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Abstract

D.C. programs have been widely studied in the recent literature due to their importance
in applicative problems. In this paper the results of a computational study related to a branch
and reduce approach for solving a class of d.c. problems are provided, pointing out the
concrete effectiveness of the use of Lagrangean cuts as an acceleration device.
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1. Introduction

The so called d.c. programming, where a d.c. function (that is a
function given by the difference of two convex ones) is optimized over a
certain feasible region, is one of the main topics in the recent optimization
literature. Its relevance from both a theoretical (see for all [11]) and an
applicative point of view (see for example [1, 4, 6, §, 10, 12, 14, 15, 21,
22] and references therein) is widely known. Specifically speaking, in this
paper the following d.c. program is considered:

*E-mail: riccardo.cambini@unipi.it

© @ Taru PuBLicaTIONS


http://www.tarupublications.com
http://www.tandfonline.com

O 0 NI O Ul i W IN =

[
)

B W WO W W W W WWWWNDNNDNDNDNNDNDNDNRPRRERRFR P P2 = =2
O O O NN U s WINNPFP, O OVWWONOU B WNRFR OWOVWOWLWNO U W

2 R. CAMBINI AND F. SALVI

min f(0)= ()~ 3 g, (")
xeXcR"

P: 1)

The set X is a polyhedron given by inequality constraints Ax <band/
or equality constraints A,x = b, and/or box constraints 1 < x < u, where
AeR™,beR" L ueckR", A, eR" b, R, deR foralli=1,..k The
functions ¢:R" > R and g Ro>R,i= 1,...,k, are convex and continuous.
We also assume that there exists &, # € R" such that a <d'x< 5’,, VxeX
vVi=1,...,k.

In [2] this class of problems have been computationally studied
with a branch and bound approach, pointing out the effectiveness of
partitioning rules and of stack policies for managing the branches. In [3]
these problems have been approached with a branch and reduce method,
showing the importance of applying acceleration devices at every single
algorithm iteration. Particular cases of problem P have been considered
in[9, 17, 18].

The aim of this paper is to deepen on the study proposed in [2, 3]
analyzing the opportunity of using Lagrangean cuts within the branch
process of a branch and reduce solution scheme. It will be pointed out
that, in the case “dual-adequate” primitives are available (see [20]), the
use of Lagrangean cuts highly improve the performance of the branch and
reduce method. It will be also shown that the “@-subdivision” partitioning
rule, which is commonly used in the literature, is not the better choice.

In Section 2 the branch and reduce approach is analyzed and
described in details. In Section 3 the theoretical fundamentals needed for
Lagrangean cuts are provided. In Section 4 the results of a computational
study are provided and discussed in order to point out the concrete
effectiveness of Lagrangean cuts.

2. The general branch and bound approach

A branch and bound scheme for the considered class of problems
has been already described in [2, 3]. For the sake of completeness, and in
order to let the reader understand the computational results provided and
discussed in Section 4, let us briefly recall the approach and let us notice
that the aim of this paper is to deep on the use of Lagrangean cuts in the
branch and reduce solution scheme.

The concave part —Z; 8,(dx) of f(x) can be linearized with respect
to the functions diTx,i =1,...,k (see for example [2, 3, 5, 18]), and then
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the relaxed convex subproblem can be solved. Given a pair of vectors
a, B eR", with a < Blet B(a, P) the following set:

B(a,B)={xeR" :a<D'x< )
where D is the nn x k matrix whose columns are the k vectors d,,...,d,. The

concave part —Z;g,-(df x) of function f(x) can be linearized over B(c, )
as follows:

£(0) = )= 2t (] x =)+ 8, (0] = ) = " (D x =)= g, (a1

where forall i=1,...,k itis:

gi(lgi)_gi(ai)
H = Bi-a
0 ifa,=f,

ifa,<p

Function f,(x) is an underestimation for f(x) over the set B(¢, ), so
that the following relaxed convex subproblem can be defined and used in
the branch and bound scheme:

min f,(x)

xe XNnB(a, p) @

PB(a,ﬂ)i{

The following theorem estimates the error done by solving the
relaxed problem.
Theorem 1: Let us consider problems P and P,(c, B) and let

x*=arg min {f(x)} and X=arg min {fB(x)}-
xeXNB(a,B) xeXnB(a,pB)

Then, f,(¥) < f(x')< f(¥), thatis to say that 0 < f(x")— f, (%) < Err,(X)
where :

