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Abstract—This work aims at developing a power control
framework to jointly optimize energy efficiency (measured in
bit/Joule) and delay in wireless networks. A multi-objective
approach is taken to deal with both performance metrics, while
ensuring a minimum quality-of-service to each user in the
network. Each user in the network is modeled as a rational agent
that engages in a generalized non-cooperative game. Feasibility
conditions are derived for the existence of each player’s best
response, and used to show that if these conditions are met,
the game best response dynamics will converge to a unique
Nash equilibrium. Based on these results, a convergent power
control algorithm is derived, which can be implemented in a
fully decentralized fashion. Next, a centralized power control
algorithm is proposed, which also serves as a benchmark for the
proposed decentralized solution. Due to the non-convexity of the
centralized problem, the tool of maximum block improvement is
used, to trade-off complexity with optimality.

I. INTRODUCTION

The number of wirelessly connected devices is growing at
an exponential rate, and is anticipated to reach 50 billions by
2020 [1]. This poses serious concerns for the design of the
fifth generation (5G) of cellular networks. In order to serve
so many devices, 5G networks will have to provide 1000×
higher data rates compared to present networks [2]. However,
achieving this by simply scaling up the transmit power is
not possible, because it would result in an unmanageable
energy demand, besides causing alarming greenhouse gas
emissions and electromagnetic pollution [3]. It is common
belief that the 1000× data rate increase must be achieved
while, at the same time, halving the power consumption [3].
This requires a 2000× increase of the bit-per-Joule energy
efficiency in 5G networks compared to present systems. A
recent collection of advanced energy-efficient solutions for
5G can be found in [4]. Moreover, the exponential growth of
wirelessly connected devices makes it very difficult to perform
traditional centralized network designs, which would lead to
huge feedback overheads and prohibitive computational com-
plexity. This calls for distributed network designs, which allow
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for self-organizing networks that drastically reduce feedback
transmissions and computational complexity. A recent survey
on self-organizing networks for 5G is [5]. Another important
requirement for 5G networks is to reduce the communication
latency down to 1 ms, a requirement which is not met by
present LTE systems [6]. The 1 ms constraint corresponds to
the human response time to visual feedback control. Therefore,
a communication delay inferior to this threshold would enable
the so-called tactile internet concept [7], i.e. the use of wireless
communications as a platform to control and steer real and
virtual objects in many practical situations, with applications
to health-care, mobility, education, manufacturing, smart grids,
just to name a few. Achieving this goal appears quite a
challenging task, especially in light of the huge size of future
5G networks.

A. Literature review

The above considerations motivate the need for the investi-
gation of energy-efficient, distributed, and delay-aware power
allocation algorithms in wireless networks. However, the
majority of available contributions consider energy-efficient
and distributed schemes, without also including the delay
aspect in the algorithm design. The energy efficiency of each
user is defined as the ratio between the user’s throughput
and consumed power, and the tools of game theory are
used to model the interactions among the different network
nodes [8], [9]. More specifically, the network user terminals
are modeled as utility-driven, rational agents that engage
in a non-cooperative game for individual energy efficiency
maximization [10], [11]. In [12], game theory is used to
perform energy-efficient transceiver design in multiple-access
networks, whereas in [13] the results from [12] are extended
to systems using widely linear processing. In [14], the Nash
equilibrium (NE) problem for a group of players aiming at
maximizing their own energy efficiency (EE) while satisfying
power constraints in single and multicarrier systems is studied.
A quasi-variational inequality approach is taken in [15], where
power control algorithms for networks with heterogenous users
are developed. In [16], [17], a similar problem is considered
for relay-assisted systems. A common drawback of all of
these works is that no rate requirement is taken into account.
This might lead to operating points where some terminals
experience fairly low rates. Nevertheless, imposing individual
target rates changes the setting drastically since any user’s
admissible power allocation policy depends on the transmit
policies of all other users. This problem has been studied
in [18] wherein Nash equilibria are found to be the fixed
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points of a water-filling best-response operator whose water
level depends on the rate constraints and circuit power, and
in [19] wherein a general framework for non-cooperative EE
maximization is provided, encompassing several 5G candidate
technologies.

As already mentioned, all previous works do not consider
the communication delay in the resource allocation process.
Indeed, very few works have considered a holistic approach
considering distributed designs which are at the same time
energy-efficient and delay-aware. The energy-delay tradeoff in
single-user systems is discussed in [20]. A multiuser network
is considered in [21], and the communication delays are
included as constraints in the resource allocation process,
deriving non-cooperative energy efficiency maximization algo-
rithms subject to minimum delay guarantees for the individual
communication links. However, this approach does not allow
the optimization of the network resources to minimize the
communication delays. A more recent approach based on large
deviation theory embeds the communication delay into the
performance function by introducing a delay parameter into
the classical Shannon capacity formula, obtaining the so-called
effective capacity function [22]. Then, an energy-efficient
and delay-aware performance function is defined by the ratio
between the effective capacity and the consumed power, a
metric called effective energy efficiency [23], [24]. However,
the main goal of this method is on stabilizing the queue of the
transmit buffer, rather than minimizing the transmission delay.
Instead, an approach that allows the simultaneous optimization
of both energy efficiency and communication delay has been
proposed in [25]. Therein, a multi-objective approach is taken,
where a single objective function is formulated based on both
energy and delay costs of communication. Then, based on
these individual energy-efficient and delay-aware performance
functions, a non-cooperative game is formulated, showing that
it admits a unique Nash equilibrium, which can be reached by
implementing the game best-response dynamics.

B. Contributions and outline
This work extends the multi-objective optimization ap-

proach from [25] in several directions and provides the fol-
lowing major contributions.
• The framework proposed in [25] is extended to include

quality-of-service (QoS) constraints in terms of maximum bit
error rate or minimum achievable rate. This makes the problem
much more challenging, because the non-cooperative game to
be analyzed becomes a generalized game, in which not only
the users’ utility functions, but also the users’ strategy sets are
coupled. Moreover, a more general users’ signal to interference
plus noise ratio (SINR) expression is considered compared to
[25]. In particular, the analysis is performed assuming that
the users’ SINRs follow the model from [19]. This makes
the energy-efficient and delay-aware framework proposed in
this work general enough to encompass several leading tech-
nologies for 5G networks, such as Massive multiple-input
multiple-output (MIMO), heterogeneous networks, and full-
duplex communications.
• Within this challenging scenario, first closed-form feasi-

bility conditions are derived for the individual best-response

problems of the considered generalized non-cooperative game.
Next, it is shown that, when these conditions are met, the
generalized non-cooperative game admits a unique Nash equi-
librium which can be reached by implementing the game best-
response dynamics. These results enable to devise a fully
distributed, energy-efficient, and delay-aware power control
algorithm.
• A centralized power control algorithm is derived, which

also serves as a benchmark for the distributed solution. The
non-convex centralized power control problem is tackled by
the method of maximum block improvement [26], which
is guaranteed to converge to good candidate solutions with
affordable complexity.
• The energy and delay performance of the proposed meth-

ods are numerically evaluated. Among the several applications
of the framework, a Massive MIMO system is selected, con-
sidering the effect of imperfect channel state information (CSI)
at the receiver and the presence of hardware impairments.

