
©

On the effectiveness of Lagrangean cuts in solving a class of low rank
d.c. programs

Riccardo Cambini *
Francesca Salvi
Department of Economics and Management
University of Pisa
Via Cosimo Ridolfi 10
56124 Pisa
Italy

Abstract
D.C. programs have been widely studied in the recent literature due to their importance

in applicative problems. In this paper the results of a computational study related to a branch
and reduce approach for solving a class of d.c. problems are provided, pointing out the
concrete effectiveness of the use of Lagrangean cuts as an acceleration device.

Keywords: d.c. programming, branch and reduce.

AMS - 2010 Math. Subj. Class: 90C30, 90C26.

JEL - 1999 Class. Syst: C61, C63.

1.  Introduction

The so called d.c. programming, where a d.c. function (that is a
function given by the difference of two convex ones) is optimized over a
certain feasible region, is one of the main topics in the recent optimization
literature. Its relevance from both a theoretical (see for all [11]) and an
applicative point of view (see for example [1, 4, 6, 8, 10, 12, 14, 15, 21,
22] and references therein) is widely known. Specifically speaking, in this
paper the following d.c. program is considered:

*E-mail: riccardo.cambini@unipi.it

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

http://www.tarupublications.com
http://www.tandfonline.com

2� R. CAMBINI AND F. SALVI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	 =1
() = () ()

:

k
T

i i
i

n

min f x c x g d x
P

x X


−


 ∈ ⊆

∑
R

	 (1)

 The set X is a polyhedron given by inequality constraints Ax £ b and/
or equality constraints Aeqx = beq and/or box constraints 1 £ x £ u, where
A Œ Rm×n, b Œ Rm, l, u Œ Rn, Aeq Œ Rh×n, beq Œ Rh, di Œ Rn for all i = 1, ..., k. The
functions : nc →R R and : , = 1, , ,ig i k→ R R are convex and continuous.
We also assume that there exists , kα β ∈ R such that T

i i id x x Xα β≤ ≤ ∀ ∈


= 1, , .i k∀ 

In [2] this class of problems have been computationally studied
with a branch and bound approach, pointing out the effectiveness of
partitioning rules and of stack policies for managing the branches. In [3]
these problems have been approached with a branch and reduce method,
showing the importance of applying acceleration devices at every single
algorithm iteration. Particular cases of problem P have been considered
in [9, 17, 18].

The aim of this paper is to deepen on the study proposed in [2, 3]
analyzing the opportunity of using Lagrangean cuts within the branch
process of a branch and reduce solution scheme. It will be pointed out
that, in the case “dual-adequate’’ primitives are available (see [20]), the
use of Lagrangean cuts highly improve the performance of the branch and
reduce method. It will be also shown that the “w-subdivision’’ partitioning
rule, which is commonly used in the literature, is not the better choice.

In Section 2 the branch and reduce approach is analyzed and
described in details. In Section 3 the theoretical fundamentals needed for
Lagrangean cuts are provided. In Section 4 the results of a computational
study are provided and discussed in order to point out the concrete
effectiveness of Lagrangean cuts.

2.  The general branch and bound approach

 A branch and bound scheme for the considered class of problems
has been already described in [2, 3]. For the sake of completeness, and in
order to let the reader understand the computational results provided and
discussed in Section 4, let us briefly recall the approach and let us notice
that the aim of this paper is to deep on the use of Lagrangean cuts in the
branch and reduce solution scheme.

The concave part =1
()k T

i ii
g d x−∑ of f (x) can be linearized with respect

to the functions , = 1, ,T
id x i k (see for example [2, 3, 5, 18]), and then

?� 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

the relaxed convex subproblem can be solved. Given a pair of vectors
, ,kα β ∈ℜ with a £ b let B(a, b) the following set:

	 (,) = { : }n TB x D xα β α β∈ℜ ≤ ≤

where D is the n × k matrix whose columns are the k vectors 1 , , .kd d The
concave part =1

()k T
i ii

g d x−∑ of function f(x) can be linearized over B(a, b)
as follows:

	 =1 =1
() = () [() ()] = () () ()

k k
T T T

B i i i i i i i
i i

f x c x d x g c x D x gµ α α µ α α− − + − − −∑ ∑

where for all = 1, ,i k it is:

	

if

if

() ()
<

=
0 =

i i i i
i i

i ii

i i

g gβ α
α β

β αµ
α β

 −
 −



 Function fB(x) is an underestimation for f(x) over the set B(a, b), so
that the following relaxed convex subproblem can be defined and used in
the branch and bound scheme:

	
min ()

(,) :
(,)

B
B

f x
P

x X B
α β

α β



∈ ∩
	 (2)

The following theorem estimates the error done by solving the
relaxed problem.

