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Abstract

The estimation of a vector moving average (VMA) process represents a challenging
task since the likelihood estimator is extremely slow to converge, even for small-
dimensional systems. An alternative estimation method is provided, based on
computing several aggregations of the variables of the system and applying likelihood
estimators to the resulting univariate processes; the VMA parameters are then
recovered using linear algebra tools. This avoids the complexity of maximizing
the multivariate likelihood directly. Closed-form results are presented and used to
compute the parameters of the process as a function of its autocovariances, using
linear algebra tools. Then, an autocovariance estimation method based on the
estimation of univariate models only is introduced. It is proved that the resulting
estimator is consistent and asymptotically normal. A Monte Carlo simulation shows
the good performance of this estimator in small samples.
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1. Introduction1

Let yt be a vector moving average process of order q > 0, (VMA(q))2

yt = vt +
q
∑

i=1

Θivt−i , (1)

where y j ∈ Rd , Θ j ∈ Rd×d , v j ∈ Rd for each j. Here vt is a process of independent3

and identically distributed (i.i.d.) noises; in particular, E [vt] = 0, E
�

vtv
T
t

�

= Σv > 0,4

and E
�

vtv
T
s

�

= 0 for any t 6= s.5

The VMA process represents a relevant framework, widely discussed and em-6

ployed by the time series literature in the last century (see Reinsel (2003), Lütkepohl7
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(2005) and Brockwell and Davis (2009)). Indeed, it represents a potential bench-8

mark in forecasting time series (see Lütkepohl (2012)) and it can be used for impulse9

response analysis (see for example Plagborg-Møller et al. (2015)). In addition, it10

appears as the reduced form of DSGE models (see Ravenna (2007)) as well as11

structural time series models (see Harvey (1990), Durbin and Koopman (2012) and12

Hyndman et al. (2008)).13

The maximum likelihood (ML) estimation of the parameters of a VMA(q) is a14

challenging task; the maximization of the likelihood function can be computationally15

intractable even for small-dimensional systems. As a consequence, many statistical16

and econometric packages estimate vector autoregressive processes (VAR) but not17

VMA processes or VARMA processes.18

To avoid the complications associated to ML estimation, the literature provides19

several alternative estimation methods based on various approaches (see Dufour20

and Pelletier (2005); Durbin (1960); Galbraith et al. (2002); Hannan and Kavalieris21

(1984); Hannan and Rissanen (1982); Kapetanios (2003); Koreisha and Pukkila22

(1990); Wilson (1973)).23

In the first part of our paper, we present several results and algorithms from24

the numerical linear algebra literature that can be used to compute the parameters25

of a VMA process as a closed-form function of its autocovariances Γk := E
�

yty
T
t−k

�

26

(spectral factorization). To our knowledge, the only closed-form results for VARMA27

models appearing in the statistical literature are those given by the Yule-Walker28

equations (see Lütkepohl (2005)), which deal with the autoregressive part only. All29

existing methods to deal with the MA part (such as the innovations algorithm (Brock-30

well and Davis, 2009, Proposition 11.4.2)) require an iterative procedure or are31

formulated as a minimization problem with no explicit solution. In contrast, the32

only iterative part of our proposed algorithm lies in the computation of the eigen-33

values and eigenvectors of a matrix, which is a well studied problem in numerical34

linear algebra and is so fast and reliable that it is typically comparable with other35

non-iterative operations such as matrix multiplication. Hence the first nontrivial36

contribution of the present paper is introducing this method to the econometrics37

community.38

We then suggest a novel estimation procedure to obtain these autocovariances39

Γk, which works as follows.40

1. We choose a vector of weights w0 ∈ R1×d (or two vectors w0,w1 ∈ R1×d), and41

compute the scalar aggregate process x t =w0yt (or x t =w0yt +w1yt−1).42

2. We estimate the parameters of the univariate MA process followed by x t by43

maximum likelihood. We make use of these parameters to compute estimates44

for the autocovariances of x t .45

3. We compute, separately, analytic expressions for the autocovariances of the46

aggregated process in terms of the unknown values of the entries of Γk, k =47

0, 1, . . . , q. Equating these expressions with the values computed in Step 2, we48

obtain several linear equations in the entries of the matrices Γk.49

4. We repeat Steps 1–3 for several choices of the aggregation vectors, until we50

have enough equations to determine the matrices Γk completely.51

2



5. We solve these equations using a weighted least-squares procedure, to deter-52

mine estimates of the Γk.53

6. We use the spectral factorization technique to recover the parameters Θk,54

k = 1, 2, . . . , q, and Σv from the Γk.55

Our method generalizes the so-called META (Moment Estimation Through Aggrega-56

tion) estimator, first described for simpler models in Poloni and Sbrana (2015b)57

and Poloni and Sbrana (2015a). (See Sbrana et al. (2015) for an empirical applica-58

tion of this estimator.) A similar idea of sampling a large-dimensional model several59

times to simplify it appears in the indirect inference method of Gourieroux et al.60

(1993) and in the indirect continuous GMM estimator of Kotchoni (2014).61

Contrary to most of the alternative estimators mentioned earlier, our method62

still uses the Gaussian likelihood: however, we replace the multivariate maximum63

likelihood estimation problem with several univariate ones, with computational64

advantage.65

We provide asymptotic theory for our estimator, proving consistency and nor-66

mality under the assumption that the noise is i.i.d..67

Finally, we present a Monte Carlo simulation to provide evidence of the good68

performance of the closed-form estimator.69

The remainder of the paper is structured as follows. Section 2 describes a70

closed-form spectral factorization method based on linear algebra computations.71

Section 3 describes the estimation procedure and its possible variants. A Monte72

Carlo simulation comparing the small-sample performance of the META approach73

with those of standard estimation methods is in Section 4. In Section 5 we provide74

the asymptotic properties of the META estimator, while Section 6 concludes. The75

proofs of all theorems are relegated to the Appendix.76

2. Closed form results77

In this section, we describe a method to derive the parameters of a VMA(q) as78

an analytic function of its autocovariances.79

2.1. Autocovariance generating function, transfer function and canonical factorization80

In this paper, we rely heavily on the formalism of transfer functions and lag81

operators (Box and Jenkins (1976); Harvey (1990)), which is a powerful method82

to derive the properties of linear stochastic processes reducing them to polynomial83

and rational function manipulation. Given a bi-infinite sequence v = (vt)t=...,−1,0,1,...,84

we denote by L (lag operator) the map defined by (Lv)t = vt−1. Moreover, for any85

rational function F ∈ C(L)m×n in the parameter L, we set F(L)? := F(L−1)T . Here86

and in the rest of the paper, we use the notation AT to denote the transpose of a87

matrix A, and use bold letters for vectors and uppercase letters for matrices.88

A large family of time series, called stationary linear models, can be written as89

y= G(L)v, where v= (vt)t=...,−1,0,1,..., (with vt ∈ Rm for each t), is a family of i.i.d.90

random variables with E [vt] = 0 and E
�

vtv
T
t

�

= Σv > 0, and G(L) ∈ R(L)d×m is91

a rational function in L, called transfer function. Among them is the VMA(q) as in92

(1), for which m= d and G(L) = Θ(L) := I +
∑q

i=1Θi L
i . Given a linear model (yt),93
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with yt ∈ Rd for each t, we define its autocovariances as Γk := E [ytyt−k] ∈ Rd×d , for94

k ∈ Z, and its autocovariance generating function as Γ (L) :=
∑∞

i=−∞ Γi L
i ∈ R(L)d×d .95

It is immediate to prove that Γ (L) = Γ (L)?, i.e., that Γ−i = Γ T
i for each i ∈ Z. Matrix96

rational functions satisfying this properties are known as palindromic (see Chu et al.97

(2010)). Moreover, the following result holds (Harvey, 1990, Equation 8.1.25).98

Lemma 1. Let y= G(L)v ∈ Rd×m be a stationary linear model; then,99

Γ (L) = G(L)ΣvG(L)?. (2)

From this lemma, it is immediate to see that Γ (eiλ) = Γ (e−iλ)T ≥ 0 for each100

λ ∈ [0, 2π], where by the notation Γ (eiλ) we mean replacing the variable L with the101

complex number eiλ, which lies on the unit circle. The function Γ (eiλ) is also known102

as the (asymptotic) spectral density matrix of the process yt .103

We wish to derive a method to solve the inverse problem, that is, given an104

autocovariance generating function Γ (L), finding a suitable stationary linear model105

G(L) satisfying (2). We start from a Γ (L) satisfying the following assumptions.106

Assumption P Γ (eiλ) is positive definite for each λ ∈ [0, 2π].107

Assumption Q Γ (L) ∈ R(L)d×d is a palindromic Laurent polynomial of degree q,108

i.e., Γk = 0 whenever |k|> q.109

If the two assumptions hold, there exists a unique factorization of the form (2) with110

m= d, i.e.,111

Γ (L) = Θ(L)Σv̂Θ(L)
?, Σv̂ ∈ Rd×d , Θ(L) = I +

q
∑

i=1

Θi L
i ∈ R[L]d×d , (3)

where the VMA(q) process Θ(L) is invertible, that is, it holds that detΘ(z) 6= 0112

whenever |z| ≤ 1.113

This means that we can reparametrize any model whose ACGF satisfies Assump-114

tions P and Q as an invertible VMA(q) with uncorrelated noise v̂t . The factorization115

(3) has been widely studied, not only for polynomials functions but also for more gen-116

eral forms of Γ (L), in several fields, such as operator theory (canonical factorization,117

Bart et al. (2010)), control theory (J-spectral factorization, Hunt (1993)), and time118

series (spectral density, Rozanov (1967) and Hamilton (1994), Wold decomposition,119

Fuller (1996)). For an elementary proof of this result (with minor differences), see120

for instance Ephremidze (2010).121

2.2. Linearization of a palindromic matrix polynomial122

A square rational matrix function F(L) ∈ R(L)m×m is called regular if det F(L) is123

not identically zero. In this case, its eigenvalues are defined as the values λ ∈ C such124

that det F(λ) = 0. The eigenvectors associated to λ are defined as vectors x in Cd
125

such that F(λ)x= 0.126

The following result is classical in linear algebra (see Gohberg et al. (1982)),127

although with several variants on how the blocks of the matrix C are laid out.128
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Lemma 2 (companion form). Let P(L) =
∑k

i=0 Pi L
i ∈ C[L]d×d be a matrix polyno-129

mial, with the leading coefficient Pk nonsingular, and let130

C =















0 0 . . . 0 −P−1
k P0

I 0 . . . 0 −P−1
k P1

0 I
. . . 0 −P−1

k P2
...

