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Abstract
D.C. programs have been widely studied in the recent literature due to their importance 

in applicative problems. In this paper the results of a computational study related to a branch 
and reduce approach for solving a class of d.c. problems are provided, pointing out the 
concrete effectiveness of the use of Lagrangean cuts as an acceleration device.
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1.  Introduction

The so called d.c. programming, where a d.c. function (that is a 
function given by the difference of two convex ones) is optimized over a 
certain feasible region, is one of the main topics in the recent optimization 
literature. Its relevance from both a theoretical (see for all [11]) and an 
applicative point of view (see for example [1, 4, 6, 8, 10, 12, 14, 15, 21, 
22] and references therein) is widely known. Specifically speaking, in this 
paper the following d.c. program is considered: 
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( ) = ( ) ( )

:

k
T

i i
i

n

min f x c x g d x
P

x X


−


 ∈ ⊆

∑
R

	 (1)

 The set X is a polyhedron given by inequality constraints Ax £ b and/
or equality constraints Aeqx = beq and/or box constraints 1 £ x £ u, where   
A Œ Rm×n, b Œ Rm, l, u Œ Rn, Aeq Œ Rh×n, beq Œ Rh, di Œ Rn for all i = 1, ..., k. The 
functions : nc →R R  and : , = 1, , ,ig i k→ R R  are convex and continuous. 
We also assume that there exists , kα β ∈ R  such that T

i i id x x Xα β≤ ≤ ∀ ∈

  
= 1, , .i k∀ 

In [2] this class of problems have been computationally studied 
with a branch and bound approach, pointing out the effectiveness of 
partitioning rules and of stack policies for managing the branches. In [3] 
these problems have been approached with a branch and reduce method, 
showing the importance of applying acceleration devices at every single 
algorithm iteration. Particular cases of problem P have been considered 
in [9, 17, 18].

The aim of this paper is to deepen on the study proposed in [2, 3] 
analyzing the opportunity of using Lagrangean cuts within the branch 
process of a branch and reduce solution scheme. It will be pointed out 
that, in the case “dual-adequate’’ primitives are available (see [20]), the 
use of Lagrangean cuts highly improve the performance of the branch and 
reduce method. It will be also shown that the “w-subdivision’’ partitioning 
rule, which is commonly used in the literature, is not the better choice.

In Section 2 the branch and reduce approach is analyzed and 
described in details. In Section 3 the theoretical fundamentals needed for 
Lagrangean cuts are provided. In Section 4 the results of a computational 
study are provided and discussed in order to point out the concrete 
effectiveness of Lagrangean cuts.

2.  The general branch and bound approach

 A branch and bound scheme for the considered class of problems 
has been already described in [2, 3]. For the sake of completeness, and in 
order to let the reader understand the computational results provided and 
discussed in Section 4, let us briefly recall the approach and let us notice 
that the aim of this paper is to deep on the use of Lagrangean cuts in the 
branch and reduce solution scheme.

The concave part =1
( )k T

i ii
g d x−∑  of f (x) can be linearized with respect 

to the functions , = 1, ,T
id x i k  (see for example [2, 3, 5, 18]), and then 



?� 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

the relaxed convex subproblem can be solved. Given a pair of vectors 
, ,kα β ∈ℜ  with a £ b let B(a, b) the following set: 

	 ( , ) = { : }n TB x D xα β α β∈ℜ ≤ ≤

where D is the n × k matrix whose columns are the k vectors 1 , , .kd d  The 
concave part =1

( )k T
i ii

g d x−∑  of function f(x) can be linearized over B(a, b) 
as follows: 

	 =1 =1
( ) = ( ) [ ( ) ( )] = ( ) ( ) ( )

k k
T T T

B i i i i i i i
i i

f x c x d x g c x D x gµ α α µ α α− − + − − −∑ ∑

where for all = 1, ,i k  it is: 

	

if

if

( ) ( )
<

=
0 =

i i i i
i i

i ii

i i

g gβ α
α β

β αµ
α β

 −
 −



 Function fB(x) is an underestimation for f(x) over the set B(a, b), so 
that the following relaxed convex subproblem can be defined and used in 
the branch and bound scheme: 

	
min ( )

( , ) :
( , )

B
B

f x
P

x X B
α β

α β



∈ ∩
	 (2)

The following theorem estimates the error done by solving the 
relaxed problem.

