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1 Introduction

A central objective of the Horizon 2020 programme is the promotion of inno-

vative and inclusive societies in Europe and worldwide. To reach this goal, it

is important to investigate how social cohesion, solidarity and reconciliation of

differences between social groups or individuals can be achieved. Measuring and

analysing social and economic inequalities, which have multiple dimensions in-

cluding income, wealth, employment, health, environment and wellbeing, is of

fundamental importance to provide the necessary information to policymakers

and stakeholders in general.

Information at disaggregated geographical level is of particular interest in this

context, and can be obtained from data collected in national surveys. However,

sample sizes within small domains or areas are frequently too small to estimates a
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parameter of interest with a sufficient precision. The demand for reliable statistics

for small areas has promoted the development of small area estimation (sae)

methods.

A general discussion of different techniques for small area estimation is found

in Rao and Molina (2015). A commonly used model-based approach is that of

fitting a linear mixed model in which between-area variation is accounted for by

area-level effects. An alternative solution, described by Chambers and Tzavidis

(2006), is to implement small area estimation using M-quantile regression (mqr)

models. This method permits to obtain outlier-robust estimators without making

parametric assumptions, using the general theory of M-estimation. The distin-

guishing features of this approach include the protection that a careful choice of

a quantile-specific loss function offers against the effect of outliers, and the char-

acterisation of domain heterogeneity in terms of domain-specific M-quantiles.

Estimation of small area means based on M-quantile regression is considered a

standard approach (Tzavidis et al., 2010; Salvati et al., 2012; Chambers et al.,

2014; Rao and Molina, 2015) and has been used in numerous applications (e.g.,

Tzavidis et al., 2008; Pratesi et al., 2008; Giusti et al., 2012; Fabrizi et al., 2014).

For a complete review of M-quantile regression models in sae see Bianchi et al.

(2018).

In this paper we introduce a new estimator of M-quantiles, in which the

regression coefficients, β(τ), are modelled as parametric functions of τ . This

approach is referred to as M-quantile regression coefficients modelling, and is

related to the existing literature on quantile regression (Frumento and Bottai,

2016, 2017) .

The idea of describing the M-quantile function by a parametric model presents

significant advantages over standard mqr, in which different M-quantiles are esti-

mated one at a time. First, the proposed method is not grid-based, as it does not

require selecting an arbitrary grid {τ1, . . . , τr} at which to estimate M-quantile

regression coefficients. Second, parametric models simplify summarising and in-

terpreting the results, and typically generate more efficient estimators. Third,

imposing a parametric structure can stabilise the behaviour of the estimated

regression coefficients, especially in the tails, and alleviate the M-quantile cross-

ing problem, occurring when the fitted M-quantile function is not monotonically
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non-decreasing.

We apply the proposed methodology to analyse data from the 2006 European

Survey on Income and Living Conditions (EU-SILC), using small area estimation

techniques to combine the survey data with those of the population Census 2001

and estimate the average equivalised household income of the local labour systems

(LLSs) of three large administrative regions in Italy, namely Lombardia (northern

Italy), Toscana (central Italy) and Campania (southern Italy). The goal of the

research is to investigate both the within-region variability, and the so called

“north-south” divide characterising the Italian territory.

The paper is structured as follows. In Section 2 we review the existing

methods for M-quantile regression and their use in small area estimation. In

Section 3 we present the 2006 EU-SILC and Census 2001 data that are used to

estimate the average equivalised household income. In Section 4 we introduce

a parametric approach to M-quantile regression and provide general guidelines

for model building. We describe the estimator in Section 5, and discuss its

asymptotic properties in Section 6. In Section 7 we present simulation results,

and Section 8 demonstrates the properties of the proposed procedure presenting

the application that motivated this research. Finally, in Section 9 we summarize

the main findings of the paper and discuss future research aimed at outlier robust

small area inference.

2 An overview of M-quantile regression (MQR) mod-

els and their application to small area estimation

2.1 Linear M-quantile regression

Through the paper, we denote by Yi a response variable of interest, and by xi

a q-dimensional vector of observed covariates, i = 1, . . . , n. Following standard

notation, we assume that

M(τ | xi) = xT
i β(τ) (1)
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is the τ -th M-quantile of Yi given xi, τ ∈ (0, 1). The τ -th mqr coefficients, β̂(τ),

minimise

Ln(β(τ), σ(τ)) = n−1
[
n log(σ(τ)) +

n∑
i=1

ρτ

(
yi − xT

i β(τ)

σ(τ)

)]
, (2)

where yi is a realisation from Yi, ρτ (u) = |τ − I(u < 0)|ρ(u) is the tilted version

of a loss function ρ(u), and σ(τ) is a nuisance scale parameter. The quantity

expressed in (2) corresponds, up to an additive constant, to the negative log-

likelihood of a Generalised Asymmetric Least Informative (gali) distribution

(Bianchi et al., 2018). This model is not assumed to reflect the true data distri-

bution, but provides a unified framework for joint estimation of β(τ) and σ(τ).

Minimising (2) with respect to β(τ) and σ(τ) requires solving

n∑
i=1

ψτ

(
yi − xT

i β(τ)

σ̂(τ)

)
xi = 0 (3)

− n

σ(τ)
+

1

σ2(τ)

n∑
i=1

ψτ

(yi − xT
i β(τ)

σ(τ)

)
(yi − xT

i β(τ)) = 0, (4)

where ψτ (u) = dρτ (u)/du is an influence function.

