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Abstract 

Aim of the  present paper is to analyze and revisit the first chapter of the Monasterio’s un-

published manuscript where the pure sliding collapse mode of  non-symmetric masonry arch-

es is investigated. As it will be shown, the Monasterio approach is of a “kinematical” type, 

since the collapse mechanisms are “a priori” selected and, then, some criterion is adopted to 

identify the collapse condition. In the present study, it will be shown that the basic assump-

tions of the Monasterio’s analysis are fully in agreement with the modern limit analysis. Fur-

thermore, an alternative formulation for the assessment of the equilibrium of non-symmetric 

arches is given. 
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1 INTRODUCTION 

The current paper constitutes the first step of a research project directed by Anna Sinopoli, 

undertaken by the Authors in response to Santiago Huerta’s invitation. The main purpose of 

this project is to perform a critical analysis on the validity and advantage of the approach pro-

posed by Monasterio in his unpublished manuscript, entitled Nueva teórica sobre el empuje 

de bóvedas [New theory on the thrust of vaults]. This interesting text was probably written in 

Spain around 1805 and 1806, when the development of pre-elastic historical theories on ma-

sonry arches was almost concluded. It was found by Santiago Huerta in the Library of the 

Escuela de Ingenieros de Caminos, Canales y Puertos of the Universidad Politécnica de Ma-

drid, where Monasterio was professor of civil engineering, and was firstly introduced in the 

contemporary scientific literature in 2003 [1]. 

The collapse analysis of non-symmetric arches is the most challenging subject examined in 

Monasterio’s contribution. It is a subject almost never investigated in the historical literature 

on masonry vaulted structures.  

The present paper provides a critical review of the first Chapter of Nueva teórica, by focus-

ing on the analysis of the pure sliding collapse mode of non-symmetric masonry arches.  

2 MONASTERIO’S KINEMATICAL APPROACH  

In his Introducción, Monasterio states that the search for the collapse condition must be 

carried out «por medio de la doctrina de máximos y mínimos, y no valiéndose, como se ha 

hecho comúnmente, de observaciones prácticas». Monasterio acknowledges the Coulomb’s 

primacy, as already pointed out by Huerta and Foce [1]. His hypotheses regarding the mason-

ry material coincide with Coulomb’s hypotheses: i.e. the masonry is characterized by an infi-

nite compressive strength, a nil tensile strength, and a limited friction coefficient [2-4]. 

Nevertheless, as it will be demonstrated, the approach he proposes is quite different from the 

Coulomb’s method. 

Namely, before beginning his investigation, Monasterio lists the possible collapse mecha-

nisms occurring in a non-symmetric arch: his approach is therefore framed in the philosophy 

of the upper bound theorem [5, 6]. 

Monasterio does not develop any rigorous kinematic analysis (i.e. he does not analyze the 

possible relative displacements of the various voussoirs in agreement to the impenetrability 

law at each joint). His analysis seems to be of a qualitative nature; anyway it allows for identi-

fying seven possible collapse modes occurring in a non-symmetrical arch, illustrated in Figure 

1. The first one corresponds to the collapse by translation of two voussoirs (Plate I, Fig. 1
a
); 

the second corresponds to the collapse by rotation of three voussoirs (Plate I, Fig. 2
a
); finally, 

the last five correspond to collapse modes of a mixed type, involving both translation and ro-

tation of either two or three voussoirs (Plate I, Figs. 3
a
-7

a
). 

 



Fig. 1. 

3 THE ANALYSIS OF THE PURE SLIDING MEC

MONASTERIO 

3.1   The theoretical assump

In the present paper the pure sliding collapse mode discussed in chapter I of 

manuscript is examined (Figure 2

cording to this collapse mode,

while the one on right slides outwards, without any 

joints position. 