 Theorem 1: Let us consider problems P and PB(a, b) and let

	
and*

(,) (,)
= arg { ()} = arg { ()} .min min B

x X B x X B
x f x x f x

α β α β∈ ∩ ∈ ∩

Then, *() () (),Bf x f x f x≤ ≤ that is to say that *0 () () ()B Bf x f x Err x≤ − ≤
where :

	 =1

() () () =

= () () ()

B B
k

T T T
i i i i

i

Err x f x f x

D x g d x gµ α α

= −

 − − − ∑

 The following main procedure “DcBranch()’’ can then be proposed.
With this aim, let us denote with , = 1, , ,jA j m the j-th row of matrix A.

4� R. CAMBINI AND F. SALVI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Procedure DcBranch(inputs: P; outputs: Opt, OptVal)
	 fix the tolerance parameter e > 0;
	 initialize the global variables xopt : = [] and UB := + ∞;
	 initialize the stack;
	 determine the starting vectors , kα β ∈ℜ

 such that {1, , } :i k∀ ∈ 

	
and= { } = { }maxmin T T

i i i i
x X x X

d x d xα β
∈ ∈





 	 # Optional : compute := { } {1, , };minx Xj jv A x j m∈ ∀ ∈ 

 	 Analyze (,);α β
	 while the stack is nonempty do
 		 ()(), , , , ,B B Bf x x r Xα β :=Select();

		 if () <B Bf x UB and () >B BUB f x
UB

ε− then

			 # Optional : (,) := (, , ,);Resize I Xα β α β
			 1 := ; 1 := ; 2 := ; 2 := ;α α β β α α β β
			 g :=Split(ar, br); 1 := ; 2 := ;r rβ γ α γ
			 Analyze (a1, b1); Analyze(a2, b2);
		 end if;
	 end while;
	 Opt:=xopt; OptVal :=UB;
end proc.

The sub-procedure named “Select()’’ extracts from the stack the
subproblem to be eventually branched. In [2] it has been shown that the
way such a stack is implemented greatly affects the overall performance of
the algorithm. In this light, in [2] it is pointed out that a priority stack, where
problems having the smaller lower bound fB(xB) have the biggest priority, is
an effective choice. The sub-procedure named “Split()’’ determines a value
g Œ(ar, br) which will be used to divide B(a, b) in two hyper-rectangles
(this is a generalization of the so called “rectangular partitioning method’’
[7, 23]). We considered the same 7 different partitioning rules proposed in
[2, 3], which are based on the following values:

 •	 1 := ;T
r Bd xγ

 •	 2 := ;
2

r rα β
γ

+

 •	 [,]3 := arg { () (() ())}.maxy r r r r rr r
y g y gα βγ µ α α∈ − − −

?� 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

In other words, the value (,)r rγ α β∈ provided within procedure
“DcBranch()’’ by the sub-procedure “Split()’’ can be computed as follows:

p1)	g : = g 1 (“w - subdivision process’’);

p2)	g : = g 2 (classical bisection);

p3)	g : = g 3 (maximum error);

p4)	 1 2:= ;
2

γ γ
γ

+

p5)	 1 3:= ;
2

γ γ
γ

+

p6)	 2 3:= ;
2

γ γ
γ

+

p7)	 1 2 3:= .
3

γ γ γ
γ

+ +

Notice that in procedure “DcBranch()’’ there is another optional sub-
procedure named “Resize()’’ which is aimed to improve the performance
of the solution method. Notice also that the calculus of the optional
values , {1, , },jv j m∈  is needed just in case the optional sub-procedure
“CutRegion()’’ is used within the forthcoming procedure “Analyze()’’.

Procedure “Analyze()’’ studies the current relaxed subproblem,
eventually improves the incumbent optimal solution, determines the
index r corresponding to the maximum error, and finally appends in the
stack the obtained results. With these aims, the following further error
function is used:

	 (,) = () (() ())T T
B i i i i i i iErr x i d x g d x gµ α α− − −

 Notice that it yields =1
() = (,).k

B Bi
Err x Err x i∑

Procedure Analyze(inputs: a, b)
	 determine the function fB(x) over B(a, b);
	 := arg min{ };B Bx P

	 if () <Bf x UB then
	   :=opt Bx x and := ();BUB f x
	 end if;

6� R. CAMBINI AND F. SALVI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

 	 if () <B Bf x UB and () >B BUB f x
UB

ε− then

 	  # Optional : (,) := ();CutBoundsα β update fB(x) over B(a, b);
	  # Optional : := ();X CutRegion
	  =1, ,:= arg { (,)};max i k B Br Err x i



	  Append ()(), , , , , ;B B Bf x x r Xα β
 	 end if;
end proc.