 Theorem 1: Let us consider problems P and PB(a, b) and let 

	
and*

( , ) ( , )
= arg { ( )} = arg { ( )} .min min B

x X B x X B
x f x x f x

α β α β∈ ∩ ∈ ∩

Then, *( ) ( ) ( ),Bf x f x f x≤ ≤  that is to say that *0 ( ) ( ) ( )B Bf x f x Err x≤ − ≤  
where : 

	 =1

( ) ( ) ( ) =

= ( ) ( ) ( )

B B
k

T T T
i i i i

i

Err x f x f x

D x g d x gµ α α

= −

 − − − ∑

 The following main procedure “DcBranch()’’ can then be proposed. 
With this aim, let us denote with , = 1, , ,jA j m  the j-th row of matrix A.
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Procedure DcBranch(inputs: P; outputs: Opt, OptVal)
	 fix the tolerance parameter e > 0;
	 initialize the global variables xopt : = [] and UB := + ∞;
	 initialize the stack;
	 determine the starting vectors , kα β ∈ℜ

  such that {1, , } :i k∀ ∈ 

	
and= { } = { }maxmin T T

i i i i
x X x X

d x d xα β
∈ ∈





 	 # Optional : compute := { } {1, , };minx Xj jv A x j m∈ ∀ ∈ 

 	 Analyze ( , );α β
	 while the stack is nonempty do
 		  ( )( ), , , , ,B B Bf x x r Xα β :=Select();

		  if ( ) <B Bf x UB  and ( ) >B BUB f x
UB

ε−  then 

			   # Optional : ( , ) := ( , , , );Resize I Xα β α β
			   1 := ; 1 := ; 2 := ; 2 := ;α α β β α α β β
			   g :=Split(ar, br); 1 := ; 2 := ;r rβ γ α γ
			   Analyze (a1, b1); Analyze(a2, b2);
		  end if;
	 end while;
	 Opt:=xopt; OptVal :=UB;
end proc. 

The sub-procedure named “Select()’’ extracts from the stack the 
subproblem to be eventually branched. In [2] it has been shown that the 
way such a stack is implemented greatly affects the overall performance of 
the algorithm. In this light, in [2] it is pointed out that a priority stack, where 
problems having the smaller lower bound fB(xB) have the biggest priority, is 
an effective choice. The sub-procedure named “Split()’’ determines a value 
g Œ(ar, br) which will be used to divide B(a, b) in two hyper-rectangles 
(this is a generalization of the so called “rectangular partitioning method’’ 
[7, 23]). We considered the same 7 different partitioning rules proposed in 
[2, 3], which are based on the following values:

 •	 1 := ;T
r Bd xγ

 •	 2 := ;
2

r rα β
γ

+

 •	 [ , ]3 := arg { ( ) ( ( ) ( ))}.maxy r r r r rr r
y g y gα βγ µ α α∈ − − −
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In other words, the value ( , )r rγ α β∈  provided within procedure 
“DcBranch()’’ by the sub-procedure “Split()’’ can be computed as follows:

p1)	g : = g 1 (“w - subdivision process’’);

p2)	g : = g 2 (classical bisection);

p3)	g : = g 3 (maximum error);

p4)	 1 2:= ;
2

γ γ
γ

+

p5)	 1 3:= ;
2

γ γ
γ

+

p6)	 2 3:= ;
2

γ γ
γ

+

p7)	 1 2 3:= .
3

γ γ γ
γ

+ +

Notice that in procedure “DcBranch()’’ there is another optional sub-
procedure named “Resize()’’ which is aimed to improve the performance 
of the solution method. Notice also that the calculus of the optional 
values , {1, , },jv j m∈   is needed just in case the optional sub-procedure 
“CutRegion()’’ is used within the forthcoming procedure “Analyze()’’.

