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Recent progress in the design and fabrication of artificial two-dimensional (2D) materials paves
the way for the experimental realization of electron systems moving on complex geometries, such as
plane fractals. In this work, we calculate the quantum conductance of a 2D electron gas roaming
on a Sierpinski carpet (SC), i.e. a plane fractal with Hausdorff dimension intermediate between one
and two. We find that the fluctuations of the quantum conductance are a function of energy with
a fractal graph, whose dimension can be chosen by changing the geometry of the SC. This behavior
is independent of the underlying lattice geometry.

PACS numbers: 73.22.-f; 73.63.-b; 78.67.-n

A variety of experimental protocols that can be used
to create artificial two-dimensional (2D) periodic lattices
for electrons, atoms, and photons is available nowadays.
For example, schemes for creating artificial hexagonal lat-
tices [1] allowed to observe a wealth of interesting phe-
nomena, such as Mott-Hubbard split bands [2], massless
Dirac fermion behavior modified by pseudo-electric and
pseudo-magnetic fields [3], and photonic Floquet topolog-
ical insulating states [4]. In the case of ultracold atomic
gases loaded in hexagonal optical lattices, recent progress
has even led to the experimental realization [5] of the
Haldane model [6].

More generally, in the context of solid-state imple-
mentations, a combination of e-beam nanolithography,
etching, and metallic gate deposition [7–13] can in prin-
ciple yield high-quality two-dimensional (2D) patterns
with arbitrary, non-periodic shape in semiconductor het-
erostructures (such as GaAs/AlGaAs) hosting ultra-high
mobility 2D electron gases (EGs). Ultimately, these pro-
cedures yield an external potential landscape with the
desired geometry that acts as a potential well to trap
electrons. Synthetic solid-state quantum materials can
also be created by utilizing scanning probe methods [3].

Further improvements in spatial resolution can be ob-
tained by bottom-up nanofabrication methods such as
nanocrystal self-assembly [14]. Both the local electronic
structure [15] and the geometry of the system [16] can be
designed by careful choices of precursor molecules and
reaction parameters. In particular, usage of building
blocks with chiral bondings on a substrate with a com-
patible symmetry allowed the assembly of molecular Sier-
pinski triangle fractals [16]. These experimental achieve-
ments motivate the theoretical investigation of complex
2D structures, with the aim of discovering novel trans-
port and optical features which could enable or improve
technological applications.

FIG. 1. (Color online) a) Top-down geometric construction
of a Sierpinski carpet (SC). The black squares represent re-
gions that are removed from the white sample. At the m-th
iteration one removes N copies of the regions removed at the
(m−1)-th iteration, after scaling them down in linear size by
a factor L. [In panel a), N = 8 and L = 3.] For a number
of iterations m� 1 one obtains an approximation of the SC,
a plane fractal with dimension dH = logLN [' 1.89 in panel
a)]. b)-d) The triangular, square, and hexagonal underlying
lattices considered in this work. The width of the sample
is n lattice cells. e) and f) Examples of delocalized and lo-
calized electronic states in a SC with an underlying square
lattice. The square modulus |ψ(ri)|2 of the electron wave
function is shown, with a colorscale varying from white (zero)
to red (maximum). Because of the fractal geometry of the
sample, delocalized and localized states coexist in narrow en-
ergy ranges, producing fractal conductance fluctuations (see
Fig. 2).
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In this Letter, we present a theoretical study of the
transport properties of a 2DEG in a Sierpinski carpet
(SC), which is a 2D self-similar structure [17] shown in
Fig. 1a). Macroscopically, the self-similarity of the SC is
quantified by the fact that its Hausdorff dimension [17]
dH (i.e. a generalization of the topological dimension) is
between one (a line) and two (a plane), which makes the
SC a fractal [18]. By varying the parameters N and L
of the geometrical construction of the fractal, defined in
the caption of Fig. 1, a family of SCs with different di-
mensions can be generated. At a microscopic level, any
physical realization of a 2DEG in a SC will involve elec-
trons hopping on a lattice. Here, we have considered
three different underlying lattice structures, i.e. triangu-
lar, square, and hexagonal lattices, see Figs. 1b)-d). The
latter case is particularly relevant, since it models a top-
down nanofabricated SC obtained by etching a graphene
sheet.