Err(x) = f(x)— f,(x) =
= ,uT(DTx—a)—Z[g,-(d,-Tx)—g,'(ai)J

The following main procedure “DcBranch()” can then be proposed.
With this aim, let us denote with A ,j=1,...,m, the j-th row of matrix A.
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Procedure DcBranch(inputs: P; outputs: Opt, OptVal)
fix the tolerance parameter € > 0;
initialize the global variables x,, : =[] and UB := + o;
initialize the stack; ;
determine the starting vectors &, € R* such that Vie {1,...,k}:
a, = man{d,,Tx} and Bi =me§{x{diTx}
# Optional : compute v, := minxﬁx{A].X} viell,...,m};
Analyze (a, §);
while the stack is nonempty do

(fB(xB ). e, f,X,,T, X) :=Select();

i UB- B( B)
if f,(x,)<UB and \% > & then

# Optional : (a, f) := Resize(a, B,1,X);
al:=a; pl:=p;,02:=a; p2:=p4;
y:=Split(er, B); Bl, =y, a2 =y;
Analyze (o1, f1); Analyze(o2, B2);
end if;
end while;
Opt:=x,,;
end proc.

OptVal :=UB;

The sub-procedure named “Select()” extracts from the stack the
subproblem to be eventually branched. In [2] it has been shown that the
way such a stack is implemented greatly affects the overall performance of
the algorithm. In this light, in [2] it is pointed out that a priority stack, where
problems having the smaller lower bound f,(x,) have the biggest priority, is
an effective choice. The sub-procedure named “Split()”” determines a value
y € (o, B,) which will be used to divide B(¢, ff) in two hyper-rectangles
(this is a generalization of the so called “rectangular partitioning method”
[7,23]). We considered the same 7 different partitioning rules proposed in
[2, 3], which are based on the following values:

© =i
_a+p
Vy=

o V3 =argmaxye. gk (Y—2,)=(8,(y) -8 (@)}
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In other words, the value ye(a,,f.) provided within procedure
“DcBranch()” by the sub-procedure “Split()”” can be computed as follows:

pl) v: =7, (Y@ —subdivision process”);
p2) v: =7, (classical bisection);

p3) v: =¥, (maximum error);

ph) yi= 1202

p5) 73=%;
+

po) 7¢=%,‘

Notice that in procedure “DcBranch()” there is another optional sub-
procedure named “Resize()’”” which is aimed to improve the performance
of the solution method. Notice also that the calculus of the optional
values v;,j€{l,...,m}, is needed just in case the optional sub-procedure
“CutRegion()” is used within the forthcoming procedure “Analyze()”.

Procedure “Analyze()” studies the current relaxed subproblem,
eventually improves the incumbent optimal solution, determines the
index r corresponding to the maximum error, and finally appends in the
stack the obtained results. With these aims, the following further error
function is used:

Erry(x,1) = p,(d x ~ )~ (g,(d )~ g,(e,))

Notice that it yields Err;(x)= Zf:IEVTB(X, i).

Procedure Analyze(inputs: ¢, f)
determine the function f,(x) over B(c, B);
x, :=argmin{P };
if f(XB) <UB then
X, =%, and UB:= f(x;);

end if;
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lf fB(xB)< UB and ‘%

>¢& then

# Optional : («, f) := CutBounds(); update f,(x) over B(c, B);
# Optional : X := CutRegion();
r= arg maXizl,m,k{ErrB (xB s 1)}/
Append (f,(x,),a, 8,x,,7.X);
end if;
end proc.

The sub-procedure named “Append()” inserts into the stack the
studied subproblem. Notice that, since f,(x) is an underestimation function
of f(x), there is no need to study the current relaxed subproblem in the
case f,(x,)>UB. For the sake of convenience, the tolerance parameter

‘ UB~f,(x,)
UB

€ > 0 is also used, avoiding the study when <¢&. The point

x, :=argmin{P;} can be determined by any of the known algorithms
for convex programs, that is any algorithm which finds an optimal local
solution of a constrained problem. In order to decrease as fast as possible
the error Erry(x;), the eventual branch operation is scheduled for the index
rsuch that r=arg max,_, , {Err,(x,,1)}. In this light, notice that condition

‘% >¢ implies Err,(x,,r)>0 which yields &, < . This guarantees

that a branch operation with respect to such an index r is possible.