The remainder of this paper is organized as follows. Section
II introduces the signal model and formulates the distributed
power control problem from a game-theoretic perspective.
Section III carries out the analysis of the non-cooperative game
and develops the corresponding distributed power control
algorithm. Section IV describes a centralized algorithm, which
can be used for benchmarking purposes. The performance of
the proposed algorithms are numerically evaluated in Section
V, considering a Massive MIMO setup. Concluding remarks
are given in Section VI. The basic results from generalized
convexity and fractional programming as well as the theoreti-
cal setup of the centralized optimization framework are revised
in the Appendices.

II. SYSTEM MODEL

Consider the uplink of a wireless interference network1,
with K transmitters and M receivers and let the SINR of
user equipment (UE) k take the following general form:

γk =
pkαk

σ2
k + φkpk +

∑
j 6=k

pjβk,j
. (1)

In (1), pk is the transmit power of user k, {σ2
k}k, {αk}k,

{φk}k, and {βk,j}k,j are coefficients which fulfill the follow-
ing three assumptions, for any k and j:
• they are non-negative real numbers, which depend on

system parameters, channel gains, and thermal noise, but not
on the users’ transmit powers;
• σ2

k models the thermal noise at the receiver associated to
user k, but can also depend on user k’s channel and on global
system parameters;
• αk and φk only depend on user k’s channel and possibly

on global system parameters, while {βj,k}j depend on the
channel from transmitter k to receiver j and possibly on global
system parameters.

The explicit expressions for {σ2
k}k, {αk}k, {φk}k, and

{βj,k}j,k depend on the specific network under analysis, and

1The mathematical results apply to any interference network. Nevertheless,
the implementation of the distributed resource allocation algorithm to be
developed fits better an uplink scenario.
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we hasten to stress that many relevant instances of communi-
cation systems can be modeled by (1), by suitably specifying
{σ2

k}k, {αk}k, {φk}k, and {βj,k}j,k. Besides the simpler case
in which φk = 0 for all k, leading to the familiar SINR
expression encountered in wireless communication systems,
the presence of non-zero {φk}k allows modeling several 5G
candidate technologies. Examples in this sense include: practi-
cal massive MIMO networks subject to hardware impairments
and/or imperfect channel estimation at the receiver [19]; relay-
assisted networks [16], [27]; device-to-device (D2D) commu-
nications [28]. A detailed description of these case-studies is
reported in [16], [19], [27], together with the corresponding
expressions of the coefficients in (1). In addition, other notable
communication scenarios which lead to the SINR form in
(1) are systems affected by inter-symbol interference and/or
frequency-selective fading [29], [30].

A. Metrics

In this work, we are interested in two relevant performance
metrics for a communication link, namely, the transmission
delay and the energy consumption. As for the transmission
delay, following [25] we consider a system in which at each
time-slot a packet arrives at the transmitter queue of UE k
with probability λk, and assume that packet arrival events
are statistically independent of each other as well as of trans-
mission success and failure events. Under these assumptions,
the average time required for a reliable transmission can be
expressed as [25]:

Dk =
1

R

1

Sk(γk)− λk
(2)

where Sk(γk) is the probability of correct packet reception
and R is the data communication rate measured in [bit/s] and
assumed, without loss of generality, to be the same over all
links.2 The metric in (2) is measured in [s/bit] and represents
the amount of time per reliably transmitted bit over link k.
Notice that (2) represents a valid delay only if Sk(γk)−λk >
0. From a physical point of view, this means that the amount
of data arriving at UE k must be lower than the amount of data
that UE k can reliably transmit per unit of time – otherwise,
the transmit buffer would overflow, thereby causing data loss.

To capture the trade-off between reducing energy con-
sumption and guaranteeing reliable data communications, we
consider the cost-benefit ratio of the link expressed as the ratio
between the consumed power and the corresponding amount
of data reliably received. This leads to:

Fk =
pk + PC,k
RSk(γk)

(3)

wherein PC,k is the static hardware power dissipated in
all circuit blocks, except the transmit amplifier, required to
operate link k.3 The measure unit of (3) is [Joule/bit] as it
represents the amount of energy required to transmit a given

2A user-dependent communication rate Rk could easily be handled by
defining S̄k(γk) = RkSk(γk).

3Note that the efficiency ηk of the linear power amplifier at the transmitter
can be easily accounted for scaling pk by µk = 1/ηk ≥ 1.

amount of data or, otherwise stated, the energy cost per reliably
transmitted bit.4

The probability of correct packet reception Sk depends
on the specific communication system and it can be a very
involved function (or even not available in closed-form). A
widely used approximation for Sk(γk) is [16], [25]:

Sk(γk) = 1− e−δkγk (4)

where δk > 0 depends (among other system parameters) on
the modulation scheme used by user k and the radio propa-
gation environment, and on the packet length. The following
analysis is, however, not limited to a particular expression of
Sk(γk) but applies to any function Sk(γk) with the following
properties:

1) Sk(γk) ≥ 0 ∀γk ≥ 0 with Sk(0) = 0, i.e. a non-negative
amount of data is transmitted ∀γk ≥ 0, but no data is
sent if no transmit power is used. In this latter case, the
energy cost (3) tends to infinity.

2) Sk(γk)/γk → 0 for γk → ∞, i.e. by using an infinite
amount of power, the energy cost diverges.

3) Sk(γk) is increasing ∀γk ≥ 0, i.e. more data can be sent
by spending more power.

4) Sk(γk) is concave ∀γk ≥ 0.
Remark 1: It is easy to check that (4) fulfills all the above

properties. Moreover, another relevant performance function,
which fulfills all the above properties, is the channel achiev-
able rate W log2(1 + γk), with W being the communication
bandwidth. This latter choice is also very popular [14], [32],
and does not affect the measure unit of (2) and (3). How-
ever, it should be emphasized that while the denominator of
(3) accounts for the actual communication goodput, i.e. the
amount of bits that are reliably transmitted per unit of time,
the achievable rate is an upper-bound to the actual goodput,
namely measuring the amount of bits that can be reliably
transmitted per unit of time.

Remark 2: While Properties 1-3 stem from physical consid-
erations (as explained above), Property 4 does not necessarily
apply to all physically meaningful functions Sk(γk). For
example, it is not satisfied by the following function (used
in several previous works [12], [30])

Sk(γk) =
(
1− e−γk

)Q
(5)

with Q being the packet length. It is seen that (5) is not
concave in γk, and thus it is not included in the framework
developed henceforth. Nevertheless, it should be mentioned
that the two forms in (4) and (5) are closely related, being two
different approximations of the probability of packet reception
[12], [25]. The expression in (5) approximates by 1−e−γk the
probability of correct reception of a single bit in the packet.
By assuming independent symbol transmissions, (5) is thus
obtained. Instead, (4) directly approximates the probability of
correctly receiving the whole packet. To this end, standard
numerical techniques can be used to determine the parameter
δk > 0 so as to improve the accuracy of the approximation.

4The quantity in (3) can be seen to be the inverse of the so-called energy
efficiency of link k, which is a more widely used, yet equivalent, metric to
measure the efficiency with which energy is used to transmit data [31].
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To find a balance between the two utility functions in (2) and
(3) over link k, we apply the scalarization technique [33], and
define the overall cost function over link k as:

ck = ρkDk + Fk =
1

R

(
ρk

Sk(γk)− λk
+
pk + PC,k
Sk(γk)

)
(6)

wherein ρk > 0 is a positive coefficient measured in [Joule/s],
which weighs the relative importance of Dk with respect to
Fk. We stress that the two cost functions in (2) and (3) can
in principle be combined in many other ways. Specifically,
the theory of multi-objective optimization ensures that the
optimization of any combining function g(Dk, Fk), decreasing
in both arguments, yields a Pareto-optimal point in the space
of all feasible pairs (Fk, Dk), [34]–[36]. Here, the focus is
on a linear combining function g, leaving for future works
the extension to a generic one. Based on (6), the powers
{pk; k = 1, . . . ,K} can be optimized following a distributed
or a centralized paradigm. Both approaches will be considered
in the following. The distributed solution is illustrated first.