We adopt the same notation introduced

and results. The unknown joints candidates for sliding are identified by angles

(Fig. 2b), measured with respect to the vertical line associated with an absolute Cartesian sy

tem (x, y). The y axis passes throu

line. From now on, reference will be made to segment 

By examining Fig. 2b, it can be observed that the angles, considered as positive, are instead 

counted according to a clockwise rotation versus (

(αi). The weights, Mi and M’, of the two parts in which the voussoir 

the vertical axis y depend on α
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Fig. 1. Plate I of the Monasterio’s manuscript. 

THE PURE SLIDING MECHANISM ACCORDING TO 

ptions 

the pure sliding collapse mode discussed in chapter I of 

ure 2a, corresponding to Figure 1
a
 of Monasterio’s Plate I)

cording to this collapse mode, the left-hand voussoir containing the key joint slides inwards, 

right slides outwards, without any a priori assumption on the bounding 

We adopt the same notation introduced by Monasterio in order to compare the procedure 

and results. The unknown joints candidates for sliding are identified by angles

measured with respect to the vertical line associated with an absolute Cartesian sy

axis passes through point A, located at the highest position of the intrados 

From now on, reference will be made to segment AB (Fig. 2a) as the key joint of the arch. 

, it can be observed that the angles, considered as positive, are instead 

counted according to a clockwise rotation versus (α’ and α”), and counter

, of the two parts in which the voussoir N’M’M

αi and α’, respectively. 

 

HANISM ACCORDING TO 

the pure sliding collapse mode discussed in chapter I of Monasterio’s 

of Monasterio’s Plate I). Ac-

containing the key joint slides inwards, 

assumption on the bounding 

order to compare the procedure 

and results. The unknown joints candidates for sliding are identified by angles αi, α’ and α” 

measured with respect to the vertical line associated with an absolute Cartesian sys-

, located at the highest position of the intrados 

) as the key joint of the arch. 

, it can be observed that the angles, considered as positive, are instead 

and counter-clockwise versus 

N’M’Mi Ni is divided by 
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           (a)             (b) 
 

Fig. 2. The pure sliding mechanism according to Monasterio (a); the notation adopted by Monasterio (b). 

 

Monasterio proposes the following procedure: by starting from any point ϕ  (Fig. 2a) lo-

cated on the vertical line passing through the gravity centre G of the voussoir MiN' (which ex-

tends from angle αi to α’), the weight (Mi+M') is decomposed into two forces F' and Fi, which 

form angles λ' and λi  with the vertical direction (Fig. 3a). They are the resultants acting at 

M'N' and Mi Ni joints, respectively, i.e. the joints candidates to slide; while the force acting at 

joint M''N'' denoted as F” is the resultant of force F' and weight (M''-M'), that is the weight of 

voussoir N”M”M’N’ (Fig. 3b).  

In order to rigorously carry out the analysis, the Authors propose to associate to each of 

the candidate joints, αi, α’ and α”, the system of unity vectors (ti, ni), (t’, n’), and (t”, n”), as 

shown in Fig. 3a,b, which allows to locally identify at each joint the frontiers of Coulomb’s 

domain, defined by the friction cone of angular opening +f or –f. 

Monasterio considers a mechanism according to which the voussoir containing the key 

slides downwards without any rotation. He analyzes the resultant reactions whose action lines 

converge at point ϕ of the barycentric axis in order to ensure that the forces system consisting 

of weight (Mi+M') and two internal reactions Fi and F' is characterized by null moment, so 

that the rotation of the entire voussoir is prevented. It is worthy to note that he takes into ac-

count only the inclination of resultant reactions Fi and F' and not their point of application at 

joints αi and α’. Therefore, given the unknown position of the joints that delimit the central 

voussoir, the criterion adopted by Monasterio does not prevent the possibility that the thrust 

line touches the boundary of the arch at some points or comes out of it due to insufficient 

thickness, thus giving origin to a collapse of mixed type or even to the impossibility of equi-

librium. In this first part of his analysis this possibility is never examined. 