The sub-procedure named “Append()’’ inserts into the stack the
studied subproblem. Notice that, since fB(x) is an underestimation function
of f(x), there is no need to study the current relaxed subproblem in the
case () .B Bf x UB≥ For the sake of convenience, the tolerance parameter

e > 0 is also used, avoiding the study when () .B BUB f x
UB

ε− ≤ The point
:= arg min{ }B Bx P can be determined by any of the known algorithms

for convex programs, that is any algorithm which finds an optimal local
solution of a constrained problem. In order to decrease as fast as possible
the error ErrB(xB), the eventual branch operation is scheduled for the index
r such that =1, ,= arg max { (,)}.i k B Br Err x i



 In this light, notice that condition
() >B BUB f x

UB
ε− implies (,) > 0B BErr x r which yields ar < br. This guarantees

that a branch operation with respect to such an index r is possible.
Notice that there are two optional procedures named “CutBounds()’’

and “CutRegion()’’ which will be discussed in the next section and which
are aimed to improve the performance of the solution method by properly
reducing the bounds a, b and the feasible region X by means of the use of
duality results.

It is worth noticing that the very aim of this paper is to emphasize the
role of these two optional subprocedures. In other words, the performance
behavior of the solution scheme will be studied depending on the use of
none, one or both of these optional subprocedures “CutBounds()’’ and
“CutRegion()’’.

3.  Lagrangean Cuts Acceleration Device

In this section some acceleration techniques are studied in order
to improve the performance of the general branch and bound method
described in the previous section. Specifically speaking, two optional

?� 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

sub-procedures, named “CutBounds()’’ and “CutRegion()’’, will be
provided with the aim to determine their effectiveness among the branch
and reduce solution scheme. In this light, Section 4 will point out from a
computational point of view whether it is worth using none, one or both
of these sub-procedures. Notice also that in [3] these two subprocedures
have been both used by default without any computational and explicit
motivation. Let us also point out that the results stated in the forthcoming
Subsection 3.2 are aimed to deep on the ones given in [3].

3.1 Resizing the bounds

As it has been described in the previous section, the solution method
starts with the bounds , ,kα β ∈ℜ

 computed by means of the 2k linear
programs = { }min T

x Xi id xα ∈ and max= { }, = 1, , .T
x Xi id x i kβ ∈

 Clearly,
this starting vectors have the tightest possible values with respect to the
feasible region X.

Unfortunately, after some branch iterations the current bounds
(a, b) are no more tight with respect to the considered feasible region

(,).X B α β∩ In order to improve the performance of the algorithm the
values of (a, b) are periodically recalculated with respect to the current
feasible region (,).X B α β∩ Since this could be heavy from a computational
point of view, we considered the opportunity to recalculate the values
only for a subset I of the indices, that is {1, , }.I k⊆  In other words, the
sub-procedure call (,) := (, , ,)Resize I Xα β α β just recalculates for all i I∈
the values:

	
and

(,) (,)
= { } = { }maxmin T T

i i i i
x X B x X B

d x d x
α β α β

α β
∈ ∩ ∈ ∩

 Various subsets I of indices have been considered in a computational
test in order to determine the better choice. The obtained computational
results will be described in Section 4.

3.2 Lagrangean Cuts

Let us now show how to improve the solution algorithm by means of
the use of reduction techniques based on duality results. This is a technique
already used in [20, 17] and based on known results by Rockafellar [19]
and by Minoux [16]. Some of the following results have been already
briefly described in [3], while in this section they are deepened on and
fully proved. Consider the parametric convex problem

8� R. CAMBINI AND F. SALVI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	

min ()
= ()y

n

x
C h x y

x X

φ
 ≤
 ∈ ⊆ R

where X is a convex set, the functions : Xφ →R and :h X →R are convex,
and y is a real parameter. Let us define also the set = { n

yX x X∈ ⊆ R
: () }h x y≤ and the function

	
() = ()min

x Xy

y xψ φ
∈

In [19] Rockafellar proved that function y(y) is convex. By means of
Theorem 5.4 proved by Minoux in [16] we can then obtain the following
result.