Procedure “Analyze()’’ studies the current relaxed subproblem, 
eventually improves the incumbent optimal solution, determines the 
index r corresponding to the maximum error, and finally appends in the 
stack the obtained results. With these aims, the following further error 
function is used: 

	 ( , ) = ( ) ( ( ) ( ))T T
B i i i i i i iErr x i d x g d x gµ α α− − −

 Notice that it yields =1
( ) = ( , ).k

B Bi
Err x Err x i∑

Procedure Analyze(inputs: a, b)
	 determine the function fB(x) over B(a, b);
	 := arg min{ };B Bx P

	 if ( ) <Bf x UB  then
	    :=opt Bx x  and := ( );BUB f x
	 end if;
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 	 if ( ) <B Bf x UB  and ( ) >B BUB f x
UB

ε−  then

 	   # Optional : ( , ) := ();CutBoundsα β  update fB(x) over B(a, b);
	   # Optional : := ();X CutRegion
	   =1, ,:= arg { ( , )};max i k B Br Err x i



	   Append ( )( ), , , , , ;B B Bf x x r Xα β
 	 end if;
end proc. 

The sub-procedure named “Append()’’ inserts into the stack the 
studied subproblem. Notice that, since fB(x) is an underestimation function 
of f(x), there is no need to study the current relaxed subproblem in the 
case ( ) .B Bf x UB≥  For the sake of convenience, the tolerance parameter 

e > 0 is also used, avoiding the study when ( ) .B BUB f x
UB

ε− ≤  The point 
:= arg min{ }B Bx P  can be determined by any of the known algorithms 

for convex programs, that is any algorithm which finds an optimal local 
solution of a constrained problem. In order to decrease as fast as possible 
the error ErrB(xB), the eventual branch operation is scheduled for the index 
r such that =1, ,= arg max { ( , )}.i k B Br Err x i



 In this light, notice that condition 
( ) >B BUB f x

UB
ε−  implies ( , ) > 0B BErr x r  which yields ar < br. This guarantees 

that a branch operation with respect to such an index r is possible.
Notice that there are two optional procedures named “CutBounds()’’ 

and “CutRegion()’’ which will be discussed in the next section and which 
are aimed to improve the performance of the solution method by properly 
reducing the bounds a, b and the feasible region X by means of the use of 
duality results.

It is worth noticing that the very aim of this paper is to emphasize the 
role of these two optional subprocedures. In other words, the performance 
behavior of the solution scheme will be studied depending on the use of 
none, one or both of these optional subprocedures “CutBounds()’’ and 
“CutRegion()’’.

3.  Lagrangean Cuts Acceleration Device

In this section some acceleration techniques are studied in order 
to improve the performance of the general branch and bound method 
described in the previous section. Specifically speaking, two optional  
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sub-procedures, named “CutBounds()’’ and “CutRegion()’’, will be 
provided with the aim to determine their effectiveness among the branch 
and reduce solution scheme. In this light, Section 4 will point out from a 
computational point of view whether it is worth using none, one or both 
of these sub-procedures. Notice also that in [3] these two subprocedures 
have been both used by default without any computational and explicit 
motivation. Let us also point out that the results stated in the forthcoming 
Subsection 3.2 are aimed to deep on the ones given in [3].

3.1 Resizing the bounds

As it has been described in the previous section, the solution method 
starts with the bounds , ,kα β ∈ℜ

  computed by means of the 2k linear 
programs = { }min T

x Xi id xα ∈  and max= { }, = 1, , .T
x Xi id x i kβ ∈

  Clearly, 
this starting vectors have the tightest possible values with respect to the 
feasible region X.