...
. . .

. . .
...

0 0 . . . I −P−1
k Pk−1















, (4)

where each block has size d × d. Let (λi ,ui), i = 1,2, . . . dk, be the eigenvalues131

and associated eigenvectors of C. Then, the eigenvalues of P(L) and their associate132

eigenvectors are133

λi , xi :=
�

0 0 . . . 0 I
�

ui .

2.3. From moments to parameters: a simpler version134

While spectral factorizations are widely studied from the theoretical point of135

view, in most references (especially for the multivariate case) the solution is given136

only as an integral representation or in an abstract form that does not allow an easy137

computation. Here, we present a practical algorithm to compute them in the case in138

which Γ (L) is a matrix Laurent polynomial.139

We start by presenting in this subsection a simpler version of the algorithm. This140

first version is not fully general as it requires a few nonsingularity and nondegener-141

ateness assumptions, and may suffer from some numerical instability, but still it is142

(1) simpler to explain for a first approach (2) suitable for implementation in most143

software packages, as it only requires a function to compute eigenvalues and eigen-144

vectors of a matrix. A more general and rigorous version of this approach, requiring145

fewer assumptions but more sophisticated linear algebra tools, is in Section 2.4.146

Let us consider an invertible VMA(q) process with transfer function147

Θ(L) = I +
q
∑

i=1

Θi L
i .

Since the factorization (3) is unique, the problem of determining Θ(L) and Σv148

given Γ (L) = Θ(L)ΣvΘ(L)? is equivalent to spectral factorization. The determinant149

det Γ (z) vanishes if and only if z is an eigenvalue of Θ(L) or of Θ(L)?. Let us suppose150

that Θ(L) has qd distinct eigenvalues. Thanks to the invertibility assumption, each of151

them has modulus greater than 1; hence, we shall denote them as λ−1
1 ,λ−1

2 , . . . ,λ−1
qd ,152

with |λi |< 1 for each i = 1,2, . . . , qd. The eigenvalues of Θ(L)? are then given by153

λi , for i = 1, 2, . . . , qd.154

We can find numerically the eigenvalues λ1,λ2, . . . ,λqd ,λ−1
1 ,λ−1

2 , . . . ,λ−1
qd and155

eigenvectors x1,x2, . . . ,x2qd of Γ (L) by constructing the matrix C in (4) for the matrix156

polynomial P(L) = LqΓ (L) and applying Lemma 2.157

Let now H(L) := LqΘ(L)?, which is a polynomial in L. It follows from the158

invertibility assumption that, for each i = 1,2, . . . , qd, in the product λq
i Γ (λi) =159

Θ(λi)Σv̂H(λi) the first factorΘ(λi) is nonsingular, as well asΣv, and hence H(λi)xi =160
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0. Therefore, (λi ,xi) for i = 1, 2, . . . , qd are the eigenvalues and eigenvectors of the161

matrix polynomial H(L).162

Now all we are missing is a method to reconstruct a matrix polynomial given its163

eigenpairs. Such a method is described in the book Gohberg et al. (1982):164

Theorem 3 (Gohberg et al. (1982)). Let λ1,λ2, . . . ,λqd and x1,x2, . . . ,xqd be the165

eigenvalues and eigenvectors of a degree-q matrix polynomial H(L) ∈ Cd×d[L], and let166

X1 =
�

x1 x2 . . . xqd

�

∈ Cd×qd , D = diag(λ1,λ2, . . . ,λqd) ∈ Cqd×qd . (5)

Then, the matrix167

Y =













X1
X1D
X1D2

...
X1Dq−1













∈ Cqd×qd (6)

is nonsingular. Partition Y −1 into qd × d blocks
�

V0 V1 . . . Vq−1

�

; then,168

H(L) = I Lq − X1DqVq−1 Lq−1 − X1DqVq−2 Lq−2 − · · · − X1DqV1 L − X1DqV0. (7)

Hence the coefficients Θi of the VMA(q) (1) are given by169

Θi = −(X1DqVq−i)
T , (8)

with X1, D as in (5).170

Once we have determined the coefficients Θi , the value of Σv̂ can be obtained171

for instance by evaluating (3) in L = 1, i.e.,172

Σv̂ = (I +Θ1 +Θ2 + · · ·+Θq)
−1Γ (1)

�

(I +Θ1 +Θ2 + · · ·+Θq)
−1)
�∗

. (9)

Putting everything together, we obtain Algorithm 1.173

2.4. From moments to parameters: a more rigorous version174

It is important to identify the steps which lack rigor in the previous discussion.175

• To apply Lemma 2, we are assuming that the leading coefficient is nonsingular,176

i.e., det Γq 6= 0. This need not be the case.177

• We are assuming that the matrix rational function Γ (L) has 2qd distinct eigen-178

vectors; this need not be the case: it could have multiple eigenvalues and179

Jordan chains.180

The aim of this section is giving a more thorough treatment of this material,181

including an algorithm that works in a numerically robust way even in case of182

repeated or clustered eigenvalues. Most of the material is taken from Gohberg et al.183

(1988) and Gohberg et al. (1982).184
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Algorithm 1: Spectral factorization of a polynomial function (simpler ver-
sion).

Input: degree q and coefficients Γ0 = Γ T
0 , Γ1, . . . , Γq of an ACGF satisfying

Assumptions P and Q.
Output: coefficients Σv̂ and Θi , i = 1,2, . . . , q of its factorization (3).

1 Construct the companion matrix C (as in (4)) for the matrix polynomial
P(L) = LqΓ (L);

2 compute its eigenvalues and eigenvectors, which must come in pairs
(λ, 1/λ);

3 label by λ1,λ2, . . . ,λqd and x1,x2, . . . ,xqd the eigenpairs for which |λi |< 1;
4 form the matrices X , D, Y as in (5) and (6);
5 invert Y and denote by Vi its blocks, as in Theorem 3;
6 compute Θi , for i = 1,2, . . . , q, using (8), and Σv̂ using (9).

First of all, we wish to get rid of the matrix inverse in (4). Following Gohberg
et al. (1988), we define

C̃(L) =













I 0 0 . . . 0 0
0 I 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . I 0
0 0 0 . . . 0 P2q













L −















0 0 . . . 0 −P0
I 0 . . . 0 −P1

0 I
. . . 0 −P2

...
...

. . .
. . .

...
0 0 . . . I −P2q−1















, (10a)

R=
�

0 0 . . . I
�

∈ Cd×2qd , (10b)

where all blocks d × d. Here, C̃(L) is a matrix pencil, i.e., a linear matrix polynomial.185

The pair (R, C̃(L)) is a right pencil pair for the matrix polynomial P(L). Informally,186

this means that the pencil C̃(L) has the same eigenvalues and multiplicities as P(L),187

and that the pair (R, C̃(L)) can be used to recover its right eigenvectors. See (Gohberg188

et al., 1988, Section I.2) for a rigorous definition and in particular Proposition 2.2189

therein for a proof of this statement.190

A right pencil pair (X , LE−A) is called strictly equivalent to (R, C̃(L)) if there are191

two invertible matrices F1, F2 ∈ Cdn×dn such that LE − A= F1(C̃(L))F2 and X = RF2192

(Gohberg et al., 1988, Section I.4). Note that this implies that the eigenvalues of193

LE − A are the same as those of C̃(L) and P(L), since multiplying by invertible194

matrices on both sides preserves the eigenvalues of the pencil.195

We introduce now another result in numerical linear algebra, the generalized196

Schur decomposition, also known as QZ decomposition (Golub and Van Loan (2013)).197

Theorem 4 ((Golub and Van Loan, 2013, Theorem 7.7.1), Kågström (1993)). Given198

a matrix pencil LE − A∈ Cm×m[L], there are unitary matrices Q, Z ∈ Cm×m such that199

S := QEZ and T := QAZ are upper triangular matrices. In particular, if LE − A is200

regular, its eigenvalues are given by Tii/Sii , i = 1,2, . . . , m. Moreover, one can find201

such a factorization in which the ratios Tii/Sii come in any prescribed order.202
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We first prove the following lemma.203

Lemma 5. Given a right pencil pair (X , LE −A) with no eigenvalues on the unit circle,204

let205

Q(LE − A)Z = L
�

S11 S12
0 S22

�

−
�

T11 T12
0 T22

�

(11)

be its generalized Schur decomposition, with the eigenvalues ordered so that those206

of LS11 − T11 are inside the unit circle and those of LS22 − T22 are outside, and let207

X Z =
�

X1 X2

�

be partitioned with the same row block sizes. Then, there exists a208

matrix X̂2 such that (X , LE − A) is strictly equivalent to209

�

�

X1 X̂2

�

,
�

LI − T1 0
0 LT2 − I

��

, (12)

with T1 := S−1
11 T11, T2 := T−1

22 S22.210

Note that proofs of lemmas and theorems are relegated in the Appendix. Now,211

let us start from P(L) = LqΓ (L) = Θ(L)ΣvH(L), of degree 2q, as above; we construct212

C̃(L) as in (10a), and compute its ordered Schur decomposition QC̃(L)Z , decom-213

posed as in (11), and X Z =
�

X1 X2

�

. The pencil (12), in the language of Gohberg214

et al. (1988), is a Γ -decomposed right pencil pair, with Γ equal to the unit circle, and215

H(L) is a Γ -spectral right divisor. Hence we may apply the “only if” part of (Gohberg216

et al., 1988, Theorem 3.2), and conclude that the two blocks in (12) have both size217

qd, and that the matrix218

Y =













X1
X1T1
X1T 2

1
...

