ρ, which is the ratio between the
tensile strength ft and the density ρ of the cable material, and the specific stiffness, E/ρ which is the
ratio between the elastic modulus and the density of the cable material.

For the steel cables, usually it is ft ≈ 1770 MPa and E ≈ 180 MPa, so that ft/ρ ≈ 22.5 kNm/kg and
E/ρ ≈ 22.9 MNm/kg, while cables made by more modern and advanced materials, like aramid, liquid
crystal aromatic polyester (LCP), polybenzoxazole (PBO) or carbon fibers, exhibit more favorable
values. Some reference values for mechanical properties of cables made by different artificial, metallic,
or biologic materials are reported in Table 1.
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Table 1. Reference values of relevant mechanical properties of various cable materials.

Cable Material Densityρ
[kg/m3]

Elastic
Modulus E

Ultimate
Strength ft

[MPa]

Specific
Stiffness E/ρ
[MNm/kg]

Specific
Strength ft/ρ

[kNm/kg]

Aramid fiber (high modulus) 1440 112 3000 77.8 208
Aramid fiber (normal modulus) 1440 70.5 2900 49.0 201

Liquid crystal aromatic
polyester (LCP) fiber 1410 66 2830 46.8 201

Polybenzoxazole (PBO) fiber 1560 270 3950 173 253
Carbon fiber 1560 170 2500 109 160
Steel strand 7850 180 1770 22.9 22.5
Steel wire 7850 206 1900 26.2 24.2
Copper 8940 110 240 12.3 2.68

Aluminum 2700 69 105 25.5 3.89
Nylon fiber 1140 4.56 610 4.0 53.5

Polyester fiber 1380 13.8 790 10.0 57.2
Cotton rope 1540 7.9 225 5.1 14.6
Hemp rope 1490 32 300 21.5 20.1
Flax rope 1540 27 340 17.5 22.1
Jute rope 1500 25.8 230 17.2 15.3

Abaca (Manila hemp) rope 1320 30 300 22.7 22.7
Sisal 1320 30 250 22.7 18.9

Silk (silkworm) 1320 10 650 7.6 49.2
Silk (spider) 1100 12 900 10.9 81.8

The specific stiffness is related to the magnitude of nonlinear effects on cable behavior. In fact,
Equation (39) suggests that, for a given value of σ0, k reduces as γ increases, so that, generally, as higher
is the value of the specific stiffness as smaller are the nonlinear effects.

But that conclusion is correct only when the comparison refers to materials with significantly
different densities and with comparable elastic moduli, like, for example, steel and PBO or steel and
carbon fiber. To better clarify this remark, the E f t,eq/E − σ0 curves, pertaining to cables made by
different materials, namely, steel, carbon fiber, PBO and nylon, are compared in Figure 11, considering
two different chord lengths, a = 100 m and a = 1000 m.
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Truly, looking at the curves in Figure 11, much more articulated and interesting conclusions can
be derived about the dependence of the ratio E f t,eq/E on the specific stiffness. In fact, considering two
cables made with different materials, nonlinear effects are more pronounced in that characterized by
bigger specific stiffness only if the densities of the materials are comparable, or the elastic moduli of
the materials are considerably different, as it is evident comparing the curves pertaining to of PBO,
carbon fiber and nylon cables, or those pertaining to steel and nylon cables in Figure 11.

That behavior can be explained considering that nonlinear effects are mainly determined by the
work made by the self-weight of the cable (see Equation (24)). Once the cable configuration is fixed,
the work of the self-weight turns out almost independent on the elastic modulus of the material, so that
its influence on E f t,eq/E is more relevant for materials characterized by smaller modulus, E.

On the other hand, some additional conclusions can be also derived regarding the dependence of
the ratio E f t,eq/E on the ratio σ0/(γ a), as a function of the cable material.

Recalling Equation (30), it is clear that cables made of different materials, and having the same sag
and the same chord length, are associated to the same ratios σ0/(γ a), or σ0/γ.

In Figure 12, the E f t,eq/E − σ0/γ curves for steel, carbon fiber, PBO and nylon cables are
diagrammatically shown considering again two different chord lengths, a = 100 m and a = 1000 m.
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From the diagram in Figure 12, it is evident that, among the considered materials, PBO cables
are characterized by the lowest E f t,eq/E ratio, while nylon cables are characterized by the highest
E f t,eq/E ratio, and that E f t,eq/E ratio is bigger for steel cables than for carbon fiber cables. Therefore,
it is again confirmed that the magnitude of nonlinear effects increases with the specific stiffness of the
material only when materials with sensibly different densities and similar elastic moduli are compared;
on the contrary, as stated before, comparing materials with similar densities leads to exactly the
opposite conclusion.

It must be stressed that the comparisons discussed above are devoted to point out the effects of the
variation of elastic modulus and density of various materials on the extent of nonlinear behavior of the
cable, independently on the mechanical or economic feasibility of the solutions which are envisaged
here. For additional information, see, for example, [23].