Theorem 2: Let x be the optimal solution of C0 such that () = 0h x and let
, < 0,λ λ∈R be the corresponding K-K-T multiplier relative to the constraint

() 0.h x ≤ Then, () (0) .y y yψ ψ λ≥ + ∀ ∈R
The following corollary holds.

Corollary 1: Let UB be an upper bound for the minimum value of f(x) in problem
C0. Under the assumptions of Theorem 2 we get:

	 (0)< () >UBy y UBψ ψ
λ
−

⇒ 	 (3)

 In other words, x (optimal solution of C0) verifies the inequality
(0)() .UBh x ψ

λ
−≥

Proof: From (0)< UBy ψ
λ
− we get (0) >y UBψ λ+ so that (3) follows being

() (0) .y y yψ ψ λ≥ + ∀ ∈R The whole result is stated noticing that for all
x X∈ such that (0)() < ,UBh x ψ

λ
− that is to say for all yx X∈ such that

(0)< ,UBy ψ
λ
− it results () () > .x y UBφ ψ≥

By applying Corollary 1 to the convex subproblems (,)BP α β we can
obtain the following specific results. In this light, an inequality constraint
is defined a “valid cut’’ if it does not exclude any solutions with values
smaller than the incumbent upper bound UB.

Theorem 3: Consider Problem P and its convex relaxation PB(a, b), described
in (1) and (2), respectively. Let xB be the optimal solution of PB(a, b) with

?� 9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

value fB(xB). Let also UB, UB ≥ fB(xB), be the value of the current incumbent
optimal solution xopt. Then, the following valid cuts hold for the active inequality
constraints corresponding to xB and having a strictly negative K-K-T multiplier:

 Active
Constraint

K-K-T
Multiplier Indices Valid Cut

 1. 0T
i id x β− ≤ < 0iµ = 1, ,i k

()T B B
i i

i

UB f x
d x β

µ
−

≥ +

 2. 0T
i id xα − ≤ < 0iλ = 1, ,i k

()T B B
i i

i

UB f x
d x α

λ
−

≤ −

 3. 0i iA x b− ≤ < 0iµ = 1, ,i m

()T B B
i i

i

UB f x
A x b

µ
−

≥ +

 4. 0i iv A x− ≤ < 0iλ = 1, ,i m

()B B
i i

i

UB f x
A x v

λ
−

≤ −

 5. 0T
i ie x u− ≤ < 0iµ = 1, ,i n

()T B B
i i

i

UB f x
e x u

µ
−

≥ +

 6. 0T
i il e x− ≤ < 0iλ = 1, ,i n

()T B B
i i

i

UB f x
e x l

λ
−

≤ −

Proof: Consider the constraints of type 1. The result follows directly from
Corollary 1 assuming () = T

i ih x d x β− and noticing that (0) = ().B Bf xψ The
other cases are analogous.

The previous theorem suggests some valid inequalities which
could be helpful in improving the algorithm performance by cutting
off an “useless’’ part of the feasible region. With this aim, the convex
subproblems (,)BP α β have to be solved with an algorithm providing both
the optimal solution and the corresponding K-K-T multipliers (such a
kind of algorithms have been called “dual-adequate’’ in [20]).

As it has been shown, these cuts can be applied to the bounds
, = 1, , ,T

i i id x i kα β≤ ≤  thus improving the convex relaxation function fB(x)
and the related error function ErrB(x). They can also be used in reducing
the feasible region X, that is to say the constraints v Ax b≤ ≤ and ;l x u≤ ≤

10� R. CAMBINI AND F. SALVI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

this does not affect the error by itself, but it improves the effectiveness of
the “Resize()’’ optional sub-procedure. These cuts are concretely described
in the following sub-procedures “CutBounds()’’ and “CutRegion()’’. Notice
that the use of “CutRegion()’’ optional sub-procedure requires in procedure
“DcBranch()’’ the computation of the preliminary values := { }minx Xj jv A x∈

{1, , }.j m∀ ∈  Let us conclude recalling that the aim of this paper is to
study the computational role of these two optional subprocedures. In this
light, the performance of the branch and bound method will be analyzed
depending on the use of none, one or both of subprocedures “CutBounds()’’
and “CutRegion()’’.

Procedure CutBounds(outputs: a, b)
 for all {1, , }i k∈  do
		 let li be the KKT multiplier corresponding to ;T

i id x β≤

		 if li < 0 then set { }():= , B B

i
i i i

UB f xmax
λ

α α β −+ end if;

		 let mi be the KKT multiplier corresponding to ;T
i id x α≥

		 if mi < 0 then set { }():= , B B

i
i i i

UB f xmin
µ

β β α −− end if;

	 end for;
end proc.

