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ABSTRACT 

Members of CYCLOIDEA (CYC)/TEOSINTE BRANCHED1 (TB1) transcription factor family 

are essential to control flower symmetry and inflorescence architecture. In the Helianthus 

annuus genome, ten CYC/TB1 genes have been identified. Studies performed on mutants 

recognized HaCYC2c as one of the key players controlling zygomorphism in sunflower. 

We identified CYC2c genes in the diploid Helianthus decapetalus (HdCYC2c) and in the 

interspecific hybrid Helianthus × multiflorus (H×mCYC2cA and H×mCYC2cB), a triploid (2n = 

3x = 51), originated from unreduced eggs of H. decapetalus fertilized by reduced H. annuus 

male gametes. Phylogenetic analysis showed that HdCYC2c and H×mCYC2c were placed 

within a CYC2 subclade together with HaCYC2c but distinct from it. The present data 

showed that in H. × multiflorus the allele derived from H. annuus is deleted or highly 

modified. 

The H. × multiflorus taxon exists in radiate and ligulate inflorescence type. We analyzed the 

CYC2c expression in H. decapetalus and in the cultivar “Soleil d’Or” of H. × multiflorus, a 

ligulate inflorescence type with actinomorphic corolla of disk flowers transformed in 

zygomorphic ray-like corolla. 

In H. decapetalus, HdCYC2c gene showed differential expression between developing 

flower types, being upregulated in corolla of ray flowers in comparison to disk flower corolla. 

In H. × multiflorus, an insertion of 865 bp, that is part of a CACTA transposable element, was 

found in the 5’-untraslated region (5’-UTR) of H×mCYC2cB. This insertion was likely to 

cause the ectopic expression of the gene throughout the inflorescence, resulting in the 

observed loss of actinomorphy and originating a ligulate head. 
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INTRODUCTION 

The ancestral flower in the Asteraceae family was actinomorphic, and a deeply five-lobed 

and zygomorphic one is considered derived (Harris 1995). In Helianthus annuus 

inflorescences hermaphrodite flowers with actinomorphic symmetry (disk flowers) are 

surrounded by a whorl of zygomorphic sterile flowers (ray flowers). The zygomorphic ray 

flower is made of three petals [0:3 pattern (adaxial:abaxial)] shifted abaxially, forming a short 

and narrow corolla tube confined to the proximal end (Jeffrey 1977). Actinomorphic disk 

flowers (tubular flowers) are arrayed in left- and right-turning spiral rows. Each disk flower is 

subtended by a sharp-pointed chaffy bract, and it consists of an inferior ovary carrying a 

single ovule, two pappus scales (highly modified sepals), and a five-lobed tubular-like 

corolla. The five anthers are joined together to form a tube, with separate filaments attached 

to the base of the corolla tube. Inside the anther tube is the style, terminating in a divided 

stigma with receptive surfaces in close contact in the bud stage before the flower open 

(Mizzotti et al. 2015). 

CYCLOIDEA-like genes are involved in flower symmetry regulation in various plant 

species (Broholm et al. 2014; Fambrini & Pugliesi 2017a; Moyroud & Glover 2017; Spencer 

& Kim 2017). CYCLOIDEA genes encode transcription factors (TFs) of the TCP family, a 

group of genes that have been associated to the control of growth and development such as 

cell cycle, axillary shoot outgrowth and leaf development (Luo et al. 1996; 1999; Doebley et 

al. 1997; Cubas et al. 1999; Theissen 2000; Nath et al. 2003; Krizek & Fletcher 2005). The 

TCP acronym stands for the first three identified members: TEOSINTE BRANCHED1 (TB1) 

in Zea mays, CYCLOIDEA (CYC) in Antirrhinum majus, and PROLIFERATING CELL 
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FACTOR (PCF) 1 and 2 in Oryza sativa (Cubas et al. 1999). TCP identifies a non-canonical 

basal helix-loop-helix (bHLH) domain of circa 60 residues (Aggarwal et al. 2010; Martín-Trillo 

& Cubas 2010; Uberti Manassero et al. 2013; Hileman 2014a,b). Based on the TCP motif, 

members of this TF family have been classified into PCF (TCP-P or class I) and CYC/TB1 

(TCP-C or class II) subfamilies (Cubas et al. 1999; Viola et al. 2012). Class II TCP TFs have 

an additional motif, the R domain, which is circa 20 residues long and rich in arginine (Cubas 

et al. 1999). Phylogenetic and sequence analysis split class II into two clades, the CYC/TB1-

like and the CINCINNATA (CIN)-like clades. The first, called ‘‘ECE’’ clade, is further divided 

into CYC1, 2 and 3 sub-clades, which have evolved due to a series of duplication events 

(Howarth & Donoghue 2006; Preston & Hileman 2009; 2012; Martín-Trillo & Cubas 2010; 

Uberti Manassero et al. 2013; Hileman 2014b; Specht & Howarth 2015; Zhong & Kellogg 

2015). ECE refers to a conserved short motif (glutamic acid-cysteine-glutamic acid) between 

the TCP and R domains that have been found in many members of this clade (Howarth & 

Donoghue 2006). 

Genes homologous to the CYC2 clade and involved in the evolution of floral symmetry 

have been amply recognized in many angiosperm families (Coen 1996; Cubas et al. 1999; 

2001; 2004; Citerne et al. 2003; 2010; 2013; Costa et al. 2005; Howarth & Donoghue 2005; 

Feng et al. 2006; Damerval et al. 2007; Chapman et al. 2008; 2012; Wang et al. 2008; 

Fambrini et al. 2011; 2014a,b; Tähtiharju et al. 2012; Yang et al. 2012; 2015; Hileman 

2014a; Berger et al. 2016; Xu et al. 2016). Analogously to Antirrhinum majus (Luo et al. 

1996; 1999), most of the CYC2 clade genes were specifically expressed in dorsal or dorsal 

plus lateral regions of developing flowers (Costa et al. 2005; Damerval et al. 2007; Preston & 

Hileman 2009; Citerne et al. 2013); nevertheless, in Asteraceae and in monocots CYC-like 

genes expression in ventral region of floral organs has been observed (Bartlett & Specht 

2011; Broholm et al. 2014; Juntheikki-Palovaara et al. 2014; Berger et al. 2016; Garcês et al. 

2016). Therefore, the origin and evolution of zygomorphism have been correlated to 

asymmetric CYC2-like gene expression. 
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A complex case of CYC2 recruitment occurs in members of the Asteraceae and 

Dipsacaceae families, both characterized by species with radiate inflorescences originated 

independently (Abbott et al. 2003; Broholm et al. 2008; Chapman et al. 2008; 2012; Kim et 

al. 2008; Busch & Zachgo 2009; Carlson et al. 2011; Fambrini et al. 2011; Bello et al. 2013; 

Berger et al. 2016; Garcês et al. 2016). The genome of Asteraceae and Dipsacaceae show 

the largest numbers of CYC2 genes (Chapman et al. 2008; Carlson et al. 2011; Juntheikki-

Palovaara et al. 2014; Berger et al. 2016; Garcês et al. 2016) with differential CYC 

transcription linked to changes of both floral symmetry and inflorescence architecture 

(Broholm et al. 2008; Carlson et al. 2011; Garcês et al. 2016). 