X1T q−1
1













(13)

is nonsingular.219

The final part of (Gohberg et al., 1988, Theorem 3.2) provides a formula to220

reconstruct the polynomial H(L) from X1 and T1, although in a different form that221

does not yield the coefficients explicitly; however, by comparing with (Gohberg et al.,222

1982, Theorem 2.4), we see that we can use (7) and (8) instead, as in the previous223

section but with D replaced by T1.224

To summarize the results of this section, an improved algorithm to recover Θi225

from the ACGF Γ (L) of a VMA(q) of dimension d is presented as Algorithm 2.226

Remark 6. Software packages such as Matlab, Mathematica and R contain functions227

to compute the generalized Schur decomposition needed here. The computation is228

numerically robust even in the case of repeated or clustered eigenvalues.229

3. Covariance estimation: the META approach230

Having good estimates of the autocovariances Γk is crucial for the accuracy of231

methods based on spectral factorization. Sample autocovariances Γ̂k := 1
n−k

∑n
t=k yty

T
t−k232
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Algorithm 2: Spectral factorization of a polynomial function (in a more
rigorous and stable way than Algorithm (1)).

Input: degree q and coefficients Γ0 = Γ T
0 , Γ1, . . . , Γq of an ACGF satisfying

Assumptions P and Q.
Output: coefficients Σv̂ and Θi , i = 1,2, . . . , q of its factorization (3).

1 Construct the right pencil pair (R, C̃(L)) in (10a) for the matrix polynomial
P(L) = LqΓ (L);

2 compute a generalized Schur decomposition of C̃(L), ordered so that the
eigenvalues inside the unit circle are in the first entries, and partition the
resulting matrices as in (11);

3 let X1 be the first block of X = RZ =
�

X1 X2

�

, and T1 = S−1
11 T11;

4 invert the matrix Y in (13), and denote by Vi its blocks, as in Theorem 3;
5 compute Θi , for i = 1, 2, . . . , q, using (8), and Σv̂ using (9).

are notoriously slow to converge to their asymptotic values. In this section, we sug-233

gest a method to extract these moment estimates from the ML estimates of several234

(univariate) aggregated processes, replacing one large-dimensional optimization235

problem with many small-dimensional ones. This procedure generalizes and ex-236

tends the approach proposed by Poloni and Sbrana (2015b) and Poloni and Sbrana237

(2015a), which works only for VMA(q) processes with symmetric transfer functions.238

The method is based on the following result, which is an easy consequence of the239

existence of the canonical factorization (3).240

Lemma 7. Let y = (yt) be a stationary linear process with degree-q ACGF Γ (L)241

satisfying Assumptions P and Q. Let w(L) ∈ R[L]1×d , w(L) 6= 0, be a vector polynomial242

of degree r, and consider the process x (w) =w(L)y. Then,243

1. The ACGF of x (w), which is the palindromic Laurent polynomial244

γ(w)(L) = γ(w)q+r L−q−r + · · ·+ γ(w)1 L−1 + γ(w)0 + γ(w)1 L1 + · · ·+ γ(w)q+r Lq+r ,

satisfies the equation245

w(L)Γ (L)w(L)? = γ(w)(L). (14)

2. γ(w)(eiλ)> 0 for each λ ∈ [0,2π], i.e., γ(w)(L) satisfies Assumption P.246

3. x (w) can be reparametrized as a (univariate) MA(q+ r)247

x (w) = θ (L)u(w), θ (w)(L) = 1+
q+r
∑

i=1

θ
(w)
i L i , E

h
�

u(w)t

�2i

=ω(w) > 0. (15)

We obtain a realization of the aggregated process x (w)t using the formula x (w)t =248

w(0)yt +w(1)yt−1 + · · ·+w(r)yt−r , where the w(i) are the coefficients of w(L), i.e.,249

w(L) = w(0) + w(1)L + · · · + w(r)L r . Using maximum likelihood, we can get an250
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estimator β̂w for the vector of parameters251

βw =















ω(w)

θ
(w)
1

θ
(w)
2
...
θ
(w)
q+r















∈ Rq+r+1. (16)

We gather in a vector252

γw =











γ
(w)
0

γ
(w)
1
...
γ
(w)
q+r











∈ Rq+r+1 (17)

the coefficients of γ(w)(L) (autocovariances). Closed-form expressions for them253

as a function of βw are simple to obtain by expanding the expression γ(w)(L) =254

θ (w)(L)ω(w)θ (w)(L−1) and equating coefficients. For instance, if q = r = 1, one has255

γw =





γ
(w)
0

γ
(w)
1

γ
(w)
2



=





ω(w)(1+ (θ (w)1 )2 + (θ (w)2 )2)
ω(w)(θ (w)1 + θ (w)1 θ

(w)
2 )

ω(w)θ
(w)
2



 . (18)

We use these expressions, adding hats to each variable, to compute an estimator γ̂w256

from β̂w. We can interpret these estimates as giving us partial information on a (yet257

to determine) estimator Γ̂ (L) of Γ (L), according to the relation258

w(L)Γ̂ (L)w(L)? = γ̂(w)(L). (19)

Indeed, if we gather the unknown entries of the ACGF in the parameter vector259

ẑ=









vech(Γ̂0)
vec(Γ̂1)

...
vec(Γ̂q)









∈ Rm×1, m=
d(d + 1)

2
+ qd2, (20)

expanding both sides of (19) as Laurent polynomials and equating coefficients gives260

q+ r + 1 linear equations involving the entries of ẑ.261

We repeat this process for a sufficient number of different vectors w(L), until we262

have enough equations to determine the entries of ẑ.263

3.1. An example264

Consider the following bivariate VMA(1) process265

yt =
�

y1,t
y2,t

�

.
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Let us label the coefficients of its autocovariances as266

Γ0 =
�

a b
b c

�

, Γ1 =
�

d e
f g

�

.

We first choose a constant vector polynomial w(L) =
�

1 0
�

. The left-hand side of267

Equation (14) is268

�

1 0
�

��

d f
e g

�

L−1
�

a b
b c

�

+
�

d e
f g

�

L
��

1
0

�

= d L−1 + a+ d L, (21)

while its right-hand side is269

(1+ θ1 L)ω1(1+ θ1 L−1) = θ1ω1 L−1 + (1+ θ 2
1 )ω1 + θ1ω1 L, (22)

where x t = ut + θ1ut−1, E
�

u2
t

�

= ω1 is the MA(1) representation of the process
x t =w(L)yt = y1,t . We obtain estimates θ̂1, ω̂1 using a scalar maximum-likelihood
estimator on the time series y1,t , and equate the coefficients of (21) and (22), getting
the two equations

â = (1+ θ̂ 2
1 )ω̂1, and (23a)

d̂ = θ̂1ω̂1. (23b)

We repeat the procedure on the vector w2(L) =
�

0 1
�

, obtaining

ĉ = (1+ θ̂ 2
2 )ω̂2, and (23c)

ĝ = θ̂2ω̂2, (23d)

where θ̂2, ω̂2 are estimates for the parameters of the MA(1) representation y2,t =270

ut + θ2ut−1, E
�

u2
t

�

=ω2.271

We now use w3(L) =
�

1 L
�

: this time, the process w3(L)yt = y1,t + y2,t−1 is a272

scalar MA(2) with ACGF273

w3(L)Γ (L)w3(L)
? = f̂ L−2 + (d̂ + b̂+ ĝ)L−1 + â+ ĉ + 2ê+ (d̂ + b̂+ ĝ)L + f̂ L2,

so we get equations

â+ ĉ + 2ê = ω̂
�

1+ (θ̂ )2 + (ψ̂)2
�

, (23e)

d̂ + b̂+ ĝ = θ̂ ω̂+ θ̂ ω̂ψ̂, and (23f)

f̂ = ψ̂ω̂. (23g)

where θ̂ , ψ̂, ω̂ are obtained via a scalar maximum-likelihood estimator on the MA274

representation y1,t + y2,t−1 = ut + θut−1 +ψut−2, E
�

u2
t

�

=ω.275

Equations (23a)–(23g) form a nonsingular system of 7 equations in 7 unknowns,276

from which we can recover all the entries of Γ0 and Γ1.277
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Remark 8. If one uses only aggregation vectors w(L) which do not depend explicitly278

on L, the resulting equations depend on e and f only through the quantity e+ f .279

Hence using nonconstant values of w(L) is necessary to get a nonsingular system.280

Remark 9. There is no guarantee that the estimated ACGF Γ̂ (L) = Γ̂ T
1 L−1 + Γ̂0 + Γ̂1 L281

satisfies Assumption P. We present in Section 3.3 several possible solutions to continue282

the estimation process even in the case in which an indefinite spectral density matrix283

is returned.284

Remark 10. An equivalent of Lemma 7 does not hold for more generic VARMA285

processes. For example, the contemporaneous aggregation of a d-dimensional286

VAR(1) is, in general, an ARMA(d, d − 1), not an AR(1) (see the discussion in287

Granger and Morris (1976) and Hamilton (1994)). Although this does not exclude288

the possibility to recover the ACGF from the aggregation of scalar processes, it is not289

immediate to generalize this estimation strategy to a VARMA(p, q).290

3.2. Estimating autocovariances using weighted least-squares291

In the example in Section 3.1, we have a square linear system with 7 equations292

in 7 unknowns. We present in this section a more general approach that allows293

one to make use of a larger number of aggregation vectors. The framework is the294

theory of overdetermined linear systems and linear least squares (see e.g. (Golub295

and Van Loan, 2013, Sections 5 and 6)).296

For a given aggregation polynomial w(L) of degree r(w), we can write the equa-297

tions obtained from (19) as298

Xwẑ= γ̂w, (24)

where Xw ∈ R(q+r(w)+1)×m is a fixed coefficient matrix, which depends only on the299

choice of w(L). (An explicit formula for this matrix Xw is given in Appendix Appendix300

B.)301

We repeat the aggregation with k different sets of weights w1(L),w2(L), . . . ,wk(L),302

and combine these equations to get a larger linear system303

X ẑ= γ̂, X =









Xw1

Xw2
...