Procedure CutRegion(outputs: X)
 for all {1, , }i m∈  do
 	 let li be the KKT multiplier corresponding to ;i iA x b≤

	 if li < 0 then set { }():= , B B

i
i i i

UB f xl max v b
λ
−+ end if;

	 let mi be the KKT multiplier corresponding to ;i iA x v≥

	 if mi < 0 then set { }():= , B B

i
i i i

UB f xb min b v
µ
−− end if;

end for;
for all {1, , }i n∈  do
	 let li be the KKT multiplier corresponding to xi £ ui;

	 if li < 0 then set { }():= , B B

i
i i i

UB f xl max l u
λ
−+ end if;

	 let mi be the KKT multiplier corresponding to ;i ix l≥

	 if mi < 0 then set { }():= , B B

i
i i i

UB f xu min u l
µ
−− end if;

?� 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

 end for;
end proc.

4.  Computational results

The procedures and the acceleration devices described in the
previous section have been implemented in order to study their concrete
effectiveness. This has been done in a MatLab R2009a environment on a
computer having 6 Gb RAM and two Xeon dual core processors at 2.66
GHz. We considered problems with n = 15 variables, m = 15 inequality
constraints, box constraints l x u≤ ≤ and no equality constraints.
For the sake of convenience, we considered the class of functions

0 4
=1

1
2() = ()kT T T

i i ii
f x x Qx q x d x dλ+ − +∑ with k = 10 and Q Œ Rn×n symmetric

and positive semi-definite. The problems have been randomly generated;
in particular, matrices and vectors , , , , , ,m n n n m nA Q b q l u× ×∈ ∈ ∈ ∈R R R R

0, > 0, , = 1, , ,n
i i id d i kλ∈ ∈ R R have been generated with components

in the interval [–10, 10] by using the “randi()’’ MatLab function (integers
numbers generated with uniform distribution). Within the procedures,
the problems have been solved with the “linprog()’’, “quadprog()’’ and
“fmincon()’’ MatLab functions which provide both the optimal solution
and the K-K-T multipliers. For the various instances 100 randomly
generated problems have been solved. The average numbers of relaxed
problems solved and the average CPU time needed to solve the problems
are given as results of the test in Table 1 and Table 2, respectively. The two
tables are organized as follows:

•	� the first column “Resize’’ concerns the use of sub-procedure
“Resize()’’; “None’’ means that such a sub-procedure is not used at
all; “1st’’ means that sub-procedure “Resize()’’ is used with the set
of indices I made by just the index i corresponding to the biggest
error (,), = 1, , ;BErr x j j k “2nd’’ means that sub-procedure “Resize()’’
is used with I given by just the index i corresponding to the second
biggest error ErrB(x, j), j = 1,...k; “1st – 10th’’ means that the set I is
composed by all of the ten indices 1, ..., 10; “2nd – 5th’’ means that the
set I is made by 4 indices corresponding to the errors ErrB(x, j), j =
1,...k, from the second biggest one to the fifth biggest one; the other
cases are analogous;

•	� the second column “LC’’ concerns the use of the Lagrangean cuts:
“None’’ means that neither “CutBounds()’’ nor “CutRegion()’’ are
used; “CB’’ means that only the sub-procedure “CutBounds()’’ is

12� R. CAMBINI AND F. SALVI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

used; “CB + CR’’ means that both “CutBounds()’’ and “CutRegion()’’
are used;

•	 Columns 3 – 9 report the use of the 7 partitioning rules p1 – p7.

The rows of the tables are divided into 5 groups:
•	 the first one (row 1) regards the use of no acceleration devices at all;
•	� the second one (rows 2 – 3) regards the use of Lagrangean cuts and

no “Resize()’’ ;
•	� the third one (rows 4 – 14) regards the use of “Resize()’’ and no

Lagrangean cuts;
• 	� the fourth one (rows 15 – 25) regards the use of “Resize()’’ and just

“CutBounds()’’;
•	� the last one (rows 26 – 36) regards the use of “Resize()’’ and both

“CutBounds()’’ and “CutRegion()’’;

In each row the better performance is emphasized in bold, while the
worst performance is expressed in italics.

