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Abstract. We give an explicit presentation for the integral cohomology ring
of the complement of any arrangement of level sets of characters in a complex

torus (alias “toric arrangement”). Our description parallels the one given

by Orlik and Solomon for arrangements of hyperplanes, and builds on De
Concini and Procesi’s work on the rational cohomology of unimodular toric

arrangements. As a byproduct we extend Dupont’s rational formality result

to formality over Z.
The data needed in order to state the presentation of the rational cohomol-

ogy is fully encoded in the poset of connected components of intersections of

the arrangement.
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1. Introduction

The topology of the complement of an arrangement of hyperplanes in a complex
vector space is a classical subject, whose study received considerable momentum
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form early work of Arnol’d and Brieskorn (e.g., [Arn69, Bri73]) motivated by appli-
cations to the theory of braid groups and of configuration spaces. A distinguishing
trait of this research field is the deep interplay between the topological and geo-
metric data and the arrangement’s combinatorial data, here usually understood to
be the arrangement’s matroid, a combinatorial abstraction of the linear dependen-
cies among the hyperplanes’ defining forms. A milestone in this direction is the
presentation of the complement’s integral cohomology algebra given by Orlik and
Solomon [OS80], building on work of Arnol’d and Brieskorn. As we will explain
below, this presentation is fully determined by the combinatorial (matroid) data
and thus such an algebra can be associated with any matroid. Over the years,
Orlik-Solomon algebras of general matroids have attracted interest in their own
right [Yuz01].

In the wake of De Concini, Procesi and Vergne’s work on the connection between
partition functions and splines [DPV10] came a renewed interest in the study of
complements of arrangements of subtori in the complex torus – a class of spaces
which had already been considered by Looijenga in the context of moduli spaces
[Loo93]. Following [DP05] we call such objects toric arrangements. In §1.1 below
we will briefly outline the state of the art on the topology of toric arrangements.
This research direction was spurred particularly by the seminal work of De Concini
and Procesi [DP05] which foreshadowed as rich an interplay between topology and
combinatorics as is the case for hyperplane arrangements.

A crucial aspect that emerged in [DP05] and was confirmed by subsequent re-
search in the topology of toric arrangements is that the matroid data naturally
associated with every toric arrangement is not fine enough to encode meaningful
geometric and topological invariants of the arrangement’s complement. The quest
for a suitable enrichment of matroid theory has been pursued from different points
of view, i.e., by modeling the algebraic-arithmetic structure of the set of characters
defining the arrangement [DM13, BM14, FM16] or by studying the properties of
the pattern of intersections [DR18, Pag17] (see §1.2 and §2.4).

In this paper we provide an Orlik-Solomon type presentation for the cohomology
algebra of an arbitrary toric arrangement, generalizing De Concini and Procesi’s
work on the unimodular case. Our presentation with rational coefficients is fully
determined by the intersection pattern. This presentation holds also for the integral
cohomology algebra, but, in this case, it is not determined by the intersection
pattern. In order to be able to state our results we provide some background.

1.1. Arrangements of hyperplanes and Orlik-Solomon Algebras. We start
with a (central) hyperplane arrangement, i.e. a finite set A = {Hλ}λ∈E of codi-
mension one linear subspaces in a complex vector space V ' Cn. The space
M(A) := V \ ∪A is in a natural way an affine complex variety, hence its coho-
mology (over C) is computed by the algebraic de Rham complex, as the quotient
of the group of closed algebraic forms modulo that of exact algebraic ones (by
Grothendieck’s algebraic de Rham theorem [Gro66]).

We choose vectors {aλ}λ∈E ⊂ V ∗ such that Hλ = ker aλ and consider the free
exterior algebra ΛE over Z generated by the symbols {eλ}λ∈E . In ΛE we define
an ideal as follows: for every subset A := {aλ1

, · · · , aλr} ⊂ {aλ}λ∈E of linearly



OS-TYPE PRESENTATIONS FOR THE COHOMOLOGY OF TORIC ARRANGEMENTS 3

dependent vectors, we set

∂eA :=

r∑
i=1

(−1)i−1eλ1
· · · êλi · · · eλr

and let JE be the ideal generated by the ∂eA’s, where A runs over all linearly
dependent subsets of E.

The quotient algebra ΛE/JE is called the Orlik-Solomon algebra of the arrange-
ment. The theorem of Orlik and Solomon states that the map ΛE → H∗ (M(A),Z)
sending eλ to the differential form 1

2πi dlog aλ factors to an algebra isomorphism

ΛE/JE
'−→ H∗

(
V \

⋃
λ∈E

Hλ,Z
)
.

Two consequences of this fact are:

(1) H∗ (M(A),Z) is generated in degree one;
(2) the integral ring structure depends only on the structure of the family of

linearly dependent subsets of {aλ}λ∈E .

As we will explain more precisely in Section 2.3, the combinatorial data of the
family of linearly dependent subsets of E is encoded in the arrangement’s matroid.
Thus, item (2) above can be rephrased by saying that the integral ring structure
depends only on the matroid or equivalently, using a basic fact in matroid theory,
that it depends only on the partially ordered set

L(A) := {∩B | B ⊆ A} (*)

of all intersections of hyperplanes, ordered by reverse inclusion [OT92, §2.1].
The construction of ΛE/JE can be formally carried out for every abstract ma-

troid, hence with every matroid is associated an Orlik-Solomon algebra, and this
class of algebras enjoys a rich structure theory (see [Yuz01] for a survey). For in-
stance, the matroid’s Whitney numbers of the first kind count the dimensions of
the algebra’s graded pieces (hence, in the case of arrangements, the Betti numbers
of the complement), and generating functions for these numbers can be obtained
from classical polynomial invariants of matroids (e.g., the Tutte polynomial).

1.2. Toric arrangements. A toric arrangement is a finite set A of codimension
one subtori in a complex torus T ' (C∗)n. The topological object of interest is,
again, the complement M(A) := T \ ∪A. Each such subtorus can be defined as a
coset of the kernel of some character of T . The arrangement is called central if every
subtorus is the kernel of a certain character. If we fix one such defining character
for every subtorus in A we can consider the matroid of linear dependencies among
the resulting set of characters (e.g., viewed as a family of elements of the vector
space obtained by tensoring the lattice of characters by Q). This matroid does not
depend on the choice of the characters.

Even to encode basic topological data such as the Betti numbers of the arrange-
ment’s complement, this “algebraic” matroid data must be refined, for instance by
some “arithmetic” data given by the multiplicity function which keeps track of the
index of sublattices spanned by subsets of the characters. This approach goes back
to Lawrence [Law11]. An axiomatization of some crucial properties of this function
is the foundation of the theory of arithmetic matroids [DM13, BM14]. By [DP05]
and via Moci’s arithmetic Tutte polynomial [Moc12a], the Betti numbers of the
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complement of a central toric arrangement can be computed from the associated
arithmetic matroid.

Since intersections of subtori can be topologically disconnected, the “geometric”
intersection data of a toric arrangement is customarily taken to be the poset of
layers, i.e., connected components of intersections (see Definition 2.5). The signifi-
cance of this poset was already pointed out by Zaslavsky [Zas77]. Using the results
in this paper Pagaria in [Pag19] has shown that the integral cohomology algebra of
the complement of a toric arrangement is not determined by the poset of layers and
that the rational cohomology algebra is not determine by the arithmetic matroid
(however it is determined by the poset of layers). For an in-depth discussion of this
question see also [Pag17]. The paper [DR18] introduces group actions on semima-
troids as an attempt for a unified axiomatization of posets of layers and multiplicity
functions.

The line of research leading to the present work starts with [DP05] where a gen-
eral result about the Betti numbers of the complement was obtained (see Lemma 2.17).
Combinatorial models for the homotopy type of complements of toric arrangements
were studied in [MS11, dD12], and minimality of such spaces was proved in [dD15].
De Concini and Gaiffi recently computed the cohomology of certain compactifica-
tions of M(A) [DG18, DG19], see also [Moc12b] for related earlier work.

Algebraic (rational) models for the associated graded of the rational cohomology
of M(A) were developed by Bibby [Bib16] and Dupont [Dup15], and the minimality
result of [dD15] implies torsion-freeness of the integral cohomology. Dupont also
proved rational formality of M(A) in [Dup16]. Further related work includes results
about representation stability [Bib18] and local system cohomology [DSY17].

Presentations of the graded rational algebra were discussed in [Bib16] and further
described in [Pag17], where the dependency of these algebras from the combinatorial
data of the poset of layers has been investigated in depth.

The integral cohomology algebra was considered in [CD17] using purely combi-
natorial methods, but we point out that the formulas for the multiplication given
there contain a mistake (see [CD]). Here we take a different point of view. In
particular, we obtain a presentation for the cohomology ring H∗(M(A),C) that
can be seen as generalizing the one obtained for hyperplanes by Orlik-Solomon. In
the unimodular case, i.e., when all the intersections of hypertori are connected, we
recover the presentation that had been obtained in [DP05].

1.3. Results. In this paper we provide Orlik-Solomon type presentations for the
integral cohomology algebra of a general toric arrangement.