Xwk









, γ̂ =









γ̂w1

γ̂w2
...

γ̂wk









. (25)

In the general case, this system is overdetermined, but we can obtain a solution in304

the least squares sense as305

ẑ= argmin


Ŵ 1/2(X ẑ− γ̂)


, (26)

for any given positive definite weighting matrix Ŵ . Standard theory leads to the306

closed form307

ẑ= (X T Ŵ X )−1(X T Ŵ γ̂), (27)

Setting Ŵ = I , for instance, corresponds to ordinary least squares.308
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Note that we are not in the usual setting in which least squares are used in309

statistics: we work with a fixed number k of aggregation vectors, and we are not310

interested in the behavior when k→∞, but rather when the number of observations311

of the time series n tends to infinity and γ̂ converges to its exact asymptotic value.312

Also, the errors in the entries of γ̂ are not i.i.d., in the typical case.313

Nevertheless, we can use some statistical insight to make a more effective choice314

of Ŵ . We expect the ideal value of Ŵ to be W = V−1, where V is the asymptotic315

covariance matrix of γ̂. Partitioning V conformably with (25), we have316

V =









V11 V12 · · · V1k
V21 V22 · · · V2k
...

...
. . .

...
Vk1 Vk2 · · · Vkk









.

Each diagonal block Vii , for i = 1, 2, . . . , k, contains the asymptotic covariance Vwi
of317

γ̂wi
.318

Under the assumption of Gaussian noises, a closed-form expression for the319

asymptotic covariance Ωw of the ML estimator β̂w of a scalar MA is classical (see (Box320

and Jenkins, 1976, Section 7.2.6) and (Brockwell and Davis, 2009, Example 8.8.2)).321

Then, by propagation of uncertainty, the asymptotic covariance of γw is322

Vw = JwΩwJ T
w , with Jw =

∂ γw

∂βw
.

For instance, if q+ r = 2, we have323

Ωw =





2(ω(w))2 0 0
0 1− (θ (w)2 )2 θ

(w)
1 (1− θ (w)2 )

0 θ
(w)
1 (1− θ (w)2 ) 1− (θ (w)2 )2





and, differentiating (18),324

Jw =





1+ (θ (w)1 )2 + (θ (w)2 )2 2θ (w)1 ω(w) 2θ (w)2 ω(w)

θ
(w)
1 + θ (w)1 θ

(w)
2 (1+ θ (w)2 )ω(w) θ

(w)
1 ω(w)

θ
(w)
2 0 ω(w)



 . (28)

Replacing everywhere θ (w)i andω(w) with their estimated values, we obtain estimates325

V̂ii for each diagonal blocks Vii , i = 1,2, . . . , k. The elements of V outside its block326

diagonal are more complicated to estimate, since the aggregated processes x (w)327

are not independent from each other, even in the case of Gaussian noises. We328

give an explicit (although long) expression to compute the full covariance matrix329

in the proof of Theorem 19. However, in practice, we recommend replacing the330

off-diagonal blocks with zeros and set Ŵ = diag(V̂11, V̂22, . . . , V̂kk)−1. This is just a331

crude approximation, but it allows one to keep into account at least the different332

variances of each entry of γ, and obtain a more accurate estimation than unweighted333

least squares.334
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As an additional benefit, with this block diagonal form of Ŵ we get the formulas335

X T Ŵ X =
k
∑

i=1

X T
wi

V̂−1
ii Xwi

, and X T Ŵ γ̂ =
k
∑

i=1

X T
wi

V̂−1
ii γ̂wi

, (29)

which are simpler and more computationally effective than the general version, as336

they do not require assembling the matrices X and Ŵ and inverting the latter.337

Remark 11. The asymptotic properties of the estimator proved in Section 5 hold338

irrespective of the choice of Ŵ .339

Remark 12. The least-squares problem (26) is uniquely solvable if and only if the340

matrix X has full column rank. A necessary restriction for this to happen is that one341

chooses at least as many equations as unknowns; i.e.,342

∑

w∈W
(q+ r(w) + 1)≥ qd2 +

d(d + 1)
2

. (30)

As argued in Section 3.1, some vectors with r(w) ≥ 1 are necessary, because using343

degree-0 vectors only yields equations that depend on Γi only through (Γi + Γ T
i ), for344

each i ≥ 1. In our experiments, choosing random weights and a sufficient number345

of degree-1 vectors gives a matrix X with full column rank whenever (30) holds; we346

haven’t investigated further theoretical conditions to ensure full rank of X .347

Remark 13. For (30) to hold, a number k ≈ d2 of weight vectors is sufficient. Hence348

the computational cost of this estimation procedure is O(nd2) operations, where n is349

the number of samples. Estimators which work directly on the multivariate problem350

performing operations on d-dimensional matrices and vectors (such as multivariate351

maximum likelihood) also require O(nd2) or O(nd3) operations.352

3.3. Positiveness of the spectral density matrix353

As highlighted in Remark 9, this procedure is not guaranteed to produce an354

ACGF Γ̂ (L) which satisfies Assumption P (positive definiteness of the spectral density355

matrix for each frequency λ). We show an example in Figures 1–4: the first two356

figures show a case in which the estimation procedure produces an estimated ACGF357

satisfying the assumption; the next two show a rarer one in which this assumption358

is not satisfied.359

There are three possible ways to solve this problem.360

1. Repeat the estimation procedure with a different set of weights W .361

2. Use the method presented in Brüll et al. (2013) to compute the Laurent362

polynomial Γ̃ (L) closest to Γ̂ (L) which satisfies Assumption P.363

3. Replace Γ̂ (L) with Γ̂ (L) + t I , for a suitable value of t > 0. In practice, we try364

several values of t, starting from t = 0.001‖Γ̂0‖ and increasing it iteratively365

until the assumption is satisfied. In terms of the plots in Figures 3–4, adding a366

multiple of the identity corresponds to translating each of the dashed lines up367

by an amount t; so, at least in this example, one can see that the amount t368

needed to move them above the x axis is negligible with respect to the error369

already performed by the estimation procedure. This procedure is inspired by370

the well-known ideas of Tikhonov regularization and shrinkage estimation.371
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Figure 1: Eigenvalues of the true and estimated spectral density matrices for a simulated example of
Model 2 with n = 300. The eigenvalues of Γ (eiλ) for λ ∈ [−π,π] are in gray; in black dashed the
eigenvalues of Γ̂ (eiλ) for an instance of Γ̂ (L) generated by our estimation procedure.
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Figure 2: Zoom of Figure 1
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Figure 3: Eigenvalues of the true and estimated spectral density matrices for another example of Model 2
with n= 300. Unlike the case in Figure 1, here Γ̂ (L) does not satisfy Assumption P.
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Figure 4: Zoom of Figure 3. One of the dashed lines crosses the x axis, so for λ ∈ [−0.04,0.04] the
matrix Γ̂ (eiλ) has a negative eigenvalue.
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Among them, we decided to adopt the latter method. Although simple, it seems to372

work well in practice.373

Remark 14. Since Γ̂ (L) is a regular matrix polynomial,374

t̂ =min{z : z is an eigenvalue of Γ̂ (eiλ) for some λ ∈ [0, 2π]}

exists finite, so this procedure always succeeds, because increasing t iteratively at375

some point we get t > t̂ and hence Γ̂ (eiλ) + t I is positive definite for each λ.376

To sum up, our covariance estimation algorithm is presented as Algorithm 3. The

Algorithm 3: META algorithm for the estimation of a VMA(q) process.
Input: Degree q and observed values y1,y2, . . . ,yn of a linear model whose

ACGF Γ (L) satisfies Assumptions P and Q.
Output: Estimates Θ̂i for the coefficients of its invertible VMA(q)

representation.
1 Choose a set of k aggregation weight polynomials
W = {w1(L),w2(L), . . . ,wk(L)} such that the matrix X has full column
rank.

2 foreach w ∈W do
3 compute the observations of the aggregated MA(q+ r) process

x =w(L)y;
4 estimate its parameters β̂w using a univariate ML estimator;
5 compute estimated moments γ̂w from β̂w, using formulas such as (18);
6 construct the matrix V̂w = ĴwΩ̂w Ĵ T

w , where Ĵw and Ω̂w are defined like Jw

and Ωw, but replacing the (unknown) exact values θ (w)i and ω(w) with
their estimates β̂w;

7 end
8 compute X T Ŵ X and X T Ŵ γ̂ using (29);
9 compute ẑ= (X T Ŵ X )−1(X T Ŵ γ̂);

10 repeat
11 try computing Θi , i = 1, 2, . . . , q, using Algorithm (1) or (2);
12 replace Γ̂0 with Γ̂0 + 0.001‖Γ̂0‖I .
13 until the algorithm (1 or 2) succeeds (detecting qd eigenvalues inside the unit

circle and qd outside);

377

most computationally intensive part of the algorithm are the k scalar ML estimations,378

which can be performed in parallel.379

Remark 15. We do not have to worry about the properties of this regularization380

procedure when we present the asymptotic theory, because if the method is consistent381

then Γ̂ (L)
a.s.
−→ Γ (L) and hence it is positive definite almost surely.382

Remark 16. Suppose that the estimation method is applied to a model with roots383

on the unit circle, i.e., det G(eiλ) = 0 for a finite number of values λ ∈ R (and384

hence, in particular, Assumption P is not satisfied). In terms of the spectral plots385
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of Figures 3–4, this means that the gray line (exact eigenvalues) is tangent to the386

x-axis. Note that in this case the aggregate process γ(w)(L) still satisfies Assumption P,387

except from the unlikely case in which the aggregation weight vector w(L) is chosen388

such that w(eiλ)G(eiλ) = 0, i.e., it matches exactly a left eigenvector of G(L). Hence389

for almost all choices of the aggregation weights the asymptotic properties described390

in Appendix Appendix C hold, and the method produces a consistent estimated391

ACGF Γ̂ (L) (whose spectral plot may either touch the x-axis or lie entirely above it).392