III. DISTRIBUTED POWER CONTROL

A. Game Formulation

In a distributed approach, each UE k aims at locally mini-
mizing its own cost function ck. This can be mathematically
modeled by considering UEs as independent decision-makers,
which engage in a non-cooperative game given by (in normal
form) [9]:

G =
{
K, {Ak}Kk=1, {ck}Kk=1(pk,p−k)

}
(7)

wherein K = {1, . . . ,K} is the players’ set, p−k =
[p1, . . . , pk−1, pk+1, . . . , pK ], while Ak is the action set of
player k that basically defines the feasible set of pk. We take

Ak = {pk ∈ R : 0 ≤ pk ≤ Pmax,k, Sk(γk) ≥ θk} (8)

where Pmax,k denotes the maximum transmit power and θk
accounts for the minimum QoS requirement over link k. We
assume θk > λk, recalling that the SINR-range of interest is
γk > S−1(λk). Given the above notation, the best response
(BR) of player k to a given power vector p−k (chosen by the
other players) is determined as the solution to [9]:

arg min
pk

ck(pk,p−k) (9a)

subject to pk ∈ Ak (9b)

where we have explicitly shown the functional dependence of
ck from other players’ powers p−k. The coupled problems (9)
for k = 1, . . . ,K define the best response dynamics (BRD)
of G, and any fixed point, if any, of the BRD is an NE of G.
The main challenges posed by G in (7) can be summarized as
follows. Firstly, both the cost function ck and the action set Ak
of player k are coupled in G, since Ak depends on the SINR
γk which is a function of the other players’ powers p−k. A
non-cooperative game of this form is known as a generalized
non-cooperative game [37], [38], whose analysis is typically
more involved than non-cooperative games. Secondly, the
cost functions {ck; k = 1 . . . ,K} are not expressed as a
single fraction given by the ratio of a convex over a concave

function. This prevents from immediately concluding that ck
is quasi-convex, which is one of the required conditions for
the existence of an NE in generalized non-cooperative games.
Third, γk is a fractional function of pk due to the presence
of the non-zero coefficient φk. This complicates further the
analysis of G compared to the canonical case in which γk is
linear in pk. In what follows, we first study the feasibility of
the generic BR problem (9), then provide sufficient conditions
such that a unique NE exists and the BRD converges to such
equilibrium

B. Feasibility

For notational convenience, let ωk = σ2
k +

∑
j 6=k pk,jβk,j

so that γk in (1) can be rewritten as

γk =
pkαk

φkpk + ωk
. (10)

Lemma 1: A sufficient condition for (9) to be feasible for
any p−k is the pair of inequalities:

Sk

(
αk
φk

)
> θk (11a)

Pmax,k ≥
S−1
k (θk)

(
σ2
k +

∑
j 6=k

βk,jPmax,j

)
αk − S−1

k (θk)φk
. (11b)

Proof: Condition (11a) follows by the observation that,
given (1) and Property 3, Sk(γk) ≤ Sk(αk/φk), for all pk ≥ 0.
As for (11b), in order to meet Sk(γk) ≥ θk, pk must be such
that

pk ≥
S−1
k (θk)ωk

αk − S−1
k (θk)φk

. (12)

The right-hand side (RHS) of (12) is guaranteed to be positive
due to (11a). In order for (12) to hold for any p−k, the worst-
case scenario in which the RHS is maximized with respect to
p−k must be considered. This is obtained by assuming pj =
Pmax,j for all j 6= k, which yields (11b).
It is interesting to observe that when φk → 0 (11a) is always
verified. Indeed, if no self-interference is suffered by user k,
it holds Sk(γk) → ∞ when pk → ∞. Thus, in this case the
value of Sk(γk) is only limited by the value of Pmax,k.

It is worth stressing that the result in Lemma 1 provides a
sufficient condition ensuring that all best-response problems
in the BRD are feasible. Thus, the condition in Lemma 1
allows checking the feasibility of the complete BRD in an off-
line manner, before the BRD has even started. On the other
hand, a necessary and sufficient condition for the feasibility
of the best-response problem (9) is obtained recalling that the
minimum power required to meet (11b) is given by (12), which
is a positive quantity provided that (11a) holds. Thus, (9) is
feasible if and only if (11a) is true and

Pmax,k ≥
S−1
k (θk)ωk

αk − S−1
k (θk)φk

. (13)

Nevertheless, for each k, (13) depends on the other users’
transmit powers via the parameter ωk, and thus does not lend
itself to being checked off-line, but must be verified online,
before solving each best-response of the BRD.
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On the other hand, an off-line necessary condition for the
feasibility of the complete BRD is obtained by considering the
feasibility test

max
{pk}Kk=1

1 (14a)

subject to 0 ≤ pk ≤ Pmax,k , ∀ k (14b)
S(γk) ≥ θk , ∀ k. (14c)

Clearly, if (14) is not feasible, then, for any k, Problem
(9a) will be unfeasible regardless of the other users’ transmit
powers {pj}j 6=k. Paralleling the approach from [19, Lemma
1], it can be shown that (14) is feasible if and only if it holds

ρF < 1 and (I− F)
−1

S ≤ Pmax , (15)

where S =
{

σ2
kS
−1
k (θk)

αk−φkS
−1
k (θk)

}K
k=1

, Pmax = {Pmax,k}Kk=1, F is
the matrix

[F]k,j ,

0 j = k
βj,kS

−1
k (θk)

αk−φkS
−1
k (θk)

j 6= k
(16)

and ρF its spectral radius. Thus, (15) is a necessary feasibility
condition for the game BRD, which can be checked off-line,
before starting the BRD, since it does not depend on any
transmit power.

C. Analysis of G and convergence of BRD

Having determined a condition such that the BR problem
(9) is feasible, the goal of this section is to: i) solve (9); ii)
determine if G admits one or more NE; and iii) understand if
the BRD of G is guaranteed to converge to an NE from any
initialization point. To begin with, we provide the following
result.

Proposition 1: If (9) is feasible, then its solution p?k is given
by

p?k = min{Pmax,max{Pmin,k, p̄k}} (17)

where

Pmin,k =
S−1
k (θk)ωk

αk − S−1
k (θk)φk

(18)

and p̄k is the unique stationary point of ck, i.e., ∂ck(p̄k)
∂pk

= 0.
Proof: The result follows from the first-order optimality

conditions of (9). The details of the proof are reported in
Appendix A.
An immediate consequence of Proposition 1 is the following
corollary.

Corollary 1: If (9) is feasible for any k, then G admits an
NE.

Proof: A generalized game admits an NE provided that
[37]:

1) The players’ feasible action sets Ak(p−k) are nonempty,
closed, convex, and contained in some compact set Ck
for all p−k ∈ A−k ≡

∏
6̀=kA`.

2) The sets Ak(p−k) vary continuously with p−k, i.e.
the graph of the set-valued correspondence p−k 7→
Ak(p−k) is closed.

3) Each user’s cost function ck(pk,p−k) is quasi-convex
in pk for all p−k ∈ A−k.