More precisely,

• We generalize De Concini and Procesi’s presentation beyond the unimod-
ular case, to all toric arrangements (Theorem 6.13). In the general case
this algebra is not necessarily generated in degree one, and every minimal
linear dependency among characters induces a number of relations equal
to the number of connected components of the intersection of the involved
characters (the case where every such dependency induces one relation is
precisely the unimodular one studied by De Concini and Procesi).
• We prove that the forms we choose as generators of the cohomology are

integral. Moreover the relations involved in our presentation hold as rela-
tion of forms, not only of cohomology classes. Thereby we extend Dupont’s
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result of rational formality to integral formality, and we obtain an Orlik-
Solomon type presentation for the integral cohomology algebra as well (The-
orem 7.4).
• The data needed for the presentation of the rational cohomology is fully en-

coded in the poset of connected components of intersections (Remark 6.15)
and, thus, in the G-semimatroid associated to the arrangement [DR18].
Moreover, an example due to Pagaria shows that the cohomology ring
structure cannot be recovered from the associated arithmetic matroid or
from the associated matroid over Z (see Remark 2.18 and [Pag19]).

1.4. Plan. The plan of the paper is as follows: First, in Section 2 we recall a few
definitions related to the topology and combinatorics of toric arrangements, and
introduce our choice of logarithmic forms associated with the arrangement’s ele-
ments. In Section 3 we start from De Concini and Procesi’s work and deduce some
formal identities associated with minimal dependencies among the arrangement’s
defining characters. The technical tool towards treating the non-unimodular case
are certain coverings of toric arrangements introduced in Section 4. Then, in Sec-
tion 5 we put this tool to work and single out a special class of coverings (which
we call “separating covers”). These coverings allow us to define some fundamental
forms accounting for the single contributions in cohomology associated with differ-
ent components of the same intersection. In Section 6 we prove that these forms
generate the cohomology algebra and the relations generate the whole relation ideal.
Finally, in Section 7 we extend our results to integral homology.

1.5. Acknowledgements. Emanuele Delucchi was supported by the Swiss Na-
tional Science Foundation professorship grant PP00P2 150552/1. Filippo Callegaro
and Luca Migliorini were supported by PRIN 2015 “Moduli spaces and Lie theory”
2015ZWST2C - PE1.

2. Basic definitions and notations

2.1. Generalities. Throughout, E will denote a finite set. For indexing purposes,
we will fix an arbitrary total ordering < of E (e.g., by identifying it with a subset
of N). We will also follow the following conventions: we will consider every subset
of E to be ordered with the induced ordering. For A,B ⊆ E, we will write (A,B)
for the concatenation of the two totally ordered sets, i.e. if A = {ai < · · · < al} and
B = {bi < · · · < bh}, then (A,B) = (a1, a2, . . . , al, b1, . . . , bh), which is typically
different from A ∪B.

Definition 2.1. Given A,B ⊆ E, let `(A,B) denote the length of the permutation
that takes (A,B) into A ∪B.

2.2. Toric arrangements. Let T = (C∗)d be a complex torus, and let Λ be the
lattice of characters of T . Consider a list χ ∈ Λ|E| of primitive elements of Λ '
H1(T,Z) and a tuple b ∈ (C∗)|E|. The toric arrangement defined by χ and b is

A = {Hi | i ∈ E},

where Hi = χ−1
i (bi) is the level set of χi at level bi, for all i ∈ E.

The toric arrangement is called central if b = (1, . . . , 1), i.e., if Hi is the kernel
of χi for all i ∈ E.
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Remark 2.2. Once an isomorphism of Λ with Zd is fixed, for every subset A ⊆ X
we can associate the integer d× |A| - matrix [A] whose columns are the characters
in A, say in the fixed ordering of E.

Definition 2.3. We define M(A) ⊂ T to be the complement of the toric arrange-
ment A, i.e.

M(A) := T \
⋃
H∈A

H.

Definition 2.4. The toric arrangement A is called unimodular if ∩i∈AHi is either
connected or empty for all A ⊆ E.

Definition 2.5. For a given arrangement A in a torus T we define the poset of
layers L(A) as the set of all connected components of nonempty intersections of
elements of A ordered by reverse inclusion. The elements of L(A) are called layers
of the arrangement A.

Notice that the torus T is an element of L(A) since it is the intersection of the
empty family of hypertori.

Definition 2.6. The toric arrangement A is called essential if the maximal ele-
ments in L(A) are points.

Remark 2.7. If A is not essential, all maximal layers in L(A) are translates of the
same torus subgroup W of T . This follows from the classical theory of hyperplane
arrangements by applying [OT92, Lemma 5.30] to the lifting of A in the universal
covering of T . By choosing any direct summand T ′ of W in T we can decompose
the ambient torus as T = W × T ′. Hence, if we call A′ = {H ∩ T ′ | H ∈ A}
the arrangement induced by A in T ′, we have that A′ is essential and M(A′) =
M(A)/W . Moreover M(A) = W ×M(A′).

Definition 2.8. Given a toric arrangement A in T and a point p ∈ T we define
the linear arrangement A[p] in the tangent space Tp(T ) as the arrangement given
by the hyperplanes Tp(H) for all H ∈ A such that p ∈ H (cp. §1.1, and see [OT92]
for background on hyperplane arrangements).

For a given layer W of A, a point p ∈ W is generic if for any H ∈ A such
that W 6⊆ H we have that p /∈ H. We define the linear arrangement A[W ] as the
hyperplane arrangement A[p] for a generic point p ∈W .

Remark 2.9. Notice that the arrangement A[W ] does not depend on the choice
of the generic point p.

Example 2.10. Let x, y be the coordinates on the 2-dimensional torus T . We
consider the arrangement B in T = (C∗)2 given by the following hypertori:

H0 :={x3y = 1};
H1 :={y = 1};
H2 :={x = 1}.

Notice that H1 and H2 as well as H2 and H0 intersect in a single point p = (1, 1),

while H1 and H0 intersect in three points: p, q = (e
2πi
3 , 1), r = (e

4πi
3 , 1).

We can identify the group of characters Λ with Z2 generated by χ1 = (0, 1),
χ2 = (1, 0). Hence y = eχ1 , x = eχ2 and the hypertorus H0 is associated with the
character χ0 = χ1 + 3χ2.
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H1

H2 H0

p q r

Figure 1. A picture of the arrangement B.

The intersection of B with the compact torus is represented in Figure 2.10. Along
this paper we will use this arrangement as a running example for the definitions
and results that we introduce.

We identify the tangent space Tp(T ) with C2, with coordinates x̄, ȳ. The local
arrangement B[p] is given by the hyperplanes with equations 3x̄ + ȳ = 0, ȳ = 0,
x̄ = 0, while the local arrangement B[q] has equations 3x̄+ ȳ = 0, ȳ = 0.

2.3. Matroids. As elements of the vector space Q⊗Λ, the characters χi determine
linear dependency relations. The family

C := min
⊆
{C ⊆ E | {χi}i∈C is a linearly dependent set}

of index sets of minimal linear dependencies among characters in X is the set of
circuits of a matroid M on the set E. In the following we will not need specifics
about abstract matroids, hence we point to [Oxl11] for an introduction to this
theory. In general, we will speak of linearly dependent or independent subsets of E
referring to dependencies of the corresponding characters.

Definition 2.11. Recall the fixed total ordering of E. A broken circuit of the
matroid M is any subset of E of the form C \minC where C is a circuit.

A no-broken-circuit set (or nbc-set) is any subset of E that does not contain any
broken circuit. The collection of all nbc sets is denoted nbc(A) (or nbc(M) if we
want to stress the dependency from the matroid).

Remark 2.12. Every nbc-set is necessarily independent.

2.4. Arithmetic matroids. There is additional enumerative data to be garnered
from the set E, when this is viewed as a subset of the lattice Λ. In particular,
to every subset A ⊆ E we can associate its span ΛA := 〈A〉 ⊆ Λ and a lattice
ΛA := (Q⊗Z ΛA) ∩ Λ.

The function
m : 2E → N, A 7→ [ΛA : ΛA]

that associates to every subset A of E the index of the ΛA in ΛA is called the
multiplicity of A. Equivalently, m(A) is the cardinality of the torsion subgroup of
the quotient Λ/ΛA.

Remark 2.13.

(a) If A is a toric arrangement, then for all A ⊆ E the integer m(A) is the
number of connected components of the intersection

⋂
χi∈AHi when this

intersection is non-empty (cf. [Moc12a, Lemma 5.4] and [Law06, Section
2]).
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(b) Unimodularity of the list E is equivalent to m being constant equal to 1,
and is equivalent to unimodularity of the arrangement A.

(c) Given a matrix representation as in Remark 2.2, the number m(A) equals
the product of the elementary divisors of [A], i.e., the greatest common
divisor of all its minors with size equal to the rank of [A] (cf. [CR88, §16.B]).
If [A] is a non-singular square matrix, then m(A) = |det[A]|.

Lemma 2.14. If C is a circuit, then the following relation holds:∑
i∈C

cim(C \ {i})χi = 0 (1)

where ci ∈ {1,−1} for all i.