The regularization procedure described in this section will then produce a nearby393

Γ̃ (L) which satisfies Assumption P, and hence an estimated Θ̂(L) which is always394

invertible and converges (assuming that the parameter t is chosen in a way such395

that t → 0 as n→∞) to the factor Θ(L) of a factorization (3) of the process with396

detΘ(z) 6= 0 for |z|< 1.397

4. Comparing estimation methods398

In this section we investigate the small sample properties of the META approach by399

comparing it with two generally employed estimation methods. These are the (long)400

autoregressive approach based on the least squares estimation and the conditional401

maximum likelihood approach. The indirect estimation of moving average models402

through autoregressive processes dates back to Durbin (1959)(see also variants such403

as Hannan and Rissanen (1982); Kapetanios (2003); Koreisha and Pukkila (1990)).404

A similar estimator for multivariate models has been considered by Spliid (1983)405

and Galbraith et al. (2002). Its main attractive lies in the fact that the estimation of406

the AR part can be performed in a simple way using least squares.407

The conditional maximum likelihood estimator (CML) has been studied in Wilson408

(1973); Dunsmuir and Hannan (1976); Hannan and Deistler (2012) and Harvey409

(1990). It is possible to evaluate the multivariate likelihood function exactly, but410

the maximization procedure requires the use of multivariate and high-dimensional411

optimization techniques. We refer to Kascha (2012) for a general discussion and412

comparison of different estimation approaches.413

Our empirical comparison has been carried out using two different software414

packages, each with its strength and weaknesses:415

• Wolfram Mathematica 8 with the Time Series 1.4 package (Wolfram Research,416

2007). Mathematica has excellent symbolic computation capabilities, which417

make it easy to deal with Laurent polynomials in L in full generality; moreover,418

it includes a CML estimator for multivariate VARMA models. On the minus419

side, the language is intrinsically extremely slow, and this shows especially420

in the performance of MA estimators, which we need in abundance. As it is421

an interpreted language, its speed is extremely dependent on the specific way422

in which a function is coded and executed, and hence it is less suitable to423

perform time comparisons.424

• EViews 8 (IHS Global, 2013). EViews is a standard package in econometrics;425

its capabilities are more limited when it comes to abstraction and symbolic426

computation, and it does not include a CML estimator for multivariate time427
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Model n. # of parameters
# of vectors wi(L)
with degree r = 0

# of vectors wi(L)
with degree r = 1

Model 1 7 4 16
Model 2 15 6 30
Model 3 11 8 25
Model 4 24 10 40

Table 1: Number of vectors of degree 0 and 1 used in each experiment.

series. Hence the only estimator against which we can compare is the long-AR428

method. On the other hand, the included scalar MA estimator is much faster429

than the one in Mathematica, and this is crucial to properly assess the speed430

of our method.431

The experiments have been performed using an Intel(R) Core(TM) i5.3210M CPU432

@ 2.5 GHz.433

We consider two cases: the VMA(1) and the VMA(2). For each of them we take434

a bivariate and a trivariate model. The chosen coefficient matrices are435

Model 1: Θ1 =
�

−0.5 −0.3
−0.1 −0.7

�

Σv =
�

1 .2
.2 1.3

�

Model 2: Θ1 =





−.6 −.1 −.2
−.1 −.7 −.2
−.1 −.2 −.5



 Σv =





1 .1 .2
.1 1.2 .2
.2 .2 1.4





Model 3: Θ1 =
�

−0.6 −0.4
−0.2 −0.7

�

Θ2 =
�

0.5 0.4
0.2 0.4

�

Σv =
�

1 .1
.1 1.2

�

Model 4: Θ1 =





−.6 −.3 −.3
−.2 −.7 −.2
−.2 −.2 −.7



 Θ2 =





.3 .2 .2

.1 .5 .1

.2 .2 .4



 Σv =





1 .2 .2
.2 1.3 .2
.2 .2 1.1



 .

For each model, we considered two different sample sizes, n = 300 and n = 800,436

and used Gaussian random-generated noises vt . Each experiment has been repeated437

1000 times, each time with different random numbers.438

We used the least-squares approach described in Section 3.2, with some weight439

vectors of the form w(L) = w(0), of degree r = 0, and some of the form w(L) =440

w(0) +w(1)L, of degree r = 1. The entries of these vectors w(0) (and of w(1), when441

it is present) are drawn independently from a normal distribution N(0,1). The442

number of weight vectors used in each experiment is detailed in Table 1. As error443

measure, we used the relative error in the Frobenius norm (root mean squared error444

of the matrix entries)445

RMSE =
‖Θ̂i −Θi‖F

‖Θi‖F
for i = 1,2; (31)
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Figure 5: Accuracy comparison of several estimation methods: RMSE(Θ1) for Model 1 with n = 300 and
n= 800
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Figure 6: Accuracy comparison of several estimation methods: RMSE(Θ1) for Model 2 with n = 300 and
n= 800
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Figure 7: Accuracy comparison of several estimation methods: RMSE(Θ1) and RMSE(Θ2) for Model 3
with n= 300
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Figure 8: Accuracy comparison of several estimation methods: RMSE(Θ1) and RMSE(Θ2) for Model 3
with n= 800
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Figure 9: Accuracy comparison of several estimation methods: RMSE(Θ1) and RMSE(Θ2) for Model 4
with n= 300
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Figure 10: Accuracy comparison of several estimation methods: RMSE(Θ1) and RMSE(Θ2) for Model 4
with n= 800

.02

.04

.06

.08

.10

.12

.14

Theta1, Model 4, n=800

LONG_M  LONG_E  META_M  META_E  CML

.05

.10

.15

.20

.25

.30

Theta2, Model 4, n=800

LONG_M  LONG_E  META_M  META_E  CML

22



Figure 11: Average computational time needed for the estimation by each software (in seconds)

Software Method Model1 Model2 Model3 Model4
N=300 N=300 N=300 N=300

Mathematica LONG .003 .003 .003 .003
Mathematica META 3.81 7.61 24.69 41.73
Mathematica CML .118 .176 .177 .258

Eviews LONG .001 .002 .001 .002
Eviews META .023 .048 .053 .088

Model1 Model2 Model3 Model4
N=800 N=800 N=800 N=800

Mathematica LONG .004 .005 .004 .005
Mathematica META 6.61 12.86 29.89 49.71
Mathematica CML .229 .312 .341 .456

Eviews LONG .002 .002 .001 .002
Eviews META .059 .105 .128 .193

The empirical results (RMSE) are shown in Figure 5 to 10 using box plots. Each446

chart compares the performance of the long autoregression (with 10 lags, i.e., we447

estimate first a VAR(10) model), the META and the CML. For all methods but the448

CML, the subscripts M and E denote the software employed (Mathematica or Eviews).449

The time required by each estimator is in Figure 11.450

One of the main empirical finding is that the META outperforms in terms of451

accuracy the LONGAR but not the CML for all the considered models. In addition,452

For Model 1 and Model 3, The performance of the META tends to get closer to that453

of the CML estimator.454

Remark 17. A common addition to the LONGAR setup is truncating the model using455

an information criterion (AIC or BIC) and refining the estimate (Hannan-Rissanen456

estimator). These additions did not improve the accuracy of the results, in our457

experiments. Another common estimation strategy is the multivariate innovations458

algorithm (Brockwell and Davis, 2009, Proposition 11.4.2). This estimation method459

also did not improve the accuracy of the LONGAR setup. Finally, we also considered460

the sample estimation of the ACGF but it returned significantly worse results than461

the LONGAR method, so it has not been included in the comparison.462

The implementation of our method in Mathematica is extremely slow, but this is463

an artifact of the Mathematica implementation; the experiments performed with464

EViews reveal a time which is in line with the other estimation methods.465

4.1. Forecasting and the effectiveness of VMA models466

The optimal 1-step-ahead forecast for a VMA(q) is given by467

ŷn+1 =
q
∑

i=1

Θivn−i−1.
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Figure 12: Forecasting accuracy comparison of several estimation methods: ‖yn+1 − ŷn+1‖2 for Model 1
with n= 300 and n= 800
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Hence accurate estimates the coefficients Θi directly imply better forecasting accu-468

racy. However, due to the large impact of the new noise vector vn+1, it might be469

complicated to reveal this accuracy empirically in simulated experiments. We have470

computed the forecast error ‖yn+1− ŷn+1‖2 obtained using the estimates Θ̂i from the471

different methods. As an additional competitor, we have compared against estimat-472

ing a MA(q) on each component of the time series separately (labelled “diagonal” in473

the graphs). Clearly, this method ignores completely the cross-correlation between474

the processes.475

The results are reported in Figures 12 to 15. Result show that there is a forecast476

gain when using estimation methods for VMA models, rather than relying on fore-477

casting equation-by-equation. This would be probably more visible by increasing the478

number of Monte Carlo experiments that might reveal the difference in forecasting479

accuracy which we expect from the increased accuracy in the estimates Θ̂i .480

5. Asymptotic properties481

We describe in this section the asymptotic consistency and normality properties482

of META when the estimator used for the underlying aggregated processes x t is a483

quasi-maximum likelihood estimator. We speak about quasi-maximum likelihood484

because we use the expression for the Gaussian likelihood, although we do not485

assume that the noise in the model (1) is Gaussian.486

The derivation of the asymptotic properties is complicated by the fact that the487

noise processes u(w)t of the various aggregations x (w)t =w(L)yt are neither mutually488

independent nor uncorrelated.489
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Figure 13: Forecasting accuracy comparison of several estimation methods: ‖yn+1 − ŷn+1‖2 for Model 2
with n= 300 and n= 800
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Figure 14: Forecasting accuracy comparison of several estimation methods: ‖yn+1 − ŷn+1‖2 for Model 3
with n= 300 and n= 800