In sunflower, ten members of the CYC/TB1 gene family were identified, and 

phylogenetic analysis showed that these genes occurred in three distinct clades (Chapman 

et al. 2008 Additionally, straightforward evidence of divergence in expression patterns 

across duplicates within all three clades of sunflower CYC-like genes was established 

(Chapman et al. 2008). Noteworthy, prominent differences were detected in the transcription 

pattern of the CYC2 lineage, in which three genes were expressed in all floral tissues, one 

(HaCYC2d) was especially transcribed in ray flowers and at a lower level also in disc flowers 

and one (HaCYC2c) was expressed only in ray flowers. Additionally, molecular evolutionary 

analyses revealed that positive selection had promoted divergence of the HaCYC2a, 

HaCYC2b and HaCYC2c genes (Chapman et al. 2008). Therefore, duplication and 

functional divergence have played a major role in diversification of the sunflower CYC gene 

family. 

The cultivated ornamental sunflower Helianthus × multiflorus is known in Europe since 

the sixteenth century, when it was described by Jacob Theodor Tabernaemontanus (Heiser 

& Smith 1960). H. × multiflorus was found to be triploid (2n = 51) and, at meiosis, it generally 

shows 17 bivalents and 17 univalents in the metaphase stage (Heiser & Smith 1960). The 

triploid nature explains why the taxon is infertile and only propagates through rhizome 

fragments. The high degree of similarity observed between the sesquiterpene lactone profile 
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of H. × multiflorus and the additive patterns of H. annuus and the diploid race of Helianthus 

decapetalus suggested that H. × multiflorus originated from hybridization between H. annuus 

and the diploid race of H. decapetalus, with one parental genome remaining unreduced 

(Spring & Schilling 1990). Molecular analyses, including comparison of variable regions of 

the cpDNA, suggested that H. × multiflorus originated from unreduced eggs of H. 

decapetalus fertilized by reduced H. annuus male gametes (Frey & Spring 2015). The taxon 

exists in both radiate and ligulate inflorescence type and has been known as ornamental, but 

it was never found in any natural habitat (Frey and Spring 2015). 

In H. annuus, some mutations affect the development of inflorescence and/or florets 

(Cockerell 1915; Fambrini et al. 2003; 2007; 2011; 2014a,b; Berti et al. 2005; Chapman et al. 

2012). Above all, a sunflower mutant named Chrysanthemoides (Chry), Florepleno or 

double-flowered (dbl), is characterized by a shift from actinomorphic to zygomorphic-like 

corolla of disk flowers (Cockerell 1915; Fick 1976; Heiser 1976; Fambrini et al. 2003; 2014a; 

Chapman et al. 2012). Although the inflorescence of Chry is much larger than that of H. × 

multiflorus, the phenotype of both inflorescences is apparently similar (compare Figs. 1B and 

1C). In the inflorescences all flowers have zygomorphic-like corollas (Figs. 1A, B, C). The 

Chry mutant of our collection (Chry2; Berti et al. 2005; Fambrini et al. 2014a) as well the dbl 

mutant described by Chapman et al. (2012) showed an insertion of truncated versions of 

CACTA transposable elements (TEs) in the 5’ promoter region of the HaCYC2c gene 

(Fambrini et al. 2014a). The TE insertion altered HaCYC2c expression and is fundamental to 

generate the Chry phenotype (Chapman et al. 2012). Nevertheless, Fambrini et al. (2014a) 

demonstrated that much more complex regulatory system stays behind the Chry2 

phenotype. 

The goals of this study were: a) identify the gene CYC2c in the diploid H. decapetalus, 

one of the parents of H. × multiflorus; b) identify the CYC2c alleles of the interspecific hybrid 

H. × multiflorus including the promoter region; c) analyze the transcription of CYC2c in 

flowers with different symmetry to evaluate the putative correlation between the phenotype 
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of the Chry mutant of sunflower and the triploid H. × multiflorus in the origin of the ligulate 

inflorescence in the Helianthus genus, in which this inflorescence type is extremely unusual 

(Funk et al. 2009). 

 

MATERIAL AND METHODS 

Plant material and growth conditions 

Seeds of H. annuus (inbred line EF2 from Department of Agriculture, Food and Environment, 

University of Pisa, Italy) and H. decapetalus (Accession PI 468697 from USDA, USA) were 

germinated at 23 ± 1 °C in Petri dishes in the dark. Rhizomes of H. × multiflorus “Soleil d’Or” 

(a ligulate inflorescence type from L’Erbaio della Gorra, Casalborgone, Torino, Italy) and 

seedlings of H. annuus and H. decapetalus were transferred to 30-cm diameter pots 

containing a mixture of soil and sand. Plants were grown in a growth chamber at 23 ± 1 °C 

under a 16-h photoperiod (400 mol photons m-2 s-1). Irradiance was provided by a metal 

halide lamps (Kolorarc Daylight, MBID400/T/H 400 Watts, Betchworth, England). 

 

Morphological analysis of organs in flowers of H. × multiflorus 

In H. × multiflorus “Soleil d’Or”, we performed the morphological analysis of floral organs of 

ray flowers (1st whorl) and “disk-flowers” transformed in ray-like flowers (2nd whorl) taking into 

consideration the following parameters at the final stage of anthesis: size of corolla, 

presence of anthers, filaments, style, stigma and size of ovaries. Three-four inflorescences 

were removed from 3-4 H. × multiflorus “Soleil d’Or” random plants. For each flower 20-30 

organs were measured. Organ size was measured with an eyepiece micrometer, using a 

Wild Makroskop M420 inverted microscope (Wild Heerbrugg Ltd., Heerbrugg, Switzerland) 

as previously described (Fambrini et al. 2014b). 
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DNA extraction and isolation of CYC genes from H. decapetalus and H. × multiforus 

DNA was extracted from young leaves (2-3 cm long) of H. decapetalus and H. × multiflorus 

using a modified CTAB procedure (Barghini et al. 2015). To isolate the full-length 

introns/exons region of the CYC2c gene the primer combination F73/CYC11 was used (S1). 

The PCR conditions were: 94 °C for 4 min, 35 cycles (30 s at 94 °C, 30 s at 65 °C, 1 min 50 

sec at 72 °C), 72 °C for 7 min. The PCR product was separated by electrophoresis on a 

1.5% TAE–agarose gel and visualized with Gel Red TM Nucleic Acid Stain (Biotium) under 

UV light. 