Contrary to electrons hopping on Bloch
translationally-invariant lattices, the SC hosts both
extended—Fig. 1e)—and localized—Fig. 1f)—electronic
states in narrow energy ranges. Phase-coherent elec-
tronic transport through the SC, thus, depends sensibly
on the carrier energy and on the geometric matching
between lead positions and profiles of the extended elec-
tronic states. The quantum conductance can reach the
maximum value allowed by the number of open channels
in the leads [19], depending on the lead positions and
their widths, and displays fractal fluctuations [21–25]
as a function of energy, in the absence of a magnetic
field. At odds with the vast majority of the literature on
fractal conductance fluctuations (CFs), which considers
geometrically simple structures such as billiards, here we
find that, in a SC, the fractal dimension of the sample
determines the fractal dimension of the CFs [26].

We model a 2DEG in a SC by means of a single-orbital
tight-binding Hamiltonian:

Ĥ = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + H.c.

)
. (1)

This Hamiltonian describes electrons with spin σ =↑, ↓
hopping between the nearest-neighbor sites 〈i, j〉 of a
SC. Nanopattering a SC on the surface of a semiconduc-
tor hosting a high mobility 2DEG is expected [2, 7, 8]
to yield t of the order of a few meV, while protocols
based on STM manipulation [3] are expected to yield
t ∼ 100 meV. For the sake of simplicity, we ignore
magnetic fields and electron-electron interactions, which
are expected to lead to very interesting quantitative and
qualitative effects. Conductance and wavefunction cal-
culations are performed by using kwant [41]. In this
toolkit, wavefunction matching is implemented to com-
pute the wavefunctions in the scattering region and the
scattering matrix Sij for an incoming propagating mode
i and an outgoing mode j. The conductance G between

FIG. 2. (Color online) Panels a) and b) Energy dependence
of the conductance G(E) (in units of e2/h) of a square-lattice
SC with N = 8, L = 3, m = 3, and n = 54. Data in a) and
b) refer to central and diagonal lead positions, respectively.
Panel c) BC algorithm analysis of the conductance fluctua-
tions for SCs with geometry as in panels a) (+) and b) (×),
for m = 4, and n = 162. The horizontal dashed lines repre-
sent the saturation value N = Ns, with Ns = 3 × 104. The
slope d of the solid line has been set equal to the Hausdorff di-
mension dH ' 1.89 of the SC. Panel d) BC dimension d of the
conductance fluctuations for square-lattice SCs with different
dimensions for m = 3, n = 54 (#, �) and m = 4, n = 162 (�,
4). Results for both center (#, �) and diagonal (�, 4) lead
positions are shown. The solid line represents d = dH.

the left lead L and the right lead R is given by the Lan-
dauer formula

G =
2e2

h

∑
i∈L,j∈R

|Sij |2 . (2)

With reference to Fig. 1, each discretized SC is char-
acterized by the iteration step m, its underlying lattice
structure (triangular, square, and hexagonal), and the
total number of sites n along the bottom edge.

We have calculated the energy dependence of the two-
terminal conductance G(E) of the tight-binding model
(1) for a configuration with “central” leads (i.e. a con-
figuration in which two leads are attached to the center
of the left and right sides of the SC [20]) and one with
“diagonal” leads (i.e. leads attached to the bottom of the
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left side and to the top of the right side of the SC [20]).
We first focus on the geometrically simpler case of the
square lattice (Fig. 2) and then present results on the
triangular and hexagonal lattices (Fig. 3).

The quantum conductance G of a square-lattice SC as
a function of energy E is shown in Fig. 2a) and b). (We
show an energy range smaller than the whole bandwidth
to distinguish the single peaks in the profile.) In a phys-
ical realization of a 2DEG, the energy E is determined
by the gate potential. In a) we clearly see that the two-
terminal conductance G(E) is equal to 4e2/h for E = 0,
where a conductive extended state is present [29]. This is
because, with central lead positions, electrons of a given
spin injected on the left side of the SC can reach the right
side by following two equivalent paths, Fig. 1e), each car-
rying a conductance quantum, without being backscat-
tered by the inner holes of the SC. On the other hand,
as we can see from Fig. 2b), the SC can be insulating
(i.e. G = 0) at the same energy, when probed with leads
in a diagonal configuration, which do not couple to the
conducting state. The robustness of these features to dif-
ferent types of (localized or smoothly varying) disorder
is discussed in Ref. 20.