A popular choice of ρτ is the tilted version of Huber’s loss function,

ρτ (u) = 2

{
(c|u| − c2/2)|τ − I(u ≤ 0)| |u| > c

u2/2|τ − I(u ≤ 0)| |u| ≤ c,
(5)

where I(·) is an indicator function and c is a cutoff constant. The Least Infor-

mative (LI) distribution described in Huber (1981, Section 4.5) is based on this

loss function, with τ = 0.5. Depending on the choice of ρ(·), mqr models may

reduce to ordinary quantiles regression (ρ(u) = |u|) or to expectiles regression

(ρ(u) = u2) while other choices are also possible (Dodge and Jureckova, 2000).

However, quantiles and expectiles should be treated separately due to different

properties of the corresponding influence functions (Wooldridge, 2010, p. 407).

2.2 Use of M-quantile regression in small area estimation

Using standard notation for sae, we denote by U a population of size N divided

into m non-overlapping subsets Uj (small areas) of size Nj , j = 1, ...,m. Consis-

tently, we denote by yij and xij the response and the covariates of the i-th unit

of area j, i = 1, . . . , Nj .
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Suppose that the quantities of interest are the area means, ȳj = N−1
j

∑
i∈Uj

yij ,

and assume to draw a random sample s ⊂ U of population units, such that area-

specific samples sj ⊂ Uj of size nj ≥ 0 are available for each area. sae methods

are used when the yij values are only available for the units belonging to the set

sj , while the area-level means of the covariates, x̄j = N−1
j

∑
i∈Uj

xij , are known

from external sources.

Estimation of small area means is implemented as follows. First, mqr is

applied to the sampled units, allowing to compute the “M-quantile coefficients”

τ̂ij such that xT
ijβ̂(τij) = yij , i ∈ sj , j = 1, . . . ,m. If a hierarchical structure

does explain part of the variability in the population data, units within areas are

expected to have similar M-quantile coefficients. Then, an estimate of the mean

M-quantile coefficient for area j is obtained as ˆ̄τj = n−1
j

∑nj

i=1 τ̂ij . Finally, an

estimator of ȳj is given by

ˆ̄y
mqr/Naive
j = N−1

j

[∑
i∈sj

yij +
∑
i∈s̄j

xT
ijβ̂(ˆ̄τj)

]
, (6)

where s̄j is the set of non-sampled units in area j. The above estimator, intro-

duced by Chambers and Tzavidis (2006), uses the linear M-quantile regression

model described in (1) and assumes β(τ) to be a “sufficiently smooth” function

of τ . If nj = 0, ˆ̄τj = 0.5 is used and (6) reduces to a synthetic estimators based

on M-median regression.

Chambers et al. (2014) defined such method as robust-projective as it projects

sample non-outlier (i.e., working model) behaviour onto the non-sampled part of

the survey population. They also proposed a method that allows for contributions

from representative sample outliers. Their method is said to be robust-predictive

since it attempts to predict the contribution of the population outliers to the

population quantity of interest. In the robust-predictive context, a bias-corrected

version of estimator (6) is given by

ˆ̄y
mqr/bc
j = N−1

j

{∑
i∈sj

yij +
∑
i∈s̄j

xT
ijβ̂(ˆ̄τj) +

Nj − nj
nj

∑
i∈sj

ω̂ijφ
{yij − xT

ijβ̂(ˆ̄τj)

ω̂ij

}}
,

(7)

where ω̂ij is a robust estimator of the scale of the residual yij − xT
ijβ̂(ˆ̄τj) in

area j. The robust influence function ψ, used to define β̂(ˆ̄τj), is replaced in the

third addend of (7) by a new function φ; such function is still bounded, but
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more accommodating with respect to sample outliers, as |ψ| ≤ |φ|. Its purpose

is to define an adjustment for the bias caused by the fact that the first two

terms on the right-hand side of (7) treat sample outliers as non-representative

(Chambers et al., 2014). A method to estimate the mean squared error (mse)

of mqr-based robust predictors of small area means under the robust-projective

and robust-predictive approaches has been proposed by Chambers et al. (2014).

Their approach uses first-order approximations to the variances of solutions of

estimating equations to develop conditional mse estimators for predictors (6)

and (7).

3 Italian Census 2001 and 2006 EU-SILC data

In the EU-SILC data, the regional samples are based on a stratified two-stage

sample design, in which municipalities are the Primary Sampling Units (PSUs),

and households are the Secondary Sampling Units (SSUs). The PSUs are divided

into strata according to their dimension in terms of population size; the SSUs

are selected by means of systematic sampling in each PSU.

The goal of our study is to estimate the average equivalised income for the

local labour systems (LLSs) of Lombardia, in the north, Toscana, in central Italy,

and Campania, in southern Italy. LLSs refer to 611 unplanned domains obtained

as clusters of municipalities where the bulk of the labour force lives and works,

and are defined on a functional basis, the key criterion being the proportion of

commuters who cross the LLS boundary on the way to their workplace. Accord-

ing to the official EU nomenclature of local units, LLSs are intermediate between

LAU 1 and LAU 2 levels (Eurostat, 2016). The choice of the LLSs of these three

regions, out of the 20 existing in Italy, is motivated by the geographical differ-

ences characterising the Italian territory. In particular, the selected regions can

be considered as representative of Northern, Central and Southern/Insular Italy,

respectively, and can be used to investigate the so-called “north-south” divide.

