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Abstract—This work focuses on the downlink and uplink of
large-scale single-cell MU-MIMO systems in which the base
station (BS) endowed with M antennas communicates with K
single-antenna user equipments (UEs). Particularly, we aim at
reducing the complexity of the linear precoder and receiver that
maximize the minimum signal-to-interference-plus-noise ratio
subject to a given power constraint. To this end, we consider
the asymptotic regime in which M and K grow large with
a given ratio. Tools from random matrix theory (RMT) are
then used to compute, in closed form, accurate approximations
for the parameters of the optimal precoder and receiver, when
imperfect channel state information (modeled by the generic
Gauss-Markov formulation form) is available at the BS. The
asymptotic analysis allows us to derive the asymptotically optimal
linear precoder and receiver that are characterized by a lower
complexity (due to the dependence on the large scale components
of the channel) and, possibly, by a better resilience to imperfect
channel state information. However, the implementation of both
is still challenging as it requires fast inversions of large matrices
in every coherence period. To overcome this issue, we apply
the truncated polynomial expansion (TPE) technique to the
precoding and receiving vector of each UE and make use of
RMT to determine the optimal weighting coefficients on a per-
UE basis that asymptotically solve the max-min SINR problem.
Numerical results are used to validate the asymptotic analysis
in the finite system regime and to show that the proposed TPE
transceivers efficiently mimic the optimal ones, while requiring
much lower computational complexity.

I. INTRODUCTION

Large-scale multiple-input multiple-output (MIMO) sys-
tems, also known as massive MIMO systems, are considered
as a promising technique for next generations of wireless com-
munication networks [1]–[4]. The massive MIMO technology
aims at evolving the conventional base stations (BSs) by using
arrays with a hundred or more small dipole antennas. This
allows for coherent multi-user MIMO transmission where tens
of users can be multiplexed in both uplink (UL) and downlink
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(DL) of each cell. It is worth observing that, contrary to what
the name “massive” suggests, massive MIMO arrays are rather
compact; 160 dual-polarized antennas at 3.7 GHz fit into the
form factor of a flat-screen television [5].

The problem of designing precoder and receiver techniques
for massive MIMO systems is receiving a lot of attention.
Among the different optimization criteria, we distinguish the
transmit power minimization [6]–[8] and the maximization
of the minimum SINR [9], [10]. The latter is the focus of
this work. In particular, we consider the case of a single-cell
large-scale multi-user (MU) MIMO system in which the BS
makes use of M antennas in order to communicate with K
single-antenna user equipments (UEs). Under the assumption
of perfect channel state information (CSI) at the BS, it is
shown in [9] that the optimal linear precoder (OLP) for the
max-min SINR problem is closely related to the optimal
linear receiver (OLR), as it can be computed by exploiting
the UL-DL duality principle. The latter allows to convert the
DL optimization problem into its equivalent counterpart in
the dual UL variables. The OLP is then found in the form
of a fixed-point problem whose solution corresponds to the
powers allocated to the UEs in the dual UL network. Although
computationally feasible, the above approach does not provide
any insight into the structure of both OLP and OLR.

To solve the above issue, we follow the same approach as
in recent works [11]–[14] (among many others). Particularly,
we consider the asymptotic regime in which M and K grow
large with bounded ratio, which allows us to leverage recent
results from random matrix theory. The analysis is performed
under the assumption of imperfect CSI at the BS, which is
modeled by the generic Gauss-Markov formulation form (see
for example [15]). Under imperfect CSI, the OLP and OLR
derived in [9] are no longer optimal [16]. This is clearly un-
veiled by the large system analysis, which additionally shows
that the directions of the precoding and receiving vectors as
well as their associated powers converge asymptotically to
deterministic values depending only on the long-term channel
attenuations of the UEs. In order to account for the channel
estimation errors and to avoid the need for solving fixed point
equations at the pace of fast fading channels, we propose the
asymptotically OLP and OLR (called A-OLP and A-OLR,
respectively) for which the same asymptotic directions as OLP
and OLR are used but the transmit powers are computed in
order to maximize the asymptotic minimum SINR under a
total power constraint. We prove that A-OLP provides asymp-
totically better performance than OLP while OLR and A-OLR
exhibit the same performance in the asymptotic regime.

Despite being reduced compared to OLP and OLR, the im-
plementation of A-OLP and A-OLR might be of prohibitively
high complexity in large scale MIMO systems due to the need
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for computing the inverse of large matrices, whose dimensions
grow with M and K. To tackle this problem, we resort to
the truncated polynomial expansion (TPE) technique, which
has recently been applied to reduce the complexity of the
RZF precoder in [17], [18] and the MMSE receiver in [19]–
[22]. In all these aforementioned works, the TPE concept is
applied using the same weighting coefficients for all UEs.
This limits the number of degrees of freedom with an ensuing
degradation of the maximum achievable performance. In light
of this observation, we employ the TPE technique on a per-
UE basis. More specifically, the TPE concept is applied to
each vector of the precoding and receiving matrices rather
than to the whole matrices themselves. This leads to the so-
called user specific TPE (US-TPE) precoder and receiver for
which approximations of the resulting SINRs are computed
through asymptotic analysis. These results are then used to
optimize the US-TPE parameters in order to maximize the
minimum SINR over all UEs in the DL and UL. Interestingly,
the optimization problem can be cast in both cases as the max-
min SINR problems previously studied in [7], [9], [10]. The
solution of such problem leads to a novel US-TPE precoder
and receiver, which are shown by simulations to achieve
almost the same performance as A-OLP and A-OLR, while
requiring much lower computational complexity.

The remainder of this work is organized as follows. Next
section introduces the system model and formulates the max-
min SINR problem for both DL and UL. Section III deals
with the large system analysis of OLP and OLR as well as
with the design of both under the assumption of imperfect
CSI. The proposed TPE precoder and receiver are presented
in section IV. Numerical results are shown in Section V while
some conclusions are drawn in Section VI.

Notations – Boldface lower case is used for denoting column
vectors, x, and upper case for matrices, X, XT , XH denote
the transpose and conjugate of X, respectively. The trace of
a matrix X is denoted by tr(X). A circularly symmetric
complex Gaussian random vector x is denoted x ∼ CN (x,Q)
where x is the mean and Q is the covariance matrix. Moreover,
IM denotes the M ×M identity matrix and 0M×1 stands for
the M × 1 vector with all entries equal to zero. The expec-
tation operator is denoted E[.]. For an infinitely differentiable
function f(t), the n-th derivative at t = t0 is denoted f (n)(t0)
and it is simply denoted by f (n) when t = 0. The operator
diag

(
{vk}Kk=1

)
is the diagonal matrix having v1, · · · , vK as

diagonal elements.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the DL and UL of a single-cell multi-user
MIMO system in which the BS is equipped with M antennas
and communicates with K < M single antenna UEs. The
K active UEs are randomly selected from a large set of
UEs within the coverage area. We denote by hk ∈ CM
the channel vector of UE k and assume that hk =

√
βkzk

where zk ∼ CN (0, IM ) is the small-scale fading channel
and βk accounts for the corresponding large-scale channel
fading or path loss. Within the above setting, we are in-
terested in computing the optimal linear precoder (receiver)

that maximizes the minimum SINR in the DL (UL) while
satisfying a total average power constraint Pmax. Under the
assumption of perfect CSI at the BS, the solution of this
problem is well known and can be computed using different
approaches based on standard convex optimization techniques.
Next, for completeness we consider the DL and UL and
review the optimal linear precoder and receiver structure. This
will be instrumental for the asymptotic analysis performed
subsequently.