Table 1
Average number of relaxed subproblems solved (k = 10, n = m = 15)

Resize LC p1 p2 p3 p4 p5 p6 p7

None None 3116.50 860.29 563.52 876.58 559.45 684.73 675.89

None CB 3017.70 837.68 540.61 856.15 542.33 663.17 655.630

None CB + CR 2987.30 755.89 485.41 792.72 500.47 598.60 601.66

1st None 2138.80 676.90 470.07 815.14 630.90 580.01 650.64

2nd None 866.22 437.18 314.18 418.01 298.50 380.52 357.80

2nd – 3rd None 581.38 343.81 257.49 310.50 234.17 297.50 273.12

2nd – 4th None 473.47 298.42 230.79 265.33 199.38 265.57 239.75

2nd – 5th None 452.50 279.42 217.06 242.24 184.51 247.45 221.58

2nd – 6th None 428.29 267.90 208.81 232.00 173.68 237.68 211.15

2nd – 7th None 427.08 260.53 204.24 223.04 169.25 231.10 205.50

Contd...

?� 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

2nd – 8th None 424.90 256.46 201.77 219.06 166.36 227.62 202.27

2nd – 9th None 426.41 255.41 200.44 217.53 165.53 226.03 200.50

2nd – 10th None 425.56 255.24 199.87 217.14 164.81 225.71 199.90

1st – 10th None 419.10 249.16 193.97 210.68 162.84 219.18 195.69

1st CB 2129.5 670.90 465.91 821.51 638.19 579.06 653.18

2nd CB 742.94 410.96 286.21 396.80 279.98 356.27 335.36

2nd – 3rd CB 442.44 315.16 229.98 287.02 215.59 268.81 251.17

2nd – 4th CB 324.49 268.07 200.03 241.66 181.07 236.45 217.58

2nd – 5th CB 286.58 248.45 185.98 218.24 163.99 216.20 195.98

2nd – 6th CB 255.76 233.67 178.17 205.11 152.5 205.59 184.19

2nd – 7th CB 236.42 225.08 172.95 196.09 147.77 199.58 177.58

2nd – 8th CB 230.78 221.34 169.68 191.41 143.10 195.13 173.34

2nd – 9th CB 228.18 218.35 167.06 187.78 142.59 190.93 170.42

2nd – 10th CB 225.46 217.13 164.62 187.22 141.29 191.14 169.82

1st – 10th CB 223.81 214.21 159.67 182.60 141.06 187.50 169.42

1st CB + CR 2163.60 671.38 473.12 883.89 689.77 589.46 695.28

2nd CB + CR 601.28 318.22 211.39 324.73 226.15 263.38 265.93

2nd – 3rd CB + CR 311.86 222.35 154.97 215.70 160.26 187.53 183.71

2nd – 4th CB + CR 209.60 181.00 127.97 167.32 128.38 152.75 147.81

2nd – 5th CB + CR 167.30 157.29 112.52 144.26 109.72 133.21 127.88

2nd – 6th CB + CR 142.94 143.78 102.70 129.89 98.911 121.29 115.52

2nd – 7th CB + CR 131.60 134.72 96.27 120.16 92.13 113.300 107.72

2nd – 8th CB + CR 126.38 129.36 91.90 115.05 87.50 108.02 102.88

2nd – 9th CB + CR 122.68 126.83 88.98 112.18 86.10 104.98 100.72

2nd – 10th CB + CR 121.59 125.64 87.35 111.23 84.76 104.31 98.87

1st – 10th CB + CR 119.65 126.56 87.93 111.16 87.10 106.96 99.79

14� R. CAMBINI AND F. SALVI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Table 2
Average CPU time spent (k = 10, n = m = 15)