The data used in this paper come from the 2006 wave of EU-SILC and the

2001 Population Census. The response variable of interest is the equivalised

income, which is obtained by dividing the total disposable household income by

a factor that takes into account the size and composition of the household. This
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factor is computed using the modified OECD scale (Hagenaars et al., 1994).

The target small areas are 172 in total: 59 in Lombardia (34 sampled and 25

out-of-sample areas), 57 in Toscana (32 sampled and 25 out-of-sample) and 56

in Campania (18 sampled and 38 out-of-sample). Among the observed LLSs, the

sample size ranges between 13 and 261. The mean value is 64.3, while quartiles

are 23, 35, and 59, respectively. Figure 1 shows the distribution of the LLSs by

sample size.

The presence of numerous LLSs with a very small sample size makes it

difficult to obtain reliable estimates at the area level, and motivates the use of

sae techniques. Covariate information at the population level is obtained from

the Census 2001 data. A description of the variables from both the EU-SILC

2006 survey and the Census 2001 is reported in Table 1. Some variables refer

to the head of the household (HH), while others are measured at the household

level.

The use of lagged Census information may lead to bias in small area esti-

mators. However, the variables whose totals are known from the Census have

been proven to be powerful predictors of household income according to tests

conducted within the SAMPLE program (Small Area Methods for Poverty and

Living Conditions, http://www.sample-project.eu/, SAMPLE (2010)). More-

over, the impact of the time lag is limited, because the area-level means of the

considered auxiliary variables evolve slowly over time.

Fabrizi et al. (2014) presented some preliminary diagnostics obtained by

fitting a linear mixed model with households at the first level, LLSs at the second

level, equivalised household income as the response variable, and the variables in

Table 1 used as covariates. They suggested that the hypotheses of normality used

by linear mixed models may not hold, and highlighted the presence of outlying

values. In this situation, small area methods based on M-quantiles are likely to

generate more reliable estimators.
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Figure 1: Distribution of the available sample size (88 areas with no observations are

not represented).

4 Modelling M-quantile regression coefficient func-

tions

Standard M-quantile regression is nonparametric in the sense that estimation is

carried out separately for each value of τ , treating β(τ) and σ(τ) as infinite-

dimensional parameters. Typically, the estimated coefficient functions β̂(τ) are

summarised graphically. An example is provided in Figure 2, which represents

the coefficients associated with gender of the HH (reference = female) and the oc-

cupational status of the HH (reference = other) in the EU-SILC data, computed

by running M-quantile regression at τ = (0.005, 0.01, . . . , 0.995) with Huber’s

loss function (c = 1.345).

Frequently, the coefficient functions have a rather simple behaviour which

can be conveniently described by a mathematical formula or an expression in

natural language (e.g., a straigth line, a parabola, a J-shape). For example,
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Table 1: Description of variables available from EU-SILC 2006 and Population Census

2001.

Variable Name Description

Ownership of the house Two levels: Owner or free accommodation (reference) / Other

Age of the HH Continuous

Occupational status of the HH Two levels: Working / Other (reference)

Gender of the HH Two levels: Male / Female (reference)

Years in education of the HH Continuous

Household size Continuous

Region Three levels: Campania, Lombardia, Toscana (reference)

visual interpolation of the coefficient functions displayed in Figure 2 suggests

that in both situations we could use a linear model, say β(τ | θ) = θ0 + θ1τ,

to provide a good fit with only two parameters. Also, some volatility and very

large standard errors are observed in the tails of the coefficient functions, as τ

approaches 0 or 1. This is usually due to data sparsity, and could be alleviated

by introducing some structural assumptions on the functional form of β(τ).

We assume model (1) to hold,

M(τ | x) = xTβ(τ),

and introduce two finite-dimensional parameter vectors θ and φ such that

β(τ) = β(τ | θ), σ(τ) = σ(τ | φ). (8)

Since the scale parameter σ(τ) is not of scientific interest, the main focus of

the paper will be to provide a framework for parametric modelling of β(τ), ex-

panding the work of Frumento and Bottai (2016, 2017) on quantile regression.

Hereafter, we will speak of M-quantile regression coefficients modelling and use

the abbreviation mqrcm.

The existence of a parameter vector θ such that β(τ) = β(τ | θ) can hardly

be thought of as an assumption, as long as mild regularity conditions are main-

tained on the data-generating process. As suggested later in the paper, using

a parametric approach presents important advantages over the standard, “non-

parametric” estimator: (a) it is generally more efficient in terms of standard er-

rors; (b) it permits describing the coefficient functions using a finite and usually
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very limited number of parameters; and (c) it facilitates controlling for quantile

crossing.
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Figure 2: Estimated mqr coefficients (τ = 0.005, 0.01, . . . , 0.995) associated with gender

of the HH (reference = female) and occupational status of the HH (reference = other)

in the EU-SILC data, computed using Huber’s loss function with tuning parameter

c = 1.345. Pointwise confidence intervals are represented by the shaded area, while the

dotted line indicates the zero.
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4.1 Model building

We briefly describe a strategy for model building, with the help of a simple

example. We assume model (8) to hold, and write the conditional M-quantile

function as

M(τ | x,θ) = xTβ(τ | θ). (9)

Following Frumento and Bottai (2016, 2017), we adopt the following linear parametri-

sation:

β(τ | θ) = θb(τ) (10)

where b(τ) = [b1(τ), . . . , bk(τ)]T is a k-dimensional set of known functions. With

this notation, θ is a q × k matrix, and the M-quantile function is rewritten as

M(τ | x,θ) = xTβ(τ | θ) = xTθb(τ). (11)

This model has the advantage of being analytically tractable and relatively

simple to implement. Allowing β(τ | θ) to be a nonlinear function of θ is pos-

sible, but would have a high cost in terms of computation. On the other hand,

the suggested linear parametrisation is very practical and does not represent a

limitation in terms of flexibility.