Unfortunately, after some branch iterations the current bounds  
(a, b) are no more tight with respect to the considered feasible region 

( , ).X B α β∩  In order to improve the performance of the algorithm the 
values of (a, b) are periodically recalculated with respect to the current 
feasible region ( , ).X B α β∩  Since this could be heavy from a computational 
point of view, we considered the opportunity to recalculate the values 
only for a subset I of the indices, that is {1, , }.I k⊆   In other words, the 
sub-procedure call ( , ) := ( , , , )Resize I Xα β α β  just recalculates for all i I∈  
the values: 

	
and

( , ) ( , )
= { } = { }maxmin T T

i i i i
x X B x X B

d x d x
α β α β

α β
∈ ∩ ∈ ∩

 Various subsets I of indices have been considered in a computational 
test in order to determine the better choice. The obtained computational 
results will be described in Section 4.

3.2 Lagrangean Cuts

Let us now show how to improve the solution algorithm by means of 
the use of reduction techniques based on duality results. This is a technique 
already used in [20, 17] and based on known results by Rockafellar [19] 
and by Minoux [16]. Some of the following results have been already 
briefly described in [3], while in this section they are deepened on and 
fully proved. Consider the parametric convex problem 
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min ( )
= ( )y

n

x
C h x y

x X

φ
 ≤
 ∈ ⊆ R

where X is a convex set, the functions : Xφ →R  and :h X →R  are convex, 
and y is a real parameter. Let us define also the set = { n

yX x X∈ ⊆ R
: ( ) }h x y≤  and the function

	
( ) = ( )min

x Xy

y xψ φ
∈

In [19] Rockafellar proved that function y(y) is convex. By means of 
Theorem 5.4 proved by Minoux in [16] we can then obtain the following 
result.

Theorem 2: Let x  be the optimal solution of C0 such that ( ) = 0h x  and let 
, < 0,λ λ∈R  be the corresponding K-K-T multiplier relative to the constraint 

( ) 0.h x ≤  Then, ( ) (0) .y y yψ ψ λ≥ + ∀ ∈R
The following corollary holds.

Corollary 1: Let UB be an upper bound for the minimum value of f(x) in problem 
C0. Under the assumptions of Theorem 2 we get: 

	 (0)< ( ) >UBy y UBψ ψ
λ
−

⇒ 	 (3)

 In other words, x  (optimal solution of C0) verifies the inequality 
(0)( ) .UBh x ψ

λ
−≥  

Proof: From (0)< UBy ψ
λ
−  we get (0) >y UBψ λ+  so that (3) follows being 

( ) (0) .y y yψ ψ λ≥ + ∀ ∈R  The whole result is stated noticing that for all 
x X∈  such that (0)( ) < ,UBh x ψ

λ
−  that is to say for all yx X∈  such that 

(0)< ,UBy ψ
λ
−  it results ( ) ( ) > .x y UBφ ψ≥  

By applying Corollary 1 to the convex subproblems ( , )BP α β  we can 
obtain the following specific results. In this light, an inequality constraint 
is defined a “valid cut’’ if it does not exclude any solutions with values 
smaller than the incumbent upper bound UB.

Theorem 3: Consider Problem P and its convex relaxation PB(a, b), described 
in (1) and (2), respectively. Let xB be the optimal solution of PB(a, b) with 
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value fB(xB). Let also UB, UB ≥ fB(xB), be the value of the current incumbent 
optimal solution xopt. Then, the following valid cuts hold for the active inequality 
constraints corresponding to xB and having a strictly negative K-K-T multiplier:

 

 Active 
Constraint

K-K-T 
Multiplier Indices Valid Cut

 1. 0T
i id x β− ≤ < 0iµ = 1, ,i k

( )T B B
i i

i

UB f x
d x β

µ
−

≥ +

 2. 0T
i id xα − ≤ < 0iλ = 1, ,i k

( )T B B
i i

i

UB f x
d x α

λ
−

≤ −

 3. 0i iA x b− ≤ < 0iµ = 1, ,i m

( )T B B
i i

i

UB f x
A x b

µ
−

≥ +

 4. 0i iv A x− ≤ < 0iλ = 1, ,i m

( )B B
i i

i

UB f x
A x v

λ
−

≤ −

 5. 0T
i ie x u− ≤ < 0iµ = 1, ,i n

( )T B B
i i

i

UB f x
e x u

µ
−

≥ +

 6. 0T
i il e x− ≤ < 0iλ = 1, ,i n

( )T B B
i i

i

UB f x
e x l

λ
−

≤ −

Proof: Consider the constraints of type 1. The result follows directly from 
Corollary 1 assuming ( ) = T

i ih x d x β−  and noticing that (0) = ( ).B Bf xψ  The 
other cases are analogous. 