From H. × multiflorus DNA PCRs were performed also to evaluate the presence of the 

CYC2c allele derived from the genome of the H. annuus parent. In particular, the primer 

combinations F73/CYCREV6, RAG6F/CYC11 and F71/73R were used (S1). The PCR 

conditions were previously described (Fambrini et al. 2011; 2014a,b). 

The amplified products were purified using the WizardV R SV Gel and PCR Clean-UP 

System (Promega Italia, Milano, Italy), ligated into the pGEM-T Vector (Promega), and 

transformed in Escherichia coli JM109 competent cells (Promega). Plasmid DNA was 

prepared using WizardV R Plus Minipreps DNA Purification Kit (Promega). Several clones 

were sequenced on both strands. 

 

Database searches, sequence and phylogenetic analyses 

Sequence similarity searches were carried out using the BLAST alignment program against 

the public database of the National Center for Biotechnology Information (NCBI) (Altschul et 

al. 1997); furthermore, PROSITE and PFAM databases were searched to identify conserved 

domains (Bateman et al. 2002; Falquet et al. 2002). The TSSPlant program 

(http://www.softberry.com/berry.phtml) were used to identify the Transcription Start Site 

(TSS). The amino acid sequences of CYC TFs of several species were aligned by ClustalW 
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multiple sequence alignment program (Thompson et al. 1994) developed by the Kyoto 

University Bioinformatic Center (http://www.genome.jp/tools/clustalw/) with slow pairwise 

alignment and subjected to phylogenetic analysis (S2). Phylogenetic analysis was performed 

using programs from the PHYLIP pachage, PHYLogeny Inference Package, Version 3.64 

(Felsenstein 1989). The phylogenetic relationships between species were inferred by a 

Dayhoff PAM distance matrix (Kosiol & Goldman 2005) generated by PROTDIST program 

and then subjected to NEIGHBOR program for the UPGMA clustering. Lastly, the strict 

consensus tree was obtained by CONSENSE program with the Majority rule option 

(Margush & McMorris 1981). As support for the tree obtained, a bootstrap analysis with 100 

replicates was performed by the SEQBOOT program (Felsenstein 1985). The Oryza sativa 

PCF1 (OsPCF1, GenBank accession number XP_015633587) amino acid sequence was 

used as outgroup. 

The databases of sunflower repeated elements (SUNREP, Natali et al. 2013) and that 

of Triticeae repetitive elements (TREP, http://wheat.pw. usda.gov/ITMI/Repeats) were also 

screened with the BLASTN and BLASTX algorithms. Detailed sequence analysis was 

performed with the DOTTER graphical dot-plot program (Sonnhammer & Durbin, 1995). 

Sequence data from this article were deposited in GenBank under the accession numbers 

MG797677, for CYC2c of H. decapetalus (HdCYC2c), MG797678 and MG797679, for the 

two alleles of CYC2c of H. × multiflorus (H×mCYC2cA and H×mCYC2cB, respectively). 

 

Gene expression analysis by real-time RT-PCR (qPCR) 

To analyze CYC2c transcript levels, total RNA extractions were carried out from corollas of 

ray (RF) and disk (DF) flowers of H. annuus, H. decapetalus and H. × multiflorus. In H. × 

multiflorus the DF are substituted by flower with zygomorphic corolla. For this reason, we 

have introduced the name ray flowers (RF) internal (I) for this type of flowers (RFI); in 

contrast, the real ray flowers were named external (E) RF (RFE). More precisely, total RNA 
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was extracted from corollas of RF (0.7-1.0 cm long without ovary, HaRF) and DF (0.5-0.7 

cm, without ovary style-stigma and anthers, HaDF) of H. annuus; corollas of RF (0.5-0.7 cm 

long without ovary, HdRF) and corollas of DF (0.4-0.6 cm, without ovary style-stigma and 

anthers, HdDF) of H. decapetalus; corollas of young RFE (1.0-1.2 cm long without ovary, 

H×mRFE) and corolla of young RFI (0.5-1.0 cm long without ovary, H×mRFI) of H × 

multiflorus. Total RNA was extracted with the TriPure Isolation Reagent, according to the 

manufacturer’s instructions (Roche Diagnostics GmbH, Mannheim, Germany). To exclude 

DNA contamination, digestion of extracts was performed with DNase I-RNase free (Dasit 

Sciences S.r.l., Cornaredo, Milan, Italy) as previously described (Sambrook & Russell 2001). 

Absence of genomic DNA contamination in DNase I-treated samples was tested using a 

PCR approach with primers PSTOP and INT1R designed to amplify a DNA fragment 

containing a partial exonic and intronic region of the CYC2c gene (S2). To determine the 

integrity of the RNA and to ensure that equal amounts of RNA were added to each reaction, 

1 g of RNA from each sample was separated via gel electrophoresis in formaldehyde-

formamide gels. 

 

Total RNA (1 g) was used with the iScriptTM cDNA synthesis kit (BIO-RAD) to 

produce the first strand cDNA. Real-time quantitative PCRs were performed using a Real-

time Step One (Applied Biosystem, Thermo Fisher Scientific Inc, USA) and gene-specific 

primers for CYC2c and Ha-18S mRNA. Quantitative PCR was performed using 20 ng of 

cDNA and Power SYBR Green RNA-to-Ct 1 Step Kit (Applied Biosystem, Thermo Fisher 

Scientific Inc. USA, cat. Num. 4389986), according to the manufacturer's instructions. The 

thermal cycling conditions of RT-PCR were as follows: Reverse transcription: 48 °C-30’; 

Activation: 95 °C-10’; Cycling: 40 cycles 95 °C-15’/ 59 °C-30’; Melt curve: 95 °C-15”/60° C-

15”/95 °C-15”. Relative quantification of specific mRNA levels was performed using the 

comparative 2-C
T method (Livak & Schmittgen 2001). Briefly, the CT values of the amplified 

regions in all samples were normalized with the CT values of the reference housekeeping 
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gene (18S ribosomal RNA, Ha-18S mRNA, GenBank accession number KF767534.1) to 

eliminate the variations caused by sample handling. In addition, mRNAs from roots of H. 

annuus (HaR) were used as reference sample. For each gene the normalized CT values in 

HaR were subtracted from the corresponding CT values in the analyzed organs and also in 

the same HaR. The derived values (CT), 0 for the HaR, were inserted in the formula 2-C
T 

(according to Livak & Schmittgen 2001) that returns 1 for the reference sample and the final 

relative quantification for the examined genes in the analyzed organs. Melt-curve analyses 

were performed after the PCR. A single distinct peak was observed for both the target 

(CYC2c) and control (Ha-18S) genes indicating the specific amplification of a single product. 