Consider, for example, a regression model with a single covariate x:

M(τ | x,θ) = β0(τ | θ) + β1(τ | θ)x.

A possible approach is to define a “sufficiently flexible” model such as

β0(τ | θ) = θ00 + θ01τ + θ02τ
2 + θ03τ

3 − θ04 log(1− τ),

β1(τ | θ) = θ10 + θ11τ.

In this example, the intercept is parametrised using the quantile function of an

Exponential distribution, − log(1−τ), that determines a long right tail; and a 3rd-

degree polynomial (τ, τ2, τ3) that allows for a deviation from it. The coefficient

associated with x is assumed to be a linear function of τ . In matrix form, the
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model is defined by

b(τ) =



1

τ

τ2

τ3

− log(1− τ)


, θ =

[
θ00 θ01 θ02 θ03 θ04

θ10 θ11 0 0 0

]
.

Possible choices of b(τ) include polynomials
[
τ, τ2, τ3, . . .

]
, splines, piece-

wise linear functions, roots
[
τ1/2, (1 − τ)1/2, τ1/3, (1 − τ)1/3, . . .

]
, logarithms

[log(τ),− log(1− τ)], trigonometric functions [cos(2πτ), sin(2πτ)], quantile func-

tions of known distribution (e.g., that of a standard Normal), and combinations

of the above. Typically, unbounded functions are used to model the intercept,

β0(τ), while the other coefficients are commonly assumed to be bounded and, in

many situations, to be linear functions of τ or to not depend on τ at all.

The described modelling approach is much more parsimonious than standard

mqr, that can be seen as a special case of model (8) in which β(τ) is allowed to be

an arbitrarily flexible function of τ . Using a low-dimensional parametric model

allows to represent the coefficient functions by simple closed-form mathematical

equations, making it easier to report and interpret the results.

Finally, working with a parametric M-quantile function simplifies controlling

for quantile crossing, which can be diagnosed using the first derivative of M(τ |
x,θ) with respect to τ . In some situations, it is possible to determine in advance

which values of the parameters generate a well-defined M-quantile function. For

example, if M(τ | x,θ) = τ(θ0 + θ1x) with x ≥ 0, M ′(τ | x,θ) > 0 if (i) θ0 > 0

and θ1 ≥ 0; or (ii) θ1 < 0 and θ0 > −θ1 max(x).

Additional examples of model building are presented in Section 8, in the

papers by Frumento and Bottai (2016, 2017), and in the documentation of the

Mqrcm and qrcm R packages (Frumento, 2017, 2018).

5 The estimator

Assume model (8) to hold,

β(τ) = β(τ | θ), σ(τ) = σ(τ | φ).
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We propose estimating θ and φ by minimising

L̄n(θ,φ) =

∫ τ2

τ1

Ln(β(τ | θ), σ(τ | φ))dτ, 0 ≤ τ1 < τ2 ≤ 1, (12)

which corresponds to the integral, with respect to τ , of the loss function of

standard M-quantile regression given in (2). This quantity can be thought of as

an average loss function, that carries information on multiple M-quantiles at once.

This approach is analogous to the estimation method introduced by Frumento

and Bottai (2016) and referred to as integrated loss minimisation (ilm). Although

in most situations τ1 = 0 and τ2 = 1, it is possible to model a subset of quantiles

of interest, e.g., those below the median (τ1 = 0, τ2 = 0.5)

The exact expression for (12) depends on the selected loss function, ρτ . The

standard, “nonparametric” estimator of β(τ) can be obtained in two different

ways: (i) by allowing β(τ | θ) to be arbitrarily flexible, e.g., using a piecewise-

linear function with a very large number of knots; or (ii) by setting τ1 = τ −∆,

τ2 = τ + ∆, and letting ∆→ 0.

In the Mqrcm R package, L̄n(θ,φ) is evaluated numerically, and a Newton-

type algorithm is used to perform minimisation. The coefficient functions are

modeled as in (10),

β(τ | θ) = θb(τ),

allowing the user to define b(·). The scale parameter σ(τ | φ) is treated as a piece-

wise constant function of τ , which guarantees flexibility and avoids specifying a

parametric model for a nuisance paramter.