Notice that there are two optional procedures named “CutBounds()”’
and “CutRegion()” which will be discussed in the next section and which
are aimed to improve the performance of the solution method by properly
reducing the bounds ¢, 8 and the feasible region X by means of the use of
duality results.

It is worth noticing that the very aim of this paper is to emphasize the
role of these two optional subprocedures. In other words, the performance
behavior of the solution scheme will be studied depending on the use of
none, one or both of these optional subprocedures “CutBounds()” and
“CutRegion()”.

3. Lagrangean Cuts Acceleration Device

In this section some acceleration techniques are studied in order
to improve the performance of the general branch and bound method
described in the previous section. Specifically speaking, two optional
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sub-procedures, named “CutBounds()” and “CutRegion()”, will be
provided with the aim to determine their effectiveness among the branch
and reduce solution scheme. In this light, Section 4 will point out from a
computational point of view whether it is worth using none, one or both
of these sub-procedures. Notice also that in [3] these two subprocedures
have been both used by default without any computational and explicit
motivation. Let us also point out that the results stated in the forthcoming
Subsection 3.2 are aimed to deep on the ones given in [3].

3.1 Resizing the bounds

As it has been described in the previous section, the solution method
starts with the bounds &,/ e®", computed by means of the 2k linear
programs & =min.x{d/x} and p =max:x{d x},i=1,...,k. Clearly,
this starting vectors have the tightest possible values with respect to the
feasible region X.

Unfortunately, after some branch iterations the current bounds
(o, B) are no more tight with respect to the considered feasible region
XN B(a,B). In order to improve the performance of the algorithm the
values of (o, fB) are periodically recalculated with respect to the current
feasible region X M B(a, f). Since this could be heavy from a computational
point of view, we considered the opportunity to recalculate the values
only for a subset I of the indices, thatis [ < {1,...,k}. In other words, the
sub-procedure call («, f):= Resize(a, B,1,X) just recalculates for all i el
the values:

;= min {dl-Tx} and B = max {d,-Tx}
xeXnB(a,p) xeXB(a,p)

Various subsets I of indices have been considered in a computational
test in order to determine the better choice. The obtained computational
results will be described in Section 4.

3.2 Lagrangean Cuts

Let us now show how to improve the solution algorithm by means of
the use of reduction techniques based on duality results. This is a technique
already used in [20, 17] and based on known results by Rockafellar [19]
and by Minoux [16]. Some of the following results have been already
briefly described in [3], while in this section they are deepened on and
fully proved. Consider the parametric convex problem
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min ¢(x)
Cy =J h(x)<y
xeXcR"

where X is a convex set, the functions ¢: X - R and /: X — R are convex,
and y is a real parameter. Let us define also the set X ={xeXcR"
:h(x) <y} and the function

w(y)= m}i{n(é(x)

In [19] Rockafellar proved that function y(y) is convex. By means of
Theorem 5.4 proved by Minoux in [16] we can then obtain the following
result.

Theorem 2: Let X be the optimal solution of C, such that h(x)=0 and let
AeR,A<0, be the corresponding K-K-T multiplier relative to the constraint
h(x)<0. Then, w(y) 2y (0)+Ay VyeR.

The following corollary holds.

Corollary 1: Let UB be an upper bound for the minimum value of ¢(x) in problem
C,. Under the assumptions of Theorem 2 we get:

UB-y(0)
y< 2

In other words, X (optimal solution of C) verifies the inequality

= y(y)>UB ®)

=< UBy(0)
h(x)> —

Proof: From y < UB_TW(O) we get w(0)+ Ay >UB so that (3) follows being

w(y) 2w (0)+ Ay Vy e R. The whole result is stated noticing that for all
xe X such that h(x)< UB_T"'(O)

< UBv (0
A

that is to say for all xe€X such that

7

, it results ¢(x) > w(y)>UB.

By applying Corollary 1 to the convex subproblems P,(«, ) we can
obtain the following specific results. In this light, an inequality constraint
is defined a “valid cut” if it does not exclude any solutions with values
smaller than the incumbent upper bound UB.