The previous theorem suggests some valid inequalities which 
could be helpful in improving the algorithm performance by cutting 
off an “useless’’ part of the feasible region. With this aim, the convex 
subproblems ( , )BP α β  have to be solved with an algorithm providing both 
the optimal solution and the corresponding K-K-T multipliers (such a 
kind of algorithms have been called “dual-adequate’’ in [20]).

As it has been shown, these cuts can be applied to the bounds 
, = 1, , ,T

i i id x i kα β≤ ≤   thus improving the convex relaxation function fB(x)  
and the related error function ErrB(x). They can also be used in reducing 
the feasible region X, that is to say the constraints v Ax b≤ ≤  and ;l x u≤ ≤  
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this does not affect the error by itself, but it improves the effectiveness of 
the “Resize()’’ optional sub-procedure. These cuts are concretely described 
in the following sub-procedures “CutBounds()’’ and “CutRegion()’’. Notice 
that the use of “CutRegion()’’ optional sub-procedure requires in procedure 
“DcBranch()’’ the computation of the preliminary values := { }minx Xj jv A x∈  

{1, , }.j m∀ ∈   Let us conclude recalling that the aim of this paper is to 
study the computational role of these two optional subprocedures. In this 
light, the performance of the branch and bound method will be analyzed 
depending on the use of none, one or both of subprocedures “CutBounds()’’ 
and “CutRegion()’’.

Procedure CutBounds(outputs: a, b)
 for all {1, , }i k∈   do
		  let li be the KKT multiplier corresponding to ;T

i id x β≤

		  if li < 0 then set { }( ):= , B B

i
i i i

UB f xmax
λ

α α β −+ end if;

		  let mi be the KKT multiplier corresponding to ;T
i id x α≥

		  if mi < 0 then set { }( ):= , B B

i
i i i

UB f xmin
µ

β β α −−  end if;

	 end for;
end proc. 

Procedure CutRegion(outputs: X)
 for all {1, , }i m∈   do
 	 let li be the KKT multiplier corresponding to ;i iA x b≤

	 if li < 0 then set { }( ):= , B B

i
i i i

UB f xl max v b
λ
−+ end if;

	 let mi be the KKT multiplier corresponding to ;i iA x v≥

	 if mi < 0 then set { }( ):= , B B

i
i i i

UB f xb min b v
µ
−−  end if;

end for;
for all {1, , }i n∈   do
	 let li be the KKT multiplier corresponding to xi £ ui;

	 if li < 0 then set { }( ):= , B B

i
i i i

UB f xl max l u
λ
−+  end if;

	 let mi be the KKT multiplier corresponding to ;i ix l≥

	 if mi < 0 then set { }( ):= , B B

i
i i i

UB f xu min u l
µ
−−  end if;
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 end for;
end proc. 

4.  Computational results

The procedures and the acceleration devices described in the 
previous section have been implemented in order to study their concrete 
effectiveness. This has been done in a MatLab R2009a environment on a 
computer having 6 Gb RAM and two Xeon dual core processors at 2.66 
GHz. We considered problems with n = 15 variables, m = 15 inequality 
constraints, box constraints l x u≤ ≤  and no equality constraints. 
For the sake of convenience, we considered the class of functions 

0 4
=1

1
2( ) = ( )kT T T

i i ii
f x x Qx q x d x dλ+ − +∑  with k = 10 and Q Œ Rn×n symmetric 

and positive semi-definite. The problems have been randomly generated; 
in particular, matrices and vectors , , , , , ,m n n n m nA Q b q l u× ×∈ ∈ ∈ ∈R R R R  