6 Asymptotic theory

To derive asymptotic properties, we apply the standard theory of M-estimators

(e.g., Amemiya, 1985; Newey and McFadden, 1994). To facilitate the notation,

we write as ξ = (θ,φ) the vector of all model parameters. We denote by ξ̂n =

(θ̂n, φ̂n) the minimiser of L̄n(ξ) = L̄n(θ,φ), the integrated loss function defined

by (12), and by ξ0 = (θ0,φ0) the true parameter value minimising L̄0(ξ) =

E[L̄n(ξ)].
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Theorem 1 (consistency). Assume that (i) the parameter space Ξ is a

compact set; (ii) L̄n(ξ) converges uniformly in probability to L̄0(ξ); (iii) L̄0(ξ) is

uniquely minimised at ξ0; (iv) L̄0(ξ) is continuous. Then ξn
p→ ξ0.

The above assumptions require the following non-trivial conditions for consis-

tency: (a)
∫ τ2
τ1
ρτ

(
yi−xT

i β(τ)
σ(τ)

)
dτ is finite; and (b) σ(τ | φ) > 0 at all τ . Condition

(a) may not hold if β(τ | θ) is non-integrable, e.g., β(τ | θ) = θ tan(π(τ − 0.5)).

Condition (b) requires the distribution to be non-degenerated. A proof of Theo-

rem 1 is given in Newey and McFadden (1994), Theorem 2.1, p. 2121.

Theorem 2 (asymptotic normality). Suppose that the conditions of The-

orem 1 are satisfied, and that (i) ξ0 is an interior point of Ξ; (ii) L̄n(ξ) is

twice continuously differentiable in a neighborhood N of ξ0; (iii)
√
n∇ξL̄n(ξ0)

d→
N(0,Ω); (iv) there is H(ξ) that is continuous at ξ0 and supξ∈N ||∇ξξL̄n(ξ) −
H(ξ)|| p→ 0; (v) H = H(ξ0) is nonsingular. Then,

√
n(ξ̂n − ξ0)

d→ N
(
0,H−1ΩH−1

)
.

Condition (i) is standard. Conditions (ii) and (iii) permit applying a central

limit theorem to ∇ξL̄n(ξ0), while conditions (iv) and (v) guarantee that the

asymptotic covariance matrix is well-defined. For a proof of Theorem 2, we refer

to Newey and McFadden (1994), Theorem 3.1, p. 2143.

An estimate of the covariance matrix of ξ̂ can be obtained using the sample

counterparts of H, which can be estimated by the Hessian matrix of L̄n(ξ̂), and

of Ω, which is consistently estimated by the outer product of the summands of

∇ξL̄n(ξ). Under model (10), where β(τ | θ) = θb(τ) and θ is a q × k matrix,

cov(θ̂) is given by the upper qk × qk block of H−1ΩH−1. At any given τ , an

estimate of cov(β̂(τ)) can be easily computed using the fact that β̂(τ) = θ̂b(τ)

is a linear transformation of θ̂.
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7 Simulation results

To assess the finite-sample performance of the proposed estimator and compare

it with standard techniques, we designed a simulation study composed of two

parts. In the first part of the simulation, we compare our method with standard

M-quantile regression; in the second, the described method is applied to small

area estimation.

7.1 Comparing MQRCM with standard MQR

We considered the M-quantile function defined by Huber’s loss function with

tuning constant c = 1.345, and parametrised as follows:

M(τ | x1, x2) = β0(τ) + β1(τ)x1 + β2(τ)x2, (13)

where x1 is a discrete uniform variable with support {1, . . . , 5}, and x2 is binary

with P (x2 = 1) = 0.5.

To simulate data with a desired M-quantile function M(τ | x) = β0(τ) +

β1(τ)x1 + . . ., we proceeded as follows. We defined γ = {γ0,γ1, . . .}, and con-

sidered a “flexible” quantile function Qγ(τ | x) = [β0(τ) + s(τ)γ0] + [β1(τ) +

s(τ)γ1]x1 + . . ., where s(τ) was the basis of a B-spline with knots at τ =

(0, 0.05, 0.10, 0.25, 0.5, 0.75, 0.90, 0.95, 1). The regression coefficients of Qγ(τ | x)

are equal to those of the desired M-quantile function, plus a deviation expressed

by a spline function with parameters γ. We defined Mγ(τ | x) to be the M-

quantile function obtained by applying ordinary M-quantile regression to a “per-

fect draw” from Qγ(τ | x). By “perfect draw” we mean that: (i) the empirical

distribution of x is equal to the true one, and (ii) for each unique value of x, data

are “simulated” by evaluating Qγ(τ | x) at a grid of evenly spaced values of τ in

(0, 1). We then computed γ̂ = arg minγ
∫ 1

0 [Mγ(τ | x)−M(τ | x)]2dτ . With this

procedure, the true M-quantiles associated with Qγ̂(· | x) were approximately

equal to their target value M(· | x).

We implemented the following simulation scenarios:

Simulation 1. We defined β0(τ) = log(τ) − 0.5 log(1 − τ), β1(τ) = 1 +

2 exp{−5(1− τ)}, and β2(τ) = 1 + 5τ .
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Simulation 2. We defined β0(τ) = z(τ), β1(τ) = 1 + 5(1 − (1 − τ)0.25),

and β2(τ) = 1 + τ + 10(τ − 0.5)3, where z(τ) denotes the quantile function of a

standard Normal distribution.

For each scenario, we generated R = 1000 simulated dataset. For each

dataset, we estimated standard mqr coefficients, and applied mqrcm with two

different model specifications: (i) m(a), the true model, and (ii) m(b), a model

in which β(τ | θ) was parametrised by a B-spline basis with knots at τ =

{0, 0.05, 0.25, 0.5, 0.75, 0.95, 1}. This allowed to assess the performance of the

described estimator in a situation in which a flexible model is used in absence of

stronger parametric assumptions.