After expressing the modulus of F’ as a function of total weight (Mi+M') and angles λi and 

λ', Monasterio decomposes F’ into two portions: «la primera perpendicular y la segunda 

paralela a la junta inferior M”N”del trozo M”N’» (Chapter 1, n. 6), by obtaining the destabi-

lizing force Δ��� provided by the internal reaction F’ on voussoir N’M”: 

 

Δ��� �
��

cos 	

sin � sin���� � 	� � cos � cos���� � 	�� 

 

Δ��� is described as the effort by which voussoir MiN’ tries to move the second voussoir 

N’M” along its lower joint in the direction from M” to N” (Fig. 3c). Monasterio observes that 

the limit condition for the equilibrium with respect to sliding at Mi Ni and M’N’ joints corre-
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sponds to the limit values:  � �
�

�
� �� � 	, and � � �

�
� �� � 	; therefore, the destabilizing 

action ����  can be rewritten by taking into account these limit conditions.   

Monasterio then considers the stabilizing action of weight M”-M’ (Fig. 3d), given by  

 

Δ���� ����� �
���� ����

cos 	
cos���� � 	�

 
 

 

 
 

Fig. 3. The forces Fi and F’ acting at joints αi  and α’ (a); the force F” acting at joint α” (b);  

the destabilizing force ���� (c); the stabilizing force ����� ����� (d). 

 

As a consequence of the actions balance, Monasterio finally states that equilibrium at joint 

M”N” is guaranteed if ����� ����� � ����, that is if the following inequality is satisfied:  

 

���� ���� cos���� � 	� �
������� � !�"��#�

!$%�"��#�"��#�
sin���� � 	 � �� � 	� � 0   (1) 

 

The collapse condition proposed by Monasterio therefore corresponds to inequality (1) satis-

fied as equality. 

3.2   A case study: Monasterio’s approach and an alternative formulation 

In the following section a case study is examined. Let us consider a non-symmetric ma-

sonry arch of unit width, whose geometry is represented in Fig. 4a: it is formed by two sectors 

of semicircular arches of constant thickness, h, and mean radius Ri, R’, respectively. Let p be 

the specific weight,  f  the friction angle, and µ = tan f  the corresponding friction coefficient.  
The vertical straight line passing through point A is the y axis introduced by Monasterio in his 

analysis. The joints at the arch’s springing are defined by angles βi = π/3 and β’ = π/2.3, re-

spectively (Fig. 4a). Furthermore, ratios h/Ri = 3/5, h/R’ = 1 are assumed, so that R’/Ri = 3/5.  

Let denote as '���, ��, ���� the dimensionless quantity obtained by dividing the first mem-

ber of inequality (1) by ) * �'��2
. 

According to (1), equilibrium is guaranteed if  '���, ��, ���� � 0, with reference to the 

pure sliding mechanism under examination. 

The values of R depend on �� , ��, ���. The study of inequality (1) can be carried out by fix-

ing, by attempt, the value of the lower joint sliding towards the outside, namely, the joint α”. 

As a first trial, α'' = β'= π / 2.3 = 78.2609° is assumed, since Monasterio himself suggests 

considering this joint. By posing the value of the friction coefficient equal to µ = 0.35,  
'���, ��, ��� �  β,� remains always positive by reaching its minimum value:  
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min (R) = 0.254133 - 0,  

 

for αi = 33.12° and α’ = 18.76°; the corresponding trend '��� � 33.12°, ��, ��� � β,� is 

represented in Fig. 4b, where the minimum value is attained at point A, for α’ = 18.76°.  

   

 
 

Fig. 4. The case study (a); the sliding equilibrium condition according to Monasterio, for µ = 0.35 (b). 
 

By decreasing the value of the coefficient of friction up to µ = 0.25490905, we obtain min 

(R)  = 0, for αi = 33.8075° and α’ = 16.1539°: This limit condition corresponds to the graph 

of Fig. 5a, where '��� � 33.81°, ��, ��� �  β,� is plotted as a function of angle α’. The mini-

mum is attained at point A, for α’ = 16.1539 °. For this value of the friction coefficient (µ = 

0.25490905), according to the analysis of Monasterio, the mechanism represented in Fig. 5b 

occurs. 