For the case at hand, the sets Ak(p−k) are nonempty by
assumption. Moreover, they are closed and bounded for every
p−k, as well as convex, since the constraints, which define
Ak(p−k), are convex. Moreover, each of them varies continu-
ously with p−k since S(γk) ≥ θk is itself continuous in p−k.
Finally, the quasi-convexity of ck directly follows from the
proof of Proposition 1, and in particular from the fact that
the derivative of ck has a unique zero p̄k, being negative for
pλk

< pk ≤ p̄k and positive for pk > p̄k, with pλk
the power

level such that S(γk) = λk.
The above results show that, under feasibility conditions, G

admits at least one NE. The next step is to understand how
many NE exist, and if the BRD dynamics of G is guaranteed
to converge to an NE. This is particularly important because, if
multiple equilibria exist, then the issue arises of understanding
how to select the most efficient NE. Also, having a convergent
BRD constitutes the basis for the development of a distributed
algorithm to compute an NE. To address this important point,
we start with showing the following lemma.

Lemma 2: If

Sk(γk)S
′

k(γk)− γk(S
′

k(γk))2 + γkSk(γk)S
′′

k (γk) ≤ 0 (19)

holds for any γk ≥ 0 we have that

∂2ck
∂pk∂ωk

≤ 0 , ∀ωk > 0 . (20)

Proof: The proof is given in Appendix B.
Using Lemma 2, it can be established that G admits a unique
NE and that its BRD always converges to this unique NE.

Proposition 2: If (9) is feasible for all k and (19) holds,
then G in (7) admits a unique NE, and the BRD is guaranteed
to converge to the unique NE.

Proof: Under the feasibility conditions for (9) given in
Lemma 1, we have already shown in Proposition 1 that (7)
admits an NE. Then, the NE is unique and the BRD converges
to such NE provided that the BR function (17) is a standard
function, as defined in [39]. This can be shown by using the
results of Lemma 2 following similar arguments as those in
[19, Proposition 4].

D. Distributed implementation

Being ensured that the game BRD is globally convergent,
the unique NE of the game can be reached by implementing
the game BRD in (17). The critical step towards the distributed
implementation of the BRD (17) is that the parameter ωk
depends on the other players’ powers and channels, and
therefore it is not locally available to player k. However,
this issue can be overcome by noticing that ωk can also be
expressed as a function of γk as

ωk =
αkpk
γk
− φkpk. (21)

The advantage of this reformulation is that γk is locally
available for link k, because it can be measured at the receiver
associated to UE k, and fed back by a return downlink channel
which is typically available in most wireless communication
systems. We stress that such an approach does not require
any overhead communication between a given receiver and
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the UEs associated to different receivers, but only between a
receiver and its associated UEs. Finally, as for the parameters
αk and φk, they can be locally computed as they only depend
on the channel coefficient of UE k. Regarding this point
it must be stressed that (21) assumes perfect knowledge of
both αk and φk, which is in line with the perfect CSI
scenario considered in this work. Nevertheless, in case of
non-negligible parameter estimation errors, it is possible to
either compute (21) based on the estimated αk, φk, or to
employ robust resource allocations, considering the worst-case
estimation error5 [40]–[42].

Based on (21), a distributed implementation of the game
BRD can be formulated as in Algorithm 1, which converges
to the unique NE of G by virtue of Proposition 2. An important
point to stress about Algorithm 1 is that, although it is stated
here assuming synchronous power updates among the users,
convergence to a generalized Nash equilibrium holds also in
case of asynchronous updates. Indeed, the proof that the best-
response correspondence of G is a standard function does
not depend on the way the powers are updated, but only on
the mathematical properties of the best-response problems.
Then, the standard property ensures the convergence also with
asynchronous updates [39].

Finally, if the sufficient feasibility condition derived in
Lemma 1 holds, a feasible initialization point for Algorithm
1 always exists. For example, a feasible power vector is
pk = Pmax,k for all k = 1, . . . ,K. Alternatively, if (15) holds,
a feasible initialization power vector can be found by solving
the feasibility test (14).

Algorithm 1 Distributed Power Control
Initialize pk to feasible values for k = 1, . . . ,K;
Compute αk and φk for k = 1, . . . ,K; Set ε > 0
repeat

for k = 1 to K do
ωk = αkpk

γk
− φkpk;

pk = min{Pmax,max{Pmin,k, p̄k}};
end for

until Convergence within tolerance ε

IV. CENTRALIZED POWER CONTROL

A centralized power control solution is developed next,
which will also serve as a benchmark for Algorithm 1.

A. Problem formulation

The centralized problem is formulated as the minimization
of a global network cost function with respect to the power
vector p = [p1, p2, . . . , pK ]T . Following a scalarization ap-
proach [33], a network-wide cost function can be defined by
a weighted sum of a global delay cost D and a global energy
cost F , namely:

c(p) = ρD(p) + F (p) (22)

5This latter approach would significantly change the problem formulation,
leading to different resource allocation problems that are not considered in
this work.

where ρ > 0 is the weighting coefficient in [Joule/s]. As
for F (p) and D(p), both should combine the individual cost
functions {Fk}k and {Dk}k. Let’s start with F (p). Although
different combinations can be considered, we focus on the
network energy cost-benefit ratio, defined as the ratio between
the network total energy consumption and the amount of data
reliably transmitted per Joule of consumed energy. This yields:

F (p) =

K∑
k=1

pk + PC,k

R
K∑
k=1

Sk(γk)

. (23)

The metric in (23) can also be seen as the inverse of the
popular global energy efficiency metric [31], which represents
the energy benefit-cost ratio of a communication network.
Thus, (23) represents the network energy cost-benefit ratio,
which is a less investigated energy-efficient metric.

As for the delay cost, two cases will be considered. In the
first case, we compute D(p) as

D(p) =
1

K

K∑
k=1

Dk =
1

KR

K∑
k=1

1

Sk(γk)− λk
(24)

which represents the average of the individual delays incurred
by the different links of the network. Notice that (24) does
not account for the total communication delay incurred by the
network, because in practice UEs do not transmit one after
the other, but rather in parallel. To account for this, we also
consider the case in which

D(p) = max
k

Dk =
1

R

1

min
k
{Sk(γk)− λk}

(25)

which represents the maximum communication delay incurred
in the whole network when one packet is transmitted over
all links. By plugging (23)–(25) into (22) leads to the two
following global cost functions:

csum(p) =
1

KR

K∑
k=1

ρ

Sk(γk)− λk
+

K∑
k=1

pk + PC,k

R
K∑
k=1

Sk(γk)

(26)

and

cmin(p) =
ρ

Rmin
k
{Sk(γk)− λk}

+

K∑
k=1

pk + PC,k

R
K∑
k=1

Sk(γk)

(27)

that have not been considered in the literature so far. Accord-
ingly, the centralized power control problem is formulated as

arg min
p

c(p) (28a)

subject to p ∈ A = A1 × · · · × AK (28b)

wherein the objective c(p) can be taken as either (26) or (27).
The first challenge posed by (28) is that it may not be feasible
due to the minimum QoS constraints {Sk(γk) ≥ θk}k. Aiming



7

mainly at developing a benchmark algorithm, in what follows
we relax such constraints and focus on solving

arg min
p

c(p) (29a)

subject to 0 ≤ pk ≤ Pmax,k ∀k (29b)

which is always feasible. Moreover, the maximum value of
(29a) subject to (29b) is a lower bound to the optimal solution
of (28), since the feasible set of (28) is included in the feasible
set of (29).