A. Downlink

Denoting by gk ∈ CM the precoding vector associated with
UE k, the signal received at UE k can be written as

yk = hHk gksk +
K∑

i=1,i6=k
hHk gisi + nk (1)

where si ∼ CN (0, 1) is the signal intended to UE k, assumed
independent across k, nk ∼ CN (0, 1/ρ) accounts for the
additive Gaussian noise with ρ being the effective signal-to-
noise ratio (SNR). The DL SINR at the k-th UE is:

SINRdl
k =

|hHk gk|2
K∑

i=1,i6=k
|hHk gi|2 + 1/ρ

(2)

and the total average transmit power per UE is 1
K tr(GGH)

where G = [g1, · · · ,gK ] ∈ CN×K . The latter is chosen as
the solution of the following max-min SINR problem:

Pdl :

{
max
G

min
k

SINRdl
k

γk

s.t. 1
K tr(GGH) ≤ Pmax

(3)

where γk is a factor reflecting the priority of UE k and Pmax

is the power constraint at the BS. In [9], [16], it is shown that
the column vectors of the optimal linear precoder (OLP) G?

solving Pdl take the form g?k =
√

p?k
K

v?k
||v?k||

with

v?k =




K∑

`=1, 6̀=k

q?`
K

h`h
H
` +

1

ρ
IM



−1

hk (4)

where the scalars {q?k} are obtained as the unique positive
solution to the following fixed-point equations:

q?k =
γkτ

?

1
KhHk

(
K∑

k=1, 6̀=k

q?`
K h`hH` + 1

ρIM

)−1

hk

(5)

with τ? being the minimum weighted SINR given by [9]:

τ? =
KPmax

K∑
n=1

γn


 1
KhHn

(
K∑

k=1,k 6=n

q?k
K hkhHk + 1

ρIM

)−1

hn



−1 . (6)

The optimal power coefficients {p?k} are such that the follow-
ing equalities are satisfied [9]:

SINRdl?
1

γ1
= · · · = SINRdl?

K

γK
= τ? (7)
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with

SINRdl?

k =

p?k
K
|hHk v?k|2
||v?k||2

K∑
i=1,i6=k

p?i
K

|hHk v?i |2
||v?i ||2

+ 1/ρ

. (8)

From the above condition, it turns out that p? = [p?1, · · · , p?K ]
T

can be obtained as [9]:

p? =
τ?

ρ
(IK − τ?ΓF)

−1
Γ1K (9)

where Γ = diag
{Kγ1‖v?1‖2
|hH1 v?1 |2

, · · · , KγK‖v
?
K‖2

|hHKv?K |2
}

and F ∈ CK×K
has elements given by:

[F]k,i =

{
0 if k = i
1
K
|hHk v?i |2
‖v?i ‖2

if k 6= i.
(10)

B. Uplink

From the UL-DL duality shown in [9], it follows that the
vectors {v?k} and q? = [q?1 , · · · , q?K ]

T can be obtained as the
solution of the following uplink max-min SINR problem:

Pul :

{
max
{vk},q

min
k

SINRul
k

γk

s.t. 1
K1TKq ≤ Pmax

(11)

with

SINRul
k =

qk
K |hHk vk|2

vHk

(
K∑

i=1,i6=k
qi
KhihHi + 1

ρIM

)
vk

. (12)

From (12), it easily follows that the vector vk solving Pul

coincides with the minimum-mean-square-error (MMSE) re-
ceiver [23]. Next, we refer to the solution of Pul as the optimal
linear receiver (OLR).

III. LARGE SYSTEM ANALYSIS

As shown above, the OLP and OLR are parametrized by the
scalars {q?k} and {p?k} where {q?k} need to be evaluated by an
iterative procedure due to the fixed-point equations in (5) and
(6). This is a computationally demanding task when M and
K are large since the matrix inversion operation in (5) and (6)
must be recomputed at every iteration. Moreover, computing
{q?k} as the fixed point of (5) and (6) does not provide any
insight into the optimal structure of {q?k} and consequently of
{p?k} in (9). In addition, both depend directly on the channel
vectors {hk} and change at the same pace as the small-scale
fading (i.e., at the order of milliseconds). To overcome these
issues, we exploit the statistical distribution of {hk} and the
large values of M,K (as envisioned in future networks) to
compute deterministic approximations (also known as deter-
ministic equivalents) of {q?k} and {p?k}. For technical purposes,
we shall consider the following assumptions:

Assumption 1. We assume that both M and K grow large,
their ratio being bounded below and above as follows: 1 <
lim inf MK ≤ lim sup M

K <∞.
Assumption 2. The channel attenuation coefficients {βk}
satisfy: 0 < lim inf {βk} ≤ lim sup {βk} <∞.

Assumption 3. The power coefficients {pk} satisfy: 0 <
lim inf mini pi < lim sup maxi pi <∞.

We also assume the BS has imperfect knowledge of the
instantaneous channel realizations {hk}. As in many other
works [24], [15], [25], this is modeled by the generic Gauss-
Markov formulation form ∀k:

ĥk =
√
βk(
√

1− η2zk + ηzk) (13)

=
√

1− η2hk +
√
βkηwk (14)

where wk ∼ CN (0, IM ) accounts for the channel estimation
errors independent of the fast fading channel vector zk. The
scalar parameter η ∈ [0, 1] indicates the quality of the instan-
taneous CSI, i.e., η = 0 corresponds to perfect instantaneous
CSI and η = 1 corresponds to having only statistical chan-
nel knowledge.1 The matrix collecting the estimated channel
vectors is denoted Ĥ = [ĥ1, · · · , ĥK ].

When only imperfect CSI is available at the BS, the struc-
ture of the OLP and OLR is not known (most of the existing
solutions in the literature are based on heuristic approaches).
To overcome this issue, we assume that the true channels
{hk} are simply replaced by their estimates {ĥk} (which is
an accurate procedure for good CSI quality). This yields

ĝk =

√
p̂k
K

v̂k
‖v̂k‖

(15)

where v̂k =
(∑K

`=1, 6̀=k
q̂`
K ĥ`ĥ

H
` + 1

ρIM

)−1

ĥk and the coef-
ficients {q̂k} are obtained as:

q̂k =
γk τ̂

1
K ĥHk

(
K∑

`=1, 6̀=k
q̂`
K ĥ`ĥH` + 1

ρIM

)−1

ĥk

∀k (16)

with

τ̂ =
KPmax

K∑
n=1

γn


 1
K ĥHn

(
K∑

k=1,k 6=n
q̂k
K ĥkĥHk + 1

ρIM

)−1

ĥn



−1 . (17)

The transmit powers {p̂k} are such that (9) is satisfied after
replacing {hk} with {ĥk} and τ? with τ̂ . Next, we resort
to the large dimensional analysis and show that q̂k and p̂k
gets asymptotically close to explicit deterministic quantities as
M and K grow large as for Assumption 1. These quantities
provide some insights on the structure of the precoder and
receiver as well as on how the different parameters (such
as large scale channel gains, imperfect channel knowledge,
UE priorities, maximum transmit power) affect the system
performance.

A. Asymptotic analysis of OLP and OLR under imperfect CSI

Our first result is as follows:

1Observe that the same η is assumed for all UEs only for simplicity. The
generalization to different η’s is straightforward.
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Theorem 1. Under the settings of Assumptions 1 and 2, we
have that maxk |τ̂ − τ | → 0 where τ is the unique positive
solution to the following fixed point equation:

τ =
ρPmax

1
K

K∑
i=1

γi
βi

(
M

K
− 1

K

K∑

i=1

γiτ

1 + γiτ

)
. (18)

Also, we have that maxk |q̂k − qk| → 0 where

qk =
γk
βk

Pmax

1
K

K∑
i=1

γi
βi

. (19)

Proof: The proof relies on the observation that all the
quantities d̂k , γk

βk
τ̂
q̂k

should converge to the same determin-
istic limit. Note that to determine this limit, standard tools from
random matrix theory cannot be applied since {d̂k} depends on
the channel vectors {ĥk} in a non-linear fashion. To overcome
this issue, we make use of the techniques developed recently
in [26]. Details are provided in Appendix B.