0, > 0, , = 1, , ,n
i i id d i kλ∈ ∈ R R  have been generated with components 

in the interval [–10, 10] by using the “randi()’’ MatLab function (integers 
numbers generated with uniform distribution). Within the procedures, 
the problems have been solved with the “linprog()’’, “quadprog()’’ and 
“fmincon()’’ MatLab functions which provide both the optimal solution 
and the K-K-T multipliers. For the various instances 100 randomly 
generated problems have been solved. The average numbers of relaxed 
problems solved and the average CPU time needed to solve the problems 
are given as results of the test in Table 1 and Table 2, respectively. The two 
tables are organized as follows:

•	� the first column “Resize’’ concerns the use of sub-procedure 
“Resize()’’; “None’’ means that such a sub-procedure is not used at 
all; “1st’’ means that sub-procedure “Resize()’’ is used with the set 
of indices I made by just the index i corresponding to the biggest 
error ( , ), = 1, , ;BErr x j j k  “2nd’’ means that sub-procedure “Resize()’’ 
is used with I given by just the index i corresponding to the second 
biggest error ErrB(x, j), j = 1,...k; “1st – 10th’’ means that the set I is 
composed by all of the ten indices 1, ..., 10; “2nd – 5th’’ means that the 
set I is made by 4 indices corresponding to the errors ErrB(x, j), j = 
1,...k, from the second biggest one to the fifth biggest one; the other 
cases are analogous;

•	� the second column “LC’’ concerns the use of the Lagrangean cuts: 
“None’’ means that neither “CutBounds()’’ nor “CutRegion()’’ are 
used; “CB’’ means that only the sub-procedure “CutBounds()’’ is 
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used; “CB + CR’’ means that both “CutBounds()’’ and “CutRegion()’’ 
are used;

•	 Columns 3 – 9 report the use of the 7 partitioning rules p1 – p7. 

The rows of the tables are divided into 5 groups:
•	 the first one (row 1) regards the use of no acceleration devices at all; 
•	� the second one (rows 2 – 3) regards the use of Lagrangean cuts and 

no “Resize()’’ ; 
•	� the third one (rows 4 – 14) regards the use of “Resize()’’ and no 

Lagrangean cuts; 
• 	� the fourth one (rows 15 – 25) regards the use of “Resize()’’ and just 

“CutBounds()’’; 
•	� the last one (rows 26 – 36) regards the use of “Resize()’’ and both 

“CutBounds()’’ and “CutRegion()’’; 

In each row the better performance is emphasized in bold, while the 
worst performance is expressed in italics.

Table 1
Average number of relaxed subproblems solved (k = 10, n = m = 15)

Resize LC p1 p2 p3 p4 p5 p6 p7

None None 3116.50 860.29 563.52 876.58 559.45 684.73 675.89

None CB 3017.70 837.68 540.61 856.15 542.33 663.17 655.630

None CB + CR 2987.30 755.89 485.41 792.72 500.47 598.60 601.66

1st None 2138.80 676.90 470.07 815.14 630.90 580.01 650.64

2nd None 866.22 437.18 314.18 418.01 298.50 380.52 357.80

2nd – 3rd None 581.38 343.81 257.49 310.50 234.17 297.50 273.12

2nd – 4th None 473.47 298.42 230.79 265.33 199.38 265.57 239.75

2nd – 5th None 452.50 279.42 217.06 242.24 184.51 247.45 221.58

2nd – 6th None 428.29 267.90 208.81 232.00 173.68 237.68 211.15

2nd – 7th None 427.08 260.53 204.24 223.04 169.25 231.10 205.50

Contd...
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2nd – 8th None 424.90 256.46 201.77 219.06 166.36 227.62 202.27