Even upon relaxing the QoS constraint, solving (29) is still a
challenge. Indeed, the objective is a fractional-based function
which is neither jointly convex nor jointly pseudo-convex in
p. As a result, traditional convex optimization theory and
fractional programming approaches can not be used to solve
(29) with affordable complexity. To overcome this issue, the
framework of maximum block improvement (MBI) optimiza-
tion is used to tackle (29), [26], [43]. In short, the MBI method
is an extension of the most popular block coordinate descent
method (also known as alternating optimization) [44]. Similar
to the the block coordinate descent method, the MBI operates
in an iterative manner and partitions the optimization variables
into two or more blocks of variables, which are optimized one
at a time. Unlike the block coordinate descent method, in each
iteration only the variable block which yields the maximum
decrement of the objective function is updated. This guarantees
that the MBI enjoys the same optimality properties as the block
coordinate descent method (i.e., monotonic improvement of
the cost function and first-order optimality upon convergence),
but under milder assumptions, which are reviewed in Appendix
D. In what follows, we first consider the case in which c(p)
is given by (26), and then extend the analysis to c(p) given
by (27). In both cases, p will be partitioned into the K blocks
p1, . . . , pK such that one transmit power is optimized at each
iteration.

B. Maximum Block Improvement for solving (26)
Applying the MBI algorithm to (29) with c(p) given by

(26) amounts to solving for any k

arg min
pk

csum(pk,p−k) (30a)

subject to 0 ≤ pk ≤ Pmax,k. (30b)

Notice that, as a function of pk only, (30a) is the sum of
a convex function plus a pseudo-convex function, which is
neither convex nor pseudo-convex [31]. This makes (30) not
convex. To proceed, let us define

Sk =

{
0 < p̄k < Pmax,k :

∂csum(p̄k)

∂pk
= 0

}
(31)

as the set of all feasible stationary points of (30) which can be
determined by finding the solutions of the equation ∂csum

∂pk
= 0

in the interval (0, Pmax,k), which is written as

−
K∑
`=1

ρ∂S`

∂pk

(S` − λ`)2
+

K∑̀
=1

S`(γ`)−
(
K∑̀
=1

∂S`

∂pk

)(
K∑̀
=1

p`+Pc,

)̀
(
K∑̀
=1

S`(γ`)

)2 =0.

(32)

Algorithm 2 An MBI algorithm to solve (33)

Set ε > 0; n = 0; p(0) any feasible power vector;
repeat

for k = 1 to K do
p?k = arg minpk∈Pk

csum(pk);
end for
n = n+ 1; k̄ = arg min

k
csum(p?k,p

(n−1));

p
(n)

k̄
= p?

k̄
; p(n)

k = p
(n−1)
k for all k 6= k̄;

until convergence within tolerance ε

Then, the following result holds.
Lemma 3: The solution to (30) is obtained as:

p∗k = arg min
pk∈Pk

csum(pk) (33)

wherein Pk = Sk ∪ {0} ∪ {Pmax,k}.
Proof: The problem in (30) has a differentiable function

of one scalar variable as objective, and a compact interval of
the real line as feasible set. Thus, by Weirstrass theorem a
solution exists. Moreover, it must either lie in the interior of
the feasible set, i.e. the open interval (0, Pmax,k), or on the
boundary of the feasible set. But if the solution lies in the open
interval (0, Pmax,k), then (30b) is inactive, thus implying that
the solution must be a stationary point of (30a). Hence, the
solution is either pk = 0, or pk = Pmax,k, or it must belong
to Sk.

Finally, on the basis of the results reviewed in Appendix D,
and in particular on [26, Theorem 3.1, Corollary 3.2], an MBI
algorithm to tackle (30) can be formulated as in Algorithm 2
and the following result holds.

Proposition 3: At each iteration of Algorithm 2, (29a) does
not increase. Also, every limit point of the sequence generated
by Algorithm 2 fulfills the Karush Kuhn Tucker (KKT) first-
order optimality conditions of (29).
It is useful to observe that the computational complexity of
Algorithm 2 is mainly due to solving the non-linear equation
(32) for all k in each iteration of the algorithm, which can
be accomplished by standard numerical methods, such as
Newton’s procedure or bisection methods.

C. Maximum Block Improvement for Solving (27)

A similar approach can be employed to maximize (27). Un-
like (26), cmin(p) is not differentiable due to the min function,
which prevents from considering the stationary points of the
individual subproblems. To circumvent this issue, a prelimi-
nary step is to remove the non-differentiability of cmin(p) by
introducing the auxiliary variable t and by reformulating the
problem as:

arg min
(p,t)

ρ

t
+

K∑̀
=1

p` + PC,`

R
K∑̀
=1

S`(γ`(p))

(34a)

subject to 0 ≤ p` ≤ Pmax,` ∀` (34b)

t ≤ R
(
S`(γ`(p))− λ`

)
∀`. (34c)
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The above problem is in the same form of (29) with c(p) =
cmin(p) and contains only differentiable functions. However,
it also requires the optimization of the additional variable t.
Thus, it is natural to consider the variable blocks pk for all k,
plus the additional variable block t.

1) Optimization of pk: The optimization of pk for a given
t can be carried out as done in Section IV-B by solving:

arg min
pk

c◦min(p) (35a)

subject to 0 ≤ pk ≤ Pmax,k (35b)
RS`(γ`(p)) ≥ t+ λ` ∀ ` (35c)

where

c◦min(p) =

K∑̀
=1

p` + PC,`

K∑̀
=1

S`(γ`(p))

(36)

is obtained from (34b) neglecting the term ρ/t, since t and ρ
are both fixed and given. It is important to observe that, while
among the K constraints in (34b) only one depends on pk and
thus needs to be considered in (35b), all the K constraints in
(34c) depend on pk through the SINR γk, and so they all need
to be considered in (35c). Let us denote by S−1

` (·) the inverse
function of S`, and define

b` = S−1
`

(
t+ λ`
R

)
` = 1, . . . ,K (37)

ψ`,k = σ2
` + φ`p` +

∑
j 6=`,j 6=k

pjβ`,j ` 6= k (38)

If ` = k, then (35c) becomes

pk ≥
bkωk

αk − bkφk
, Pmin,k (39)

otherwise, if ` 6= k we have that

pk ≤
α`p`
b`β`,k

− b`ψ`,k
β`,k

, P̄`,k. (40)

Using (39) and (40), and recalling (35b), the feasible set of
(35) can be written, for any k, as the compact interval Fk =
[Pmin,k,min`{Pmax,k,P̄`,k}]. At this point, following the same
reasoning of Section IV-B, the solution to (35) will either be
a stationary point belonging to the interior of the feasible set,
or it will lie on the boundary of the feasible set. Otherwise
stated, defining the set of the stationary points of c◦min(pk) that
belong to the interior of the feasible set, namely

Sk=

{
p̄k∈

(
Pmin,k,min

`
{Pmax,k,P̄`,k}

)
:
∂c◦min(p̄k)

∂pk
=0

}
(41)

the solution to (35) can be compactly written as

p?k = arg min
pk∈Pk

c◦min(pk) (42)

where we have defined Pk = Sk∪{Pmin,k}∪{Pmax,k}. As for
determining the elements of the set Sk, it can be accomplished

by finding the solution to the equation ∂c◦min

∂pk
= 0 in the interval

(Pmin,k,min`{Pmax,k,P̄`,k}), which reads∑K
`=1 S`(p)−

(∑K
`=1

∂S`

∂pk

)(∑K
`=1 p` + PC,`

)
(∑K

`=1 S`(p)
)2 = 0. (43)

2) Optimization of t: For a given p, the optimization with
respect to the auxiliary parameter t is stated as:

arg min
t

ρ

t
(44a)

subject to t ≤ R
(
S(γ`)− λ`

)
∀`. (44b)

The following result holds.
Lemma 4: For any fixed power vector p, the t that solves

(44) is given by

t? = min
`=1,...,K

{S(γ`)− λ`} . (45)

Proof: To begin with, let us notice that S(γ`)− λ` does
not depend on t for any `. Thus, if the solution were some
t̄ < t?, then it would always exist a t̃ such that t̄ < t̃ ≤ t?.
It can be readily seen that t̃ is feasible for (44b) and yields a
lower value of (44a) than t̄, thus contradicting the statement
that t̄ is the solution.
Finally, based on (42) and (45), an MBI algorithm can be
eventually devised along the same lines as Algorithm 2.