Proof. By definition, as C is minimally dependent, there are nonzero integers ki
such that

∑
i∈C kiχi = 0. Moreover, in order to compute the values of the function

m it is enough to restrict to the sublattice ΛC . By linearity of the determinant
function, we have

ki det[C \ {j}] = (−1)i+jkj det[C \ {i}] for all i, j ∈ C.

Now, elementary manipulation shows that (1) holds, e.g., with ci = sgn(ki).
�

Remark 2.15. By [Pag17, Theorem 3.12], the coefficients of all relations (1) (and,
in particular, the signs ci) depend only on the poset of layers L(A ).

Remark 2.16. If the arrangement is unimodular, from Lemma 2.14 we garner that
every circuit can be realized by a minimal linear dependency all whose coefficients
are integer units.

The following Lemma is essentially proved in [DP05, Thm. 4.2].

Lemma 2.17. If A is any toric arrangement in a torus T of dimension d, the
Poincaré polynomial of the complement M(A) is given in terms of the nbc-sets and
the multiplicity function as

Poin(M(A), t) =

d∑
j=0

Nj(t+ 1)d−jtj ,

where, for j = 0, . . . , d,

Nj :=
∑
L∈Cj

|nbcj(A[L])|.

and nbcj(A[L]) is the set of no-broken-circuits of cardinality j in the arrangement
A[L]. In particular, the j-th Betti number of M(A) is

βj(M(A)) =

j∑
i=0

Ni

(
d− i
j − i

)
.

Remark 2.18.

(a) The data given by the matroidM together with the function m determines
an arithmetic matroid. We refer to [DM13] for a general abstract definition
of an arithmetic matroid, and some of its properties.
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(b) The poset L(A) determines the arithmetic matroid data. In fact, for any
given set A ⊆ E we can consider the set X of minimal upper-bounds in
L(A): A is independent if and only if the poset-rank of the elements of
X equals |A|, and the multiplicity of A equals |X| (via Remark 2.13).
On the other hand the recent paper [Pag19] explicitly constructs two toric
arrangements with isomorphic arithmetic matroid data but non-isomorphic
posets of layers.

Example 2.19. In the arrangement B introduced in Example 2.10 the only minimal
dependent set of characters is C = {χ0, χ1, χ2}, hence this is the only circuit in
the associated matroid. The relation −χ0 + χ1 + 3χ2 = 0 holds. The arithmetic
matroid associated with B has set E = {χ0, χ1, χ2} ⊂ Λ = Z2 and the multiplicity
function is given by

m({χ0, χ1}) = 3,

while m(A) = 1 for all other subsets of E. In particular notice that B is a central,
not unimodular arrangement.

2.5. Logarithmic forms. We will study presentations of the cohomology algebra
that use, as generators, a distinguished set of logarithmic forms.

Definition 2.20. For all i ∈ E we set

ωi :=
1

2π
√
−1

dlog(1− eχi), and ψi :=
1

2π
√
−1

dlog(eχi). (2)

For symmetry reasons, we also define the forms

ωi :=
1

2π
√
−1

d log(1− eχi) +
1

2π
√
−1

d log(1− e−χi) = 2ωi − ψi. (3)

Given any A = {a1 < . . . < al} ⊆ E we write

ψA := ψa1 ∧ . . . ∧ ψal .

and

ωA := ωa1 ∧ . . . ∧ ωal , resp. ωA := ωa1 ∧ . . . ∧ ωal .

Now, if C = {χ0, . . . , χk} ⊆ E is a circuit of a unimodular arrangement, and we
assume that

χ0 =

k∑
i=1

χ1,

De Concini-Procesi in [DP05, p. 410, eq. (20)] (see also Remark 2.21 below) prove
the formal relation

∂ωC =
∑

minC∈A⊆C,
B(A)6=∅

(−1)ε(A)ωAψB(A) (4)

where the fixed total ordering on E is understood,

i(A) := max(C \A),

B(A) := (C \A) \ i(A),

ε(A) := |A|+ `(A,C \A),

and `(A,C \ A) is the length of the permutation reordering A,C \ A (see Defini-
tion 2.1).
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Remark 2.21. Notice that in [DP11, eq. (15.3)] (and also in [DP05, eq. (20)]) there
is a misprint concerning the sign: writing [k] for {1, . . . , k}, the correct equation is

ω[k] =
∑
I([k]

(−1)|I|+k+1+`(I,[k]\I)ωIψB(I∪{0})ω0. (5)

To go from [DP11, eq. (15.3)] to our (4) it is enough to use the boundary relation

∂ωC = ω[k] +
∑

0∈A⊆C,
|A|=k

(−1)ε(A)ωA.

Example 2.22. Consider the unimodular arrangement B′ in T = (C∗)2 given by
the hypertori H1, H2, H0, where H0 = {xy = 1}. The relation χ0 = χ1 + χ2 holds
and the forms associated with B′ are

ω0 =
1

2π
√
−1

dlog(1− xy), ω1 =
1

2π
√
−1

dlog(1− y), ω2 =
1

2π
√
−1

dlog(1− x),

ψ0 =
1

2π
√
−1

dlog(xy), ψ1 =
1

2π
√
−1

dlog(y), ψ2 =
1

2π
√
−1

dlog(x).

The set C = {χ0, χ1, χ2} is the only circuit and relation (4) gives

ω0ω1 − ω0ω2 + ω1ω2 = ω0ψ1

as can be checked directly. In the following we will use the arrangement B′ as a
running example of a unimodular arrangement.

3. Some formal identities

In this section we derive some identities among the forms associated with a circuit
C ⊆ E. For ease of notation we identify E as a subset of N with the natural order,
and we suppose that C = {0, 1, . . . , k}. Then the characters χ0, . . . , χk exhibit a
linear dependency, and we examine different cases according to the signs of the
coefficients of this linear dependency.

The results of this section will be enough in order to treat the unimodular case,
where (see Remark 2.16) such coefficients must be units.

Lemma 3.1. If χ0 =
∑k
i=1 χi, we have the following identity.

ω1 · · ·ωk = ω0

k∏
i=2

(ωi − ωi−1 + ψi−1) (6)

Proof. We fix j ∈ {1, . . . , k}. Consider the non-zero products in the expansion of
(6) that do not contain either the factor ωj nor the factor ψj . In each one of these
terms, all the factors ωi for i > j have to appear. Instead, due to the fact that
ωi ∧ ψi = 0, exactly one of the two terms ωi and ψi has to appear for i < j . So
the sum of the products not containing ωj or ψj will be

ω0

∏
1≤i<j

(−ωi + ψi)
∏
i>j

ωi.
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Hence we have,

ω0

k∏
i=2

(ωi − ωi−1 + ψi−1) =

k∑
j=1

ω0

∏
1≤i<j

(−ωi + ψi)
∏
i>j

ωi =

=

k∑
j=1

∑
0∈A(C,
i(A)=j

(−1)|A≤j |−1ηA

where

ηA = η0 · · · η̂i(A) · · · ηk
and

ηi :=

{
ωi if i ∈ A
ψi otherwise.

We conclude the purely formal identity

ω0

k∏
i=2

(ωi − ωi−1 + ψi−1) =
∑

0∈A(C
(−1)|A≤i(A)|−1ηA. (7)

Now we use our assumption
∑k
i=1 χi = χ0. It entails that the form ϑ(0) defined

before Proposition 15.6 in [DP11] equals ω0. In particular, again in the notation of
[DP11], for I ⊂ [k] we have

Φ
(0)
I

def
= (−1)`(I,[k]\I)

∏
i∈I

ωi
∏

j∈B(I∪{0})

ψjϑ
(0) = (−1)i(I)−1ηI∪{0}

noticing that the products ηI∪{0} already follow the standard ordering. We can
now use [DP11, eq. (15.3)], i.e.,∑

I([k]

(−1)|I|+k+1Φ
(0)
I = ω1 · · ·ωk

in order to rewrite Equation (7). If we take A = I ∪ {0}, since k − i(A) = |A| −
|A≤i(A)|, we obtain the claimed equality. �

Lemma 3.2. If
∑k
i=0 χi = 0, then we have

k∏
i=1

(ωi − ωi−1 + ψi−1) = 0 (8)

or, using the forms ωi defined in Equation 3,

k∏
i=1

(ωi + ψi − ωi−1 + ψi−1) = 0. (9)

Proof. We start by a formal identity which can be readily verified, e.g., by induction
on k.

ω1 · · ·ωk = ω1

k∏
i=2

(ωi − ωi−1 + ψi−1)
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We can now expand the left-hand side using Lemma 3.1 applied to the identity
(−χ0) =

∑
i>0 χi. Collecting terms we obtain

0 =

(
ω1 −

1

2π
√
−1

d log(1− e−χ0)

) k∏
i=2

(ωi − ωi−1 + ψi−1).

Noticing that 1
2π
√
−1

d log(1− e−χ0) = ω0 − ψ0 we conclude:

(ω1 − ω0 + ψ0)

k∏
i=2

(ωi − ωi−1 + ψi−1) = 0.