The above theorem provides the explicit form of {qk},
whose computation requires only knowledge of the UEs prior-
ity coefficients {γk} and the channel attenuation coefficients
{βk}. The latter can be easily estimated since they change
slowly with time. Observe that in the DL the parameter q?k
is known to act as a UE priority parameter that implicitly
determines how much interference a specific UE k may induce
to the other UEs in the cell [16]. Interestingly, its asymptotic
value qk is proportional to γk and inversely proportional to
βk. Higher priority is thus given to UEs that require high per-
formance (large γk) and/or have weak propagation conditions
(small βk). In the UL, q?k corresponds to the transmit power
of UE k. Consequently, (19) indicates that in the asymptotic
regime more power is given to UEs with higher priorities and
weaker channel conditions.

The asymptotic transmit powers in DL are given in explicit
form as follows:

Theorem 2. Under the settings of Assumptions 1 and 2, we
have maxk |p̂k − pk| → 0 where

pk =
γk
βk

τ

ξ

(
βkPmax

(1 + γkτ)2
+

1

ρ

)
(20)

and ξ is positive and given by

ξ =
M

K
− 1

K

K∑

i=1

(γiτ)2

(1 + γiτ)2
. (21)

Proof: The proof of the convergence of {p̂k} follows
along the same arguments as those used for {q̂k}, and it is
thus omitted for space limitations.

The results of Theorems 1 and 2 can be used to compute an
asymptotic expression of the SINRs in DL and UL as provided
by the following lemmas:

Lemma 3. Under the settings of Assumptions 1 and 2, we
have maxk |SINRdl?

k − SINR
dl

k | → 0 where

SINR
dl

k =
pk(1− η2)ξ

µkPmax + 1
ρβk

(22)

with

µk =
1 + 2η2γkτ + η2γ2

kτ
2

(1 + γkτ)2
(23)

Proof: By using standard calculus from random matrix
theory, it is easily seen that the asymptotic expression of
{SINRdl

k } remains almost surely the same if p̂k and q̂k are
replaced by pk and qk. Then, using similar techniques as
those in [13], [17], deterministic equivalents of the signal and
interference terms can be computed, leading thus to (22). See
Appendix C for details.

Lemma 4. Under the settings of Assumptions 1 and 2, we
have maxk |SINRul?

k − SINR
ul

k | → 0 where

SINR
ul

k =
qk(1− η2)ξ

1
K

K∑
i=1

βi
βk
µiqi + 1

ρβk

. (24)

Proof: The proof relies on the same techniques used in
Appendix C and it is thus omitted.

An important consequence of the above results is that
the performance of the network in DL and UL remains
asymptotically the same if {q̂k} and {p̂k} are replaced with
{qk} and {pk} such that the precoding/receiving vector of UE
k is computed as:

gk =

√
pk
K

vk
‖vk‖

(25)

with

vk =

(
K∑

i=1

qi
K

ĥiĥ
H
i +

1

ρ
IM

)−1

ĥk. (26)

This result is particularly interesting from an implementation
point of view. Indeed, unlike {q̂k} and {p̂k}, {qk} and {pk}
in (19) and (20) depend only on the large-scale channel
statistics. As a consequence, {qk} and {pk} are not required
to be computed at every channel realization but only once
per coherence period. This provides a substantial reduction
in computational complexity as compared to OLP and OLR
since solving (5) and (6) at the pace of fast fading channel is
no longer required.

The above analysis reveals also that the asymptotic SINRs in
(22) and (24) are both decreasing functions of η with maximal
value achieved for η = 0 and given by

SINR
dl

k,max

γk
=

SINR
ul

k,max

γk
= τ̄ (27)

from which it follows that:

Corollary 1. If perfect CSI is available, then in the asymptotic
regime the minimum weighted SINR is the same for both DL
and UL.

Unlike the SINR expressions, the coefficients qk and pk in
(19) and (20) are found to be independent of η. This is due to
the fact that they depend solely on the statistics of estimated
channel vectors ĥk, which are the same of the true channel
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vectors hk regardless of the value of η.2 Next, we follow a
different approach, which aims at designing the OLP and OLR
by exploiting the above large system analysis. As shown next,
the idea is to still use the vectors vk in (26) but to design the
DL and UL transmit powers so as to maximize the asymptotic
minimum SINR.

B. Asymptotic design of OLP and OLR with imperfect CSI

To begin with, let us call p̃ = [p̃1, . . . , p̃K ]T and q̃ =
[q̃1, . . . , q̃K ]T the DL and UL power vectors, respectively, and
assume that they are kept fixed. Assume also that the precoding
vectors are computed as

g̃k =

√
p̃k
K

vk
‖vk‖

(28)

with vk given by (26). Therefore, a direct application of

Lemma 3 yields maxk |SINRdl
k (p̃)− S̃INR

dl

k (p̃)| → 0 with

S̃INR
dl

k (p̃) =
p̃k(1− η2)ξ

µk
K

K∑
i=1

p̃i + 1
ρβk

. (29)

Accordingly, from Lemma 4 it follows that

maxk |SINRul
k (q̃)− S̃INR

ul

k (q̃)| → 0 where

S̃INR
ul

k (q̃) =
q̃k(1− η2)ξ

1
K

K∑
i=1

βi
βk
µiq̃i + 1

ρβk

. (30)

The main contribution of this section unfolds from the above
results and provides the DL and UL power vectors p̃ and q̃
that maximize the asymptotic minimum SINR in DL and UL
under the power constraint Pmax. This amounts to solving the
following optimization problems:

PAdl :





max
p̃

min
k

S̃INR
dl

k (p̃)
γk

s.t. 1
K1TK p̃ ≤ Pmax

(31)

and

PAul :





max
q̃

min
k

S̃INR
ul

k (q̃)
γk

s.t. 1
K1TK q̃ ≤ Pmax.

(32)

Define the diagonal matrix D ∈ CK×K

D = diag

(
γ1

ξβ1(1− η2)
, · · · , γK

ξβK(1− η2)

)
(33)

and the vector f ∈ CK with entries given by [f ]i = βiµi/K.
Using the above notation, PAdl and PAul can be rewritten as

PAdl :

{
max
p̃

min
k

p̃k

[D(f1T p̃+ 1
ρ1)]

k

s.t. 1
K1TK p̃ ≤ Pmax

(34)

and

PAul :

{
max
q̃

min
k

q̃k

[D(1fT q̃+ 1
ρ1)]

k

s.t. 1
K1TK q̃ ≤ Pmax

(35)

2Observe that E{ĥk} = E{hk} = 0, E{ĥkĥ
H
k } = E{hkh

H
k } = βkIM

and E{ĥiĥ
H
k } = E{hih

H
k } = 0M .