The data were the average of three biological replicates (sampled from plants grown at 

different times), each including three technical replicates. The software Real-time Step One 

v2.3, provided with the instrument by which we carried out the qPCR, was used. Ha-18S 

was used as the reference gene based on preliminary data that revealed consistent 

expression levels regardless of this organ type. In particular, the Ha-18S was preferred to 

other putative housekeeping genes [i.e., actin (Ha-ACT), phosphoglycerate kinase 2 (PGK2) 

and SAND, GenBank accession numbers AF282624.1, HM490307 and GE516373, 

respectively]. The primers used to amplify Ha-18S cDNA were 18F and 18R while the 

primers used to amplify CYC2c cDNA were Q4F and Q4R (S2). 

 

Statistical analysis 

For Table 1 values are means ± SD from 3-4 independent experiments (plants or 

inflorescences), with 3 replicates (inflorescences or flowers). For each flower 20-30 organs 

were measured. Data were analyzed using Student’s t-test. For expression analysis, in each 

experiment, the values displayed on graphs are means ± SD from 3 independent qPCR 

analyses with 3 different RNA replicates for each organ or for HaR. All qPCR analyses were 

performed with three different replicates in each run for all biological samples. Data were 
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analyzed using ANOVA test (ANalysis Of VAriance between groups) available at 

http://www.physics.csbsju.edu/stats/anova.html, and means were compared by Tukey's test 

available at http://faculty.vassar.edu/lowry/hsd.html. 

 

RESULTS AND DISCUSSION 

Morphological analysis of floral organs in inflorescences in H. × multiflorus 

A morphological analysis of ray flowers and “disk flowers” modified in ray-like flowers was 

performed in inflorescences of H. × multiflorus “Soleil d’Or”. The results showed slight 

differences between ray flower placed in the 1st whorl and ray-like flowers placed in the 2nd 

whorl (Table 1). Significant differences were detected only for corolla width and number of 

anther/flower. The high number of anther/flower in ray-like flowers might be a reminiscence 

of the origin of these flowers from hermaphrodite actinomorphic disk flowers (Mizzotti et al. 

2015). The presence of anther and styles also in true ray flowers (Table 1, Fig. 1D) was 

surprising. Nevertheless, filaments were aberrant and anthers were undeveloped without 

pollen grains (Figs. 1D, E) some reproductive organs displayed an abnormal morphology 

and a homeotic transformation in petaloid structure. Many styles were mono-stigmatic (Fig. 

1D). In sunflower, the presence of male organs in ray flowers is not usual. However, when 

the coding region of the HaCYC2c gene is interrupted by the insertion of a defective CACTA-

like TE (Tetu1) (Fambrini et al. 2011) or by the insertion of retrotransposons (Chapman et al. 

2012), ray flowers switch from zygomorphic to actinomorphic, resembling disc flowers; this 

trait is peculiar of tubular ray flower (turf) and tubular-rayed (tub) mutants (Fambrini et al. 

2011; Chapman et al. 2012). In turf, flowers tubular-like ray flowers maintain their positional 

identity but achieved hermaphrodite features (Fambrini et al. 2011; Mizzotti et al. 2015). In 

addition, the incomplete filaments attached at the base of the corolla tube of ray flowers of 

sunflower are likely a reminiscent of ancestral stamens. The same outcome is displayed by 

sterile zygomorphic ray flowers of Gerbera hybrida (Broholm et al. 2008). It is likely that in 
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Asteraceae the radiate capitulum evolved from a discoid inflorescence. The pseudanthium of 

sunflower originated after a shift of the more external whorl of actinomorphic flowers in 

zygomorphic flowers. Nevertheless, these zygomorphic flowers may have maintained a 

latent potential to develop reproductive organs. In fact, Tetu1 excision restored the wild type 

HaCYC2c allele, but the excisions also generated footprints and so new HaCYC2c alleles 

(Fambrini et al. 2014b). These mutations occurred at the TCP basic motif and caused a 

change in ray flower phenotype. In particular, ray flowers were often able to differentiate 

malformed stamens that produced pollen and styles with mono-branched stigma (Fambrini 

et al. 2014b). These data strengthen the assumption of the pleiotropic effects of the 

HaCYC2c gene, which control both ray flower symmetry and reproductive organ 

development, likely interacting with cell cycle and/or flower organ identity genes (Dezar et al. 

2003; Fambrini & Pugliesi 2017a). Alternatively, other CYC-like gene, controlled by 

HaCYC2c, could be involved in the development of both male and female reproductive 

organs. It was shown that all genes of CYC2 clade were expressed in both ray flowers and 

floral reproductive organs (stamen, stigma plus style, and ovary) of sunflower (Chapman et 

al. 2008; Tähtiharju et al. 2012). 

 

Sequence and phylogenetic analyses of CYC2c genes in H. decapetalus and H. × 

multiflorus 

The analysis of the sequences isolated from H. decapetalus (HdCYC2c) and H. × multiflorus 

(H×mCYC2cA and H×mCYC2cB) are summarized in Table 2. The coding sequence (CDS) 

of HdCYC2c (S3A) encodes for a putative 381 amino acids long peptide (S3B). The CDS of 

H×mCYC2cA from H. × multiflorus (Table 2, Fig. 2A, S4A) encodes for a putative 383 amino 

acids long peptide (S4B). PCR experiments suggested the presence of different alleles in 

the H. × multiflorus genome, as expected because of the hybrid nature of this species. 

Indeed, we amplified and sequenced a second PCR-product from the H. × multiflorus 
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genome (S5, S6A). This second allele, named H×mCYC2cB (S6B), encoded for a putative 

peptide with the same properties of H×mCYC2cA (Table 2). Notably, alignment of the two 

sequences reveals an insertion of 865 bp in the 5’ untranslated region (5’-UTR) of 

H×mCYC2cB, 53 bp upstream of the start codon and two bp downstream the TSS (Fig. 2B, 

S6A). In the three genes, the intron (86 bp) is positioned outside the CDS, 11 bp after the 

stop codon, within the 3’-UTR (Table 2, Fig. 2A, S3A, S4A). The intron position was deduced 

from a comparison of CYC2c cDNAs and the genomic DNA sequences. The three amino 

acid sequences showed the two highly conserved domains TCP and R (S3B, S4B, S6B). 

Nevertheless, the ECE residues, present in most proteins of CYC2 clade are absent in these 

TFs. 