For the second equation we can immediately compute

2(ωi − ωi−1 + ψi−1) = ωi + ψi − ωi−1 + ψi−1,

so multiplying formula (8) by 2k we get the claimed identity. �

Example 3.3. We continue with the arrangement introduced in Example 2.22.
Since the relation

χ0 = χ1 + χ2

holds, from Lemma 3.1 we have ω1ω2 = ω0(ω2−ω1 +ψ1). In order to apply Lemma
3.2 we set χ′0 := −χ0 (and hence ω′0 = ω0 − ψ0 and ψ′0 = −ψ0) and if we consider
the characters χ′0, χ1, χ2 and the ordering (0, 1, 2) for the elements of the circuit we
obtain

(ω1 − ω′0 + ψ′0)(ω2 − ω1 + ψ1) = 0,

while if we consider the ordering (0, 2, 1) we obtain the relation

(ω2 − ω′0 + ψ′0)(ω1 − ω2 + ψ2) = 0

as one can easily check by direct computation. The relations that we can obtain
with different orderings of the elements in the circuit are consequences of the two
above.

Lemma 3.4. If
∑k
i=0 ciχi = 0 where ci = ±1 for all i,

k∏
i=1

(ωi + ciψi − ωi−1 + ci−1ψi−1) = 0, (10)

Proof. We apply Lemma 3.2 to the identity
∑k
i=0 χ

′
i = 0 where we set χ′i := ciχi for

all i. A glance at Equations (2) and (3) shows that the forms ω′i and ψ′i associated
with the χ′i satisfy ω′i = ωi and ψ′i = ciψi for all i, proving the claimed equality. �

Definition 3.5. Given a subset A ⊆ E, for every i ∈ E let

ηAi :=

{
ωi if i ∈ A
ψi otherwise

.

Thus, if B ⊆ E is disjoint from A we can define

ηA,B :=
∏

i∈A∪B
ηAi ,

where the factors are in increasing order with respect to the total order on E.
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Proposition 3.6. Let C be a circuit of the matroid such that the corresponding
minimal linear dependency has the form

∑
i∈C ciχi = 0 where ci ∈ {±1} for all i.

Then, ∑
j∈C

∑
A,B⊂C

C=AtBt{j}

(−1)|A≤j |cBηA,B = 0 (11)

where, for every B ⊆ E, we write cB :=
∏
i∈B ci. Moreover, as a consequence of

the equation above we have∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even

(−1)|A≤j |cBηA,B = 0. (12)

In particular ∂ωC corresponds to the sum of the terms with B = ∅.

Proof. Equation (10) can be rewritten as follows:

k∑
j=0

∏
i<j

(−ωi + ciψi)
∏
i>j

(ωi + ciψi) = 0 (13)

Expanding all the products and using Definition 3.5 we obtain formula (11).

Moreover, using the negated equation
∑k
i=0−ciχi = 0, Lemma 3.4 gives

k∏
i=1

(ωi − ciψi − ωi−1 − ci−1ψi−1) = 0. (14)

Adding this relation to the one in (10), and decomposing the expansion of the
product in two parts, one containing all the terms ωAψB with |B| even and the
other one containing all those terms with |B| odd, it can be shown that each of the
two parts must equal 0. �

In [DP05, Thm. 5.2] De Concini and Procesi prove that the complement of a
unimodular toric arrangement is formal. They do this by showing that the rational
cohomology ring is isomorphic to the sub-algebra of closed forms generated by
ωi = dlog(ebi − eχi) for i ∈ E and ψχ = dlog(eχ) for χ ∈ Λ. The formal relations
among these generators are implicit in [DP05, eq. (20)].

Notice that if the arrangement A is essential the forms ψi = dlog(eχi) for i ∈ E
generate H1(T ;Q). It follows that the relations stated in Proposition 3.6 above
lead to a presentation of the cohomology ring with respect to the generators ωi’s
and ψi’s. Hence we have the following reformulation of the result of [DP05].

Theorem 3.7. Let A be an essential unimodular toric arrangement. The rational
cohomology algebra H∗(M(A),Q) is isomorphic to the algebra E with

– Set of generators eA;B, where A and B are disjoint and such that AtB is
an independent set; the degree of the generator eA;B is |A tB|.

– The following types of relations
– For any two generators eA;B, eA′;B′ ,

eA;BeA′;B′ = 0 (15)

if A tB tA′ tB′ is a dependent set, and otherwise

eA;BeA′;B′ = (−1)`(A∪B,A
′∪B′)eA∪A′;B∪B′ . (16)
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– For every linear dependency
∑
i∈E niχi = 0 with ni ∈ Z, a relation∑

i∈E
nie∅;{i} = 0. (17)

– For every circuit C ⊆ E, with associated linear dependency
∑
i∈C niχi

with ni ∈ Z, a relation∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.

(−1)|A≤j |cBeA;B = 0 (18)

where, for all i ∈ C, ci := sgnni and cB =
∏
i∈B ci.

Remark 3.8. In order to check that the presentation above gives the same algebra
described in [DP05], we can first notice that relation (16) implies that our algebra
is generated in degree 1, by elements of the form e{i};∅ and e∅;{i}, that correspond
respectively to the generators λai,χi and ωi in [DP05, p. 410]. Then our relation
(15) corresponds to relation (2) of [DP05, p. 410]; our relation (17) corresponds to
relation (1) of [DP05, p. 410] and our relation (18) corresponds to relation (20’)
that is implicit in [DP05].

Example 3.9. Continuing Example 2.22 and using the relation −χ0 +χ1 +χ2 = 0
we obtain that the rational cohomology of the complement of arrangement B′ has
a presentation with generators

ω0, ω1, ω2, ψ0, ψ1, ψ2

where −ψ0 + ψ1 + ψ2 = 0 and relation (12) (or equivalently relation (18)) gives

ω0ω1 − ω0ω2 + ω1ω2 − ψ0ψ1 − ψ0ψ2 + ψ1ψ2 = 0.

Note that ψ0ψ1 +ψ0ψ2 = ψ0ψ0 = 0 and hence the relation above can be simplified.

4. Coverings of arrangements

Recall our setup from Section 2.2, and in particular that we consider a primitive
arrangement A in a torus T .

Given a lattice Λ′, Λ ⊆ Λ′ ⊆ Λ⊗Q we consider the Galois covering U → T as-
sociated with the subgroup Λ′∗ ⊆ Λ∗ ' π1(T ) whose group of deck automorphisms
is (Λ′/Λ)∗ ' Gal(U/T ).

Definition 4.1. Let f : U → T be a finite covering, and call AU the lift of A
through f to the torus U . More precisely, let

AU :=
⋃
H∈A

π0(f−1(H)),

the set of connected components of preimages of hypertori in A. Moreover, given
i ∈ E let

ai := |π0(f−1(Hi))|
denote the number of connected components of f−1(Hi). Given q ∈ f−1(Hi), let

HU
i (q)

denote the connected component of f−1(Hi) containing q.
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Remark 4.2. The previous definition ensures that AU is again a primitive ar-
rangement. It is, however, not necessarily central.

In fact, if we call χ̂ := f ◦ χ the character of U induced by χ, we see that the
connected components f−1(Hi) are associated with the (primitive) character χ̂i

ai
.

More precisely, every L ∈ π0(f−1(Hi)) has equation

χ̂i
ai

=
χ̂i
ai

(q)

where q is any point of L.

4.1. Logarithmic forms on coverings. Our next task is to describe the loga-
rithmic forms on M(AU ) associated with AU according to the set-up of Section
2.5.

Let f : U → T be a finite covering and let M(AU ) be as above. The algebraic
de Rham complex Ω•M(AU ) splits as direct sum of subcomplexes

Ω•M(AU ) '
⊕

λ∈Λ′/Λ

Ω•λ (19)

where Ω•λ consists of forms α such that for any τ ∈ Gal(U/T ) we have that τ∗(α) =
λ(τ)α. In particular the subcomplex of invariant forms Ω•

1
is canonically identified

with Ω•M(A).

For any i ∈ E and any point q ∈ f−1(Hi) we set

ωUi (q) :=
1

2π
√
−1

d log

(
1− e

χ̂i
ai
− χ̂iai (q)

)
(20)

for the logarithmic form in Ω1
M(AU ) associated with Hi(q). Notice that this form

does not depend on the choice of q in the same connected component.
Moreover, let

ψUi :=
f∗(ψi)

ai
= d log e

χ̂i
ai , (21)

where the upper symbol ∗ denotes as usual the pull-back.
More generally, given any A ⊆ E, choose q ∈ f−1(∩i∈AHi) and let

ωUA(q) :=
∏
i∈A

ωUi (q) and ωUA(q) :=
∏
i∈A

ωUi (q), (22)

where the factors are taken in increasing order with respect to the index i and
ωUi (q) := 2ωUi (q)− ψUi . Moreover, under the same set-up, for disjoint A and B let

ηUA,B(q) :=
∏

i∈AtB
ηUi (q)

where ηUi (q) = ωUi (q) if i ∈ A and ηUi (q) = ψUi if i ∈ B.