Following [9], it can be easily shown that PAdl and PAul are
related by the UL-DL duality. Therefore, from [9], [10] it
follows that the optimal power vectors p̃? and q̃? are such
that:

p̃? ∝ D

(
f1T +

1

ρKPmax
11T

)
p̃? (36)

and

q̃? ∝ D

(
1fT +

1

ρKPmax
11T

)
q̃?. (37)

As seen, p̃? and q̃? are proportional to the Perron eigenvectors
[27] of the non negative matrices D(f1T + 1

ρKPmax
11T )

and D(1fT + 1
ρKPmax

11T ) respectively. Using the inequality
constraints, we finally obtain:

p̃? =
KPmax

1TD(f + 1
ρKPmax

1)
D(f +

1

ρKPmax
1) (38)

and

q̃? =
KPmax

1TD1
D1. (39)

In a more explicit form, we have that:

p̃?k =
Pmaxγkµk + γk

ρβk

1
K

K∑
i=1

γiµi + γi
ρβiPmax

(40)

and

q̃?k =
γk
βk

Pmax

1
K

K∑
i=1

γi
βi

. (41)

Unlike {pk} in (20), the DL powers {p̃?k} depend on the
channel estimation accuracy through {µi}. This makes the so-
called asymptotic OLP (A-OLP) achieve better performance
than OLP as shown later by simulations. On the other hand,
the UL powers {q̃?k} coincide with {qk} in (19), obtained by
computing the deterministic equivalents of {q̂k}. This is due
to the fact that both solutions rely on the same beamforming
receive directions v̂k. Therefore, the asymptotic OLR (A-
OLR) is identical to OLR.

As mentioned before for OLP and OLR, the use of {q̃?k}
and {p̃?k} largely simplifies the implementation of A-OLP and
A-OLR as their computation requires only knowledge of the
large scale channel statistics and must be performed only once
per coherence period (rather than at the same pace as the small-
scale fading). Despite being simplified, the implementation of
A-OLP and A-OLR as well as that of OLP and OLR still
requires the matrix inversion operation in (26). This can be a
task of a prohibitively high complexity when M and K are
large as envisioned in large scale MIMO systems. To address
this issue, a TPE approach will be adopted next.

IV. USER SPECIFIC TPE PRECODING AND RECEIVER

The common way to apply the TPE concept consists in
replacing the matrix inverse by a weighted matrix polynomial
with J terms [17], [28]. Differently from the traditional
approach, we propose in this work to apply the truncation
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artifice separately to each vector of the precoding and receiving
matrices.

Applying the TPE on a per-UE basis, the precoding vector
associated with UE k writes as:

gdl
k,TPE =

√
pk,TPE

K

vk,TPE

‖vk,TPE‖
(42)

with

vk,TPE =

J−1∑

`=0

wdl
`,k

(
ĤQĤH

K

)`
ĥk√
K

(43)

where J is the truncation order and Q = diag(q1, · · · , qK).
Plugging gdl

k,TPE into (2) and letting wk,dl =

[wdl
0,k, · · · , wdl

J−1,k]T , the SINR corresponding to UE k
can be written as:

SINRdl
k,TPE =

pk,TPE
wHk,dlaka

H
k wk,dl

wHk,dlEkwk,dl

∑
i6=k

pi,TPE

K

wHi,dlBk,iwi,dl

wHi,dlEiwi,dl
+ 1

ρ

(44)

where ak ∈ CJ×1, bk ∈ CJ×1, and Bi,k ∈ CJ×J are given
by:

[ak]` =
1

K
hHk

(
ĤQĤH

K

)`
ĥk (45)

[Bk,i]`,m =
1

K
hHk

(
ĤQĤH

K

)`
ĥiĥ

H
i

(
ĤQĤH

K

)m
hk (46)

[Ek]`,m =
1

K
ĥHk

(
ĤQĤH

K

)`+m
ĥk. (47)

The transmit power at the BS can be easily found as P =
1
K

∑K
k=1 pk,TPE.

The TPE concept is now applied in UL to the OLR. Let{ qk,TPE

K

}
be the set of UL transmit powers. The receive

beamforming vector associated with UE k is thus given by:

gul
k,TPE =

J−1∑

`=0

wul
`,k

(
ĤQĤH

K

)
ĥk√
K
. (48)

Plugging gul
k,TPE into (12) yields the SINR of UE k given by:

SINRul
k,TPE =

qk,TPEwH
k,ulaka

H
k wk,ul∑

i 6=k

qi,TPE

K wH
k,ulBi,kwk,ul + 1

ρwH
k,ulEkwk,ul

(49)
where wk,ul =

[
wul

0,k, · · · , wul
J−1,k

]T
and ak, Bi,k Ek are

given by (45) – (47).

V. ASYMPTOTIC ANALYSIS AND OPTIMIZATION OF THE
USER SPECIFIC TPE PRECODER AND RECEIVER

In this section, we consider the asymptotic regime defined
in Assumption 1 and show that the SINRs of the TPE precoder
and receiver converge to deterministic equivalents, that depend
only on the weighting vectors {wk,dl}Kk=1 or {wk,ul}Kk=1,
and the large-scale channel statistics. These deterministic
equivalents are then exploited to compute the optimal weights
that maximize the minimum asymptotic DL/UL SINR.

A. Asymptotic Analysis

Let us introduce the fundamental equations that are needed
to express the deterministic equivalents. We begin by defining
δ(t) as the unique positive solution of the following equation
∀t > 0:

δ(t) =
M

K

1

1 + t
K

K∑
i=1

βiqi
1+tδ(t)qiβi

. (51)

Define Xk(t) and Zk,i(t) as:

Xk(t) =
βkδ(t)

1 + tqkβkδ(t)
, (52)

Zk,i(t, u) =
βifk(t, u)α(t, u)

(1 + tδ(t)βiqi)(1 + uδ(u)βiqi)
(53)

with fk(t, u) being given by:

fk(t, u) = βk

(
η2 +

1− η2

(1 + qkβktδ(t))(1 + qkβkuδ(u))

)
(54)

and

α(t, u) =
δ(t)δ(u)

M
K − tu

K δ(t)δ(u)
K∑
i=1

[βiqi]
2

[1+tqiβiδ(t)][1+uqiβiδ(u)]

.

(55)
Let ak ∈ CJ be defined as:

[ak]` =
(−1)`

`!

√
1− τ2X

(`)

k (56)

and call Bi,k ∈ CJ×J and Ek ∈ CJ×J the matrices with
elements given by:

[
Bk,i

]
`,m

=
(−1)`+m

`!m!
Z

(`+m)

k,i (57)

[
Ek

]
`,m

=
(−1)`+m

(`+m)!
X

(`+m)

k . (58)

The main technical result of this section then lies in the
following lemma:

Lemma 5. Under the settings of Assumptions 1 and
2, we have maxk |SINRdl

k,TPE − SINR
dl

k,TPE| → 0 and

maxk |SINRul
k,TPE − SINR

ul

k,TPE| → 0 with

SINR
dl

k,TPE =
pk,TPE

wHk,dlaka
H
k wk,dl

wHk,dlEkwk,dl

∑
i 6=k

pi,TPE

K

wHi,dlBk,iwi,dl

wHi,dlEkwi,dl
+ 1

ρ

(59)

SINR
ul

k,TPE =
qk,TPEwH

k,ulaka
H
k wk,ul∑

i 6=k

qi,TPE

K wH
k,ulBi,kwk,ul + 1

ρwH
k,ulEkwk,ul

.

(60)

Also, we have that P − P → 0 with

P =
1

K

K∑

k=1

wH
k Ekwk. (61)

Proof: The deterministic equivalents of the SINR and
transmit powers are obtained by computing the asymptotic
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q?k,TPE =
γkKPmax

K∑
`=1

γ`aTkE
− 1

2
k

(∑
i6=k

ρ
K q

?
i,TPEE

− 1
2

k Bi,kE
− 1

2
k +IJ

)−1

E
− 1

2
k ak

aT` E
− 1

2
`

(∑
j 6=`

ρ
K q

?
j,TPEE

− 1
2

` Bj,`E
− 1

2
` +IJ

)−1

E
− 1

2
` a`

∀k (50)

expressions of the entries of ak, Bk,i and Ek. The latter can
be written as a function of the derivatives of some quadratic
forms whose deterministic equivalents are known in random
matrix theory. See Appendix D for details.