The roughness of the CF graph increases with the
iteration step m of the construction of the SC. As m
is increased, finer and finer CFs appear, at progres-
sively smaller energy scales. This suggests that the CF
graph is actually a fractal, with a dimension larger than
its topological dimension (one). The dimension of the
CF graph can be quantified by using a box-counting
(BC) algorithm [23]. This algorithm counts the num-
ber N of squares of size δ, which are necessary to con-
tinuously cover the graph of G(E) (in units of e2/h)
rescaled to a unit square. In general, points in the plane
(logN,− log δ) are expected to fall in three distinct re-
gions. For large values of δ, the squares are too large
to distinguish the features of the graph and N grows
slowly as δ decreases. For very small values of δ, the
squares are so small that they resolve the single points in
the set of data belonging to the CF graph: in this case
N is expected to saturate to the number Ns of points
in the energy mesh where G(E) is evaluated. Finally,
there is an intermediate region (usually called “scaling re-
gion”) where scaling is linear in a log-log plot, i.e. where
N ∼ δ−d. The slope d in the scaling region is the BC
estimate of the dimension of the CF [20].

In Fig. 2c) and d), we show the results of the BC algo-
rithm for the CFs of a square-lattice SC with N = 8 and
L = 3, as in Fig. 1a). The analyzed CFs clearly show
a fractal dimension 1 < d < 2 over a scaling region of
more than two orders of magnitude. The fractal nature
of the CF graph stems from the coexistence of extended
and localized electron wavefunctions in narrow energy
ranges [21, 23]. We stress that localized electron wave-
functions emerge in our SC, and even in the much simpler
Sierpinski gasket [37] (see below), in the absence of elas-

FIG. 3. (Color online) Panels a) and b) Energy dependence
of the conductance G(E) (in units of e2/h) of a SC with N =
8, L = 3, m = 3 and central lead positions. Data in a) refer
to a triangular lattice with n = 101, while data in b) refer
to a hexagonal lattice with n = 101. Panel c) BC algorithm
analysis for a triangular-lattice SC withN = 8, L = 3, m = 4,
and n = 284. Panel d) BC algorithm analysis for a hexagonal-
lattice SC with N = 8, L = 3, m = 4, and n = 284. Results
for both center (+) and diagonal (×) leads are shown in c)
and d). The slope d of the solid line has been set equal to the
dimension dH ' 1.89 of the SC.

tic disorder, because of scattering of electrons against the
inner holes of the SC. Most importantly, we find that the
results of the BC algorithm are independent of the lead
positions. This allows us to claim that the dimension
of the CF graph is an intrinsic property of the sample
geometry.

In Fig. 2d), we show the BC algorithm estimate of the
fractal dimension d for SCs with different dimensions, ob-
tained by changing N and L in the iterative construction
illustrated in Fig. 1a). BC algorithm analyses for m = 3
or m = 4, or for different lead configurations, yield values
of d which differ by a few percent. However, d substan-
tially depends on the Hausdorff dimension dH of the SC.
A reasonable conjecture, supported by our numerical re-
sults, is that d = dH for m � 1. It is remarkable that
the analysis of CFs carries information on the SC ge-
ometry, down to very small length scales. Conversely,
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FIG. 4. (Color online) Panel a) A Sierpinski gasket (N = 3,
L = 2), obtained with m = 5 iteration steps, with n = 32
lattice sites along the base. Panel b) A Vicsek fractal (N = 5,
L = 3), obtained with m = 3 iteration steps, with n = 54
lattice sites along the main crossarm. Panels c) and d) BC
analysis for a gasket with m = 8 and n = 256 and a Vicsek
fractal with m = 6 and n = 1458. The slope of the solid
line has been set equal to the Hausdorff dimension of the
samples. Results for two different lead locations are shown
with different symbols in panels c) and d).

these results show that it is possible to fix the fluctua-
tion spectrum of the quantum conductance by choosing
an appropriate SC. This evidence that the fractal dimen-
sion of the sample determines the fractal dimension of
the CF graph is the main result of this Letter.

In Fig. 3, we test the generality of our findings by ex-
tending our numerical analysis to SCs with underlying
triangular and hexagonal lattices. From Figs. 3a) and b)
we clearly see that the conductance graphs of triangular-
and hexagonal-lattice SCs are strikingly different from
each other and from the conductance graph of square-
lattice SCs. It is remarkable that, notwithstanding the
different appearances, the CF graph in all three cases
yield very similar BC algorithm results. In particular, the
estimated BC dimension of triangular- and hexagonal-
lattice SCs is compatible with our conjecture d = dH.