Sequence analysis performed in public and custom databases and DOTTER analysis 

suggests that the insertion in H×mCYC2cB is part of a TE belonging to the CACTA 

superfamily. We named this TE: CACTA Transposable Element of H. × multiflorus1 

(CTEHM1) (Fig. 3, S7A, B). The name ‘CACTA’ refers to the flanking terminal inverted 

repeats (TIRs), which are 10-28 bp long and terminate in a conserved 5’-CACTA-3’ motif 

(Wicker et al. 2003). CACTA TEs include En/Spm (Suppressor-mutator/enhancer elements), 

one of the original maize TEs, first described in the 1940s by Barbara McClintock and Peter 

Peterson (Pereira et al. 1986; Fedoroff et al. 1995; Schulman & Wicker 2013). CACTAs are 

class II TEs that utilize a cut-and-paste mechanism for transposition, which requires a 

transposase enzyme (Feschotte & Pritham 2007). 

The insertion we found in H×mCYC2B 5’-UTR near to the TSS displays some clear 

CACTA signatures (Fig. 3, S7A, B). It is flanked by short TIRs (13 bp, 5’-

CACTACAAGAAAC-3’) that end with an intact 5’-CACTA-3’ motifs known to be recognition 

sequences for the transposase protein (Lewin 1997). The 865 bp insertion consists of the 

CACTA element (862 bp) and a perfect 3 bp (TTA) target-site duplication (TSD), which 

represent a hallmark of this TE superfamily (Fig. 2). It also contains several subterminal 

repeats (sub-TRs) in direct and inverted orientations that in CACTA elements produce the 
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characteristic “transposon signature” (Fig. 3, S7A, B) (Wicker et al. 2003). The sub-TRs and 

inverted repeats display a specific pattern when the CACTA sequence is plotted against 

itself with dot-plot (Fig. 3). The most common motif is a 11 bp sequence (TGTCGCCGCTA) 

repeated in direct and inverted orientation at the 5’- and 3’-ends (S7A, B). Dot-plot analysis 

also showed that the TE contains pattern of tandem repeats of variable length. The repeated 

sequence units range in size from 2 to 22 bp. (S7A, B). The integrity of the TIRs and that of 

the sub-TRs is essential for the transposition (Schiefelbein et al. 1988). The 862 bp insertion 

in the 5’-UTR of H×mCYC2cB is likely a deletion-derivate TE. In fact, it lacks af obvious 

coding sequences for TNPD that represents the putative transposase required for the 

excision/integration process during transposition and TNPA a protein with multiple functions, 

some of them reflecting its ability to bind DNA (Gierl et al. 1989; Trentmann et al. 1993). We 

suggest that this insertion is a truncated version of a TE, likely generated from an imperfect 

excision of an entire transposable element. Because of its small size, the insertion should be 

classified as a small non autonomous CACTA (SNAC; Wicker et al. 2003). Interestingly, the 

Chrysanthemoides (Chry) mutant of sunflower showed the insertion in the promoter region of 

HaCYC2c gene of a SNAC, likely occurred in the first hundred years after the sunflower 

reached Europe from North America (Heiser 1976). The insertion upstream the coding 

region of HaCYC2c causes the ectopic expression of the gene and the shift from 

actinomorphic to zygomorphic disk flowers (Chapman et al. 2012; Fambrini et al. 2014a), 

originating an inflorescence apparently similar to that of H. x multiflorus. A comparison of 

CTEHM1 from H × multiflorus with the SNAC sequences of both double flowered (dbl) and 

Chry2 mutants was performed. CTEHM1 displayed a relative high identity with the CACTAs 

of both dbl (601/1106, 53.9%) and Chry2 (615/1142, 53.9%) but confined to the 5’ and 3’ 

regions (S8A). By contrast, a high identity (976/1034, 94.4%) between the TEs of dbl and 

Chry2 (S8B) was detected. It is likely that both SNACs of dbl and Chry2 derived by the same 

complete TE. 
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The allele CYC2c derived from H. annuus genome should be also present in H. × 

multiflorus. However, sequencing all PCR-amplified products displayed a higher identity and 

a lower number of gaps with H. decapetalus than H. annuus (Table 3). In addition, the 

results of several PCRs conducted in both the 5’- and 3’-region of the CYC2c gene 

corroborated the possibility that the putative allele CYC2c resulting from the sunflower 

parent should be deleted or highly modified. For example, in the 5’-region, the sequence 

analysis of the amplified PCR-product obtained by the primer combination F71/73R showed 

two insertions of 54 and 30 bp in H. decapetalus (S9A, B). This should allow an easy 

distinction between the two alleles. Indeed, all the amplified PCR-products obtained from H. 

× multiflorus DNA displayed the same size of H. decapetalus samples (S9C). Finally, we 

sequenced 19 clones from two regions of the H×mCYC2c gene and all sequences showed a 

higher similarity with HdCYC2c than HaCYC2c (S10A, B). Together, these data suggest that 

the CYC2c allele derived from H. annuus is lacking or it has undergone an extensive 

genomic rearrangement. Indeed, molecular evidence suggests polyploid genomes display 

dynamic and pervasive changes in DNA sequence and gene expression probably as a 

response of “genomic shock” (McClintock 1984). The combination of evolutionarily divergent 

genomes in polyploids resembles “genomic shock”, leading to the activation of quiescent TE 

that may induce sequence rearrangements for unequal and illegitimate recombination and 

account for a variety of mutations such as deletions, insertions, frameshifts, inversions, 

translocations and duplications (Lonnig & Saedler 2002; Chen & Ni 2006). 

The phylogenetic tree clearly resolved the three CYC subclades (CYC1, CYC2, and 

CYC3) (Fig. 4). HdCYC2c and H×mCYC2c were placed within a CYC2 subclade together 

with HaCYC2c but distinct from it (Fig. 4). In addition, the three TFs belonged to a major 

clade with GhCYC3, HaCYC2d, SvRAY1 and GhCYC5. GhCYC3 and SvRAY1 genes were 

indicated to be strong candidates as regulators of ray flower identity in Gerbera hybrida and 

Senecio vulgaris, respectively (Kim et al. 2008; Tähtiharju et al. 2012). In sunflower, 

HaCYC2d is expressed in ray flowers suggesting a function in zygomorphism (Chapman et 
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al. 2008; Tähtiharju et al. 2012). However, its expression was detected at different 

developmental stages of disk flowers also suggesting its role in the development of organs 

of this type of flowers (Chapman et al. 2008). In G. hybrida, GhCYC5 was expressed in ray 

and in the intermediate trans flower primordia and at much lower levels in disc flower 

primordia (Tähtiharju et al. 2012). More recently functional analysis showed a main role of 

GhCYC5 to regulate the flower density of the gerbera inflorescence (Juntheikki-Palovaara et 

al. 2014). Although most genes playing a role in zygomorphism belong to the CYC2 clade, 

not all these are orthologs due to the independent duplications in various families (Feng et 

al. 2006; Broholm et al. 2008; Kim et al. 2008; Wang et al. 2008; Jabbour et al. 2014). 