By decreasing the value of the friction coefficient up to µ = 0.25490905, the value min (R)  

= 0 is obtained for αi = 33.8075° and α’ = 16.1539°: this limit condition corresponds to the 

graph of Fig. 5a, where '��� � 33.81°, ��, ��� � β,�  is plotted with its minimum again 

attained at point A. Therefore, according to the Monasterio’s analysis, µ = 0.25490905 

represents the value of the friction coefficient, for which the mechanism represented in Fig. 

5b occurs. 
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Fig. 5. The limit sliding equilibrium condition according to Monasterio (a);  

the corresponding collapse mechanism (b). 

 

An alternative formulation of the problem can be carried out in terms of a lower bound 

approach; in analogy to Coulomb’s method, the internal forces acting at the key joint can be 

assumed as unknown variables. However, differently from the equilibrium analysis of 

symmetric arches, the case of non-symmetric arches requires that, not only the thrust H, but 

also the shear force T is taken into account (Fig. 6a).  

By posing the specific weight p as ) � 1/�'��2
, the dimensionless thrust η and shear force 

τ will be then considered. The statically admissible solutions (with reference to sliding 

equilibrium) are represented by points (η, τ) belonging to the dashed area in Fig. 6b, where 

µ = 0.35 is assumed as an example; such area would shrink to a single point in 

correspondence to the limit value of the friction coefficient. 

 

 
 

Fig. 6. An alternative formulation: thrust H and shear force T acting at the key joint (a);  

the statically admissible solutions in the plane (η, τ), with reference to sliding equilibrium (b). 

 

For the sake of brevity, in this paper only sliding equilibrium has been considered. The 

complete alternative formulation consists in identifying the domain that guarantees the equi-

librium with respect to rotational mechanisms and, in a second step, its intersection with the 

domain that guarantees sliding equilibrium. In a forthcoming paper the detailed procedure will 

be described: the present case study will be analyzed in order to define the dependence of the 

various collapse mechanisms on thickness and friction. In order to place Monasterio’s ap-

proach in relation to the modern limit analysis, it can be anyway interesting to recall some 
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considerations on the masonry standard and non-standard behavior. In the presence of finite 

values of the friction, the normality rule characterizing a standard behaviour of the material 

does not hold, so that some static admissible solutions identified through the equilibrium 

method could correspond to a mechanism with relative sliding. In this case, the collapse 

mechanism is not only undetermined, but also not necessarily unique, except for particular 

cases such as symmetric arches [5, 7-10]. For non-standard behavior, the static approach re-

quires that equilibrium with respect to the rotational collapse is guaranteed, as necessary con-

dition in order to activate any mechanism with sliding [7]. The limit analysis for pure sliding 

should be preceded by that concerning mechanisms with pure rotation and mixed mechanisms 

with rotation and sliding.  

As already stated, the approach proposed by Monasterio, conversely, differentiates itself 

from the static one proposed by Coulomb, since the starting point of his analysis concerns the 

a priori identification of some plausible collapse mechanisms, by defining a posteriori the 

conditions required for their activation; therefore, the procedure can be placed in an upper 

bound framework, by overcoming some difficulties inherent in both the static and kinematic 

approaches for non-standard materials. 

4 CONCLUSIONS  

• The kinematic approach proposed by Monasterio is substantially correct, although clear 

considerations on the global equilibrium of the arch are lacking.  

• The completeness of the various collapse mechanism by him considered is an important 

issue, to be clarified in a future research. 

• Monasterio’s manuscript is characterized by its very and somehow extremely courageous 

analysis in relation to the new proposed subject, the collapse modes occurring in a non-

symmetric arch. It appears to be as a new research frontier on the masonry arches me-

chanics, considering the time in which the analysis was developed. 
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