0

1

2

3

4

5

6

7

8

9

LONGAR  META     CML   DIAGONAL

Model 3, n=300

0

1

2

3

4

5

6

7

8

LONGAR  META     CML   DIAGONAL

Model 3, n=800

25



Figure 15: Forecasting accuracy comparison of several estimation methods: ‖yn+1 − ŷn+1‖2 for Model 4
with n= 300 and n= 800
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Our proofs, presented in the Appendix, follow the ones of Poloni and Sbrana490

(2015b), extending their framework to this more general model.491

Let492

α=













vech(Σv̂)
vec(Θ1)
vec(Θ2)

...
vec(Θq)













∈ Rm×1.

be the vector of parameters of the true VMA representation of yt , and α̂ its estimate493

produced by Algorithm 3. Then, the following result holds.494

Theorem 18. Let yt be an ergodic stationary linear process whose ACGF satisfies495

Assumptions P and Q. Suppose that the aggregation weights W are chosen so that the496

matrix X in (25) has full column rank. Then, α̂
a.s.
−→α when n→∞. If, moreover, the497

fourth moments of vt are finite, then
p

n(α̂−α)
law
−→ N(0,Ψ) for a suitable matrix Ψ.498

An expression for the matrix Ψ is given in terms of several quantities that are499

explicitly computable (although in practice rather unwieldy).500

Theorem 19. Under the hypotheses of Theorem 18,501

Ψ = A−1(X T W X )−1X T W JI −1ΞI −1J T W T X (X T W X )−1(AT )−1,

where the matrices A, W, J ,I ,Ξ are defined in the Appendix.502
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6. Conclusions503

The estimation of a vector moving average (VMA) process represents a challeng-504

ing task since the multivariate likelihood estimator is extremely slow to converge.505

In this paper we provide an alternative estimation method (META approach) based506

on two steps: we first compute several aggregations of the variables of the system507

and apply likelihood estimators to the resulting univariate processes; we then re-508

cover the VMA parameters using linear algebra tools. We show that the suggested509

estimator is consistent and asymptotically normal. In addition, some numerical510

experiments show the good performance of this estimator in small samples compared511

with standard methods.512

The practical advantage of the suggested approach is that in this way we work513

with ML estimates of univariate processes only, therefore avoiding the complexity514

of maximizing the multivariate likelihood function directly. Another benefit is that515

the required univariate estimations can be performed in parallel for different values516

of the weight vectors, on a computer architecture that supports it. In contrast,517

estimation with the multivariate likelihood method is an intrinsically serial task,518

difficult to parallelize.519

The suggested method not only is fast but it can also be implemented by stan-520

dard statistical/econometric packages requiring only the estimation of univariate521

processes.522

Some open issues need further investigation. Indeed, even if the estimator seems523

to work well in practice with random choices of the aggregation vectors w(L), a524

natural question is whether it is possible to find the optimal choice for these weight525

vectors. Moreover, it might be worth investigating empirical strategies to approx-526

imate the asymptotic covariance matrix using, for instance, bootstrap techniques527

(see Kotchoni (2014)). This might improve the performance of the suggested esti-528

mator. Moreover, a generalization from VMA(q) processes to VARMA(p, q) would529

give a more powerful and general estimator. We believe that this might be feasible,530

however, one should consider the complications arising with the contemporaneous531

aggregation of ARMA processes, as described in Remark 10.532
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the former are outside the unit circle and the latter are inside), then there exist

matrices Z1 and Z2 such that
�

I Z1
0 I

��

S11 S12
0 S22

��

I Z2
0 I

�

=
�

S11 0
0 S22

�

, and

�

I Z1
0 I

��

T11 T12
0 T22

��

I Z2
0 I

�

=
�

T11 0
0 T22

�

.

Choosing666

F1 =
�

S−1
11 0
0 T−1

22

��

I Z1
0 I

�

Q, and F2 = Z
�

I Z2
0 I

�

,

we get exactly

F1(LE − A)F2 =
�

LI − S−1
11 T11 0

0 LT−1
22 S22 − I

�

, and X F2 =
�

X1 X2 + X1Z2

�

.

667

Proof of Lemma 7. The first point is clear. For each λ ∈ [0, 2π], the scalar quantity668

γ(w)(eiλ) =w(eiλ)Γ (eiλ)w(eiλ)? is positive since the matrix Γ (eiλ) is positive definite.669

The third point follows from the existence of the factorization (3).670

Appendix B. Explicit form of Xw671

The matrix Xw in (24) contains the coefficients of (19), when written down672

explicitly as a system of linear equations with unknowns the coefficients ẑ of the673

estimated ACGF, as in (20), and right-hand side γw. For instance, in the system (23e)–674

(23g), the unknowns are675








â
b̂
...
ĝ









=

�

vech Γ̂0
vec Γ̂1

�

,

and the matrix Xw is676




1 0 1 0 2 0 0
0 1 0 1 0 0 1
0 0 0 0 0 1 0



 .

One can obtain an explicit expression for this matrix in the general case. If we set677

w(L) =w(0) +w(1)L + · · ·+w(r)L r , then expanding (19) gives678

γ̂
(w)
`
=

∑

h1+k−h2=`

w(h1)Γ̂k(w
(h2))T ,
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hence the coefficient of the unknown (Γ̂k)i j (keeping into account that this unknown679

appears also in Γ̂−k = Γ̂ T
k ) is680

∑

h1−h2=`−k

w(h1)
i (w(h2)

j )
T +

∑

h1−h2=`+k

w(h1)
j (w

(h2)
i )T .

Putting each coefficient into its place inside the matrix, one obtains the following681

closed form for X .682

Xw =











xT
0,0 xT

0,1 . . . xT
0,q

xT
1,0 xT

1,1 . . . xT
1,q

...
...

. . .
...

xT
q+r,0 xT

q+r,1 . . . xT
q+r,q











,

where the vectors x`,k are given by683

x`,k =
∑

h1−h2=`−k

vec
�

w(h1)(w(h2))T
�

+
∑

h1−h2=`+k

vec
�

w(h2)(w(h1))T
�

, for k > 0,

and684

x`,0 =
∑

h1−h2=`

vech
�

w(h1)(w(h2))T +w(h2)(w(h1))T − diag(w(h1))diag(w(h2))
�

.

The last term comes from the fact that the diagonal elements with i = j are summed685

twice instead of once in the previous sum of two half-vectorizations.686

Appendix C. Asymptotic theory687

We start this section with the asymptotic theory of the QML estimator of an688

aggregate univariate MA process, which we use in our procedure. Note that the uni-689

variate reparametrized noise u(w)t is uncorrelated, but is not in general independent.690

Hence the standard textbook results which assume independent noise do not hold691

in our case, and we have to adapt some of the proofs.692

Appendix C.1. (Quasi-)maximum likelihood of univariate processes693

In this Section Appendix C.1, we refer to a single aggregate MA process x (w),694

and drop the sub- or superscript w for ease of notation.695
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The expression for the Gaussian negative log-likelihood function of a univariate696

MA(q+ r) process x t = θ (L)ut is classical, see e.g. Box and Jenkins (1976):697

L (β̃) =
n
∑

t=1

`t(β̃), with `t(β̃) =
1
2

log ω̃+
ũ2

t

2ω̃
, ũt = θ̃ (L)

−1 x t , β̃ =













ω̃

θ̃1

θ̃2
...
θ̃q+r













.

The maximum likelihood estimator is given by698

β̂ = arg minL (β̃). (C.1)

We assume here that the parameter space for the θ̃i is restricted to a set of invertible699

processes for which the roots of the associated polynomial θ̃ (L) satisfy |λ|< δ for a700

fixed δ < 1, so that the power series θ̃ (L)−1 =
∑

ψ̃i L
i has coefficients that decay as701

ψ̃i = O(δi) for each θ̃ in our admissible parameter space. Similarly, we assume that702

ω̃ is bounded away from 0 and∞.703

The partial derivatives of the asymptotic likelihood function `t(β̃) with respect

to the parameters θ̃i and ω̃, evaluated in β, are

ξ
(0)
t =

∂ `t(β̃)
∂ ω̃

�

�

�

�

β

=
ω− u2

t

2ω2
, and (C.2a)

ξ
(h)
t =

∂ `t(β̃)

∂ θ̃h

�

�

�

�

β

=
1
ω

u(h)t ut , with u(h)t = −
Lh

θ (L)2
x t = −

Lh

θ (L)
ut , h= 1, 2, . . . , q+ r.

(C.2b)

Since the noise process ut is not independent, but only uncorrelated, it may not be704

obvious that the true parameters β maximize the asymptotic likelihood; we prove it705

in the next lemma.706

Lemma 20. Let v be an i.i.d. process with finite variance, x = w(L)Θ(L)w, and707

θ (L),ω as in (15) and (16). Then, β = argminE
�

`t(β̃)
�

.708

Proof. By taking a derivative in ω̃, it is easy to show that the minimum of709

E
�

`t(β̃)
�

=
1
2

log ω̃+
E
�

ũ2
t

�

2ω̃
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occurs when ω̃ = E
�

ũ2
t

�

. In that case the function reduces to 1
2

�

logE
�

ũ2
t

�

+ 1
�

,710

which is increasing in E
�

ũ2
t

�

. So we only need to prove that the minimum of E
�

ũ2
t

�

711

is achieved by ut .712

The variance of ũ= 1
θ̃ (L)

w(L)G(L)v is the constant term in its ACGF713

1

θ̃ (L)
w(L)G(L)ΣvG(L)?w(L)?

1

θ̃ (L−1)
=

1

θ̃ (L)
θ (L)ωθ (L−1)

1

θ̃ (L−1)
=ωa(L)a(L−1),

where a(L) is the power series714

a(L) = θ̃ (L)−1θ (L) = 1+ a1 L + a2 L2 + . . . .

The constant term of a(L)a(L−1) is 1+ a2
1 + a2

2 + · · · ≥ 1, and equality holds if and715

only if a(L) = 1, i.e., θ̃ (L) = θ (L).716

Moreover, in the following we shall need the fact that the Fisher information717

matrix I = E
�

∇2`t(β)
�

is nonsingular. This is proved, for instance, in McLeod718

(1999).719

Note that I = Ω−1
w , with Ωw as in Section 3.2, as proved for instance in (Box720

and Jenkins, 1976, Section 7.1).721

Appendix C.2. Consistency and normality of the aggregate estimates722

We now turn to prove that the quasi-maximum likelihood estimator β̂ of723

β =









βw1

βw2
...