Researches in Poaceae, Zingiberales and Commelinales also suggest a possible role of 

Tb1-like genes in the independent evolution of zygomorphism (Yuan et al. 2009; Bartlett & 

Specht 2011; Preston & Hileman 2012). Additionally, a role of CIN-like genes in the complex 

regulatory network controlling monosymmetry in Petrocosmea spp. (Gesneriaceae) (Yang et 

al. 2015) and Orchis italica (De Paolo et al. 2015) has been shown. 

 

In H. × multiflorus the CYC2c gene is expressed ectopically in ray-like corollas 

HaCYC2c is specifically expressed in ray flowers (HaRF) of sunflower plants and not in disk 

flowers (HaDF) (Chapman et al. 2008; Tähtiharju et al. 2012). By contrast, in Cry mutant 

plants the gene is ectopically expressed because of the presence of the TE insertion, 

resulting in zygomorphic disk flowers (Chapman et al. 2012; Fambrini et al. 2014a). We 

analyzed the expression pattern of CYC2c genes by real-time RT-PCR (qPCR) in H. 

annuus, H. decapetalus and H. × multiflorus in order to check whether ligulate capitula of H. 

× multiflorus “Soleil d’Or” are linked to ectopic expression of CYC2c genes. As expected, 

CYC2c is specifically expressed in the corolla of ray flowers in H. annuus (HaRF) and H. 

decapetalus (HdRF), according with that observed in sunflower for the HaCYC2c gene 

(Chapman et al. 2008; Tähtiharju et al. 2012). By contrast, H. × multiflorus displays an high 
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transcription level in corollas of both true ray (H×mRFE) and ray-like flowers (HxmRFI) (Fig. 

5), similarly to the expression detected in both dbl and Chry2 inflorescences (Chapman et al. 

2012; Fambrini et al. 2014a). Therefore, misexpression of H×mCYC2c gene established the 

shift from actinomorphic to zygomorphic disk flowers originating a ligulate head. 

There is evidence that TE insertion in the proximity of genes can influence the 

regulation of gene expression through a variety of mechanisms (Hirsh & Springer 2017; 

Dubin et al. 2018). In A. thaliana, genes lying close to TE sequences were expressed at 

lower levels compared with the genome-wide distribution of gene expression, suggesting 

that TE insertions tended to reduce and to a smaller extent to increase the expression of 

neighbouring genes, with the effect depending of the type of TE and the genic region into 

which it was transposed (Hollister & Gaut 2009). However, in other cases, TE insertions into 

the promoter region of a gene determined overexpression of that gene (Yang et al. 2005; 

Chapman et al. 2012). In addition, the presence of a TE within the upstream region of a 

gene encoding a pentatricopeptide repeat (PPR) protein of A. thaliana was associated with 

higher transcript abundance of this gene (Stuart et al. 2016). The apparent transcriptional 

activation, linked with the presence of a TE belonging to the HELITRON1 family, indicates 

that this element may carry regulatory information that alters the expression of genes 

downstream of the TE insertion site (Stuart et al. 2016). There are also contrasting 

evidences about the influence on gene expression of TE insertion in the 5’-UTR or near to 

TSS (Hirsh & Springer 2017). For example, the insertion of a Copia-like retrotransposon in 

the 5’-UTR region of the FATTY ACID ELONGATION1 (FAE1) gene controlling the content 

of erucic acid in Sinapis alba negatively affects the FAE1 expression (Zeng & Cheng 2014). 

By contrast, the insertion of a 1 kb TE in the 5’-UTR in the HvAACT1 (HvMATE), the major 

gene for aluminium (Al) tolerance in barley, was associated with increased gene expression 

and Al tolerance (Ma et al. 2016). During the study on the role of MORC1 as important 

repressor of TEs in male germ cells of mouse, Pastor et al. (2014) identified three genes 

(Nebulin, Tmc2 and Cdkl4) containing an RLTR10 TE immediately upstream of the TSS. All 
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three genes showed a statistically significant increase in expression. Indeed, the 5’-UTR 

contains regulatory sites, and TE insertions may contribute extra regulatory sites leading to 

increased transcription of the whole gene (Hirsh & Springer 2017). There are also several 

evidences that TEs may provide novel promoters that would create novel TSSs for nearby 

genes (Feschotte 2008). This should be the case of the CTEHM1 TE insertion in the 

H×mCYC2cB allele, which provides a new TSS, internal to the TE (S6). Finally, TEs are 

known to be a large source of criptic promoters to drive expression of nearby genes, and 

regulatory regions which can be co-opted by the host genome and contribute to the evolution 

of regulatory networks (Hirsh & Springer 2017). 

 

CONCLUSIONS 

Noteworthy, in a conference devoted to asters and perennial sunflowers held at Chiswick, 

England, in 1891, DeWar (1893) stated “It ..... seemed probable .... that H. × multiflorus is a 

garden hybrid of H. annuus and perhaps H. decapetalus, and that it has been produced 

several times. H. annuus is the only known sunflower besides H. × multiflorus which 

assumes double forms (ligulate inflorescence), and its hybrids might inherit this tendency 

.....”. It is likely to hypothesize that the thought of DeWar had proceeded from the knowledge 

of the mutant Chry of H. annuus, already present in Europe for about 300 years (Heiser 

1976). Here, we demonstrated that in H. × multiflorus “Soleil d’Or” the very attractive ligulate 

inflorescence is correlated to ectopic expression of CYC2c genes, probably linked to the 

insertion of a CACTA defective element. However, other CYC genes from the H. × 

multiflorus genome could be also involved in generating unusual inflorescence without 

actinomorphic disk flowers. To evaluate the role of CTEHM1 insertion to induce ectopic 

expression of CYC2c genes more in depth, cultivars of H. × multiflorus with radiate 

inflorescence (i.e. “Major” and “Meteor”) should be analysed; nevertheless, the new data 

collected in H. × multiflorus provide further information about the involvement of TEs in the 
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evolution of atypical inflorescence morph in the genus Helianthus in which the basic 

inflorescence architecture is radiate. 
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Table 1. Morphological analysis of organs in flowers of Helianthus × multiflorus “Soleil d’Or”. * Values are means ± SD from 3-4 independent 

experiments (plants or inflorescences), with 3 replicates (inflorescences or flowers). For each inflorescence, 20-30 organs were measured. 

Values followed by the same letter within a row are not significantly different (p = 0.05, according to Student’s t-test). ** Filaments were 

abnormal and anther were small without pollen grains. Some stamens displayed a partial homeotic transformation in petaloid structures. *** 

Many styles were mono-stigmatic. 