Proposition 4.3. Let A be any set of indices and let W be a connected component
of
⋂
i∈AHi. Let p be any point in W . The class∑

q∈f−1(p)

ωUA(q)

is invariant with respect to the group G of deck automorphisms of f and it does not
depend on the choice of the point p in W .
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Proof. The only nontrivial case is when the characters associated with the indices
in A are linearly independent, otherwise ωUA(q) = 0.

Let τ ∈ G. Using the definitions we have the equalities

τ∗(ωUi (q)) = τ∗
(

1

2π
√
−1

d log
(

1− e
χi
ai
−χiai (q)

))
=

1

2π
√
−1

d log
(

1− e
χi
ai

+
χi
ai

(τ)−χiai (q)
)

=
1

2π
√
−1

d log
(

1− e
χi
ai
−χiai (τ−1q)

)
= ωUi (τ−1(q)).

Since the forms ψi are translation-invariant, we obtain immediately also

τ∗(ωUi (q)) = ωUi (τ−1(q)).

If we write A = {a1, . . . , ak}, we see that every form

ωUA(q) = ωUa1(q)ωUa1(q) · · ·ωUak(q)

satisfies

τ∗
(
ωUA(q)

)
= ωUA(τ−1(q)).

The claim follows. �

The previous result allows us to give the following definition.

Definition 4.4. Let A = {Hi}i∈E be a toric arrangement in the torus T and
consider a finite covering f : U → T . Consider an independent set A ⊆ E, let W
be a connected component of ∩i∈AHi and choose p ∈ W . Since the pullback map

f∗ is injective, we can define forms ωfW,A and ωfW,A as the unique forms on M(A)
such that

f∗(ωfW,A) =
1

| ∩i∈A HU
i (q0) ∩ f−1(p)|

∑
q∈f−1(p)

ωUA(q)

and

f∗(ωfW,A) =
1

| ∩i∈A HU
i (q0) ∩ f−1(p)|

∑
q∈f−1(p)

ωUA(q)

where q0 is any point in f−1(p).

Remark 4.5. If the arrangement AU is unimodular the formula in the definition
above becomes

f∗(ωfW,A) =
1

|L ∩ f−1(p)|
∑

q∈f−1(p)

ωUA(q)

where L is any connected component of f−1(W ).

Example 4.6. We can now consider the arrangement B of Example 2.10 and the
covering f : U = (C∗)2 → T = (C∗)2 given by (u, v) 7→ (u, v3). The arrangement

BU is unimodular and is given by the 7 hypertori with equations u = 1, v = e
2πia

3

and uv = e
2πib

3 for a, b = 0, 1, 2.
The three subarrangements of BU containing respectively the hypertori passing

through p1 = (1, 1), p2 = (1, e
2πi
3 ), p3 = (1, e

4πi
3 ) are, up to translation, isomorphic

to the unimodular arrangement B′, while the subarrangements passing through the
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U

p1 q1 r1

p2 q2 r2

p3 q3 r3

f p q r

T

Figure 2. A picture on the compact torus of the covering de-
scribed in Example 4.6.

other six points are all isomorphic to the boolean arrangement in (C∗)2 given by
the hypertori with equations x = 1 and y = 1. We have the form

f∗(ωfp,{0,1}) =
−1

4π2

(
1 + uv

1− uv
d(uv)

uv

1 + v

1− v
dv

v
+

1 + ζ3uv

1− ζ3uv
d(uv)

uv

1 + ζ3v

1− ζ3v
dv

v
+

+
1 + ζ2

3uv

1− ζ2
3uv

d(uv)

uv

1 + ζ2
3v

1− ζ2
3v

dv

v

)
=

=
−3

4π2

u3v6 + u3v3 + 4u2v3 + 4uv3 + v3 + 1

uv (v3 − 1) (u3v3 − 1)
dudv

where ζ3 = e
2πi
3 and hence, taking the pushforward and dividing by the degree, we

get

ωfp,{0,1} =
−1

4π2

x3y2 + x3y + 4x2y + 4xy + y + 1

xy (y − 1) (x3y − 1)
dxdy.

5. Separation

To deal with the non-unimodular case, the following definition turns out to be
useful.

Definition 5.1. Let A be an independent subset of E. We say that a covering
f : U → T separates A if, for any connected component W of ∩i∈AHi and for all
i ∈ A there exist qi ∈ f−1(Hi) such that f(∩i∈AHU

i (qi)) = W .

Remark 5.2. If f : U → T is a covering such that the arrangement AU is uni-
modular, then f separates A for all independent set A ⊂ E.

Proposition 5.3. Let A ⊆ E be an independent set. There exists a covering
f : U → T that separates A.

Proof. Let Γ be a direct summand of ΛA in Λ. Hence Λ = ΛA ⊕ Γ. Consider the
lattice

Λ(A) :=

〈
χi

m(A)

〉
i∈A
⊕ Γ ⊆ Λ⊗Q.

We have the tower of subgroups

ΛA ⊆ ΛA ⊆
〈

χi
m(A)

〉
i∈A

where by definition [ΛA : ΛA] = m(A). Moreover since A is independent we have
[
〈

χi
m(A)

〉
i∈A : ΛA] = m(A)|A|. Hence we have [

〈
χi

m(A)

〉
i∈A : ΛA] = m(A)|A|−1.
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The inclusion Λ ⊆ Λ(A) induces a covering f : U → T of degree [Λ(A) : Λ] =
[
〈

χi
m(A)

〉
i∈A : ΛA] = m(A)|A|−1. The first equality follows since Γ is a direct sum-

mand of both terms in the left hand side.
This covering separates A. In fact, we claim that for every connected component

W of
⋂
i∈AHi and any choice of a point q ∈ f−1(W ), the intersection

⋂
i∈AH

U
i (q) is

connected. To prove this claim, let k denote the number of connected components of⋂
i∈AH

U
i (q). We count in two different ways the number of connected components

of f−1(
⋂
i∈AHi). On the one hand, for every i we have m(A) connected components

of f−1(Hi) and, once we have chosen for every i a connected hypertorus in f−1(Hi),
their intersection has k connected components. In this way we have km(A)|A|

such components. On the other hand, the number of connected components of
the preimage of each of the m(A) connected components of

⋂
i∈AHi is at most

m(A)rk(A)−1, the degree of the covering – hence we obtain a count of at most
m(A)rk(A) = m(A)|A| components. We conclude k = 1. �

The following theorem motivates our definition of separating coverings.

Theorem 5.4. Let A ⊂ E be an independent set. If f : U → T and g : V → T are

coverings that separate A, then ωfW,A = ωgW,A. Analogously we have ωfW,A = ωgW,A.

In the proof we will make use of the following remark.

Remark 5.5. For every index i, let HU
i,1, . . . H

U
i,mi

, denote the connected compo-

nents of f−1(Hi) and ωUi,j := ωHUi,j be the associated forms.

If we assume that f separates A, then Definition 4.4 is equivalent to

f∗(ωfW,A) =
∑

1≤j≤m
∩iHUi,ji⊆f

−1(W )

∏
i∈A

ωUi,ji

where the sum is indexed using the componentwise ordering among integer A-tuples
1 := (1, . . . , 1), j := (ji)i∈A, m := (mi)i∈A.

Proof of Theorem 5.4. We give the proof for ωfW,A = ωgW,A, the other case being
identical.

The theorem follows in its generality if we first assume that the statement holds
when g = f ◦ h, where h : V → U is a finite covering. In this case we have

V
h
//

g

''
U

f
// T

and

g∗(ωfW,A) = h∗(f∗(ωfW,A)) =

= h∗

 ∑
1≤j≤m

∩iHUi,ji⊆f
−1(W )

∏
i∈A

ωUi,ji


where the multi-index j is as in the Remark 5.5. The last equality follows since f
separates A.
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Again Remark 5.5 applied to g gives

g∗(ωgW,A) =
∑

1≤k≤n
∩iHVi,ki⊆g

−1(W )

∏
i∈A

ωVi,ki .

where for all i, HV
i,1, . . . ,H

V
i,ni

are the connected components of g−1(Hi), k =
(k1, . . . , k|A|), and n = (n1, . . . , n|A|).

Now we have that

h∗(ωUi,ji) =
∑

h(HVi,ki
)=HUi,ji

ωVi,ki .

Hence from the previous equality we get

g∗(ωfW,A) =
∑

1≤j≤m
∩iHUi,ji⊆f

−1(W )

∏
i∈A

h∗(ωUi,ji)

=
∑

1≤j≤m
∩iHUi,ji⊆f

−1(W )

∏
i∈A

∑
h(HVi,ki

)=HUi,ji

ωVi,ki

=
∑

1≤j≤m
∩iHUi,ji⊆f

−1(W )

∑
1≤k≤n

h(HVi,ki
)=HUi,ji

∏
i∈A

ωVi,ki

=
∑

1≤k≤n
∩iHVi,ki⊆g

−1(W )

∏
i∈A

ωVi,ki

= g∗(ωgW,A).

Finally, in the general case of two coverings f : U → T and g : V → T , we can
consider the diagram

V ′

h

~~   
g′

��

U

f   

V

g
~~

T

where h : V ′ → U is the pullback of g by f and g′ = f ◦ h. Since f separates A,
then also g′ separates A and we apply the first part of the proof to the maps f and
g′. �

Remark 5.6. Since the covering f : U → V is finite, we have that ωfW,A = f∗ω
U
A(q)

for any q ∈ f−1(W ) where f∗ is the pushforward associated with the covering map
f .