βwk









,

where the βwi
are defined as in (16), is consistent and jointly normal. For the former724

property, it is enough to prove that each of them is consistent when considered725

alone.726

Theorem 21. Let y = G(L)v be a stationary ergodic linear model whose ACGF satisfies727

Assumptions P and Q. Then, the quasi-maximum likelihood estimator β̂w in (C.1) for728

the process x (w) =w(L)G(L)v is consistent, i.e., β̂w
a.s.
−→ βw when n→∞.729
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Proof. We rely on (Ling and McAleer, 2010, Theorem 1). We have proved that730

the likelihood has a maximum in the exact values in Lemma 20, and due to our731

choice of the parameter space its expectation is bounded. Since the coefficients732

of 1
θ̃ (L)

w(L)G(L) are bounded uniformly by O(δi), Assumption 2(i) in Ling and733

McAleer (2010) is satisfied as well, hence asymptotic consistency hold.734

Establishing joint normality is more involved: since the x (w)t are neither indepen-735

dent nor uncorrelated from each other, we cannot rely on the classical central limit736

results. We use instead a central limit result for weakly dependent sequences from737

Peligrad and Utev (2006), which we summarize and report as follows.738

Theorem 22. For an i.i.d. sequence of random variables (vt)t=...,−1,0,1,..., denote by739

F b
a the σ-field generated by vt with a ≤ t ≤ b and define ξt = f (vt ,vt−1, . . . ), t ∈ Z.740

Assume that E [ξ0] = 0, E
�

ξ2
0

�

=ω<∞, and741

∞
∑

t=1

1
p

t
‖ξ0 −E

�

ξ0 | F 0
−t

�

‖L2
<∞, (C.3)

where ‖X‖L2
:= E

�

X 2
�1/2

. Then,742

1
p

n

n
∑

t=1

ξt
law
−→ N(0,ω). (C.4)

Proof. Peligrad and Utev (2006) contains a stronger result on triangular sequences743

(Corollary 5); the statement (C.4) is a special case that can be obtained by setting744

ai =

¨

1 i = 0

0 otherwise

in the thesis of their Theorem 1, so that bn =
p

n.745

We start from a lemma.746

Lemma 23. Let (vt)t=...,−1,0,1,... be a sequence of vector-valued i.i.d. random variables747

(vi ∈ Rd for each i), and Ci , Di ∈ R1×d , for i = 1,2, . . . , be such that ‖Ci‖ = O(δi),748

‖Di‖ = O(δi) for some δ < 1. Define the univariate linear processes c = C(L)v and749

d = D(L)v as750

C(L) =
∞
∑

i=0

Ci L
i , D(L) =

∞
∑

i=0

Di L
i .
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Let M = E [ct dt] and ξt = ct dt −M. Then,751

‖ξ0 −E
�

ξ0 | F 0
−t

�

‖L2
= O(δt) when t →∞. (C.5)

Proof. We decompose c0 and d0 into752

c0 =
t
∑

i=0

Civ−i

︸ ︷︷ ︸

:=pt

+
∑

i>t

Civ−i

︸ ︷︷ ︸

:=qt

, and d0 =
t
∑

i=0

Div−i

︸ ︷︷ ︸

:=rt

+
∑

i>t

Div−i

︸ ︷︷ ︸

:=st

, (C.6)

where pt and rt are functions in the σ-field F 0
−t and qt and st are independent from

it. One has

E
�

ξ0 | F 0
−t

�

= E
�

c0d0 −M | F 0
−t

�

= E
�

(pt + qt)(rt + st) | F 0
−t

�

−M

= pt rt +E
�

qt | F 0
−t

�

︸ ︷︷ ︸

=0

rt + pt E
�

st | F 0
−t

�

︸ ︷︷ ︸

=0

+E
�

qtst | F 0
−t

�

−M

= pt rt +E
�

qtst | F 0
−t

�

−M ,

thus



ξ0 −E
�

ξ0 | F 0
−t

�



L2
= ‖qt rt + ptst + qtst −E

�

qtst | F 0
−t

�

‖L2

≤ ‖qt‖L2
‖rt‖L2

+ ‖pt‖L2
‖st‖L2

+ 2‖qt‖L2
‖st‖L2

. (C.7)

Take a constant K > 0 such that ‖Ci‖ < Kδi and ‖Di‖ < Kδi; since the vt are

independent, we have

‖pt‖2
L2
≤

t
∑

i=0

‖Ci‖2‖vi‖2
L2
≤

K2‖Σv‖
1−δ2

= O(1), and

‖qt‖2
L2
≤
∑

i>t

‖Ci‖2‖vi‖2
L2
≤

K2‖Σv‖δ2t+2

1−δ2
= O(δ2t),

and analogously ‖rt‖L2
= O(1), ‖st‖L2

= O(δt). Plugging these estimates into (C.7),753

we get the required bound.754

Next, we consider the vector755

ξt =







∇w1
`
(w1)
t (βw1

)
...

∇wk
`
(wk)
t (βwk

)






,
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(where ∇w denotes the gradient with respect to the parameters β̃w), and prove a756

central limit result for it.757

Lemma 24. Let y= G(L)v be a stationary ergodic linear model whose ACGF satisfies758

Assumptions P and Q, and W be a finite set of aggregation weights w(L) ∈ R[L]1×d . If759

v has finite fourth moments, then760

1
p

n

n
∑

i=1

ξt
law
−→ N(0,Ξ) for n→∞,

where Ξ= E
�

ξtξ
T
t

�

.761

Proof. By the Cramer-Wold device (Brockwell and Davis, 2009, Proposition 6.3.1),762

it is sufficient to prove that the (scalar) central limit theorem holds for a generic763

linear combination of its entries764

ξt =
∑

i

ai(ξ
(i))t ,

where ai ∈ R and (ξ(i))t is in the form (C.2a) or (C.2b) for the aggregated process765

associated to some w ∈W . Each of these forms for ξ(i) satisfies the hypotheses of766

Lemma 23: indeed, in the case (C.2a), take767

ct = dt =
utp
2ω

, and M =
E
�

u2
t

�

2ω2
=

1
2ω

,

and in the case (C.2b), take768

ct = u(i)t , dt =
1
ω

ut , and M = 0.

Thus (C.5) holds with ξ0 replaced by ξ(i)0 . Using linearity of the expectation and the769

triangle inequality, one can obtain770

‖ξ0 −E
�

ξ0 | F 0
−t

�

‖L2
= O(δt),

where δ is the maximum of the decay rates of the processes ξ(i). Hence Condi-771

tion (C.3) holds. Moreover, E [ξ0] = 0 and E
�

ξ2
0

�

<∞ (this follows from the fact772

that v has finite fourth moments). Hence, by Theorem 22, the CLT holds.773

We are now ready to state and prove the main normality result.774
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Theorem 25. Let y = G(L)v be a stationary ergodic linear model whose ACGF satisfies775

Assumptions P and Q, and W be a finite set of aggregation weights w(L) ∈ R[L]1×d . If776

v has finite fourth moments, then777

p
n(β̂ −β)

law
−→ N(0,I −1ΞI −1),

where778

I = diag(Iw1
,Iw2

, . . . ,Iwk
), Iwi

= E
�

∇2
wi
`
(wi)
t (βwi

)
�

, i = 1,2, . . . , k. (C.8)

Proof. The first-order optimality conditions for the ML estimates state that 0 =779

1
n

∑n
t=1∇w`t(θ̂ (w)(L), ω̂(w)). Using a multivariate Taylor expansion around βw, we780

get781

0=
1
n

n
∑

t=1

∇w`t(βw) +

�

1
n

n
∑

t=1

∇2
w`t(β̃w)

�

(β̂w −βw), (C.9)

for a suitable vector β̃w on the segment that joins β̂w and βw. If β̂w and βw are close782

enough (which happens almost surely for large enough n, thanks to Theorem 21),783

then by continuity the Hessian matrix is invertible, thus we can rewrite (C.9) as784

β̂w −βw = −

�

1
n

n
∑

t=1

∇2
w`t(β̃w)

�−1�
1
n

n
∑

t=1

∇w`t(βw)

�

. (C.10)

This expansion (C.10) is valid for every w ∈W .785

Stacking these expansions one above the other and multiplying by
p

n we get786

p
n(β̂ −β) = −M(β̃)−1 1

p
n

n
∑

t=1

ξt , (C.11)

with M(β̃) the block diagonal matrix containing 1
n

∑

∇2
wi
`
(wi)
t (β̃wi

) in its diagonal787

blocks. By consistency, each of these blocks converges almost surely to its asymptotic788

value Iwi
; hence M(β̃)

a.s.
−→ I . By Lemma (24), 1p

n

∑n
t=1 ξt

law
−→ N(0,Ξ). Thus the789

thesis follows by Slutsky’s theorem.790

We are now ready to give a proof of Theorem 18.791

Proof of Theorem 18. Independently of the technique used to solve the linear systems792

(exact solution or least squares), the estimator that we have described is an analytical793
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function of β̂. This is made explicit, for instance, by the integral representation794

in (Gohberg et al., 1988, Theorem III.3.2) for the right divisor Θ(L)? of Γ (L). Since795

β̂ is consistent and asymptotically normal by Theorems 21 and 25, consistency and796

normality of our estimator follows from the Delta method.797

Appendix C.3. Computation of Ξ798

In principle, each entry of the matrix Ξ can be computed, in terms of the coef-799

ficients of G(L), the aggregation vectors W , and the moments of the noise vector800

vt .801

Indeed, each entry of Ξ is in the form E
�

ξ
(h)
t ξ̂

(`)
t

�

, with ξ(h)t and ξ̂(`)t two of802

the quantities defined in (C.2a) or (C.2b), where we take two (possibly distinct)803

choices of the aggregation vector w(L) and ŵ(L), and denote with a hat all quantities804

computed starting from ŵ(L) instead of w(L). For each choice of the aggregation805

vector w(L) we have806

ut = θ (L)
−1w(L)G(L)vt = C0vt + C1vt−1 + C2vt−2 + . . . ,

where Ci ∈ R1×d are the coefficients of the power series expansion in L of the rational

function θ (L)−1w(L)G(L), and a similar expansion holds for u(h)t in (C.2b). Hence

there are four sets of power series expansions coefficients Ci , Dj , Ek, Fm ∈ R1×d , all

explicitly computable, such that

E
�

ξ
(h)
t ξ̂

(`)
t

�

=
1
ωω̂
E
�

u(h)t ut û
(`)
t ût

�

=
1
ωω̂
E





�∞
∑

i=0

Civt−i

�

 

∞
∑

j=0

Djvt− j

!