 

 

Characters   Ray flowers 1st whorl Ray-like flowers of 2nd whorl 

 

Length of the corolla (mm) * 32.28 ± 3.83 a  33.47 ± 4.49 a 

Width of the corolla (mm)  14.61 ± 1.12 a  11.85 ± 0.50 b 

No. of petal tips   2.92 ± 0.10 a   2.89 ± 0.13 a 

No. of anthers/flower **  3.78 ± 0.20 a   4.54 ± 0.40 b 

Length of the ovary (mm)  5.76 ± 0.07 a   5.68 ± 0.24 a 

Width of the ovary (mm)  1.89 ± 0.35 a   1.62 ± 0.59 a 

No. of style-stigmas/flower *** 0.11 ± 0.15 a   0.23 ± 0.20 a 
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Table 2. Summary of several characteristics of the genes isolated from Helianthus decapetalus (HdCYC2c) and H. × multiflorus 

(H×mCYC2cA and H×mCYC2cB). 

 

Gene   Length (bp) CDS (bp) Amino acids Molecular Weight (Da) Isoelectric Point (pI) Intron length (bp) 

HdCYC2c  1,801  1,146  381  43,652   7.26   86 

H×mCYC2cA 1,807  1,152  383  43,679   7.25   86 

H×mCYC2cB 2,671  1,152  383  43,679   7.25   86 

 

 

 

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 3. ClustalW (EMBOSS Needle) analysis among the HaCYC2c (Helianthus annuus), HdCYC2c (H. decapetalus) 

and H×mCYC2cA (H. × multiflorus) nucleotide sequences. 

 

Comparison between species  Region Length (bp)  Identity   Gaps 

 

H. annuus vs H × multiflorus  Whole  1798/1807  1759/1808 (97.3%)  11/1808 (0.6%) 

H. decapetalus vs H × multiflorus Whole  1801/1807  1779/1807 (98.5%)  6/1807 (0.3%) 

H. annuus vs H × multiflorus  CDS  1146/1152  1118/1152 (97.0%)  6/1152 (0.5%) 

H. decapetalus vs H × multiflorus CDS  1146/1152  1134/1152 (98.4%)  6/1152 (0.5%) 

H. annuus vs H × multiflorus  5’-Region 498/497  492/498 (98.8%)  1/498 (0.2%) 

H. decapetalus vs H × multiflorus 5’-Region 497/497  490/497 (98.6%)  0/497 (0.0%) 

H. annuus vs H × multiflorus  3’-Region 154/158  149/158 (94.3%)  4/158 (2.5%) 

H. decapetalus vs H × multiflorus 3’-Region 158/158  155/158 (98.1%)  0/158 (0.0%) 
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FIGURE CAPTIONS 

Fig. 1. The phenotype of Helianthus × multiflorus “Soleil d’Or”. A: Mature plants of H. × 

multiflorus grown in 30-cm diameter pot. B: Inflorescence of H. × multiflorus at complete 

anthesis; note that all flowers are zygomorphic. C: Inflorescence of Chrysantemoides2 

(Chry2), a mutant of Helianthus annuus. D: Ray flower; note the monostigmatic style (st) and 

the extremely small anther (a). E: “Disk flower” transformed in zygomorphic ray-like flower; 

note the small anther (a) without pollen grains. f: filament. Scale bars: 20 cm in A; 12 mm in 

B; 12 cm in C; 5 mm in D and E. 

 

Fig. 2. Schematic representation of the two alleles of the H×mCYC2c gene in Helianthus × 

multiflorus. The two alleles H×mCYC2cA (A) and H×mCYC2cB (B) differ for the insertion of 

a CACTA transposable element (TE) in the 5’-UTR region (53 bp upstream of the ATG and 

two bp downstream of the TSS) of H×mCYC2cB. The CACTA-like TE is 862 bp long. The 

three nucleotide (TTA), in red letters, represent the duplication in the insertion point of the 

TE. The TCP and R domains are depicted in green and light-blue color, respectively. The 

green triangle indicates the "start" (ATG) codon, the red pentagon indicates the "stop" (TAG) 

codon and the yellow triangle the intron. The schematic representation is drawn in scale. 

 

Fig. 3. Dot-plot analysis of the CACTA Transposable Element of Helianthus × multiflorus1 

(CTEHM1) achieved in the 5’-UTR region of the H×mCYC2cB gene of H. × multiflorus “Soleil 

d’Or”. The sequence of CTEHM1 is graphically compared with itself. The main diagonal line 

corresponds to the 100% match when the sequence is plotted against itself. Direct repeats 

are lines parallel to the diagonal line, and inverted repeats are displayed as lines 

perpendicular to the diagonal line. The sub-TRs, which produce a very specific pattern 

(“transposon signature”), can be easily recognized and are also reported in the S7. 
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Fig. 4. Bootstrap consensus tree based on Dayhoff PAM distance matrix model generated 

using PROTDIST, followed by UPGMA of clustering by NEIGHBOR program. Bootstrap 

replicates were 100 (values are given at the nodes). Only bootstrap values higher to 50 are 

given at the nodes. The species abbreviations are: Antirrhinum majus (Am), Gerbera hybrida 

(Gh), Helianthus annuus (Ha), Helianthus decapetalus (Hd), Helianthus × multiflorus (H×m), 

and Senecio vulgaris (Sv). The Oryza sativa (Os) PCF1 (OsPCF1) amino acid sequence 

was used as outgroup. 

 

Fig. 5. Expression of CYC2c mRNA. Transcription of CYC2c mRNA in corollas of ray (RF) 

and disk flowers (DF) of Helianthus annuus (Ha), H. decapetalus (Hd) and H. × multiflorus 

(H×m). Relative transcript values were calculated by qRT-PCR using root mRNA as 

reference sample and normalized to those of Ha-18S ribosomal gene. Details are provided 

in Materials and Methods. The graph shows the mean (± SD) of three biological replicates (n 

= 3). Same letters above the bars indicate no significant differences from each other 

(ANOVA P ≤ 0.05) according to Tukey’s test. 
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CAPTIONS OF SUPPORTING INFORMATION 

 

(S1) Table S1. List of primers used for amplification and transcription analyses of 

CYCLOIDEA (CYC) genes of Helianthus annuus, H. decapetalus (Hd) and H. × multiflorus 

(H×m). 

 

(S2) Fig. S2. List of amino acid sequences of CYCLOIDEA (CYC) transcription factors (TFs) 

used for phylogenetic analysis. The species abbreviations are: Antirrhinum majus (Am), 

Gerbera hybrida (Gh), Helianthus annuus (Ha), Helianthus decapetalus (Hd), Helianthus × 

multiflorus (H×m) and Senecio vulgaris (Sv). The GenBank accession numbers are in 

brackets. The amino acid sequences of CYC TFs were aligned by ClustalW multiple 

sequence alignment program (Thompson et al. 1994) developed by the Kyoto University 

Bioinformatic Center (http://www.genome.jp/tools/clustalw/) with slow pairwise alignment and 

subjected to phylogenetic analysis. Phylogenetic analysis was performed using programs 

from the PHYLIP package, PHYLogeny Inference Package, Version 3.67 (Felsenstein 

1985). The Proml program was used that implements the maximum likelihood method for 

amino acid sequences. The Dayhoff probability model of change between amino acids was 

chosen. The Oryza sativa PCF1 (OsPCF1) amino acid sequence was used as outgroup. As 

support for the tree, a bootstrap analysis with 100 replicates, was performed by Seqboot 

program and a consensus tree was obtained by the Consense program using the Majority 

rule option. 