With the asymptotic equivalents of the SINR and the
transmit power on hand, we are ready now to determine the
optimal parameters of the TPE based receiver and precoder.

B. Optimization of the US-TPE precoding and receiver

In the sequel, we compute the optimal weighting vectors
wk,dl and wk,ul as well as the optimal DL and UL transmit
powers. To begin with, we let

ck,dl =
E

1
2

kwk,dl

‖E
1
2

kwk,dl‖
ck,ul =

E
1
2

kwk,ul

‖E
1
2

kwk,ul‖
(62)

and rewrite the asymptotic SINR expressions in (59) and (60)
as follows:

SINR
dl

k,TPE =
pk,TPE cHk,dlE

− 1
2

k aka
H
k E
− 1

2

k ck,dl

∑
i 6=k

pi,TPE

K cHi,dlE
− 1

2

i Bk,iE
− 1

2

i ci,dl + 1
ρ

(63)

SINR
ul

k,TPE =
qk,TPEcHk,ulE

− 1
2

k aka
H
k E
− 1

2

k ck,ul

∑
i 6=k

qi,TPE

K cHk,ulE
− 1

2

k Bi,kE
− 1

2

k ck,ul + 1
ρ

. (64)

The parameters {ck,dl}, {ck,ul}, {pk,TPE} and {qk,TPE} are
computed as solutions of the following optimization problems:

PTPE
dl :





max
{ck,dl},pTPE

min
k

SINR
dl
k,TPE

γk

s.t. 1
K1TKpTPE ≤ Pmax

(65)

and

PTPE
ul :





max
{ck,ul},qTPE

min
k

SINR
ul
k,TPE

γk

s.t. 1
K1TKqTPE ≤ Pmax

(66)

which have the same structure of (3) and (11). Following
similar arguments, it turns out that the solution is such that all
the weighted asymptotic SINRs are equal to τ?TPE:

τ?TPE =
SINR

ul

k,TPE

γk
=

SINR
dl

k,TPE

γk
∀k. (67)

The optimal values q?k,TPE are obtained as the unique solution
of the fixed-point system of equations in (50) whereas the
optimal weighting vectors are such that c?k,ul = c?k,dl = c?k
with:

c?k =

( ∑
i 6=k

q?i,TPE

K E
− 1

2

k Bi,kE
− 1

2

k + 1
ρIJ

)−1

E
− 1

2

k ak

∥∥∥∥∥
( ∑
i6=k

q?i,TPE

K E
− 1

2

k Bi,kE
− 1

2

k + 1
ρIJ

)−1

E
− 1

2

k ak

∥∥∥∥∥

. (68)
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From (50) , it follows that the computation of {q?k,TPE}
requires matrix inversions whose complexity depend on J .
However, J is small and does not need to scale with the
values of M and K. Thus, the computation of q?k,TPE is not
very demanding. The optimal power vector p?TPE is such that
the weighted SINRs in the uplink are all equal to τ?TPE. This
yields:

pTPE =
τ?TPE

ρ
(IK − τ?TPEΓTPEFTPE)

−1
ΓTPE1K (69)

where:

ΓTPE = diag

{(
cHk,dlE

− 1
2

k aka
H
k E
− 1

2

k ck,dl

)−1
}K

k=1

(70)

and

[FTPE]k,i =

{
0 if k = i
1
K cHi,dlE

− 1
2

k Bk,iE
− 1

2

k ci,dl if k 6= i.
(71)

From the above results, it follows that the TPE-based schemes
have the same structure as A-OLP and A-OLR. However, the
former allow a considerable reduction in the complexity since
they require only about O(KM) arithmetic operations as they
do not involve the computation of a matrix inverse. This has
to be compared with the OLP and OLR that involve O(K2M)
arithmetic operations. For more details about complexity anal-
ysis and saving, we refer the reader to [17] where the benefits
of TPE when applied to precoding schemes are discussed in
details.

VI. SIMULATION RESULTS

Numerical results are now used to make comparisons among
the different transceiver schemes and to validate the asymptotic
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Fig. 2. Average per UE rate vs. power constraint Pmax when K = 32,
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analysis. The UEs are assumed to be uniformly distributed
in a cell with radius 250 m. The path loss βk between the
BS and a UE k with distance xk from the BS is modeled
as βk = 1/1 + (xk/d0)

δ where δ = 3.8, d0 = 30 m. The
analysis is conducted in terms of the average achievable rate
per UE given by:

r =
1

K

K∑

k=1

E [log2(1 + SINRk)] (72)

where the expectation is taken with respect to the different
channel realization. We set ρ = 20 dB and assume that the
UEs’ priorities {γk} are randomly chosen from the interval
[1, 2]. Markers are used to represent the asymptotic results
whereas the error bars indicate the standard deviation of the
Monte Carlo results.

Fig. 1 reports the downlink average rate per UE of OLP, A-
OLP and US-TPE precoding as a function of η when K = 32,
M = 128 and Pmax = 5 Watt. As seen, when η takes
small values, A-OLP and OLP have approximately the sa me
performances. As η increases, OLP presents a more significant
loss in average per UE rate performances. Moreover, it can
be seen that US-TPE with J = 2 achieves almost the same
performance as A-OLP and this over all the range of η.
This clearly confirms that US-TPE shares the same interesting
features of A-OLP while requiring a lower complexity.

Fig. 2 investigates the DL average per UE rate with respect
to the power budget Pmax when K = 32, M = 128, η = 0
(perfect CSI case) and ρ = 20 dB. An important observation
from Fig. 2 is that the gap in performance between US-TPE
and OLP increases with Pmax. To reduce this gap, one solution
is to use the US-TPE with higher truncation orders.

A similar analysis is now conducted for the UL. Only OLR
is considered since A-OLR and OLR have asymptotically the
same performances. Fig. 3 illustrates the uplink average rate
per UE vs. η. As seen, with J = 2, US-TPE receiver provides
the same performance as OLR.

Fig. 4 illustrates the uplink average rate per UE vs. the
number of BS antennas M for different values of Pmax
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when η = 0. As seen, US-TPE receiver provides comparable
performance to OLR for all values of M . Besides, the gap
increases with Pmax as in DL, and seems to be weakly
dependent of the number of antennas M .

VII. CONCLUSIONS

This work considered a single-cell large-scale MU-MIMO
system and studied the problem of designing the optimal
linear transceivers that maximize the minimum SINR while
satisfying a certain power constraint. We considered the
asymptotic regime in which the number of BS antennas M
and the number of the UEs K grow large with the same
pace. Stating and proving new results from large-scale random
matrix theory allowed us to give concise approximations of the
optimal transceivers. Such approximations turned out to be of
much lower complexity as they depend only on the long-term
channel attenuations of the UEs, the maximum transmit power
and the quality of the channel estimates. Numerical results
indicated that these approximations are very accurate even for
small system dimensions. To further reduce the computational
complexity, we proposed to apply the truncated polynomial
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expansion technique to the precoding and receiving vectors of
each UE. The resulting transceiver was then optimized in the
asymptotic regime. Numerical results showed that it achieves
a-close-to-optimal performance.