Using Theorem 5.4, we can state the following definition.

Definition 5.7. Given A ⊂ E independent and given W a connected component
of ∩i∈AHi, we define

ωW,A := ωfW,A
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and

ωW,A := ωfW,A

where f : U → T is any covering that separates A.

Remark 5.8. We would like to convince the reader that the definition of the forms
ωW,A and ωW,A given above is the most natural choice in order to provide a set of
form generating the cohomology of the toric complement.

As seen in (19), once we fix a covering f : U → T with Galois group G, the G-
module Ω1(M(AU )) has a natural decomposition as a direct sum of semi-invariant
modules associated with the characters of G. The forms defined above can be
identified with certain G-invariant forms on M(AU ). We have that

ΩkλΩk
′

λ′ ⊆ Ωk+k′

λ+λ′ .

In particular, if the sum of the characters of the factors is the trivial character, we
get invariant forms, which correspond to forms on M(A).

The hypothesis that f separates A guarantees that we obtain enough semi-
invariant 1-forms associated with the hypertori f−1(Hi), for i ∈ A, in order to
obtain m(A) independent invariant classes.

Lemma 5.9. If A,A′ ⊆ E are such that A t A′ is an independent set and W ,
resp. W ′ are a choice of a connected component of

⋂
i∈AHi, resp.

⋂
i∈A′ Hi, we

can compute

ωW,AωW ′,A′ = (−1)`(A,A
′)

∑
L∈π0(W∩W ′)

ωL,AtA′ .

Proof. Consider a covering f : U → T that separates the independent set A t A′
(e.g., the one described in Proposition 5.3). Then, by definition, in order to evaluate
the product ωW,AωW ′,A′ we consider its pullback f∗(ωW,A)f∗(ωW ′,A′) which, with
Remark 5.5, equals( ∑

1≤j≤m
∩iHUi,ji⊆f

−1(W )

∏
i∈A

ωUi,ji

)( ∑
1≤j′≤m′

∩i′H
U
i′,j′

i′
⊆f−1(W ′)

∏
i′∈A′

ωUi′,j′
i′

)

=
∑

1≤(j,j′)≤(m,m′)

∩iHUi,ji∩i′H
U
i′,j′

i′
⊆f−1(W ′∩W )

∏
i∈A

ωUi,ji

∏
i′∈A′

ωUi,j′
i′

=
∑

1≤j≤(m,m′)

∩i∈AtA′H
U
i,ji
⊆f−1(W ′∩W )

(−1)`(A,A
′)
∏

i∈AtA′
ωU
i,ji
,

where j = (j, j′). The latter equals, by definition

f∗

(
(−1)`(A,A

′)
∑

L∈π0(W∩W ′)

ωL,AtA′

)
as was to be shown. �

Remark 5.10. Assume that ∩i∈AHi is connected and call it W . Then, since the
identity separates A, we have ωW,A = ωA.
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Definition 5.11. Given A ⊂ E independent and given W a connected component
of ∩i∈AHi, we write ηW,A,B for the form

(−1)`(A,B)ωW,AψB .

In the following if W is not a connected component of ∩i∈AHi the expression
ηW,A,B will be considered as meaningless and it will be treated as zero.

Remark 5.12. We have the following immediate consequence of Lemma 5.9. If
A,A′, B,B′ ⊆ E are such that AtA′tBtB′ is an independent set and W , resp. W ′

are a choice of a connected component of
⋂
i∈AHi, resp.

⋂
i∈A′ Hi, we can compute

ηW,A,BηW ′,A′,B′ = (−1)`(A∪B,A
′∪B′)

∑
L∈π0(W∩W ′)

ηL,AtA′,BtB′ .

Definition 5.13. We introduce the increasing filtration F of H∗(M(A);Z) defined
by

F iH∗(M(A);Z) :=
∑
j≤i

Hj(M(A);Z) ·H∗(T ;Z).

Such a filtration is the Leray filtration associated with the inclusion M(A) ↪→ T.
The same filtration, with rational coefficients, was introduced in [DP05, Remark
4.3.(2)]. The associated graded module is

grk(H∗(M(A))) =
⊕

W∈L(A)
codim(W )=k

H∗(W )⊗Hk(M(A[W ])) (23)

where A[W ] is the hyperplane arrangement introduced in Definition 2.8.

Lemma 5.14. Let A,B ⊆ E such that A t B is independent and let W be a
connected component of ∩i∈AHi. Then, the image of ηW,A,B in gr|A|(H

∗(M(A)))
equals

(−1)`(B,A)2|A|ψB ⊗ eA ∈ H |B|(W )⊗H |A|(M(A[W ])),

where eA denotes the canonical generator in the top-degree of the Orlik-Solomon
algebra of the hyperplane arrangement A[W ] associated with the hyperplanes indexed
by A (cf. Definition 2.8).

Proof. We consider the corresponding graduation grU for the lift to a unimodular
covering f : U → T (e.g., the one separating A in Proposition 5.3).

By multiplicativity of grk, it suffices to prove the case B = ∅. We thus have to
consider ωW,A which, by Remark 5.6, can be written as ωW,A = f∗ω

U
A(q), where q

is a fixed point in f−1(W ). Now,

grUk
(
ωUA(q)

)
= grUk

(
2|A|ωUA(q)

)
,

hence

grk(ωW,A) = f∗(grk ω
U
A(q)) = grk(2|A|ωW,A),

and, since exp∗p(ωi) = ei, the class [2|A|ωW,A] maps to the element 2|A| ⊗ eA in

H0(W )⊗H |A|(M(A[W ])) as desired. �
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6. Unimodular coverings of toric arrangements and rational
cohomology

Let A = {H0, . . . ,Hk} be a primitive, central and essential arrangement in the
torus T . Suppose further that the associated matroid has exactly one circuit C = E,
and hence rkE = k. Let χ0, . . . , χk be the associated list of characters.

Recall from §2.4 that ΛC ⊂ Λ is the sublattice generated by the characters of C
and ΛC is the intersection (Q⊗Z ΛC) ∩ Λ.

Definition 6.1. For every i = 0, . . . , k set

ai :=
∏
j 6=i

m(C \ {j}).

We call Λ(C) the lattice in Q⊗Z Λ generated by the elements χi
ai

.

Remark 6.2. Since the matroid associated with A has exactly one circuit (i. e. C =
E) and A is essential we have that Λ = ΛC , hence m(C) is precisely the index of
ΛC in Λ.

Lemma 6.3. In Λ(C) we have the relation

k∑
i=0

ci
χi
ai

= 0 (24)

where ci ∈ {+1,−1} for all i.

Proof. This follows from Lemma 2.14, since the product

aim(C \ {i}) =

k∏
j=0

m(C \ {j})

does not depend on the index i. �

Lemma 6.4. The lattice Λ(C) contains Λ.

Proof. We split the claim into two inclusions:

Λ
(i)

⊆ 1

m(C)
ΛC

(ii)

⊆ Λ(C).

Inclusion (i) follows from the fact that, by Remark 6.2 the quotient Λ/ΛC is a
group of cardinality m(C), hence m(C)Λ ⊂ ΛC .

For inclusion (ii), notice that every element of 1
m(C)ΛC can be written as a

combination

1

m(C)

k∑
i=0

niχi =

k∑
i=0

(
niai
m(C)

)
χi
ai

for some ni ∈ Z. Now, since C is a circuit, m(C) divides every m(C \ {i}), i =
0, . . . , k (e.g., by Remark 2.13-(c)). Hence all parenthesized coefficients on the r.h.s.
are integers, which means 1

m(C)ΛC ⊆ Λ(C), as claimed.

�

Lemma 6.5. The inclusion of lattices Λ ⊆ Λ(C) induces a covering of T of degree

d =

k∏
j=0

m(C \ {j})k−1.
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Proof. It is enough to prove that d as defined above equals the index of Λ in Λ(C).
Let us fix an index i and consider the inclusions

ΛC\{i} ⊆ Λ ⊆ Λ(C).

Since (by Lemma 6.3) the lattice Λ(C) is generated by the basis {χjaj | j 6= i}, the

index of ΛC\{i} in Λ(C) is

[Λ(C) : ΛC\{i}] =
∏
j 6=i

aj .

On the other hand, m(C \ {i}) is by definition the index of ΛC\{i} in Λ = ΛC\{i}.
In conclusion, the desired index is

[Λ(C) : Λ] =
[Λ(C) : ΛC\{i}]

[Λ : ΛC\{i}]
=

∏
j 6=i aj

m(C \ {i})

=

∏
j 6=i
∏
l 6=jm(C \ {l})

m(C \ {i})
=

k∏
j=0

m(C \ {j})k−1

as claimed. �

Definition 6.6. Let

πU : U → T

denote the covering induced by the inclusion Λ ⊆ Λ(C).
We denote by AU the central arrangement in the torus U induced by the char-

acters χi
ai

in Λ(C). Notice that AU is clearly primitive, since the χi
ai

form a basis of

Λ(C).