We measured the bias and standard errors of estimated M-quantile regression

coefficients across datasets. The bias of all estimators was negligible and is not

reported, while standard errors are summarised in Table 2. Results demonstrate

that mqrcm estimators can be much more efficient than ordinary mqr, when a

parsimonious model is used to describe β(τ | θ). When a flexible model is used

instead, the efficiency gain tends to vanish.

7.2 Using MQRCM in Small Area Estimation

We carried out model-based simulations to compare small area predictors based

on mqrcm with those obtained from standard mqr. We generated the population

data following Chambers et al. (2014), defining m = 40 small areas. Samples were

selected by simple random sampling without replacement within each area. The

population and sample sizes were Nj = 100 and nj = 5 for all areas, j = 1, . . . , 40.

We considered a single predictor x generated from a lognormal distribution with

mean 1 and standard deviation 0.5 on the log scale. The response was generated

as yij = 100 + 5xij + υj + εij , where the area-level effects, υj , and the individual

effects, εij , were independently generated according to two scenarios:

• Scenario (0,0): u ∼ N(0, 3) and ε ∼ N(0, 6).

• Scenario (ε,υ): υ ∼ N(0, 3) for areas 1− 36, υ ∼ N(9, 20) for areas 37− 40;

ε ∼ δN(0, 6) + (1− δ)N(20, 150) where δ was a binary variable with P (δ =

1) = 0.97.

Scenario (0,0) corresponds to a “well-behaved” distribution. In scenario (ε,υ),
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the area effects 37 − 40 have a nonzero mean, and a much larger variance than

those of areas 1 − 36. Moreover, the individual effects come from a mixture of

two normal distributions that generates outliers with a probability of 3%.

Each scenario was independently simulated R = 1000 times. For each sim-

ulated dataset, we estimated M-quantile regression coefficients in two different

ways: (i) using the traditional mqr estimator; and (ii) applying the mqrcm ap-

proach described in this paper. In both cases the influence function ψ was a

Huber-type function with tuning constant c = 1.345.

To implement mqrcm, we used the following model specification:

M(τ | x,θ) = β0(τ | θ) + β1(τ | θ)x

with

β0(τ | θ) = θ00 + θ01τ + θ02τ
2 + θ03τ

3 + θ04τ
4 + θ05τ

5 + θ06z(τ),

β1(τ | θ) = θ10 + θ11τ,

where z(τ) denotes the quantile function of a standard Normal distribution. The

intercept was defined by the combination of a Normal model and a 5-th degree

polynomial, allowing for a great flexibility. The regression coefficient associated

with x, that in the true model was a constant, was assumed to be a linear function

of τ .

For each dataset, we used the fitted M-quantile regression coefficients to

estimate the area means using the naive formula given in (6) and its corrected

version given in (7). Results are summarised in Table 3, where we report the

median value (across areas) of the relative bias and the relative root mean squared

error (rrmse), which are obtained by dividing the absolute bias and the root mean

squared error of each area by the true area means ȳj , j = 1, . . . , 40.

Under the (0, 0) scenario, the predictors based on mqr and on mqrcm showed

similar results in terms of bias and rrmse. In scenario (ε,υ), predictors based

on mqrcm had a significantly smaller bias and rrmse in areas 37-40. These

results suggest that when outlier values are present, small area predictors based

on parsimonious parametric models can be more reliable and efficient than those

based on ordinary M-quantile regression.
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Table 2: Simulation results: comparing mqrcm with standard mqr

Sim1 se(β̂0(τ)) se(β̂1(τ)) se(β̂2(τ))

τ mqr m(a) m(b) mqr m(a) m(b) mqr m(a) m(b)

0.05 .61 .41 .62 .16 .11 .16 .51 .45 .53

0.25 .46 .22 .44 .14 .11 .14 .45 .41 .44

0.50 .57 .21 .58 .19 .11 .20 .59 .44 .61

0.75 .72 .34 .73 .27 .14 .28 .75 .56 .75

0.95 .66 .70 .64 .25 .27 .24 .59 .68 .61

Sim2 se(β̂0(τ)) se(β̂1(τ)) se(β̂2(τ))

τ mqr m(a) m(b) mqr m(a) m(b) mqr m(a) m(b)

0.05 .22 .32 .23 .08 .11 .08 .23 .26 .23

0.25 .43 .34 .43 .16 .12 .16 .44 .40 .44

0.50 .62 .42 .63 .23 .14 .23 .62 .48 .64

0.75 .76 .52 .77 .29 .20 .30 .79 .65 .79

0.95 .77 .69 .77 .34 .32 .34 .84 .84 .86

Empirical standard errors of the estimated M-quantile regression coefficients across

simulations. mqr denotes ordinary M-quantile regression; m(a) and m(b) denote mqrcm

estimators, in which β̂(τ) = β(τ | θ̂). In m(a) we fitted the true model, while in m(b)we

parametrised β(τ | θ) by a B-spline basis with knots at τ = {0, 0.05, 0.25, 0.5, 0.75, 0.95, 1}.
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Table 3: Simulation results: performance of different predictors of small area means

Scenario (0, 0) (ε, u) (ε, u)

Areas 1− 40 1− 36 37− 40

Median relative bias

mqr/Naive -0.005 -0.285 -0.826

mqrcm/Naive -0.006 -0.276 -0.728

mqr/bc 0.002 -0.228 -0.287

mqrcm/bc 0.002 -0.223 -0.278

Median rrmse

mqr/Naive 0.835 0.986 1.486

mqrcm/Naive 0.834 0.992 1.310

mqr/bc 0.915 1.240 1.339

mqrcm/bc 0.916 1.244 1.222

Median value (across areas) of the relative bias and the relative root mean squared error

(rrmse) of naive and bias-corrected estimators of the area means obtained using ordinary

M-quantile regression (mqr) and M-quantile regression coefficients modelling (mqrcm).