We underline that the proposed formulae maintain their validity also when long term effects
are significant, like for creep-sensitive materials, provided that the pertinent time dependent creep
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coefficient is known [29], and that the Young modulus of the material is replaced with the appropriate
age-adjusted effective elastic modulus.

8. Conclusions

The nonlinear behavior of horizontal cables under the self-weight is the subject of a number of
studies, often aiming to find suitable expressions for the equivalent along the chord stiffness.

The topic is very relevant in view of practical applications, as the results allow important
simplifications of nonlinear analysis of cable structures. For example, in finite element analysis (FEA),
replacing the cables or parts of them with suitable equivalent nonlinear spring or truss elements
considerably increase the speed and the efficiency of the analysis. On the other hand, the knowledge
of the equivalent stiffness can be a robust practical tool to rapidly check results of nonlinear FEA.

Several simplified formulae have been proposed over the years, starting from the classical
expression proposed by Dischinger, still frequently used in current design practice, and arriving to
much more refined solutions, like that due to Irvine.

In a previous study, starting from the classical Bernoulli equation of the catenary, and applying
the virtual work theorem, accurate and general expressions of the along the chord tangent stiffness
of inclined cables subject to the self-weight were derived, as a function the nature of the relative
displacement of the cable extremities. Depending on the boundary conditions of the stay, two relevant
situations can occur, corresponding to distinct solutions: in fact, it could happen that both ends of the
cable are attached, like in normal working conditions, so that the unstrained length of the cable is fixed;
or, alternatively, that one end is fixed and the other is running around a fixed pulley, like in the cable
tensioning phase, when the unstrained length of the cable varies as a function of the applied tensile
force. The study demonstrates that the equivalent stiffness of the cable in the former case is bigger than
in the latter. It must be underlined that not only classical simplified formulae, but also more refined
approaches proposed over the years, are unable to make such a fine distinction, depending on the
restraints at the stay ends.

The abovementioned innovative general closed form solutions, suitable to be used in modeling
equivalent spring or truss elements, are also valid for horizontal cables, but they are so complex and
the calculations so complicated, that their reduction to that particular case was not easy.

For that reason, the above-recalled method has been applied to directly deduce the equations of
the equivalent stiffness of horizontal stays.

The outcomes of the procedure are new expressions of the equivalent tangent modulus of the
horizontal cable, depending on the nature of the boundary conditions. As they accurately consider
all influencing parameters, these rather compact innovative formulae can be again applied without
restrictions, independently on the inclination of the cable, on the sag of the catenary, and on the cable
material, thus allowing a generalized application of the equivalent stiffness approach, in particular
in the low stress region. Of course, the formulae given here for horizontal cables, which can be also
applied for slightly inclined cables, coincide with those derived from the expressions for inclined
cables when h tends to zero.

A relevant case study, involving horizontal steel stays with fixed ends, and chord length a varying
in the range 10− 3000 m, is discussed in detail, also aiming to estimate the approximations inherent
with the Dischinger’s approach. The outcome is that Dischinger’s formula underestimates the actual
stiffness of the cable, especially when the value of the horizontal component of the stress σ0 is small.

Results have been extended to other significant cases, taking into account various natural or
artificial cable materials, so highlighting that the magnitude of nonlinear effects in the cable depends
not only on the specific stiffness, but also on the elastic modulus and on the density of the material.

Long terms effects can be also taken into account, provided that the elastic modulus of the material
is replaced with the pertinent age-adjusted effective modulus.

Moreover, in case the cable is inhomogeneous, there are relevant situations where the proposed
formulae can be applied without modifications, like in case of a hybrid cable; or in case the cable
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is obtained connecting two or more stretches made of different materials, on condition that specific
weight and elastic modulus of distinct stretches are comparable, but, evidently, the latter case seems
quite unrealistic.

Depending on the particular structure under consideration, other relevant cases can be envisaged
in the practice: for example, in cable-stayed bridges or in other guyed structures, where the main
distributed load acting on the stay is mainly the self-weight of the stay itself, the reference configuration
to be considered for the cables s the catenary; while, in suspension bridges or in other structures
characterized by horizontal and inclined cables sustaining uniformly distributed loads, the reference
configuration to be considered for the cable is the parabola.

The proposed solutions for horizontal stays, together with the general expressions already found
for inclined stays, provide a complete and original set of formulae for the evaluation of the equivalent
stiffness of stays.

Evidently, according to an approach frequently adopted in the existing studies, it is possible to
use these expressions also in case of loaded cables, suitably increasing the unit self-weight of the cable
in order to simulate the presence of the uniformly distributed load, i.e., fitting the actual deformed
parabolic shape, with the appropriate catenary.

Although reasonable for taut cables, that approximation becomes unacceptable as soon as the
cable sag increases, and the parabola significantly deviates from the catenary. Further studies will
be thus addressed to natural improvements of the proposed approach, aiming to arrive to general
solutions also for uniformly loaded cables, hypothesizing parabolic deformed configurations.

In addition, other promising extensions can be also envisaged, aiming to encompass, when relevant,
the bending stiffness, and the shear stiffness of the cable as well.
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