Lemma 6.7. The arrangement AU is unimodular.

Proof. For every j ∈ C the set {χiai }i 6=j is a basis of the lattice Λ(C). In fact C \{j}
is independent and by (24) we have that

χj
aj

belongs to the lattice generated by the

characters χi
ai

.

Hence for every subset A ( C we can choose j ∈ C \ A. Then the set {χiai }i∈A
can be completed to a basis {χiai }i 6=j of Λ(C). �

Notice that the number of connected component of π−1
U (Hi) is ai. In fact for

j 6= i the character χi can be written in the basis {χkak }k 6=j as χi = ai
χi
ai

.

Lemma 6.8. Let A ( C, let W be a connected component of
⋂
i∈AHi and choose

p ∈ W . Then, for every layer L of AU such that πU (L) = W , the number of
preimages of p contained in L is

|L ∩ π−1
U (p)| = m(A)

k∏
i=0

m(C \ {i})k−1−|A|
∏
i∈A

m(C \ {i}).

Proof. The cardinality of the preimage of p is equal to the degree of the covering,
computed in Lemma 6.5. On the other hand, given W a connected component

of ∩i∈AHi, the number of connected components of π−1
U (W ) is equal to

∏
i∈A ai
m(A) .
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Hence

|L ∩ π−1
U (p)| =

∏k
i=0m(C \ {i})k−1∏

i∈A ai
m(A)

= m(A)

k∏
i=0

m(C \ {i})k−1−|A|
∏
i∈A

m(C \ {i}). �

Example 6.9. In the case of the arrangement of Example 4.6 with matrix(
3 0 1
1 1 0

)
we have that the lattice Λ = Z2 coincides with the lattice ΛC . In this case we have
a0 = 3, a1 = 3, a2 = 1, hence the lattice Λ(C) is generated by 〈e1 + e2

3 ,
e2
3 , e1〉.

In particular the inclusion Λ ⊂ Λ(C) corresponds to the covering f : U → T of
Example 4.6 (see Figure 2). Notice that, with respect to the basis {e1,

e2
3 } of Λ(C),

the arrangement BU is described by the matrix(
3 0 1
3 3 0

)
.

Lemma 6.10. For any A,B ⊆ C such that AtB is a maximal independent subset
of C, for any connected component W of

⋂
i∈AHi and p ∈W we have

π∗U (ηW,A,B) = (−1)`(A,B)m(A ∪B)

m(A)

∑
q∈π−1

U (p)

ωUA(q)ψUB . (25)

Proof. With Equation (21) we have

π∗U (ψB) =

(∏
i∈B

ai

)
ψUB .

and hence, applying this equality and Remark 4.5 to Definition 5.11, we get

π∗U (ηW,A,B) = (−1)`(A,B)

∏
i∈B ai

|L ∩ π−1
U (p)|

∑
q∈π−1

U (p)

ωUA(q)ψUB . (26)

The coefficient in formula (26) can be rewritten as∏
i∈B ai

|L ∩ π−1
U (p)|

=

∏
i∈B ai

m(A)
∏k
i=0m(C \ {i})k−1−|A|∏

i∈Am(C \ {i})

=

∏k
i=0m(C \ {i})|B|

m(A)
∏k
i=0m(C \ {i})|B|−1

∏
i∈A∪Bm(C \ {i})

=

∏k
i=0m(C \ {i})

m(A)
∏
i∈A∪Bm(C \ {i})

=
m(A ∪B)

m(A)
,

and the claim follows. �
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Definition 6.11. For any A,B ⊆ C such that A t B is an independent set and
every q ∈ π−1

U (
⋂
i∈AHi), we set

ηUA,B(q) := (−1)`(A,B)ωUA(q)ψUB .

Recall from Proposition 3.6 that given a circuit C, for every B ⊂ C we set
cB =

∏
i∈B ci.

Theorem 6.12. Let L be a connected component of ∩i∈CHi. We have∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
ηW,A,B = 0. (27)

Proof. Now we fix a point p ∈
⋂
i∈C Hi and we use relation (12) in AU . This gives

us, for every q ∈ π−1
U (p),∑

j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.

(−1)|A≤j |ηUA,B(q)cB = 0.

Summing over all q ∈ π−1
U (p), we get

0 =
∑

q∈π−1
U (p)

∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.

(−1)|A≤j |cBη
U
A,B(q)

=
∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.

(−1)|A≤j |cB
∑

q∈π−1
U (p)

ηUA,B(q)

=
∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
π∗U (ηW,A,B).

Since π∗U is an injective algebra homomorphism, we obtain the claimed equality. �

We now drop the assumption that the arithmetic matroid has a unique circuit
and we go back to the general set-up of any arrangement A in a torus T .

Theorem 6.13. Let A be an essential arrangement. The rational cohomology
algebra H∗(M(A),Q) is isomorphic to the algebra E with

– Set of generators eW,A;B, where W ranges over all layers of A, A is a
set generating W and B is disjoint from A and such that A t B is an
independent set; the degree of the generator eW,A;B is |A tB|.

– The following types of relations
– For any two generators eW,A;B, eW ′,A′;B′ ,

eW,A;BeW ′,A′;B′ = 0

if A tB tA′ tB′ is a dependent set, and otherwise

eW,A;BeW ′,A′;B′ = (−1)`(A∪B,A
′∪B′)

∑
L∈π0(W∩W ′)

eL,A∪A′;B∪B′ . (28)
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– For every linear dependency
∑
i∈E niχi = 0 with ni ∈ Z, a relation∑

i∈E
nieT,∅;{i} = 0. (29)

– For every circuit C ⊆ E, with associated linear dependency
∑
i∈C niχi =

0 with ni ∈ Z, and for every connected component L of ∩i∈CHi a re-
lation∑

j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
eW,A;B = 0 (30)

where, for all i ∈ C, ci := sgnni, cB =
∏
i∈B ci.

Proof. Consider the map

Φ : E → H∗(M(A),Q), eW,A;B 7→ [ηW,A,B ].

This map is well-defined – in fact, in the cohomology ring Equation (28) holds by
Remark 5.12, Equation (29) already holds in the cohomology of the ambient torus,
and Equation (30) holds by Theorem 6.12.

Now fix, for every independent A ⊆ E, a subset D(A) ⊆ E such that AtD(A) is
a basis of the matroid. Then, notice that relations (30) and (29) allow us to express
every generator in terms of generators eW,A;B where A is a no-broken-circuit set and
B is a subset of D(A). Then, with Lemma 5.14, the k-th graded part of the image
of Φ equals grkH

∗(M(A),Q). We conclude that Φ is bijective, hence it defines the
desired isomorphism. �

Remark 6.14. The relations in the presentation above hold for differential forms
and not only for their cohomology classes. As a consequence the space M(A) is
rationally formal. This fact has been already observed by [DP05] for unimodular
arrangements and proved by [Dup16] in general.

Remark 6.15. Notice that all relations of type (29) are implied by those associated
with minimal linear dependencies (i.e., circuits).

Moreover, the above presentation is completely encoded in the datum of the
poset of layers of A (needed, e.g., for Relations (28), (30)) and in the (relative) sign
pattern of the minimal linear dependencies. But by [Pag17, Theorem 3.12] (see
Remark 2.15), the latter can also be recovered by the poset.

The complements of the two toric arrangements constructed in the already
quoted paper [Pag19] (see Remark 2.18) turn out to have non-isomorphic coho-
mology rings. Since the two arrangements have isomorphic matroids, this implies
that the cohomology ring cannot be determined purely in terms of the arithmetic
matroid.

Example 6.16. We can provide a presentation of the rational cohomology of the
complement of arrangement B.
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The cohomology ring is generated by:

ω0 =
1

2π
√
−1

dlog

(
(1− x3y)2

x3y

)
, ψ0 =

1

2π
√
−1

dlog(x3y),

ω1 =
1

2π
√
−1

dlog

(
(1− y)2

y

)
, ψ1 =

1

2π
√
−1

dlog(y),

ω2 =
1

2π
√
−1

dlog

(
(1− x)2

x

)
, ψ2 =

1

2π
√
−1

dlog(x)

and

ωp,{0,1} =
−1

4π2

x3y2 + x3y + 4x2y + 4xy + y + 1

xy (y − 1) (x3y − 1)
dxdy,

ωq,{0,1} =
−1

4π2

x3y2 + x3y + 4ζ2
3x

2y + 4ζ3xy + y + 1

xy (y − 1) (x3y − 1)
dxdy,

ωr,{0,1} =
−1

4π2

x3y2 + x3y + 4ζ3x
2y + 4ζ2

3xy + y + 1

xy (y − 1) (x3y − 1)
dxdy

where ζ3 = e
2πi
3 . The relations are

ωiψi =0 ∀ i,
ω0ω1 =ωp,{0,1} + ωq,{0,1} + ωr,{0,1},

−ψ0 + ψ1 + 3ψ2 =0,

ωp,{0,1} − ω0ω2 + ω1ω2 =− ψ1ψ2 + ψ0ψ2 +
1

3
ψ0ψ1

where the last relation can be verified checking the equalities

x3y2 + x3y + 4x2y + 4xy + y + 1

xy (y − 1) (x3y − 1)
dxdy − x3y + 1

y(x3y − 1)

x+ 1

x(x− 1)
dydx+

+
y + 1

y(y − 1)

x+ 1

x(x− 1)
dydx =

dxdy

xy
=

= −dlog(y) dlog(x) + dlog(x3y) dlog(x) +
1

3
dlog(x3y) dlog(y).