V. NUMERICAL RESULTS

Numerical results are now given for a multicell massive
MIMO system with L = 4 cells, and 8 users per-cell, for
a total of K = 32 users. Each cell is a square with edge
500 m which is served by a base station (BS) with N = 64
antennas. In each cell the users are randomly distributed, with
a minimum distance of 10 m from the service BS. All UEs
have the same maximum feasible power Pmax,k = Pmax

and hardware-dissipated power PC,k = PC = 10 dBm. The
receive noise power is σ2 = FBN0, wherein F = 3 dB is
the receive noise figure, B = 180 kHz is the communication
bandwidth, and N0 = −174 dBm/Hz is the noise spectral
density at the receiver. All channels are generated accord-
ing to the Rayleigh fading model with path loss model as
in [45], with power path-loss equal to 3.5. Both hardware
impairments at the UEs, and channel estimation errors at the
BSs are assumed and modeled following [19], with channel
estimation accuracy factor τ = 0.3 and hardware impairment
factor ε = 0.1. It was shown in [19] that such a scenario
leads to an SINR expression which is formally equal to (1),
for particular expressions of the coefficients {αk}k, {φk}k,
{βk,j}k,j , {σ2

k}k. For all k = 1, . . . ,K, the weight factor
has been set to ρk = ρ = 1 J/s, while the adopted efficiency
function was (4), with the communication rate R = 1 Mbit/s,
and δk chosen so as to minimize the mean squared error of
Sk(γk) with respect to the packet error probability assuming
independent transmissions with a QPSK modulation.

Fig. 1 compares the value of the network-wide cost function
(26), versus Pmax, for the following schemes: (a) Algorithm 1,
with θk = θ = 1−10−3 for all k. In case one BR is unfeasible,
we relax the QoS constraints to θ = 0; (b) Algorithm 1, with



9

-40 -35 -30 -25 -20 -15 -10 -5

Pmax [dBW]

40

50

60

70

80

90

100

110

120

130

140

150

J/
kb

it

(a) Algorithm 1 with θ = 1− 10−3

(b) Algorithm 1 with θ = 1− 10−2

(c) Algorithm 2

Fig. 1. K = 32;N = 64; ε = 10−1; τ = 0.3. Average cost (26) versus
Pmax for: (a) Algorithm 1 with θ = 1 − 10−3; (b) Algorithm 1 with θ =
1 − 10−2; (c) Algorithm 2.

θk = θ = 1 − 10−2 for all k. In case one BR is unfeasible,
we relax the QoS constraints to θ = 0; (c) Algorithm 2 for
the minimization of (26). As expected, Scheme (b) performs
better than Scheme (a) since enforcing stricter QoS constraints
results in a smaller feasible set. In particular, for low values of
Pmax, both schemes perform similarly, because in this range
the QoS constraints are not feasible and therefore are relaxed,
falling back to the unconstrained case. Instead, for larger
values of Pmax the QoS are fulfilled by increasing the transmit
powers and this increases the cost function, which would
otherwise saturate. Specifically, at the equilibrium the QoS
constraints will be active for some UEs, which will transmit
with the minimum power necessary to fulfill their QoS con-
straint. Instead, the remaining UEs will have a strictly higher
throughput than their minimum requirement, and will transmit
with a power that achieves the minimum of their individual
cost function in (6). However, this increase of cost function
enables to guarantee a lower packet error probability. Finally,
it is seen how the centralized benchmark outperforms both
non-cooperative schemes, due to the fact that its cooperative
nature enables it to suitably manage the multiuser interference.

While Fig. 1 considers the overall cost function (26), Fig. 2
shows the achieved values of the energy cost (23) and of the
delay cost (24). The two upper plots consider a weighting
factor of ρ = 1 J/s, while the two lower plots consider
ρ = 10 J/s, thus giving more importance to the delay cost. The
results show that Scheme (c) achieves the lowest energy cost,
followed by Schemes (b) and (a). This is explained recalling
that the stricter the QoS constraint, the larger the transmit
power required to fulfill it. Instead, the different schemes
perform similarly in terms of delay cost, which is explained
recalling the expression of the delay cost in (24), and that for
both schemes it holds 1 − 10−2 ≤ Sk(γk) ≤ 1. Thus, the
difference in the values of Sk achieved by the two schemes is
negligible. Next, it is also seen that Scheme (c) has a slightly
larger delay cost than Schemes (a) and (b) when ρ = 1 J/s,
whereas this does not happen when ρ = 10 J/s. To explain this
seemingly counterintuitive result, we observe that Scheme (c)
is based on Algorithm 2, which minimizes the cost function
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Fig. 2. K = 32;N = 64; ε = 10−1; τ = 0.3; Upper plots: ρ = 1 J/s; Lower
plots: ρ = 10 J/s . Average energy cost (23) and delay cost (24) versus Pmax

for: (a) Algorithm 1 with θ = 1−10−3; (b) Algorithm 1 with θ = 1−10−2;
(c) Algorithm 2.

(26), given by the sum of the energy cost (23) and of the
delay cost (24). So, Algorithm 2 will yield a lower value of
(26), but this does not imply that it will also yield a lower
value of both summands (23) and (24). In particular, when
ρk = ρ = 1 J/s, the predominant term in (26) turns out to
be the energy cost (23). Instead, the scenario changes when
ρk = ρ = 10 J/s, since this enhances the priority of the delay
cost in the optimization process.

Unlike previous figures that focused on average costs, Fig.
3 reports the minimum and maximum values among the users
cost functions ck obtained upon convergence of the non-
cooperative Algorithm 1, considering both θ = 1− 10−2 and
θ = 1 − 10−3. It is seen that as the transmit power Pmax

increases, all users tend to have the same cost function at
the equilibrium. This means that, if enough transmit power
is available, proper interference management is possible, and
the game Nash equilibrium corresponds to a fair scenario, in
which all users enjoy similar performance.

Fig. 4 shows the average UEs’ transmit power for Schemes
(a), (b), and (c), with ρk = ρ = 1 J/s. The results show that
Scheme (a) requires a larger transmit power than Scheme
(b), as a consequence of the stricter QoS constraint to be
fulfilled. Moreover, Scheme (c) requires the lowest transmit
power consumption, due to the fact that no QoS constraints
are enforced in Algorithm 2.