 

(S3) Fig. S3. Comparison of the CYC2c sequences of Helianthus annuus 

(HaCYC2c) and H. decapetalus (HdCYC2c). A: Alignment achieved by ClustalW2 

(MUSCLE 3.8) of the nucleotide sequences of HaCYC2c and HdCYC2c. Highlighted 
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in green and magenta are the start and stop codons of the coding region, 

respectively. In yellow are highlighted the introns placed in the 3'-UTR region. 

Asterisks indicate identical nucleotides. B: Alignment achieved by Clustal Omega of 

amino acidic sequences HaCYC2c and HdCYC2c. The conserved domains of the 

CYC2 clade, TCP and R, are highlighted in green and light-blue, respectively. 

Asterisks indicate identical amino acid residues. 

 

(S4) Fig. S4. Sequence analysis of the H×mCYC2A gene of Helianthus × multiflorus. A: 

Nucleotide sequences of H×mCYC2A. Highlighted in green and magenta are the start and 

stop codons of the coding region, respectively. The Transcription Start Site (TSS) is 

underlined. In yellow is highlighted the intron placed in the 3'-UTR region. B: Amino acidic 

sequences of H×mCYC2A. The conserved domains of the clade CYC2, TCP and R, are 

highlighted in green and light-blue, respectively. 

 

(S5) Fig. S5. RT-PCR amplification of two alleles (2,719 and 1,855 bp, respectively) of 

Helianthus × multiflorus. M: marker; 1, 2 and 3: DNA samples. 

 

(S6) Fig. S6. Sequence analysis of two H×mCYC2c alleles of Helianthus × 

multiflorus. A: Alignment achieved by ClustalW2 (MUSCLE 3.8) of the nucleotide 

sequences H×mCYC2cA and H×mCYC2cB. In H×mCYC2cB is inserted the CACTA 

transposable element (TE). Highlight in green and magenta are the start and stop 

codons of the coding region, respectively. The Transcription Start Sites (TSSs) are 

underlined in black for the allele H×mCYC2cA and in white for the allele 

H×mCYC2cB. Highlighted in yellow is the intron placed in the 3'-UTR region. In the 
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5’-UTR, the TE belonging to the CACTA superfamily is highlighted in black with white 

letters. The TE is flanked by a CACTA sequence at 5'-end and the reverted 

complementary to the 3'-end (highlighted in blue with white letters). In red, are 

indicated the three bases duplicated by the TE insertion. Asterisks indicate identical 

nucleotides. Finally, two single nucleotide polymorphisms (SNPs) between the allele 

H×mCYC2cA and H×mCYC2cB are highlighted in gray. B: Alignment achieved by 

Clustal Omega of amino acidic sequences H×mCYC2cA and H×mCYC2cB. The 

conserved domains of the clade CYC2, TCP and R, are highlighted in green and 

light-blue, respectively. Asterisks indicate identical amino acid residues. 

 

(S7) Fig. S7. Some characteristics of the small non autonomous CACTA Transposable 

Element of Helianthus × multiflorus1 (CTEHM1). A: CTEHM1 element (862 bp) is inserted 

53 bp upstream of the start codon of the CYCLOIDEA-like gene H×mCYC2cB from H. × 

multiflorus “Soleil d’Or”. The short (13 bp) terminal inverted repeats (TIRs), which terminate 

in an intact 5’-CACTA-3’ motif are underlined and in bold characters. Most of sub-terminal 

repeats (sub-TRs) identified by the DOTTER analysis (Sonnhammer & Durbin 1995) are 

highlighted with different colors and/or style. A tandem repeat of 22 bp is underlined and 

highlighted in brown. B: Three tandem sub-TRs (15 bp) in direct orientation next to the 3’-

TIR are highlighted in green and underlined. In addition, two tandem sub-TRs (22 bp) in 

direct orientation are highlighted in grey and white letters and italic style. In both, A and B, 

further tandem repeats (3-6 bp) are not reported. 

 

(S8) Fig. S8. Sequence analysis, by ClustalW2 (MUSCLE 3.8), of the CACTA of Helianthus 

× multiflorus (CTEHM1) and the CACTAs of both the double flowered (dbl) and 

Chrysanthemoides (Chry2) mutants of sunflower (Helianthus annuus). A: Alignment of the 
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nucleotide sequences dbl and Chry2 TEs. B: Alignment of the nucleotide sequences of dbl, 

Chry2 and CTEHM1 TEs. The TEs are flanked by a CACTA sequence at 5'-end and a 

reverted complementary sequence to the 3'-end (highlighted in blue with white letters). 

Asterisks indicate identical nucleotides. 

 

(S9) Fig. S9. Comparison of the 5’-region of the CYC2c sequences of Helianthus annuus 

(HaCYC2c) and H. decapetalus (HdCYC2c). A: The primer F71 (forward) and 73R (reverse) 

are highlighted in light blue and brown, respectively. The start codon is highlighted in green. 

B: Alignment achieved by ClustalW2 (MUSCLE 3.8) of the nucleotide sequences of 

HaCYC2c and HdCYC2c. Unambiguous are the insertion of 54 and 30 bp in the HdCYC2c 

sequence indicated in bold red letter. (C) PCR conducted with the primer combination 

F71/73R. M indicates the PhiX 174 DNA HaeIII Digest DNA ladder; Ha: DNA from H. 

annuus; Hd: DNA from H. decapetalus; H×m: DNA from H. × multiflorus; H2O: negative 

control. 

 

(S10) Fig. S10. Sequence analysis of PCR- amplified products from Helianthus × 

multiflorus H×mCYC2cA. A: Nucleotide sequence of H. × multiflorus H×mCYC2cA. 

Highlighted in green and magenta are the start and stop codons of the coding region, 

respectively. In yellow is highlighted the intron placed in the 3'-UTR region. 

Highlighted in brown is the primer F73, highlighted in grey are the reverse primer 

CYCREV6 and the forward primer RAG6F, highlighted in light-blue is the primer 

CYC11. B: Sequence identity and gaps resulting from the alignment by EMBOSS 

Needle of the sequences obtained with the primer combination F73/CYCREV6 and 

RAG6F/CYC11 (in brackets the number of analyzed clones), with the matching 

sequences of H. decapetalus and H. annuus. 
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