APPENDIX A
USEFUL LEMMAS

This appendix gathers some technical results from random
matrix theory concerning the asymptotic behaviour of large
random matrices. Next, we denote by X = [x1, · · · ,xK ] a
M × K standard complex Gaussian matrix. Let t > 0 and
R = diag (α1, · · · , αK). We define the resolvent matrix of
XRXH as:

Q(t) =

(
t

K

K∑

i=1

αixix
H
i + IM

)−1

=

(
t

K
XRXH + IM

)−1

.

(73)
Define also Qk(t) as:

Qk(t) =


 t

K

∑

i6=k
αixix

H
i + IM



−1

(74)

which is obtained from Q(t) by removing the contribution of
vector xk. The following lemmas recall some classical identi-
ties involving the resolvent matrix, which will be extensively
used in our derivations:

Lemma 6. The following identities hold true:
1) Inverse of resolvents:

Q(t) = Qk(t)− tαkQk(t)xkx
H
k Qk(t)

1 + tαk
K xHk Qk(t)xk

. (75)

2) Rank-one perturbation result: For any matrix A, we have
trA (Q(t)−Qk(t)) ≤ ‖A‖2.

Lemma 7 (Convergence of quadratic forms). Let y ∼
CN (0M , IM ). Let A be an M ×M matrix independent of
y, which has a bounded spectral norm; that is, there exists
CA < ∞ such that ‖A‖2 ≤ CA. Then, for any p ≥ 1, there
exists a constant Cp depending only on p, such that

Ey

[∣∣∣∣
1

M
yHAy − 1

M
tr(A)

∣∣∣∣
p]
≤ CpC

p
A

Mp/2
, (76)

By choosing p ≥ 2, we thus have that

1

M
yHAy − 1

M
tr(A)→ 0. (77)

The following lemma provides results allowing to approx-
imate random quantities involving the resolvent matrix when
their dimensions grow simultaneously large:

Lemma 8. Let δ(t) be the unique positive solution to the
following equation:

δ(t) =
M

K

(
1 + t

K

K∑
i=1

αi
1+tδ(t)αi

) . (78)

Consider the asymptotic regime in which M and K grow to
infinity with: 0 < lim inf MK < lim sup M

K <∞. Let [a, b] be a

closed bounded interval in [0,∞). the following convergences
holds true:

sup
t∈[a,b]

∣∣∣∣
1

K
tr Q(t)− δ(t)

∣∣∣∣→ 0. (79)

Moreover, if y1, · · · ,yK denotes standard complex Gaussian
vectors independent from x1, · · · ,xK , we have:

max
j

sup
t∈[a,b]

∣∣yHj Q(t)yj − δ(t)
∣∣→ 0. (80)

Note that, as a consequence of the rank-one perturbation
lemma, the above convergences can be transferred to the
resolvent matrix Qk(t). As a matter of fact, we also have:

sup
t∈[a,b]

∣∣∣∣
1

K
tr Qk(t)− δ(t)

∣∣∣∣→ 0. (81)

and

max
j

sup
t∈[a,b]

∣∣yHj Q(t)yj − δ(t)
∣∣→ 0. (82)

APPENDIX B
PROOF OF THEOREM 1

We aim at determining deterministic equivalents of {q̂k}.
Let ẑk = β

− 1
2

k ĥk. Define Q̂k = (
∑
m6=k

q̂`
K ĥ`ĥ

H
` + 1

ρIM )−1.
Then, q̂k writes as:

ĥk =
γk τ̂

βk
K ẑHk Q̂kẑk

Intuitively, from rank-one perturbation arguments (See Lemma
6), all d̂k , ẑHk Q̂kẑk present the same asymptotic behavior
and should converge to the same limit. In light of this obser-
vation, we will rather focus on the study of the convergence
of {d̂k}. The convergence of {q̂k} to {qk} will then follow.

It can be thus easily shown that {d̂k} are the positive
solutions to the following fixed-point equations:

d̂k =
1

K
ẑHk


∑

m 6=k

τ̂ γm

Kd̂m
ẑmẑHm +

1

ρ
IM



−1

ẑk. (83)

Note that direct application of standard random matrix theory
tools to the quadratic form arising in the expressions of {d̂k}
is not analytically correct since coefficients {d̂k} and τ̂ are
both function of the channel vectors {zk}. However, one
would expect coefficients {d̂m}m 6=k to be weakly dependent of
ẑk, and thus considering {d̂k} as deterministic, although not
properly correct, would lead to infer about their asymptotic
behavior. Based on these intuitive arguments and using the
results of Lemma 7 and Lemma 8 (see (78)) when all d̂k are
replaced by the same quantity d̃, one could claim that {d̂k}
must satisfy the following convergence:

max
k

∣∣d̂k/d̃− 1
∣∣→ 0 (84)

where d̃ is given by

d̃

ρ
=
M

K
− 1

K

K∑

m=1

γmτ̂

1 + γmτ̂
. (85)
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It is worth mentioning that d̃ constitutes an asymptotic random,
not deterministic, equivalent of d̂ as it depends on τ̂ . Addi-
tional work is needed to find a deterministic equivalent for d̃.
This will be performed later. We will now focus on providing
a rigorous proof for (84). To this end, we will make use of
the approach developed in [29]. Let us define ek = d̂k/d̃, and
assume without loss of generality that e1 < · · · < eK . We can
thus write {d̂k} as:

d̂k =
1

K
ẑHk


∑

m 6=k

τ̂ γmẑmẑHm

Kemd̃
+

1

ρ
IM



−1

ẑk (86)

from which dividing by d̃ we get:

ek =
1

K
ẑHk


∑

m 6=k

τ̂ γmẑmẑHm
Kem

+
d̃

ρ
IM



−1

ẑk. (87)

From monotonicity arguments, it follows that:

eK ≤
1

K
ẑHK


∑

m6=K

τ̂ γmẑmẑHm
KeK

+
d̃

ρ
IM



−1

ẑK (88)

or, equivalently,

1 ≤ 1

K
ẑHK


∑

m 6=k

τ̂ γmẑmẑHm
K

+
d̃eK
ρ

IM



−1

ẑK . (89)

To prove that maxk |ek − 1| → 0, we proceed by contradic-
tion. Assume that there exists ` > 0 such that lim sup eK >
1 + `. Then, eK is infinitely often larger than 1 + `. Let us
restrict ourselves to such a subsequence. Therefore, we have:

1 ≤ 1

K
ẑHK


τ̂

∑

m6=k

γmẑmẑHm
K

+
d̃(1 + `)

ρ
IM



−1

ẑK . (90)

We shall now invoke the convergence results of Lemma 8 in
Appendix A. But before that, we need to check that ρτ̂/d̃
stay almost surely in a bounded interval. This can be shown
by noticing that function f can be bounded above and below
by:

M
K

x
ρ + 1

≤ f(x) ≤ Mρ

Kx
(91)

and thus:

ρ

(
M

K
− 1

)
≤ d̃ ≤ Mρ

K
. (92)

Now, we are ready to apply the results of Lemma 8 to obtain:
∣∣∣∣∣∣∣

1

K
ẑHK


τ̂

∑

m 6=k

γmẑmẑHm
K

+
d̃(1 + `)

ρ
IM



−1

ẑK − µ̂

∣∣∣∣∣∣∣
→ 0

(93)

where µ̂ is the unique solution to the following equation:

µ̂ =
M

K

(
d̃(1 + `)

ρ
+

1

K

K∑

m=1

γmτ̂

1 + γm
1+γmµ̂τ̂

)−1

. (94)

The above convergence along with (90) implies that:

1 ≤ 1

K
ẑHK


τ̂

∑

m6=k

γmẑmẑHm
K

+
d̃(1 + `)