Theorem 3: Consider Problem P and its convex relaxation Py(c, B), described
in (1) and (2), respectively. Let x, be the optimal solution of Py(c, ) with
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value fy(x,). Let also UB, UB 2 f,(x,), be the value of the current incumbent
optimal solution x,,. Then, the following valid cuts hold for the active inequality
constraints corresponding to x, and having a strictly negative K-K-T multiplier:

C()Ancsttir‘;eint Mllfl_tlflga};er Indices Valid Cut
1. | dx-pB<0 <0 i=1,..,k dfxz,b’i+LlB_—f??(xB)
2. | a-d'x<0 2<0 =1,k diTxSai_LB_TJjB(xB)
3. Ax-b <0 1, <0 i=1,..,m AI.Tbe,.+UB_T]jB(xE)
4. v,-Ax<0 4 <0 i=1,...,m Al.xSUi—UB_T{B(xE)
5 e/x—u, <0 u, <0 i=1,..,n e,.TxZul.+UB_T{B(xB)
6. | 1-e'x<0 2,<0 i=1,..,n eiszli—UB_T{B(xB)

Proof: Consider the constraints of type 1. The result follows directly from
Corollary 1 assuming h(x)=d'x- g, and noticing that w(0)= f,(x,). The
other cases are analogous.

The previous theorem suggests some valid inequalities which
could be helpful in improving the algorithm performance by cutting
off an “useless” part of the feasible region. With this aim, the convex
subproblems P,(a, ) have to be solved with an algorithm providing both
the optimal solution and the corresponding K-K-T multipliers (such a
kind of algorithms have been called “dual-adequate” in [20]).

As it has been shown, these cuts can be applied to the bounds
a,<d/x<p,i=1,..,k, thus improving the convex relaxation function f,(x)
and the related error function Err,(x). They can also be used in reducing
the feasible region X, that is to say the constraints v<Ax<b and I<x<u;
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this does not affect the error by itself, but it improves the effectiveness of
the “Resize()’”” optional sub-procedure. These cuts are concretely described
in the following sub-procedures “CutBounds()” and “CutRegion()”’. Notice
that the use of “CutRegion()”” optional sub-procedure requires in procedure
“DcBranch()” the computation of the preliminary values v, := min..x{A x}
Vjefl,...,m}. Let us conclude recalling that the aim of this paper is to
study the computational role of these two optional subprocedures. In this
light, the performance of the branch and bound method will be analyzed
depending on the use of none, one or both of subprocedures “CutBounds()”
and “CutRegion()"”.

Procedure CutBounds(outputs: ¢, )
forall ief{l,....k} do
let A, be the KKT multiplier corresponding to d/x<3,;

if A, < O then set @, = max{ai,ﬂ,. +W} end if;

i

let 41, be the KKT multiplier corresponding to d, x> a,;
if 1, < 0 then set B, := min{ﬂi,ai —W} end if;

end for;
end proc.

Procedure CutRegion(outputs: X)
forall iefl,...,m} do

let A, be the KKT multiplier corresponding to Ax<b,;
if 4, < 0 then set I, := max {Ui’bi +%f‘(x”)} end if;
let 1, be the KKT multiplier corresponding to Ax>7v,;
if ;< 0 then set b, := min{bi,v,. —W} end if;

end for;

forall iefl,...,n} do
let A, be the KKT multiplier corresponding to x, < u;
if 4, < 0thenset I, := max{li,ul. +%’§(m} end if;
let y4, be the KKT multiplier corresponding to X, 21;

if 1, < 0 then set u, := min{u,,li —W} end if;
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end for;

end proc.

4. Computational results

The procedures and the acceleration devices described in the
previous section have been implemented in order to study their concrete
effectiveness. This has been done in a MatLab R2009a environment on a
computer having 6 Gb RAM and two Xeon dual core processors at 2.66
GHz. We considered problems with n = 15 variables, m = 15 inequality
constraints, box constraints I<x<u and no equality constraints.
For the sake of convenience, we considered the class of functions
f(x)= %xTQx +q"x —Zleﬂi(dfx +d’)* with k = 10 and Q € R™" symmetric
and positive semi-definite. The problems have been randomly generated;
in particular, matrices and vectors AeR"™,QeR"™, beR",q,l,ueR",
d eR",2>0,d eR,i=1,...,k, have been generated with components
in the interval [-10, 10] by using the “randi()”” MatLab function (integers
numbers generated with uniform distribution). Within the procedures,
the problems have been solved with the “linprog()”’, “quadprog()”” and
“fmincon()”” MatLab functions which provide both the optimal solution
and the K-K-T multipliers. For the various instances 100 randomly
generated problems have been solved. The average numbers of relaxed
problems solved and the average CPU time needed to solve the problems
are given as results of the test in Table 1 and Table 2, respectively. The two
tables are organized as follows:

e the first column “Resize’” concerns the use of sub-procedure
“Resize()"’; “None’” means that such a sub-procedure is not used at
all; “1"”" means that sub-procedure “Resize()” is used with the set
of indices I made by just the index i corresponding to the biggest
error Erry(x,j),j=1,...,k; “2""" means that sub-procedure “Resize()”’
is used with I given by just the index i corresponding to the second
biggest error Err,(x, j), j = 1,..k; “1%¥ — 10" means that the set I is
composed by all of the ten indices 1, ..., 10; “2" — 5" means that the
set I is made by 4 indices corresponding to the errors Erry(x, j), j =
1,..k, from the second biggest one to the fifth biggest one; the other
cases are analogous;

e the second column “LC” concerns the use of the Lagrangean cuts:
“None”’ means that neither “CutBounds()’”” nor “CutRegion()” are
used; “CB” means that only the sub-procedure “CutBounds()” is
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used; “CB + CR” means that both “CutBounds()’” and “CutRegion()”
are used;

Columns 3 — 9 report the use of the 7 partitioning rules p1 — p7.

The rows of the tables are divided into 5 groups:

the first one (row 1) regards the use of no acceleration devices at all;

the second one (rows 2 — 3) regards the use of Lagrangean cuts and
no “Resize()” ;

the third one (rows 4 — 14) regards the use of “Resize()” and no
Lagrangean cuts;

the fourth one (rows 15 — 25) regards the use of “Resize()” and just
“CutBounds()”’;

the last one (rows 26 — 36) regards the use of “Resize()’”” and both
“CutBounds()” and “CutRegion()”’;

In each row the better performance is emphasized in bold, while the

worst performance is expressed in italics.

Table 1

Average number of relaxed subproblems solved (k =10, n = m = 15)

Resize LC pl p2 p3 p4 p5 p6 p7

None None | 3116.50 | 860.29 | 563.52 | 876.58 | 559.45 | 684.73 | 675.89

None CB 3017.70 | 837.68 | 540.61 | 856.15 | 542.33 | 663.17 | 655.630

None | CB+ CR|2987.30|755.89 | 485.41 | 792.72 | 500.47 | 598.60 | 601.66

1 None |2138.80 | 676.90 | 470.07 | 815.14 | 630.90 | 580.01 | 650.64
2 None | 866.22 | 437.18 | 314.18 | 418.01 | 298.50 | 380.52 | 357.80
2"_3" | Nome | 581.38 |343.81 | 257.49 | 310.50 | 234.17 | 297.50 | 273.12
2"_4" | None | 473.47 |298.42 | 230.79 | 265.33 | 199.38 | 265.57 | 239.75
2_5" | None | 452.50 | 279.42 | 217.06 | 242.24 | 184.51 | 247.45 | 221.58
2"_6" | None | 428.29 |267.90 | 208.81 | 232.00 | 173.68 | 237.68 | 211.15

2"—7" | None | 427.08 | 260.53 | 204.24 | 223.04 | 169.25 | 231.10 | 205.50

Contd...
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28" | None | 424.90 | 256.46 | 201.77 | 219.06 | 166.36 | 227.62 | 202.27
2"—9" | None | 426.41 | 255.41 | 200.44 | 217.53 | 165.53 | 226.03 | 200.50
2"-10" | None | 425.56 |255.24 199.87 | 217.14 | 164.81 | 225.71 | 199.90
1-10" | None | 419.10 | 249.16 | 193.97 | 210.68 | 162.84 | 219.18 | 195.69