7. Integral cohomology

Proposition 7.1. The forms ωW,A are integral forms.

Proof. We first prove our statement in the case when W is a point, hence |A| = n
and ωW,A is a n-form.

We will prove that for any integral cycle S ∈ Hn(M(A);Z) the integral∫
S

ωW,A

is an integer number. From the Universal Coefficients Theorem this implies that
ωW,A is an integral form.
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Now, let f : U → T be any covering that separates A and such that the arrange-
ment AU is unimodular. For any cycle S ∈ Hn(M(A);Z) we have∫

S

ωW,A =
1

deg f

∫
f−1(S)

f∗(ωW,A)

=
1

deg f

∫
f−1(S)

∑
q∈f−1(W )

ωUA(q)

where the last equality follows from Remark 4.5.
Now we can observe that the integral∫

f−1(S)

ωUA(q)

does not depend on the point q ∈ f−1(W ). Moreover, since W is a point, deg f =
|f−1(W )|. We thus have ∫

S

ωW,A =

∫
f−1(S)

ωUA(q)

for any point q ∈ f−1(W ). Since the arrangement AU is unimodular we have (see
(22)) ωUA(q) =

∏
i∈A ω

U
i (q). By definition (20) each factor ωUi (q) is an integer form.

Hence integrality of ωUA(q) implies integrality of ωW,A.
In the general case let W0 be the translate of W containing the identity of

T . We can consider the projection πW0
: T → T ′, where T ′ = T/W0. The W0-

invariant characters χi for i ∈ A induce characters χ′i of T ′, defining hypertori H ′i =
πW0(Hi) ⊆ T ′. Let W ′ = πW0(W ) be the component of

⋂
i∈AH

′
i corresponding to

W and consider the associated form ω′W ′,A on T ′. Then ωW,A = π∗W0
(ω′W ′,A) and

so integrality of ωW,A follows from integrality of ω′W ′,A, which is granted because

W ′ has dimension 0. �

Proposition 7.2. For any independent set A t B ⊂ E and for any layer W in

∩i∈AHi the form m(A)
m(AtB)ηW,A,B is integral.

Proof. Let A = {b1, . . . , b|A|} be a basis of ΓA. We complete it to a basis A ∪B =

{b1, . . . , b|A|+|B|} of ΓAtB . We can define the forms

vj :=
1

2π
√
−1

d log(ebj ).

Hence we can consider the square matrix M = (mij) such that for every j ∈ AtB
we have that

ψj =

|A|+|B|∑
i=1

mijvj .

The matrix M is a block matrix of the form

M =

(
M1 M2

0 M3

)
with M1 a |A| × |A| matrix and M3 a |B| × |B| matrix. For j > |A| we have that

ωW,Aψj = ωW,A
∑|A|+|B|
i=|A|+1mijvj , i.e., using only entries of M3. Hence

ηW,A,B = ±ωW,A
|A|+|B|∏
j=|A|+1

ψj = ±det(M3)ωW,A

|A|+|B|∏
j=|A|+1

vj .
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Since det(M3) = det(M)/det(M1) = m(AtB)/m(A) we have that m(A)
m(AtB)ηW,A,B

is an integral form. �

Recall the filtration F of H∗(M(A)) introduced in Definition 5.13:

F iH∗(M(A);Z) :=
⊕
j≤i

Hj(M(A);Z) ·H∗(T ;Z).

From Definition 2.20 we have that

[ωi] = 2[ωi] in F1 /F0H
∗(M(A);Z)

and

[ωW,A] = 2|A|[ωW,A] in F |A| /F |A|−1H
∗(M(A);Z) (31)

Definition 7.3. The Z-algebra R ⊂ Ω∗(M(A)) is the subalgebra generated by the
closed forms ωW,Aα, where W runs among the layers of ∩i∈AHi for A independent
and α ∈ H∗(T ;Z).

Theorem 7.4. Let A be an essential toric arrangement. The integral cohomology
ring of M(A) is isomorphic to the algebra R:

R ' H∗(M(A);Z).

In particular the space M(A) is formal.

Proof. Since the relations given in the presentation of Theorem 6.13 are equalities
between differential forms, the map i : R ↪→ H∗(M(A);Z) sending each form to its
cohomology class is an injective map of filtered modules. In particular it induces
an homomorphism

gr(i) : gr(R)→ gr(H∗(M(A);Z))

of graded modules. We claim that the map gr(i) is an isomorphism. Since the
strictly filtered map i is injective, gr(i) is injective too.

We will prove that gr(i) is also surjective. As seen in Equation (23), the graded
algebra decomposes as a direct sum

grk(H∗(M(A))) =
⊕

W∈L(A)
codim(W )=k

H∗(W )⊗Hk(M(A[W ]));

moreover the summand H∗(W ) ⊗ Hk(M(A[W ])) is generated, as a H∗(T ;Z)-
module, by the elements 1⊗ eA for A independent set such that W is a connected
component of

⋂
i∈AHi. From Equation (31) and Lemma 5.14 we have

2|A|[ωW,A] = [ωW,A] = 2|A|(1⊗ eA)W

where the inclusion of H∗(W )⊗Hk(M(A[W ])) in grk(H∗(M(A))) is understood.
Since the integral cohomology ring of the complement of an hyperplane arrange-

ment is torsion free [OS80], it follows that the algebra grk(H∗(M(A))) is torsion
free.

For every layer W and every set of indices A the element

(1⊗ eA)W ∈ grk(H∗(M(A)))

is the image of ωW,A and hence gr(i) is surjective. Since gr(i) is an isomorphism,
the claim follows. �
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Proposition 7.5. The generators ηW,A,B can be expressed in terms of the gener-
ators of the ring R = H∗(M(A);Z) as follows:

ηW,A,B =
∑
C⊆A

(−1)|C|2|A\C|
m(A \ C)

m(A)
ηL,A\C,B∪C

where L is the unique connected component of ∩i∈A\CHi such that W ⊂ L.

Proof. Take any covering f : U → T that separates A, e. g. the one given in Propo-
sition 5.3. From Definition 2.20, Definition 4.4, Lemma 6.10 and Definition 5.7 it
follows that

f∗(ηW,A,B) = (−1)`(A,B)m(A ∪B)

m(A)

∑
q∈f−1(p)

ωUA(q)ψUB =

= (−1)`(A,B)m(A ∪B)

m(A)

∑
q∈f−1(p)

∏
i∈A

(2ωUi (q)− ψUi )ψUB =

=
m(A ∪B)

m(A)

∑
q∈f−1(p)
C⊆A

(−1)`(A,B)+`(A\C,C)+|C|2|A\C|ωUA\C(q)ψUCψ
U
B =

= f∗

∑
C⊆A

(−1)|C|2|A\C|
m(A \ C)

m(A)
ηL,A\C,B∪C


where L is the unique connected component of ∩i∈A\CHi containing W . The
equality follows from the injectivity of the pull-back map. �

Example 7.6. For the arrangement B the previous relation gives the following
presentations for the integral cohomology. We can take as generators the forms

ω0 =
1

2π
√
−1

dlog(1− x3y), ψ0 =
1

2π
√
−1

dlog(x3y),

ω1 =
1

2π
√
−1

dlog(1− y), ψ1 =
1

2π
√
−1

dlog(y),

ω2 =
1

2π
√
−1

dlog(1− x), ψ2 =
1

2π
√
−1

dlog(x)

and

ωp,{0,1} =
−1

4π2

x2y + x+ 1

(y − 1) (x3y − 1)
dxdy,

ωq,{0,1} =
−ζ3
4π2

ζ2
3x

2y + ζ3x+ 1

(y − 1) (x3y − 1)
dxdy,

ωr,{0,1} =
−ζ2

3

4π2

ζ3x
2y + ζ2

3x+ 1

(y − 1) (x3y − 1)
dxdy

and we have the equivalent for the relations obtained for the rational cohomology:

ωiψi =0 ∀ i,
ω0ω1 =ωp,{0,1} + ωq,{0,1} + ωr,{0,1},

−ψ0 + ψ1 + 3ψ2 =0,

ωp,{0,1} − ω0ω2 + ω1ω2 =− ω0ψ2.
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As an example of application of Proposition 7.5 we can write the relation

ωp,{0,1} = 4ωp,{0,1} −
2

3
(ψ0ω1 + ω0ψ1) +

1

3
ψ0ψ1,

that can be also checked directly using the formulas above and the formulas in
Example 6.16.
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Universitá di Pisa, Dipartimento di Matematica, Largo Bruno Pontecorvo 5, 56127 Pisa,

Italia
E-mail address: callegaro@dm.unipi.it

Michele D’Adderio
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