In passing, we notice that a gap appears in the conduc-
tance spectrum G(E) of the hexagonal-lattice SC, where
the conductance exactly vanishes. In Fig. 3b) we show
the conductance on an energy range below the gap. We
point out, however, that the corresponding density-of-
states of the hexagonal-lattice SC [20] does not display a
gap.

Finally, to shed further light on the origin of the fractal
CFs, we calculate the quantum conductance of two frac-
tals which do not belong to the family of SCs. In panel a)
of Fig. 4 we show an example of a Sierpinski gasket [37],
while in panel b) we report a Vicsek fractal [42]. For
simplicity, we limited our investigation to plane fractals
which can be obtained iteratively, as discussed in the cap-
tion of Fig. 1. In the case of a gasket, one starts from
a triangle, while for the Vicsek fractal one starts from a
square cross. The BC algorithm analysis applied to the
CFs of the gasket and Vicsek fractal is shown in panels
c) and d). We see that both geometries feature fractal
CFs, but the difference between d and dH in the case of
the gasket and Vicsek fractal is sizable contrary to the
case of a SC [20]. For increasing m, the box counting
dimension of the conductance fluctuations of the gasket
converges to d = 1.22 (dH = 1.58), and for the Vicsek
fractal to d = 1.69 (dH = 1.46). Moreover, the gasket
and Vicsek fractals show multiple extended regions where
the conductance is zero, whereas for the carpets the con-
ductance fluctuates heavily over the entire energy range,
except around E = 0 for the hexagonal-lattice case.

A qualitative difference between the SC and the gas-
ket/Vicsek fractal is the value of their “ramification num-
ber” [43], i.e. the number of bonds that must be cut in
order to isolate different iterations of the lattice. For
the gasket and Vicsek fractal, the ramification is finite,
while for the SC it is infinite. For fractals with finite
ramification it is possible to give analytical solutions to
the Schrödinger equation [37], while general fractals with
infinite ramification are not amenable to analytical treat-
ments. The relation between the dimensions of the sam-
ples in the SC family and of the corresponding CFs is
possibly a consequence of the infinite ramification of the
SC. Intuitively, electrons in a SC explore a larger portion
of the available phase space, and thus their conduction
properties are more closely related to those of the sample.
Although more work is necessary to establish this connec-
tion at a formal level, we believe that our results motivate
careful transport studies of planar fractal devices, which
are just being made available by recent progress in nano-
fabrication [13] and synthetic chemistry [16].

This work was supported by the European Research
Council Advanced Grant program (contract 338957)
(S.Y. and M.I.K.) and by the Italian Ministry of Ed-
ucation, University, and Research (MIUR) through the
program “Progetti Premiali 2012” - Project ABNAN-
OTECH (A.T. and M.P.). Support by the Nether-
lands National Computing Facilities foundation (NCF) is
gratefully acknowledged. We wish to thank Luigi Ambro-
sio, Raffaella Burioni, Fabio Taddei, and Sandro Wim-
berger for useful discussions, and Carlo Beenakker for
very useful correspondence.



5

∗ s.yuan@science.ru.nl
[1] M. Polini, F. Guinea, M. Lewenstein, H.C. Manoharan,

and V. Pellegrini, Nature Nanotech. 8, 625 (2013).
[2] A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M.

Polini, G. Vignale, M.I. Katsnelson, A. Pinczuk, L.N.
Pfeiffer, K.W. West, and V. Pellegrini, Science 332, 1176
(2011).

[3] K.K. Gomes, W. Mar, W. Ko, F. Guinea, and H.C.
Manoharan, Nature 483, 306 (2012).

[4] M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Sza-
meit, Nature 496, 196 (2013).

[5] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T.
Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237
(2014).

[6] F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[7] M. Gibertini, A. Singha, V. Pellegrini, M. Polini, G. Vi-

gnale, A. Pinczuk, L.N. Pfeiffer, K.W. West, Phys. Rev.
B 79, 241406(R) (2009).

[8] G. De Simoni, A. Singha, M. Gibertini, B. Karmakar, M.
Polini, V. Piazza, L.N. Pfeiffer, K.W. West, F. Beltram,
and V. Pellegrini, Appl. Phys. Lett. 97, 132113 (2010).

[9] C.-H. Park and S.G. Louie, Nano Lett. 9, 1793 (2009).
[10] E. Räsänen, C.A. Rozzi, S. Pittalis, and G. Vignale,

Phys. Rev. Lett. 108, 246803 (2012).
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