Fig. 5 compares the minimization of the two centralized
metrics (26) and (27) by Algorithm 2. The upper plot reports
the value of (26) obtained by the power allocation resulting
from the minimization of (26) and of (27). The lower plot
shows the values of (27) obtained by the minimization of the
two metrics. It is seen that minimizing either (26) or (27) leads
to similar results in terms of both metrics, especially for larger
Pmax, which allows for a better interference management.
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(a) Minimum User Cost. θ = 1− 10−3

(b) Maximum User Cost. θ = 1− 10−3
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(a) Minimum User Cost. θ = 1− 10−2

(b) Maximum User Cost. θ = 1− 10−2

Fig. 3. K = 32;N = 64; ε = 10−1; τ = 0.3; ρ = 1 J/s. Upper plot:
(a) Minimum users’ cost function versus Pmax by Algorithm 1 with θ =
1 − 10−3; (b) Maximum users’ cost function versus Pmax by Algorithm 1
with θ = 1 − 10−3; Lower plot: (a) Minimum users’ cost function versus
Pmax by Algorithm 1 with θ = 1−10−2; (b) Maximum users’ cost function
versus Pmax by Algorithm 1 with θ = 1 − 10−2 .
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Fig. 4. K = 32;N = 64; ε = 10−1; τ = 0.3; ρ = 1 J/s. Average transmit
power versus Pmax for: (a) Algorithm 1 with θ = 1 − 10−3; (b) Algorithm
1 with θ = 1 − 10−2; (c) Algorithm 2.

Fig. 6 compares the average cost (26) by the power allo-
cation upon convergence of Algorithm 1 implemented by: 1)
using the true values of {αk, φk, γk}; 2) using estimated values
{α̂k, φ̂k, γ̂k} equal to the true values plus a perturbation term
whose magnitude has been randomly generated between zero
and 30% of the true value. However, when computing the
achieved value of (26) for the two different power allocations,
the true parameters {αk, φk} (and also the true SINRs up to the
different power allocation) have been used. The results show
that Algorithm 1 is quite robust to parameters perturbations,
especially for low transmit powers and more demanding QoS
constraints. Indeed, in these situations, at the equilibrium
every user tends to transmit with full power, regardless of the
particular set of parameters that is used.

Finally, Table I reports the average number of iterations
required for Algorithm 1 to converge, where convergence is
declared when ‖p(n) − p(n−1)‖2/‖p(n)‖2 ≤ 10−4, with p(n)

the vector of the players’ powers after iteration n. Convergence
occurs after a limited number of iterations, which tends to
increase for larger Pmax, because increasing Pmax results

-40 -35 -30 -25 -20 -15 -10 -5

Pmax [dBW]

50

100

150

200

J/
kb

it

Metric in (26)

(a) Minimization of (26)
(b) Minimization of (27)

-40 -35 -30 -25 -20 -15 -10 -5

Pmax [dBW]

2000

3000

4000
5000
6000

J/
kb

it

Metric in (27)

(a) Minimization of (27)
(b) Minimization of (26)

Fig. 5. K = 32;N = 64; ε = 10−1; τ = 0.3; ρ = 1 J/s. Upper plot:
Average cost (26) versus Pmax for: (a) Minimization of (26) by Algorithm
2; (b) Minimization of (27) by Algorithm 2. Lower plot: Average cost (27)
versus Pmax for: (a) Minimization of (27) by Algorithm 2; (b) Minimization
of (26) by Algorithm 2.
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(a) Perfect estimation. θ = 1− 10−3

(b) Imperfect estimation. θ = 1− 10−3

(c) Perfect estimation. θ = 1− 10−2

(d) Imperfect estimation. θ = 1− 10−2

Fig. 6. K = 32;N = 64; ε = 10−1; τ = 0.3; ρ = 1 J/s. Average cost (26)
versus Pmax for: (a) Algorithm 1 with θ = 1− 10−3 and perfect parameter
estimation; (b) Algorithm 1 with θ = 1 − 10−3 and imperfect parameter
estimation; (c) Algorithm 1 with θ = 1 − 10−2 and perfect parameter
estimation; (d) Algorithm 1 with θ = 1 − 10−2 and imperfect parameter
estimation.

in a larger feasible set. This shows that the proposed non-
cooperative approach has a limited computational complexity,
thereby lending itself to a simple implementation in practical
systems. It is also seen that the number of iterations is higher
when stricter QoS constraints are enforced, because in this
case the users tend to increase their transmit powers, creating
more significant interference, which in turn enhances the
coupling among the best-responses and requires more best-
response rounds to eventually find an equilibrium.

VI. CONCLUSIONS

This work proposed a new approach for power control in
wireless networks, jointly optimizing both the energy effi-
ciency and the delay of the communication, subject to QoS
constraints. The problem was formulated as a non-cooperative
generalized game, deriving conditions for the feasibility of the
players’ best-responses, for the existence of a unique gener-
alized NE, and for the convergence of the BRD. Leveraging
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TABLE I
K = 32;N = 64; ε = 10−1; τ = 0.3. ITERATION NUMBER OF
ALGORITHM 1 VERSUS Pmax . θ = 1 − 10−3 ; θ = 1 − 10−2 .

Pmax θ = 1− 10−2 θ = 1− 10−3

−40 dBW 2.31 2.31
−30 dBW 3.56 3.56
−20 dBW 5.42 9.23
−10 dBW 12.36 35.11

these results, a provably convergent, low-complexity, and fully
decentralized power control algorithm was developed, and its
performance benchmarked against a centralized scheme based
on the MBI method. The results indicated a relatively limited
gap between the distributed and centralized algorithms, and
that the presence of QoS constraints enables a significant per-
formance improvement at the expense of a moderate increase
of energy consumption.

APPENDIX A
PROOF OF PROPOSITION 1

The stationarity condition ∂ck
∂pk

= 0 yields the equation

Sk(γk)

S
′
k(γk)

∂γk
∂pk

− pk −
ρkS

2
k(γk)

(Sk(γk)− λk)2
= PC,k. (46)

Let us define the positive power pλk
as the power level such

that Sk(γk) = λk. Since θk > λk, it holds pλk
< Pmin,k.

Then, let us show that (46) has a unique, solution in the set
pk > pλk

. To begin with, computing the derivative of the left-
hand side (LHS) of (46) yields

− Sk(γk)

∂2γk
∂p2

k

S
′

k(γk) + S
′′

k(γk)

(
∂γk
∂pk

)2

(
∂γk
∂pk

S
′

k(γk)

)2

+

2ρ̃kλkSk(γk)S
′

k(γk)
∂γk
∂pk

(Sk(γk)− λk)3

(47)

which is a positive quantity due to facts that Sk(γk) and
γk(pk) are both non-negative, strictly increasing, and strictly
concave functions. So, the LHS of (46) is a strictly increasing
function of pk. Moreover, for pk → pλk

, the LHS of (46)
tends to −∞. So, (46) has a unique solution if its LHS tends
to +∞ for pk → +∞. This is equivalent to showing that the
derivative of the LHS of (46) does not tend to 0 for pk → +∞.
This can be shown by plugging the expression of γk in (1),
into (47), which yields

2φkSk(γk)

αkωkS
′
k(γk)

(ωk + φkpk)− Sk(γk)S
′′

k (γk)

(S
′
k(γk))2

+
2ρ̃kλkSk(γk)S

′

k(γk)αkωk
(ωk + φkpk)(Sk(γk)− λk)3

.

(48)

The first term in (48) can be seen to be diverging for pk →
∞, by virtue of Properties 1-4. Since the remaining terms in
(48) are non-negative (again due to the concavity of Sk), we

conclude that (48) diverges, and this ultimately implies that
(46) has a unique, solution in the set pk > pλ,k.