2nd – 9th None 426.41 255.41 200.44 217.53 165.53 226.03 200.50

2nd – 10th None 425.56 255.24 199.87 217.14 164.81 225.71 199.90

1st – 10th None 419.10 249.16 193.97 210.68 162.84 219.18 195.69

1st CB 2129.5 670.90 465.91 821.51 638.19 579.06 653.18

2nd CB 742.94 410.96 286.21 396.80 279.98 356.27 335.36

2nd – 3rd CB 442.44 315.16 229.98 287.02 215.59 268.81 251.17

2nd – 4th CB 324.49 268.07 200.03 241.66 181.07 236.45 217.58

2nd – 5th CB 286.58 248.45 185.98 218.24 163.99 216.20 195.98

2nd – 6th CB 255.76 233.67 178.17 205.11 152.5 205.59 184.19

2nd – 7th CB 236.42 225.08 172.95 196.09 147.77 199.58 177.58

2nd – 8th CB 230.78 221.34 169.68 191.41 143.10 195.13 173.34

2nd – 9th CB 228.18 218.35 167.06 187.78 142.59 190.93 170.42

2nd – 10th CB 225.46 217.13 164.62 187.22 141.29 191.14 169.82

1st – 10th CB 223.81 214.21 159.67 182.60 141.06 187.50 169.42

1st CB + CR 2163.60 671.38 473.12 883.89 689.77 589.46 695.28

2nd CB + CR 601.28 318.22 211.39 324.73 226.15 263.38 265.93

2nd – 3rd CB + CR 311.86 222.35 154.97 215.70 160.26 187.53 183.71

2nd – 4th CB + CR 209.60 181.00 127.97 167.32 128.38 152.75 147.81

2nd – 5th CB + CR 167.30 157.29 112.52 144.26 109.72 133.21 127.88

2nd – 6th CB + CR 142.94 143.78 102.70 129.89 98.911 121.29 115.52

2nd – 7th CB + CR 131.60 134.72 96.27 120.16 92.13 113.300 107.72

2nd – 8th CB + CR 126.38 129.36 91.90 115.05 87.50 108.02 102.88

2nd – 9th CB + CR 122.68 126.83 88.98 112.18 86.10 104.98 100.72

2nd – 10th CB + CR 121.59 125.64 87.35 111.23 84.76 104.31 98.87

1st – 10th CB + CR 119.65 126.56 87.93 111.16 87.10 106.96 99.79
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Table 2
Average CPU time spent (k = 10, n = m = 15) 

Resize LC p1 p2 p3 p4 p5 p6 p7

None None 183.220  48.699  34.425  48.812  32.525  40.645  39.376

None CB 182.590 48.056  33.721  48.164  32.005  39.921  38.697

None CB + CR 194.790 47.960  33.753  48.588 32.312  39.971  38.954

1st None 170.320  47.481  33.967  58.466  46.302  41.762  47.287

2nd None 65.354  31.199  23.590  29.854  22.106  28.196  26.326

2nd – 3rd None 54.242 30.095 23.400  27.414  21.257  26.729  24.549

2nd – 4th None  52.412 30.957 24.709  27.814  21.414  28.225  25.527

2nd – 5th None 57.920 33.597  26.786  29.370 22.912  30.340  27.242

2nd – 6th None 62.205 36.649 29.224  31.950  24.433  33.072  29.477

2nd – 7th None 69.250 39.922  31.903  34.324 26.590  35.928  32.001

2nd – 8th None 75.966 43.449  34.845  37.238 28.869  39.136  34.785

2nd – 9th None 83.389  47.358  37.854 40.454 31.370  42.509  37.749

2nd – 10th None 90.310 51.192 40.799 43.695  33.754  45.893  40.632

1st – 10th None 96.307 53.690 42.587 45.827  36.080  47.875  42.996

1st CB 175.230 47.334 33.932  59.480  47.275  41.973  47.840

2nd CB 57.552 29.567 21.825  28.566  20.939  26.691  24.908

2nd – 3rd CB 42.407 27.740 21.205 25.494  19.750  24.336  22.760

2nd – 4th CB 36.795 27.916 21.646 25.411 19.563  25.248  23.278

2nd – 5th CB 37.654 29.952 23.177 26.546  20.526  26.598  24.221

2nd – 6th CB 38.103 32.037 25.147 28.378  21.594  28.684  25.818

2nd – 7th CB 39.356 34.591 27.293 30.318  23.412  31.184  27.826

2nd – 8th CB 42.356 37.625 29.589 32.681  25.016  33.706  30.042

2nd – 9th CB 45.795 40.639 31.890 35.103  27.205  36.110  32.275

2nd – 10th CB 48.896 43.599 33.899 37.778  29.111  39.054  34.745
Contd...
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1st – 10th CB 52.573 46.135 35.279 39.805  31.378  40.970  37.267