ρ
IM



−1

ẑK

≤ µ̂+ εM (95)

for εM → 0. Observe that µ̂ = f(d̃(1 + `)/ρ). Since f(d̃) = 1
and f is decreasing, 1 − εM ≤ µ̂ = f(d̃(1 + `)/ρ) < 1.
Therefore, a contradiction arises when n tends to infinity. This
proves that lim sup eK ≤ 1 for all large K. Using similar
arguments, we can prove that lim inf e1 ≥ 1. Plugging these
results together, we finally obtain (84). Note that d̃ is still
random because of its dependence on τ̂ . Further work is
needed to find a deterministic equivalent for τ̂ . Recalling that
q̂k = γk

βk
τ̂

d̂k
, 1
K

∑K
k=1 q̂k = Pmax, and using (17), we obtain

τ̂ =
Pmax

1
K

∑K
k=1

γk
d̂kβk

(96)

Using (84), we thus have:

τ̂ =
Pmax

1
K

∑K
k=1

γk
d̃βk

+ o(1). (97)

where o(1) denotes a sequence converging to zero almost
surely. Replacing d̃ by τ̂

K

∑K
k=1

γk
βkPmax

, we finally get that:

τ̂ =
M

K

(
α+

1

K

K∑

m=1

γm
1 + τ̂ γm

)−1

+ o(1). (98)

with α = 1
K

∑K
`=1

γ`
ρβ`Pmax

. Using the above equation, we
are tempted to discard the vanishing terms and to state that a
deterministic equivalent by τ̂ is given by τ , the unique solution
to the following equation:

τ =
M

K

(
α+

1

K

K∑

m=1

γm
1 + τγm

)−1

. (99)

This is indeed true, since straightforward calculations lead to
the following identity:

τ̂ − τ = o(1) +
M

K

1
K

K∑
m=1

γ2
m

(1+τγm)(1+τ̂γm)

(
α+ 1

K

K∑
j=1

γj
1+τγj

)(
α+ 1

K

K∑
j=1

γj
1+τ̂γj

) .

Using again the expressions of τ̂ and τ , we have:

τ̂ − τ = o(1) + τ̂ τ
K

M

( 1

K

K∑

m=1

γ2
m (τ̂ − τ)

(1 + τγm)(1 + τ̂ γm)

)
. (100)

Hence,

|τ̂ − τ | ≤ K

M
|τ̂ − τ |+ o(1) (101)

from which it follows τ̂ − τ → 0. Let d = τ
P

1
K

∑K
k=1

γk
βk

, we
thus have maxk |d̂k − d| → 0. Putting the convergence results
of τ̂ and {d̂k} together, the convergence of q̂k directly follows.
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APPENDIX C
PROOF OF LEMMA 3

The aim of this section is to prove the almost sure con-
vergence of {SINRdl

k } to {SINR
dl

k }. First, using standard
calculations from random matrix theory, mainly the resolvent
lemma [30], it can be shown that asymptotic behavior of
{SINRdl

k } remains almost surely the same if we replace p̂k
by pk and q̂k by qk. This brings us to study the asymptotic
expression of the following quantity:

pk
K

∣∣hHk uk
∣∣2

∑
i6=k

pi
K

∣∣hHk ui
∣∣2 + 1

ρ

(102)

with ui = vi/‖vi‖ and vi given by (26). Denote by
Sk = pk

K

∣∣hHk uk
∣∣2 and Ik =

∑
i6=k

pi
K

∣∣hHk ui
∣∣2 the signal and

interference terms, respectively. Let

Q(ρ) =


 1

K

K∑

j=1

qjĥjĥ
H
j +

1

ρ
IM



−1

(103)

denote the resolvent matrix associated with 1
K

∑K
j=1 qjĥjĥ

H
j .

For i ∈ {1, · · · ,K}, denote by Qi(ρ) the resolvent matrix
obtained by removing the contribution of hi:

Qi(ρ) =


 1

K

∑

j 6=i
qjĥjĥ

H
j +

1

ρ
IM



−1

(104)

Since Q(ρ)ĥi

‖Q(ρ)ĥi‖ = Qi(ρ)ĥi

‖Qi(ρ)ĥi‖ , then Sk can be written as:

Sk = pk

∣∣∣ 1
KhHk Qk(ρ)ĥk

∣∣∣
2

1
K ĥHk Q2

k(ρ)ĥk
. (105)

Applying Lemma 8 in Appendix A, it can be proved that:

max
k

∣∣∣ ρ
K

hHk Qk(ρ)ĥk − βk
√

1− η2µ
∣∣∣→ 0 (106)

where µ is the solution of:

µ =
M

K

(
1

ρ
+

1

K

K∑

i=1

qiβi
1 + qiβiµ

)−1

. (107)

To handle the denominator of Sk in (105), observe that:

max
k

∣∣∣∣
1

K
ĥHk Q2

k(ρ)ĥk −
βk
K

tr Q2(ρ)

∣∣∣∣→ 0, (108)

which is a consequence of the asymptotic properties of
quadratic forms and the rank-one perturbation in Lemma 1.
Now, applying the results of [31, Proposition 3], we obtain:

1

K
tr Q2(ρ)− µ2

M
K − µ2M

K
1
K

K∑
i=1

β2
i q

2
i

(1+µβiqi)
2

→ 0. (109)

From Theorem 1, it is clear that µ = γk
βk

τ
qk

. Using this relation
into the above equation, we obtain:

max
k

∣∣∣∣
1

K
ĥHk Q2

k(ρ)ĥk − βkµ̃
∣∣∣∣→ 0, (110)

where:

µ̃ =
µ2

M
K − M

K
1
K

K∑
i=1

(γiτ)2

(1+γiτ)2

. (111)

Putting all these results together yields the following conver-
gence:

max
k

∣∣∣∣Sk −
pkβk(1− η2)µ2

µ̃

∣∣∣∣→ 0. (112)

We now proceed to computing the interference term, which
can be written as:

Ik =
1

K2
hHk Q(ρ)ĤkDkĤ

H
k Q(ρ)hk (113)

where Dk is a K − 1×K − 1 diagonal matrix given by:

Dk = diag

{
p1

1
K ĥH1 Q2(ρ)ĥ1

, · · · , pk−1

1
K ĥHk−1Q

2(ρ)ĥk−1

,

pk+1

1
K ĥHk+1Q

2(ρ)ĥk+1

, · · · , pK
1
K ĥHKQ2(ρ)ĥK

}
. (114)

Using the fact that:

ĥHk Q2(ρ)ĥk =
ĥHk Q2

k(ρ)ĥk(
1 + ρqk

1
K ĥHk Qk(ρ)ĥk

)2 (115)

and exploiting the already established convergences in (106)
and (110), we can prove that:

max
k

∣∣∣∣∣
pk

1
K ĥHk Q2(ρ)ĥk

− pk(1 + qkβkµ)2

βkµ̃

∣∣∣∣∣→ 0. (116)

It entails from the above convergence that matrix Dk con-
verges in operator norm to Dk obtained by replacing the
random elements of Dk by their asymptotic equivalents.
Studying the asymptotic behaviour of Ik amounts thus to
considering Ĩk given by:

Ĩk =
ρ

K2
hHk Q(ρ)ĤkDkĤ

H
k Q(ρ)hk. (117)

Using the decomposition of Q as:

Q(ρ) = Qk(ρ)−
1
K qkQk(ρ)ĥkĥ

H
k Qk(ρ)

1 + 1
K qkĥ

H
k Qk(ρ)ĥk

(118)

we can expand Ĩk as:

Ĩk =
1

K2
hHk Qk(ρ)ĤkDkĤ

H
k Qk(ρ)hk

− qk
K3

hHk Qk(ρ)ĥkĥ
H
k Qk(ρ)ĤkDkĤkQk(ρ)hk

(1 + qk
K ĥHk Qkĥk)

− qk
K3

hHk Qk(ρ)ĤkDkĤ
H
k Qk(ρ)ĥkĥ

H
k Qk(ρ)hk

(1 + qk
K ĥHk Qkĥ)

+
q2
k

K4

∣∣∣hHk Qk(ρ)ĥk

∣∣∣
2

ĥHk Q̂k(ρ)ĤkDkĤ
H
k ĥk

(
1 + qk

K ĥHk Qk(ρ)ĥk

)2 . (119)
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This expression makes arise classical quadratic forms that can
be studied using the trace Lemma. We thus have:

Ĩk =
1

K2
βk tr Qk(ρ)ĤkDkĤ

H
k Qk(ρ)

− qkβ
2
k(1− η2)µ

1 + qkβkµ

1

K2
tr Qk(ρ)ĤkDkĤ

H
k Qk(ρ)

− qkβ
2
k(1− η2)µ

1 + qkβkµ

1

K2
tr Qk(ρ)ĤkDkĤ

H
k Qk(ρ)

+
q2
k(1− η2)µ2β3

k

(1 + qkβkµ)2

1

K2
tr Qk(ρ)ĤkDkĤ

H
k Qk(ρ) + εk

= µk
βk
K2

tr Qk(ρ)ĤkDkĤ
H
k Qk(ρ) + εk (120)

where εk is a random sequence converging to zero almost
surely uniformly in k, that is maxk |εk| → 0, and

µk =
1 + 2η2βkqkµ+ η2µ2q2

kβ
2
k

(1 + qkβkµ)2
(121)

=
1 + 2η2γkτ + η2γ2

kτ
2

(1 + qkβkµ)2
. (122)

The second equality is obtained using the fact
that µqkβk = γkτ . We will now handle the term

1
K2 tr Qk(ρ)ĤkDĤH

k Qk(ρ). Note that due to the rank-
one perturbation Lemma and the convergence in operator
norm of Dk to Dk, the matrices Qk(ρ) and Dk can be
replaced by Q(ρ) and Dk. In doing so, we prove that Ĩk is
almost surely equivalent to:

µk
βk
K2

tr Q(ρ)ĤkDĤH
k Q(ρ) (123)

= µk
βk
K2

K∑

i=1,i6=k

ĥHi Q(ρ)2ĥipi
1
K ĥHi Q(ρ)2ĥi

= µk
βk
K

K∑

i=1,i6=k
pi. (124)

Since 1
K

∑K
i=1,i6=k pi = Pmax +O(1/K), we thus have:

max
k
|Ik − µkρβkPmax| → 0. (125)

Putting the above results together yields Lemma 3.

APPENDIX D
PROOF OF LEMMA 5

In this proof, we compute deterministic equivalents of the
entries of the matrices ak, Ek and Bk,i. We start introducing
the following functionals:

Xk(t) =
1

K
ĥHk Q(t)ĥk (126)

Yk(t) =
1

K
hHk Q(t)ĥk. (127)

The coefficients of ak and Ek can be written as a function of
the higher derivatives of the above functionals taken at t = 0
as follows:

[ak]` =
(−1)`

`!
Y

(`)
k (128)

[Ek]`,m =
(−1)`+m

`!m!
X

(`+m)
k . (129)

Thus, we need to compute deterministic equivalents of Y (`)
k

and X
(`)
k . In [17], it has been shown that it suffices to

determine deterministic equivalents of Xk(t) and Yk(t) and
then take their derivatives at t = 0. We begin first by treating
X

(`)
k . Using Lemma 6, we can write

1

K
ĥHk Q(t)ĥk =

1
K ĥHk Qk(t)ĥk

1 + tq̄k
K ĥHk Qk(t)ĥk

. (130)

Lemma 7 along with the rank-one perturbation property in
Lemma 6 implies that

1

K
ĥHk Qk(t)ĥk −

1

K
βk tr (Q(t))→ 0. (131)

Using Lemma 8, we can conclude that
1

K
ĥHk Qk(t)ĥk − βkδ(t)→ 0. (132)

Then, Xk(t)−Xk(t)→ 0 where Xk(t) is defined as in (52).
Using Corollary 6 in [17], we have X(`)

k − X
(`)

k → 0 such
that:

wH
k aka

H
k wk −wH

k aka
H
k wk → 0. (133)

Again using Lemma 6, we can write

1

K
hHk Q(t)ĥk =

1
KhHk Qk(t)ĥk

1 + tq̄k
K ĥHk Qk(t)ĥk

. (134)

The asymptotic equivalent of the quadratic form
1
KhHk Qk(t)ĥk, is the same as

√
1−η2
K ĥHk Qk(t)ĥk. Thus,

Yk(t)− Y k(t)→ 0 where

Y k(t) =

√
1− η2βkδ(t)

1 + tq̄kβkδ(t)
. (135)

Using again Corollary 6 in [17], we have Y (`)
k − Y (`)

k → 0
such that

wH
k Ekwk −wH

k Ekwk → 0. (136)

We are thus left with studying the convergence of the inter-
ference term:

∑

i 6=k

pi
K

wH
i Bk,iwi =

J−1∑

`=0

J−1∑

m=0

∑

i 6=k

pi
K
w`,iwm,i[Bk,i]`,m (137)

Let Dk = diag(p1w`,1wm,1, · · · , pk−1w`,k−1wm,k−1, pk+1

w`,k+1wm,k+1, · · · , pKw`,Kwm,K) and rewrite each term∑
i 6=k

pi
Kw`,iwm,i[Bk,i]`,m as

1

K2
hHk

(
ĤQĤH

K

)`
ĤkDkĤ

H
k

(
ĤQĤH

K

)m
hk (138)

=
(−1)`+m

m!`!
Z

(`,m)
k (139)

where Z(`,m)
k is the (`,m) derivative taken on t = 0 and u = 0

of the functional Zk(t, u) defined as

Zk(t, u) =
1

K2
hHk Q(t)ĤkDkĤ

H
k Q(u)hk. (140)

Using same techniques as in Appendix C, one can prove that

Zk(t, u) = fk(t, u)
1

K2
tr Qk(t)ĤkDkĤ

H
k Qk(u) + εk (141)
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with fk(t, u) given in (54) and εk is such that maxk |εk| → 0.
Using the same techniques as in [17, Lemma 15], one can
prove that

1

K2
tr Qk(t)ĤkDkĤ

H
k Qk(u)−

ᾱ(t, u)
1

K

∑

i 6=k

piw`,iwm,iβi
(1 + tδ(t)βiq̄i)(1 + uδ(u)βiq̄i)

→ 0 (142)

where

ᾱ(t, u) =
δ(t)δ(u)

M
K − tu

K δ(t)δ(u)
K∑
i=1

[βiq̄i]2

[1+tq̄iβiδ(t)][1+uq̄iβiδ(u)]

.

Therefore, we have that Zk(t, u) − 1
K

∑
i 6=k Zk,i(t, u) → 0

with Zk,i(t, u) given by (53). Also,
∑

i 6=k

pi
K

wH
i Bk,iwi −

∑

i 6=k

pi
K

wH
i Bk,iwi → 0 (143)

where [Bk,i]`,m is given in (57). Similarly, it can be shown
that

∑

i 6=k

qi
K

wH
k Bi,kwk −

∑

i6=k

qi
K

wH
k Bi,kwk → 0, (144)

Plugging all these results together yields the convergence
results of Lemma 5.
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