1" CB 2129.5 | 670.90 | 465.91 | 821.51 | 638.19 | 579.06 | 653.18

2 CB 742.94 | 410.96 | 286.21 | 396.80 | 279.98 | 356.27 | 335.36
23 CB 442.44 | 315.16 | 229.98 | 287.02 | 215.59 | 268.81 | 251.17
24" CB 324.49 | 268.07 | 200.03 | 241.66 | 181.07 | 236.45 | 217.58
21— 5" CB 286.58 | 248.45 | 185.98 | 218.24 | 163.99 | 216.20 | 195.98
2" 6" CB 255.76 | 233.67 | 178.17 | 205.11 | 152.5 | 205.59 | 184.19
2" CB 236.42 | 225.08 | 172.95 | 196.09 | 147.77 | 199.58 | 177.58
2 g CB 230.78 | 221.34 | 169.68 | 191.41 | 143.10 | 195.13 | 173.34
2 g™ CB 228.18 | 218.35 | 167.06 | 187.78 | 142.59 | 190.93 | 170.42
2" 10" CB 225.46 | 217.13 | 164.62 | 187.22 | 141.29 | 191.14 | 169.82
17— 10" CB 223.81 | 214.21 | 159.67 | 182.60 | 141.06 | 187.50 | 169.42

1" CB + CR | 2163.60 | 671.38 | 473.12 | 883.89 | 689.77 | 589.46 | 695.28

2m CB+CR| 601.28 | 318.22 | 211.39 | 324.73 | 226.15 | 263.38 | 265.93
23" | CB+CR| 311.86 | 222.35 | 154.97 | 215.70 | 160.26 | 187.53 | 183.71
2" 4" | CB+ CR | 209.60 | 181.00 | 127.97 | 167.32 | 128.38 | 152.75 | 147.81
2"-5" | CB+CR| 167.30 | 157.29 | 112.52 | 144.26 | 109.72 | 133.21 | 127.88
2"—6" |CB+CR | 142.94 | 143.78 | 102.70 | 129.89 | 98.911 | 121.29 | 115.52
2"_7" | CB+ CR| 131.60 | 134.72 | 96.27 | 120.16 | 92.13 |113.300| 107.72
28" | CB+CR| 126.38 | 129.36 | 91.90 | 115.05 | 87.50 | 108.02 | 102.88
29" | CB+ CR| 122.68 | 126.83 | 88.98 | 112.18 | 86.10 | 104.98 | 100.72
2"-10" | CB+CR | 121.59 | 125.64 | 87.35 | 111.23 | 84.76 | 104.31 | 98.87
1"-10" | CB+ CR | 119.65 | 126.56 | 87.93 | 111.16 | 87.10 | 106.96 | 99.79
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Table 2
Average CPU time spent (k =10, n = m = 15)

Resize LC pl p2 p3 p4 p5 pé p7
None None [183.220| 48.699 | 34.425 | 48.812 | 32.525 | 40.645 | 39.376
None CB |182.590| 48.056 | 33.721 | 48.164 | 32.005 | 39.921 | 38.697
None |CB+ CR|194.790| 47.960 | 33.753 | 48.588 | 32.312 | 39.971 | 38.954
1* None [170.320| 47.481 | 33.967 | 58.466 | 46.302 | 41.762 | 47.287
2" None | 65.354 | 31.199 | 23.590 | 29.854 | 22.106 | 28.196 | 26.326
2"-3" | None | 54.242 | 30.095 | 23.400 | 27.414 | 21.257 | 26.729 | 24.549
24" | Nome | 52.412 | 30.957 | 24.709 | 27.814 | 21.414 | 28.225 | 25.527
2"-5" | None | 57.920 | 33.597 | 26.786 | 29.370 | 22.912 | 30.340 | 27.242
2"~ 6" | None | 62.205 | 36.649 | 29.224 | 31.950 | 24.433 | 33.072 | 29.477
2"—7" | None | 69.250 | 39.922 | 31.903 | 34.324 | 26.590 | 35.928 | 32.001
28" | None | 75966 | 43.449 | 34.845 | 37.238 | 28.869 | 39.136 | 34.785
29" | None | 83.389 | 47.358 | 37.854 | 40.454 | 31.370 | 42.509 | 37.749
2"-10" | Nome | 90.310 | 51.192 | 40.799 | 43.695 | 33.754 | 45.893 | 40.632
1-10" | None | 96.307 | 53.690 | 42.587 | 45.827 | 36.080 | 47.875 | 42.996
17 CB |175.230| 47.334 | 33.932 | 59.480 | 47.275 | 41.973 | 47.840
2" CB 57.552 | 29.567 | 21.825 | 28.566 | 20.939 | 26.691 | 24.908
23 CB 42.407 | 27.740 | 21.205 | 25.494 | 19.750 | 24.336 | 22.760
24" CB 36.795 | 27.916 | 21.646 | 25.411 | 19.563 | 25.248 | 23.278
2" 5" CB 37.654 | 29.952 | 23.177 | 26.546 | 20.526 | 26.598 | 24.221
2" 6" CB 38.103 | 32.037 | 25.147 | 28.378 | 21.594 | 28.684 | 25.818
27 CB 39.356 | 34.591 | 27.293 | 30.318 | 23.412 | 31.184 | 27.826
28" CB 42.356 | 37.625 | 29.589 | 32.681 | 25.016 | 33.706 | 30.042
2M_g" CB 45.795 | 40.639 | 31.890 | 35.103 | 27.205 | 36.110 | 32.275
2" 10" CB 48.896 | 43.599 | 33.899 | 37.778 | 29.111 | 39.054 | 34.745