1st CB + CR 194.130  50.693  36.839  68.902  54.776  45.647  54.607

2nd CB + CR 50.069  25.522  18.329  25.765  18.739  22.146  21.934

2nd – 3rd CB + CR 31.898 21.927  16.279  21.198  16.328  19.128  18.539

2nd – 4th CB + CR 25.233 21.049 15.673  19.461  15.386  18.325  17.594

2nd – 5th CB + CR 23.276 21.145 15.771  19.321  15.120  18.309  17.518

2nd – 6th CB + CR 22.466 21.836 16.210  19.742  15.357  18.865  17.872

2nd – 7th CB + CR 23.096 22.994 16.982  20.386  15.932  19.642  18.566

2nd – 8th CB + CR 24.561 24.420  17.947  21.575  16.628  20.696  19.591

2nd – 9th CB + CR 26.059 26.183  18.997  22.996  17.873  22.034  21.000

2nd – 10th CB + CR 28.073 28.001 20.177  24.659  18.992  23.671  22.229

1st – 10th CB + CR 29.924 29.268 20.992  26.240  20.860  25.217  23.647

It is worth to point out the following obtained computational results:
•	� the “w-subdivision’’ process p1 proposed and used in [9, 17, 18] is 

generally the worst partitioning rule from both the average number 
of iterations and the average CPU time points of view;

•	� the partitioning rule p5 is generally the one providing the best 
performance;

•	� the use of “Resize()’’ sub-procedure is fundamental for having a 
good performance; Lagrangean cuts without any “Resize’’ operation 
results to be not effective;

•	� the use of “CutRegion()’’ sub-procedure greatly amplifies the 
effectiveness of “Resize()’’ sub-procedure;

•	� the use of both “CutBounds()’’ and “CutRegion()’’ sub-procedures 
improves the algorithm performance;

•	� the use of “Resize()’’ sub-procedure with respect to just the index 
corresponding to the biggest error (1st) is useless;

•	� the “Resize’’ operations are quite heavy from a computational point 
of view (two LPs to be solved for each index in I); having a big set 
I decreases the average number of convex subproblems solved, but 
may be too expensive from a CPU time point of view;
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•	� the best performance with respect to the average CPU time spent 
is given by partitioning rule p5 in the 28th row, that is when both 
“CutBounds()’’ and “CutRegion()’’ sub-procedures are used and 
“Resize()’’ is done in the 4 indices corresponding to the errors 

( , ), = 1, , ,BErr x j j k from the second biggest one to the fifth biggest 
one; the improvement gain with respect to the partitioning rule p1 
in the first row (solution algorithm considered in [18]) is about 92%, 
while the improvement with respect to the partitioning rule p3 in the 
first row (algorithm in [9]) is about 56%. 

5.  Conclusion

In this paper a computational experience regarding a branch and 
reduce approach for solving a class of low rank d.c. optimization programs 
is provided. It is shown that, in the case “dual-adequate’’ primitives are 
available, Lagrangean cuts highly improve the overall performance of 
the branch and reduce scheme, obtaining results better than the ones in 
[9, 18]. In particular, it is worth using the Lagrangean cuts for both the 
bounds and the feasible region, and in combination with some “Resize’’ 
operations. It is also pointed out that the partitioning rule p5 should be 
preferred to the “w-subdivision’’ commonly used in the literature, and 
that the “Resize()’’ sub-procedure should be applied to set of indices I not 
containing the index corresponding to the maximum error.
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