In a similar way it can be shown that the objective (9a) is
decreasing for pk,λ < pk ≤ p̄k and increasing for pk > p̄k,
which finally implies the thesis.

APPENDIX B
PROOF OF LEMMA 2

Let us denote by gk(pk, ωk) the LHS of (46). Then, ∂gk
∂ωk

is
given by(
(S
′

k(γk))2−Sk(γk)S
′′

k(γk)
)∂γk
∂pk

∂γk
∂ωk
−Sk(γk)S

′

k(γk)
∂2γk
∂pk∂ωk(

∂γk
∂pk

S
′

k(γk)

)2

+
2ρ̃kλkSk(γk)S

′

k(γk)
∂γk
∂ωk

(Sk(γk)− λk)3

(49)

Given Properties 1-4 of Sk(γk), and observing that γk is
decreasing with respect to ωk, it follows that the first term
in (49) is negative. As for the second term, plugging in the
expression for the derivatives of γk we obtain that it is non-
positive if

(S
′

k(γk))2 − Sk(γk)S
′′

k (γk) +
Sk(γk)S

′

k(γk)

γk

φkpk − ωk
ωk

≥ 0.

(50)
Since the function (φkpk − ωk)/ωk ≥ −1, it follows that in
order for (50) to hold for all ωk > 0, it must be true that
(φkpk − ωk)/ωk = −1. Then, (50) becomes

− (S
′

k(γk))2 + Sk(γk)S
′′

k (γk) +
Sk(γk)S

′

k(γk)

γk
≤ 0 (51)

which is equivalent to (19).

APPENDIX C
GENERALIZED CONCAVITY AND FRACTIONAL

PROGRAMMING

We limit our review to basic results. For a more detailed
review, we refer the reader to [31] and [46, Chapters 3, 4].

Definition 1 (Pseudo-convexity): Let C ⊆ Rn be a convex
set. Then r : C → R is pseudo-convex if and only if,
∀ x1,x2 ∈ C, it is differentiable and r(x2) < r(x1) ⇒
∇(r(x1))T (x2 − x1) < 0.
In a similar way we can define strict pseudo-convexity.

Definition 2 (Strict pseudo-convexity): Let C ⊆ Rn be a
convex set. Then r : C → R is strictly pseudo-concave (PC)
if and only if, for all x1 6= x2 ∈ C, it is differentiable and

r(x2) ≤ r(x1)⇒ ∇(r(x1))T (x2 − x1) < 0. (52)

The interest for PC functions stems from the following result.

Proposition 4: Let r : C → R be a pseudo-convex function.
Then,
(a) If x? is a stationary point for r, then it is a global

minimizer for r;
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(b) The KKT conditions for the problem of minimizing r
subject to convex constraints are necessary and sufficient
conditions for optimality subject to constraint qualifica-
tion conditions;

(c) If r is strictly pseudo-convex, then a unique minimizer
exists.

Pseudo-convexity plays a key-role in the optimization of
fractional functions, due to the following result.

Proposition 5: Let r(x) =
f(x)

g(x)
, with f : C ⊆ Rn → R

and g : C ⊆ Rn → R+. If f is non-negative, differentiable,
and convex, while g is differentiable and concave, then r is
pseudo-convex. If g is affine, the non-negativity of f can be
relaxed. Strict pseudo-convexity holds if either f is strictly
convex, or g is strictly concave.

Definition 3 (Fractional program): Let C ⊆ Rn be a convex
set, and consider the functions f : C → R and g : C → R+.
A fractional program is the optimization problem

min
x∈C

f(x)

g(x)
. (53)

Proposition 6: An x? ∈ C solves (53) if and only if x? =
arg minx∈C {f(x)− λ?g(x)}, with λ? being the unique zero
of F (λ) = minx∈C {f(x)− λg(x)}.
This result allows us to solve (53) by finding the zero of F (λ).
An efficient algorithm to do so is Dinkelbach’s algorithm
[47], reported in Algorithm 3 for the reader’s convenience.
It can be seen that if f(x) and g(x) are convex and concave,
respectively, and if C is a convex set, then Dinkelbach’s algo-
rithm requires to solve one convex problem in each iteration.6

Moreover, the convergence rate of Dinkelbach’s algorithm is
known to be super-linear [47].

Algorithm 3 Dinkelbach’s algorithm
Set ε > 0; λ = 0;
repeat

x? = arg minx∈C {f(x)− λg(x)}
F = f(x?)− λg(x?); λ = f(x?)/ g(x?);

until F ≤ ε

It should be mentioned that alternative solution methods are
also available for single-ratio fractional programs [31], which
are not reviewed here due to space constraints. However, just
as Dinkelbach’s algorithm, all available methods require f(x)
to be convex, g(x) to be concave, and the constraint set to be
convex, in order to exhibit affordable complexity.

APPENDIX D
MAXIMUM BLOCK IMPROVEMENT

The MBI method is an enhancement of the more popu-
lar alternating optimization method. Just like the alternating
minimization approach, the MBI is an iterative method which
optimizes one variable (block) at a time, while keeping the
other variables fixed. However, at the end of each iteration,
only one variable block is updated, namely the one yielding the

6It is also required that λ ≥ 0 in each iteration. This can be shown to always
hold if the algorithm starts with λ = 0, and provided minx f(x) ≥ 0.

maximum decrement of the objective function. More formally,
let us consider the optimization program:

min
p

g(p1, . . . , pK) (54a)

s.t. hi(p) ≤ 0 ∀ i = 1, . . . , I. (54b)

In each iteration, the MBI algorithm solves the K problems

min
pk

g(pk,p−k) (55a)

s.t. hi(pk,p−k) ≤ 0 ∀ i = 1, . . . , I (55b)

for all k = 1 . . . ,K, and then updates pj , with j being
the index of the variable coordinate which led to the largest
decrement of the cost function g. The formal procedure is as
follows.

Algorithm 4 MBI algorithm
Set ε > 0; n = 0;
Let p(n) be any feasible power vector;
repeat

for k = 1 to K do
Solve (55) and let qk be the solution;

end for
n = n+ 1; k̄ = arg min

1≤k≤K
g(qk,p−k);

p
(n)

k̄
= qk̄; p(n)

k = p
(n−1)
k for all k 6= k̄;

until
∣∣g (p(n)

)
− g

(
p(n−1)

)∣∣ ≤ ε
It is clear that by construction the MBI method mono-

tonically reduces the value of the cost function, and thus
converges in the value of the objective. Indeed, under the
very mild assumption of continuous objective and compact
feasible set, (54) must have a finite solution, thus implying
that the objective function in (54) is lower-bounded. Moreover,
the MBI method enjoys the following additional optimality
property, as proved in [26, Theorem 3.1, Corollary 3.2].

Proposition 7: Assume the objective function is (54) is dif-
ferentiable and that the feasible set is compact. Also, assume
that the constraint functions are decoupled in the optimization
variable blocks. Then, any limit point of the sequence {pn}n
fulfills the KKT first-order optimality conditions of Problem
(54).

Remark 3: It is worth observing that this result is an
extension of the more popular result from [44] which applies
to the block coordinate descent method (also known as alter-
nating optimization). Indeed, the optimality properties stated
in Proposition 7 hold for the block coordinate descent method
when the additional assumption is made, that the solution
to the subproblem (55) is unique for any k. Instead, this
assumption is not required for the MBI method.
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