Contd...
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1"-10" CB 52.573 | 46.135 | 35.279 | 39.805 | 31.378 | 40.970 | 37.267
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1" CB + CR|194.130| 50.693 | 36.839 | 68.902 | 54.776 | 45.647 | 54.607

2" CB + CR| 50.069 | 25.522 | 18.329 | 25.765 | 18.739 | 22.146 | 21.934
23" |CB+CR| 31.898 | 21.927 | 16.279 | 21.198 | 16.328 | 19.128 | 18.539
2"—4" |CB+CR| 25233 | 21.049 | 15.673 | 19.461 | 15.386 | 18.325 | 17.594
2"~5" |CB+CR| 23.276 | 21.145 | 15.771 | 19.321 | 15.120 | 18.309 | 17.518
2"~ 6" | CB+CR| 22.466 | 21.836 | 16.210 | 19.742 | 15.357 | 18.865 | 17.872
27" |CB+ CR| 23.096 | 22.994 | 16.982 | 20.386 | 15.932 | 19.642 | 18.566
28" |CB+ CR| 24.561 | 24.420 | 17.947 | 21.575 | 16.628 | 20.696 | 19.591
2"—9" |CB+CR| 26.059 | 26.183 | 18.997 | 22.996 | 17.873 | 22.034 | 21.000
2"-10" | CB + CR| 28.073 | 28.001 | 20.177 | 24.659 | 18.992 | 23.671 | 22.229
1"-10" |CB + CR| 29.924 | 29.268 | 20.992 | 26.240 | 20.860 | 25.217 | 23.647

It is worth to point out the following obtained computational results:

e the “w-subdivision” process pl proposed and used in [9, 17, 18] is
generally the worst partitioning rule from both the average number

of iterations and the average CPU time points of view;

* the partitioning rule p5 is generally the one providing the best

performance;

* the use of “Resize()” sub-procedure is fundamental for having a

good performance; Lagrangean cuts without any “Resize’” operation

results to be not effective;

o the use of “CutRegion()” sub-procedure greatly amplifies the

effectiveness of “Resize()”” sub-procedure;

e the use of both “CutBounds()” and “CutRegion()”” sub-procedures

improves the algorithm performance;

* the use of “Resize()”” sub-procedure with respect to just the index

corresponding to the biggest error (1) is useless;

e the “Resize” operations are quite heavy from a computational point
of view (two LPs to be solved for each index in I); having a big set
I decreases the average number of convex subproblems solved, but

may be too expensive from a CPU time point of view;
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* the best performance with respect to the average CPU time spent
is given by partitioning rule p5 in the 28" row, that is when both
“CutBounds()” and “CutRegion()’” sub-procedures are used and
“Resize()”” is done in the 4 indices corresponding to the errors
Err,(x,j), j=1,...,k, from the second biggest one to the fifth biggest
one; the improvement gain with respect to the partitioning rule p1
in the first row (solution algorithm considered in [18]) is about 92%,
while the improvement with respect to the partitioning rule p3 in the
first row (algorithm in [9]) is about 56%.

5. Conclusion

In this paper a computational experience regarding a branch and
reduce approach for solving a class of low rank d.c. optimization programs
is provided. It is shown that, in the case “dual-adequate’ primitives are
available, Lagrangean cuts highly improve the overall performance of
the branch and reduce scheme, obtaining results better than the ones in
[9, 18]. In particular, it is worth using the Lagrangean cuts for both the
bounds and the feasible region, and in combination with some “Resize”
operations. It is also pointed out that the partitioning rule p5 should be
preferred to the “@-subdivision” commonly used in the literature, and
that the “Resize()”” sub-procedure should be applied to set of indices I not
containing the index corresponding to the maximum error.
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