Resize LC p1 p2 p3 p4 p5 p6 p7

None None 183.220 48.699 34.425 48.812 32.525 40.645 39.376

None CB 182.590 48.056 33.721 48.164 32.005 39.921 38.697

None CB + CR 194.790 47.960 33.753 48.588 32.312 39.971 38.954

1st None 170.320 47.481 33.967 58.466 46.302 41.762 47.287

2nd None 65.354 31.199 23.590 29.854 22.106 28.196 26.326

2nd – 3rd None 54.242 30.095 23.400 27.414 21.257 26.729 24.549

2nd – 4th None 52.412 30.957 24.709 27.814 21.414 28.225 25.527

2nd – 5th None 57.920 33.597 26.786 29.370 22.912 30.340 27.242

2nd – 6th None 62.205 36.649 29.224 31.950 24.433 33.072 29.477

2nd – 7th None 69.250 39.922 31.903 34.324 26.590 35.928 32.001

2nd – 8th None 75.966 43.449 34.845 37.238 28.869 39.136 34.785

2nd – 9th None 83.389 47.358 37.854 40.454 31.370 42.509 37.749

2nd – 10th None 90.310 51.192 40.799 43.695 33.754 45.893 40.632

1st – 10th None 96.307 53.690 42.587 45.827 36.080 47.875 42.996

1st CB 175.230 47.334 33.932 59.480 47.275 41.973 47.840

2nd CB 57.552 29.567 21.825 28.566 20.939 26.691 24.908

2nd – 3rd CB 42.407 27.740 21.205 25.494 19.750 24.336 22.760

2nd – 4th CB 36.795 27.916 21.646 25.411 19.563 25.248 23.278

2nd – 5th CB 37.654 29.952 23.177 26.546 20.526 26.598 24.221

2nd – 6th CB 38.103 32.037 25.147 28.378 21.594 28.684 25.818

2nd – 7th CB 39.356 34.591 27.293 30.318 23.412 31.184 27.826

2nd – 8th CB 42.356 37.625 29.589 32.681 25.016 33.706 30.042

2nd – 9th CB 45.795 40.639 31.890 35.103 27.205 36.110 32.275

2nd – 10th CB 48.896 43.599 33.899 37.778 29.111 39.054 34.745
Contd...

?� 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1st – 10th CB 52.573 46.135 35.279 39.805 31.378 40.970 37.267

1st CB + CR 194.130 50.693 36.839 68.902 54.776 45.647 54.607

2nd CB + CR 50.069 25.522 18.329 25.765 18.739 22.146 21.934

2nd – 3rd CB + CR 31.898 21.927 16.279 21.198 16.328 19.128 18.539

2nd – 4th CB + CR 25.233 21.049 15.673 19.461 15.386 18.325 17.594

2nd – 5th CB + CR 23.276 21.145 15.771 19.321 15.120 18.309 17.518

2nd – 6th CB + CR 22.466 21.836 16.210 19.742 15.357 18.865 17.872

2nd – 7th CB + CR 23.096 22.994 16.982 20.386 15.932 19.642 18.566

2nd – 8th CB + CR 24.561 24.420 17.947 21.575 16.628 20.696 19.591

2nd – 9th CB + CR 26.059 26.183 18.997 22.996 17.873 22.034 21.000

2nd – 10th CB + CR 28.073 28.001 20.177 24.659 18.992 23.671 22.229

1st – 10th CB + CR 29.924 29.268 20.992 26.240 20.860 25.217 23.647

It is worth to point out the following obtained computational results:
•	� the “w-subdivision’’ process p1 proposed and used in [9, 17, 18] is

generally the worst partitioning rule from both the average number
of iterations and the average CPU time points of view;

•	� the partitioning rule p5 is generally the one providing the best
performance;

•	� the use of “Resize()’’ sub-procedure is fundamental for having a
good performance; Lagrangean cuts without any “Resize’’ operation
results to be not effective;

•	� the use of “CutRegion()’’ sub-procedure greatly amplifies the
effectiveness of “Resize()’’ sub-procedure;

•	� the use of both “CutBounds()’’ and “CutRegion()’’ sub-procedures
improves the algorithm performance;

•	� the use of “Resize()’’ sub-procedure with respect to just the index
corresponding to the biggest error (1st) is useless;

•	� the “Resize’’ operations are quite heavy from a computational point
of view (two LPs to be solved for each index in I); having a big set
I decreases the average number of convex subproblems solved, but
may be too expensive from a CPU time point of view;

16� R. CAMBINI AND F. SALVI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

•	� the best performance with respect to the average CPU time spent
is given by partitioning rule p5 in the 28th row, that is when both
“CutBounds()’’ and “CutRegion()’’ sub-procedures are used and
“Resize()’’ is done in the 4 indices corresponding to the errors

(,), = 1, , ,BErr x j j k from the second biggest one to the fifth biggest
one; the improvement gain with respect to the partitioning rule p1
in the first row (solution algorithm considered in [18]) is about 92%,
while the improvement with respect to the partitioning rule p3 in the
first row (algorithm in [9]) is about 56%.

5.  Conclusion

In this paper a computational experience regarding a branch and
reduce approach for solving a class of low rank d.c. optimization programs
is provided. It is shown that, in the case “dual-adequate’’ primitives are
available, Lagrangean cuts highly improve the overall performance of
the branch and reduce scheme, obtaining results better than the ones in
[9, 18]. In particular, it is worth using the Lagrangean cuts for both the
bounds and the feasible region, and in combination with some “Resize’’
operations. It is also pointed out that the partitioning rule p5 should be
preferred to the “w-subdivision’’ commonly used in the literature, and
that the “Resize()’’ sub-procedure should be applied to set of indices I not
containing the index corresponding to the maximum error.