8 Analysis of EU-SILC data

We used data from the 2006 EU-SILC and the 2001 Population Census of Italy

presented in Section 3 to estimate the mean equivalised income for the Local

Labour Systems (LLSs) of three Italian regions: Lombardia (Northern Italy),

Toscana (Central Italy) and Campania (Southern Italy). The target small areas

were 172 in total. In addition to evaluating the potential dissimilarities within

each region, we were also interested in understanding the so-called “north-south”

divide characterising Italy in terms of poverty and living conditions.

We formulated an M-quantile regression model that included all predictors

summarised in Table 1, for a total of eight coefficients, plus an intercept β0(τ). To

apply mqrcm, we considered a variety of parametrisations of β(τ | θ) = θb(τ),

choosing different specifications of the “basis” b(τ) that defines the parametric

form of the regression coefficients. In principle, each coefficient could be described

by its own parametric model. For example, β0(τ) could be a combination of

logarithmic functions, the coefficient associated with gender may be described
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by a linear function, and so on. In practice, the same parametric form was used

to describe all coefficients. This simplification is very convenient, although it

requires b(τ) to be sufficiently flexible.

Selected parametrisations are illustrated in Table 4. Model 0 uses a piece-

wise linear functions with discontinuity points at τ = {0.05, 0.10, . . . , 0.95}, and

should be regarded as a “nonparametric” model which is essentially equivalent

to standard M-quantile regression. Model 1 describes the regression coefficients

by a third-degree polynomial, while models 2 and 3 use different roots of τ and

1− τ . Model 4 defines a Logistic distribution, while model 5 uses a linear com-

bination of log(τ) and − log(1− τ), that corresponds to the quantile function of

the asymmetric Logistic distribution. Model 6 uses the quantile function of a

“double” Rayleigh distribution, and model 7 is a generalisation of it. Models 8

and 9 parametrise the coefficients by a combination of a linear trend, and a set

of trigonometric functions with different periods.

For each model h = {0, 1, . . . , 9}, we obtained an estimate of the param-

eters, say θ̂(h), and computed F (yij | θ̂(h),xij) = M−1(yij | θ̂(h),xij). Us-

ing model 0 as a benchmark to assess model fit, we selected the minimiser of∑
i,j |F (yij | θ̂(h))− F (yij | θ̂(0))|, h = {1, 2, . . . , 9}. With this procedure, model

5 was selected as our final model. The estimated model parameters are sum-

marised in Table 5, while selected M-quantile regression coefficients are reported

in Table 6. The model is represented graphically in Figures 3 and 4, where we

also report the output of standard M-quantile regression, which was estimated

at a grid of quantiles, τ = {0.005, 0.01, . . . , 0.995}.
Based on the fitted parametric model, all estimated M-quantile regression

coefficients showed a monotonic trend, and some of them had a long left or right

tail. As illustrated in Figure 3, estimates based on mqrcm did not show the

erratic tail behaviour that was observed using standard mqr. Additionally, as

shown in Figure 4, using a parametric model reduced the variability in the tails,

at the cost of a slightly increased variability at intermediate values of τ . Finally,

while standard mqr estimates suffered from significant M-quantile crossing (that

affected approximately 1.9% of the observations), no crossing M-quantiles were

found using mqrcm. Note that, under model 5, the first derivative of the M-

quantile function is available in closed form and is given by M ′(τ | x,θ) =
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xTθb′(τ) with b′(τ) = [0, τ−1, (1− τ)−1]T.

A positive effect was found for the indicators of house ownership and cur-

rent employment, age and male gender, and education, while the household size

did not reach statistical significance. Campania had significantly lower income

compared with Lombardia and Toscana.

In Figure 5 we present maps of mqrcm/bc estimates of average equivalised

income for each LLS in Toscana, Lombardia and Campania. The maps obtained

with the mqrcm/Naive estimator are not displayed for reasons of space, and are

available upon request to the authors.

In Lombardia (northern Italy) the LLSs with higher estimated average equiv-

alised income are concentrated in the south-western and south-eastern parts of

the region. Instead, the LLSs with lower estimates are concentrated in the cen-

tral and northern parts of the region. The map of Toscana (central Italy) in-

dicates that the LLSs in the north of the region, corresponding to the LLSs of

the province of Massa-Carrara and those in the northern part of the provinces

of Lucca and Prato, are characterised by the the lowest estimates of the mean

household equivalised income. These areas can be considered as the more critical

in the region. On the other hand, the LLSs with the highest average equivalised

income are concentrated in the provinces of Firenze, Siena and Arezzo, in the

central-eastern part of the region. The map of Campania (southern Italy) shows

that the average equivalised income in this region is more geographically differ-

entiated. For example, the LLSs with the highest estimates are spread across the

region. These results confirm that the mean household income is usually higher

in the LLSs around the largest cities, and are consistent with the estimates at

provincial level obtained in the SAMPLE project (SAMPLE, 2010).