�∞
∑

k=0

Ekvt−k

�� ∞
∑

m=0

Fmvt−m

�





=
1
ωω̂

∞
∑

i, j,k,m=0

E
�

(Civt−i)(Djvt− j)(Ekvt−k)(Fmvt−m)
�

=
1
ωω̂

∞
∑

i, j,k,m=0

(Ci ⊗ Dj ⊗ Ek ⊗ Fm)E
�

vt−i ⊗ vt− j ⊗ vt−k ⊗ vt−m

�

(if h,` > 0, or a slightly more complicated expression involving also second moments807

E
�

vt−i ⊗ vT
t− j

�

if one of them is zero, because of the constant term in (C.2a)).808
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Since vt is assumed to be an independent noise, E
�

vt−i ⊗ vt− j ⊗ vt−k ⊗ vt−m

�

is809

nonzero only when i = j = k = m, i = j 6= k = m, i = k 6= j = m or i = m 6= j = k,810

but in general we need all the second and fourth moments of vt in the computation.811

In the case where the noise vt is Gaussian, we can find a more explicit ex-812

pression. We need the following two results. The first is a special case of Isserlis’813

theorem (Isserlis (1918)).814

Lemma 26. Let X1, X2, X3, X4 be four zero-mean scalar Gaussian random variables815

(not necessarily uncorrelated, and possibly coinciding). Then,816

E
�

X1X2X3X4

�

= E [X1X2]E
�

X3X4

�

+E [X1X3]E
�

X2X4

�

+E
�

X1X4

�

E [X2X3] .

The second is a generalization of Lemma 1.817

Lemma 27. Let yt = C(L)vt and zt = D(L)vt be two stationary linear models818

constructed from the same i.i.d. process vt (with E
�

vsv
T
t

�

= Σvδst). Then, E
�

ytz
T
t

�

is819

equal to the coefficient of e0 in the Fourier series of C(eiλ)Σv D(e−iλ)T820

Proof. Expand C(L) and D(L) in a power series convergent on the unit disc, i.e.,

C(L)vt = C0vt + C1vt−1 + C2vt−2 + . . . and D(L)vt = D0vt + D1vt−1 + D2vt−2 + . . . .

Since E
�

vtv
T
s = 0

�

whenever s 6= t, we have

E
�

ytz
T
t

�

= E
�

(C0vt + C1vt−1 + C2vt−2 + . . . )(D0vt + D1vt−1 + D2vt−2 + . . . )T
�

= E
�

C0vtv
T
t DT

0 + C1vt−1vT
t−1DT

1 + C2vt−2vT
t−2DT

2 + . . .
�

= C0ΣvDT
0 + C1ΣvDT

1 + C2ΣvDT
2 + . . . ,

which is the coefficient of L0 in the (unique) Laurent series expansion of C(L)ΣvD(L)?821

that is convergent on the unit circle. This power series expansion is the Fourier822

series of C(eiλ)Σv D(e−iλ)T .823

Recall that the aggregate processes ut are constructed as824

ut =
1
θ (L)

x t =
1
θ (L)

w(L)yt =
1
θ (L)

w(L)G(L)vt , (C.12)

and their derivatives u(h) needed in (C.2b) are825

u(h)t =
−Lh

(θ (L))2
x t =

−Lh

(θ (L))2
w(L)G(L)vt . (C.13)
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With (C.12), (C.13) and Lemma 27, we can compute E [ut ût] as the coefficient

of e0 in the Fourier series of

1
θ (L)

w(L)G(L)ΣvG(L)?ŵ(L)?
1

θ̂ (L−1)
=

1
θ (L)

w(L)Γ (L)ŵ(L)?
1

θ̂ (L−1)
,

and analogously E
�

u(h)t û(l)t

�

for each h, l as the coefficient of e0 in the Fourier series

of
Lh

(θ (L))2
w(L)Γ (L)ŵ(L)?

L−l

(θ̂ (L−1))2
.

A similar formula holds for E
�

ut û
(l)
t

�

for each l.826

With these expressions and Lemma 26, one can compute the entries of Ξ. We

have for the case h, l > 0

E
�

ξ
(h)
t ξ̂

(l)
t

�

= E
�

1
ω

u(h)t ut
1
ω̂

û(l)t ût

�

=
1
ωω̂



E
�

u(h)t ut

�

︸ ︷︷ ︸

=0

E
�

û(l)t ût

�

︸ ︷︷ ︸

=0

+E
�

u(h)t û(l)t

�

E [ut ût] +E
�

u(h)t ût

�

E
�

ut û
(l)
t

�





and for the special cases when one or both indices h, l are zero

E
�

ξ
(0)
t ξ̂

(l)
t

�

= E
�

ω− u2
t

2ω2

1
ω̂

û(l)t ût

�

=
1

2ω2ω̂



ωE
�

û(l)t ût

�

︸ ︷︷ ︸

=0

−E
�

u2
t û(l)t ût

�





=
−1

2ω2ω̂



E
�

u2
t

�

E
�

û(l)t ût

�

︸ ︷︷ ︸

=0

+E
�

ut û
(l)
t

�

E [ut ût] +E [ut ût]E
�

ut û
(l)
t

�





=
−1
ω2ω̂
E
�

ut û
(l)
t

�

E [ut ût] ,

E
�

ξ
(0)
t ξ̂

(0)
t

�

= E
�

ω− u2
t

2ω2

ω̂− û2
t

2ω̂2

�

=
1

4ω2ω̂2



ωω̂−ωE
�

û2
t

�

︸ ︷︷ ︸

=ω̂

−E
�

u2
t

�

︸ ︷︷ ︸

=ω

ω̂+E
�

u2
t û2

t

�





=
1

4ω2ω̂2



−ωω̂+E
�

u2
t

�

︸ ︷︷ ︸

=ω

E
�

û2
t

�

︸ ︷︷ ︸

=ω̂

+E [ut ût]E [ut ût] +E [ut ût]E [ut ût]





=
1

2ω2ω̂2
E [ut ût]E [ut ût] .
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Appendix C.4. Computation of A827

In this section, we give an explicit expression for the matrix A= ∂ z
∂α , which is828

needed in the computation of the asymptotic covariance of the estimator.829

The vector z can be written as a simple function of α, by expanding the re-830

lation Γ (L) = Θ(L)ΣvΣ(L)?; in particular, also its Jacobian matrix A admits an831

explicit expression that can be obtained with some bookkeeping. Denoting by832

C , D, E the commutation, duplication and elimination matrices (Lütkepohl, 2005,833

Appendix A.12), it can be written as834

A=









A00 A01 · · · A0q

A10
... A∗∗

Aq0









with

A00 = E

�

I +
q
∑

i=1

Θi ⊗Θi

�

D,

A0i = E (ΘiΣ⊗ I + (I ⊗ (ΘiΣ))C) ,

Ai0 =

 

I ⊗Θi +
q−i
∑

j=1

Θ j ⊗Θ j+i

!

D, and

A∗∗ =















Σ⊗ I Θ1Σ⊗ I Θ2Σ⊗ I · · · Θq−1Σ⊗ I
0 Σ⊗ I Θ1Σ⊗ I · · · Θq−2Σ⊗ I

0 0
...

. . .
...

...
...

. . . Σ⊗ I Θ1Σ⊗ I
0 0 · · · 0 Σ⊗ I















+

















(I ⊗Θ2Σ)C (I ⊗Θ3Σ)C · · · (I ⊗ΘqΣ)C 0

(I ⊗Θ3Σ)C (I ⊗Θ4Σ)C
... 0 0

...
...

...
...

...

(I ⊗ΘqΣ)C 0
... · · · 0

0 0 · · · 0 0

















,

where the latter expression is the sum of a triangular matrix and an anti-triangular835

one with 0 on the main anti-diagonal. For instance, for q = 2, one has836

A=





E(I +Θ1 ⊗Θ1 +Θ2 ⊗Θ2)D E(Θ1Σ⊗ I + (I ⊗Θ1Σ)C) E(Θ2Σ⊗ I + (I ⊗Θ2Σ)C)
(I ⊗Θ1 +Θ1 ⊗Θ2)D Σ⊗ I + (I ⊗Θ2Σ)C Θ1Σ⊗ I

(I ⊗Θ2)D 0 Σ⊗ I



 .
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Note that, in the case of a scalar MA, A reduces to the matrix Jw in (28).837

Appendix C.5. Proof of Theorem 19838

Proof of Theorem 19. The asymptotic covariance of the estimator γ̂ in (25) is JI −1ΞI −1J T ,839

with J = diag(Jw1
, Jw2

, . . . , Jwk
). Since ẑ is computed in our estimator by solving (27),840

and841

Ŵ
a.s.
−→W = diag(V(w1), V(w2), . . . , V(wk))

−1, (C.14)

its asymptotic covariance is842

(X T W X )−1X T W JI −1ΞI −1J T W T X (X T W X )−1.

The final step of the computation is determining α̂ from the estimated covariances843

in ẑ. The Jacobian matrix of the function that maps z to α is A−1, hence, putting844

everything together, the asymptotic variance of the estimator α̂ is845

Ψ = A−1(X T W X )−1X T W JI −1ΞI −1J T W T X (X T W X )−1(AT )−1.

846
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