References

	 [1]	� I. Bomze, M. Locatelli, (2004): Undominated d.c. Decompositions of
Quadratic Functions and Applications to Branch-and-Bound Ap-
proaches, Computational Optimization and Applications, 28, 227-245

	 [2]	� R. Cambini, F. Salvi, (2010): Solving a class of low rank d.c. programs
via a branch and bound approach: a computational experience, Op-
erations Research Letters, 38 (5), 354-357

	 [3]	� R. Cambini, F. Salvi, (2009): A branch and reduce approach for solv-
ing a class of low rank d.c. programs, Journal of Computational and
Applied Mathematics, 233, 492-501

	 [4]	� R. Cambini, C. Sodini, (2002): A finite algorithm for a particular d.c.
quadratic programming problem, Annals of Operations Research, 117,
33-49

?� 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	 [5]	� R. Cambini, C. Sodini, (2005): Decomposition methods for solving
nonconvex quadratic programs via branch and bound, Journal of
Global Optimization, 33, 313-336

	 [6]	� R. Cambini, C. Sodini, (2008): A computational comparison of some
branch and bound methods for indefinite quadratic programs, Cen-
tral European Journal of Operations Research, 16, 139-152

	 [7]	� J. E. Falk, R. M. Soland, (1969): An algorithm for separable nonconvex
programming problems, Management Science, 15, 550-569

	 [8]	� C.A. Floudas, P. M. Pardalos, (1999): Handbook of Test Problems in
Local and Global Optimization, Nonconvex Optimization and Its Ap-
plications, vol. 33, Springer Berlin

	 [9]	� X. Honggang, X. Chengxian, (2005): A branch and bound algorithm
for solving a class of D-C programming Applied Mathematics and
Computation, 165, 29-302

[10]	� R. Horst, P. M. Pardalos, (1995): Handbook of Global Optimization,
Nonconvex Optimization and Its Applications, vol. 2, Kluwer Aca-
demic Publishers, Dordrecht

[11]	� R. Horst, N. V. Thoai, (1999): D.C. programming: Overview, Journal
of Optimization Theory and Applications, 103, 1-43

[12]	� R. Horst, H. Tuy, (1990): Global optimization deterministic approach-
es, Springer-Verlag

[13]	� F. A. A. Khayyal, H. D. Sherali, (2000): On finitely terminating branch
and bound algorithms for some global optimization problems, SIAM
Journal Optimization, 10, 1049-1057

[14]	� H. Konno, P.T. Thach, H. Tuy, (1997): Optimization on low rank non-
convex structures, Nonconvex Optimization and Its Applications,
vol. 15, Kluwer Academic Publishers, Dordrecht

[15]	� H. Konno, A. Wijayanayake, (2002): Portfolio optimization under d.c.
transaction costs and minimal transaction unit constraints, Journal of
Global Optimization, 22, 137-154

[16]	� M. Minoux, (1986): Mathematical Programming Theory and Algo-
rithms, Wiley-Intersciences Publication

[17]	� J. Parker, N. V. Sahinidis, (1998): A Finite Algorithm for Global Mini-
mization of Separable Concave Programs, Journal of Global Optimiza-
tion, 12, 1-36

[18]	� T.Q. Phong, L.T. Hoai An, P.D. Tao, (1995): Decomposition branch
and bound method for globally solving linearly constrained

18� R. CAMBINI AND F. SALVI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

indefinite quadratic minimization problems, Operations Research
Letters, 17, 215-220

[19]	� R.T. Rockafellar, (1972): Convex Analysis, Princeton University
Press, second edition

[20]	� H.S. Ryoo, N. V. Sahinidis, (1996): A branch-and-reduce approach to
global optimization, Journal of Global Optimization, 8, 107-138

[21]	� H.S. Ryoo, N. V. Sahinidis, (2003): Global optimization of multiplica-
tive programs, Journal of Global Optimization, 26, 387-418

[22]	� H. Tuy, (1996): A general d.c. approach to location problems, State of
the art in global optimization, edited by C.A. Floudas, P. M. Pardalos,
Nonconvex Optimization and Its Applications, vol. 7, pp. 413-432,
Kluwer Academic Publishers, Dordrecht

[23]	� H. Tuy, (1998): Convex Analysis and Global Optimization, Noncon-
vex Optimization and its Applications, vol. 22, Kluwer Academic
Publishers, Dordrecht

		 Received ?