Estimating the average equivalised income at the LLS level allowed us to

investigate the gap in living conditions between the three considered regions.

The gap between Lombardia and Toscana is not very pronounced, as shown by

the relatively small differences in terms of mean equivalised income between the

two regions. Instead, Campania presents a big gap with the central and northern

regions. The highest estimates of average equivalised income in Campania are

comparable to the lowest ones in Lombardia and Toscana. These results confirm

the existence of the so-called “north-south” divide in Italy.
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In Figure 6 we compare the estimates obtained with mqrcm/bc predictor

with those produced by direct estimators. In the left panel of the figure, we

plotted the direct estimates on the x-axis, and the model-based ones on the y-

axis. The Pearson’s linear correlation coefficient was r = 0.82, suggesting that

the two estimates are somewhat consistent. In the right panel we plotted the

difference between the two estimates against the available sample size, nj . As

expected, larger differences were found in correspondence of smaller sample sizes.

In Figure 7, we report the standard errors of the direct estimators ˆ̄yDirect
j and

the root mean squared errors of mqrcm/bc, as a function of the area-specific

sample size, nj (only for areas with nj > 0). It can be seen that using sae yields a

larger gain in precision when nj is relatively small. The more stable behaviour of

MSE of ˆ̄y
mqrcm/bc
j when compared to standard error of direct estimators reflects

the robustness of the method with respect to the presence of outliers, that are

influential not only on point estimates but also on estimation of mse.

To validate the reliability of the model-based small area estimates, we used

a goodness-of-fit test (Brown et al., 2001) for the null hypothesis that the direct

and model-based estimates are statistically equivalent. The diagnostic test is

based on the following Wald statistic:

W =

m∑
j=1

{
(ˆ̄y

mqrcm/bc
j − ˆ̄yDirect

j )2

mse(ˆ̄y
mqrcm/bc
j ) + V ar(ˆ̄yDirect

j )

}
.

The test statistic is compared with the 95th percentile of a chi-squared distribu-

tion with m = 172 degrees of freedom (203.60). In our case, W = 35.72, showing

that the model-based estimates were not statistically different from the direct

estimates.
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Table 4: Alternative model specifications.

Model b(τ) n. of free parameters

0 L(τ, knots = {0.05, 0.10, . . . , 0.95}) 21× 9 = 189

1 τ, τ2, τ3 4× 9 = 36

2 τ1/2, (1− τ)1/2 3× 9 = 27

3 τ1/3, (1− τ)1/3 3× 9 = 27

4 log{τ/(1− τ)} 2× 9 = 18

5 log(τ),− log(1− τ) 3× 9 = 27

6 [− log(τ)]1/2, [− log(1− τ)]1/2 3× 9 = 27

7 [− log(τ)]1/3, [− log(1− τ)]1/3 3× 9 = 27

8 τ, cos(πτ), sin(πτ) 4× 9 = 36

9 τ, cos(2πτ), sin(2πτ) 4× 9 = 36

Different parametrisations based on the set of functions that define b(τ). An intercept

b(τ) = 1 was always included. In the table, L(τ, knots) indicates a piecewise linear function

with discontinuity points at the supplied knots. Model 5 was selected as our final model. The

estimated model parameters are summarised in Table 5, while selected M-quantile regression

coefficients are reported in Table 6. The model is represented graphically and compared with

standard M-quantile regression in Figures 3 and 4.
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Figure 3: Estimated M-quantile regression coefficients using mqr (continuous line) and

mqrcm (dashed line with associated pointwise 95% confidence interval).
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Figure 4: Estimated standard errors of M-quantile regression coefficients estimated by

mqr (continuous line) and mqrcm (dashed line).
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Figure 5: Estimated average equivalised income by mqrcm/bc based on EU-SILC and

Census data for Lombardia, Toscana, Campania, income year 2005 .
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Figure 6: A comparison between the direct estimates and those obtained by mqrcm/bc.
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9 Conclusions

We introduced a new estimator of M-quantiles, in which the regression coeffi-

cients, β(τ), are described by parametric functions of τ . Unlike ordinary M-

quantile regression, our method is not grid-based and allows to model the entire

M-quantile function at once. As shown by simulations, fitting parsimonious mod-

els permits achieving significant gains in efficiency in comparison with standard

methods. Moreover, using a parametric model permits stabilising the tail be-

haviour of the M-quantile regression coefficients, reducing the risk of M-quantile

crossing and making it very easy to diagnose it. Possible future developments of

the method outlined in this paper include M-quantile modelling of binary, count

and multicategory outcomes.

The described approach has been applied in small area estimation to eval-

uate the average equivalised household income of local labour systems (LLSs)

of Toscana, Lombardia and Campania administrative regions in Italy. Our esti-

mates confirm the existence of the so-called “north-south” divide in Italy.

An efficient implementation of the proposed estimator is provided in the

Mqrcm R package, which includes a main function iMqr for model fitting, and a

variety of auxiliary function for summary, plotting, and prediction.
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