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Abstract—This work investigates the impact of imperfect
statistical information in the uplink of massive MIMO systems.
In particular, we first show why covariance information is needed
and then propose two schemes for covariance matrix estimation.
A lower bound on the spectral efficiency (SE) of any combining
scheme is derived, under imperfect covariance knowledge, and a
closed-form expression is computed for maximum-ratio combin-
ing. We show that having covariance information is not critical,
but that it is relatively easy to acquire it and to achieve SE close
to the ideal case of having perfect statistical information.

I. INTRODUCTION

Massive MIMO (multiple input multiple output) is consid-
ered a key technology for next generation cellular networks
[1]–[3]. The technology evolves conventional base stations
(BSs) by using arrays with hundreds of electronically steerable
antennas, which enable spatial multiplexing of tens of user
equipments (UEs) per cell—in both uplink (UL) and downlink
(DL). To this end, the BS needs to learn the channel vector
of each of the UEs that it serves. Due to channel fading, each
channel vector must be re-estimated frequently over both time
and frequency domains.

Practical channels are spatially correlated [4], which implies
that the elements of a channel vector are correlated. The co-
variance matrix of the channel vector characterizes the spatial
channel characteristics and is needed to apply an optimal
minimum mean squared error (MMSE) channel estimator [2].
Covariance matrix information is also important for resource
allocation [5] and to suppress pilot contamination [6], [7].
However, the covariance matrices are commonly assumed to
be perfectly known in the massive MIMO literature, which
is questionable since the matrix dimensions grow with the
number of antennas and the statistics change over time due
to mobility. Practical covariance estimates are imperfect since
the number of observations may be at the same order as
the number of antennas. One promising method to estimate
a large-dimensional covariance matrix, using such a small
number of observations, is to regularize the sample covariance
matrix [8], [9]. In this paper, we utilize this method and
investigate two different approaches to estimate the various
covariance matrices needed for MMSE estimation in multi-
cell systems. We derive mean-squared error (MSE) and SE
expressions and evaluate the two approaches numerically.
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II. SYSTEM MODEL

We consider the uplink of a massive MIMO system with L
cells, each comprising a BS with M antennas and K single-
antenna UEs. We assume block flat-fading channels where Bc
(in Hz) is the coherence bandwidth and Tc (in seconds) is the
coherence time. Hence, the channels are static within time-
frequency coherence blocks of τc = BcTc channel uses. Let
hjlk ∈ CM be the channel from BS j to UE k in cell l within
a block. We consider correlated Rayleigh fading channels with

hjlk ∼ NC (0,Rjlk) (1)

where Rjlk ∈ CM×M is the channel covariance matrix. The
matrix Rjlk describes the macroscopic effects, including spa-
tial channel correlation and average pathloss in different spatial
directions. Independent Rayleigh fading with Rjlk = βjlkIM
is a special case of (1) that is often considered in the literature,
but we stress that practical covariance matrices are typically
non-diagonal [4]. In practice, the matrices {Rjlk} maintain
constant over the transmission bandwidth and change slowly
in time compared to {hjlk}. The measurements in [10] suggest
roughly two orders of magnitude slower variations. We assume
that the matrices {Rjlk} maintain constant for τs channel
blocks, where τs can be at the order of thousands.

A. Channel Estimation: Perfect Covariance Information

We assume that the BSs and UEs are perfectly synchronized
and operate according to a pilot-based protocol. Each coher-
ence block contains τc channel uses, whereof K are dedicated
for pilots. There are K orthogonal unit-norm pilot sequences,
which are reused across the cells. The pilot associated with
UE k in cell j is denoted by φjk ∈ CK and satisfies
‖φjk‖2 = 1. The kth UE in each cell uses the same pilot.
Using a (normalized) total pilot power of ρtr per UE, the
MMSE estimate of hjjk takes the following form [11]:

ĥjjk = RjjkQ
−1
jk ypjk (2)

with

ypjk = hjjk +

L∑

l=1,l 6=j
hjlk +

1√
ρtr

Np
jφ

?
jk (3)

and Qjk = E{ypjk(y
p
jk)

H} given by

Qjk =
L∑

l=1

Rjlk +
1

ρtr
IM . (4)
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Fig. 1. (a) Some coherence blocks contain extra pilots for covariance matrix
estimation; (b) Time-frequency grid over which the channel statistics are fixed.

The estimate ĥjjk and estimation error h̃jjk = hjjk−ĥjjk are
independently distributed as ĥjjk ∼ NC(0,Φjjk) and h̃jjk ∼
NC(0,Rjjk −Φjjk) with Φjjk = RjjkQ

−1
jk Rjjk. Note that

the MMSE estimator utilizes the channel statistics; that is, the
Gaussian distribution, mean value, and covariance matrix. In
particular, the BS can only compute the estimate ĥjjk in (2)
if it knows Rjjk and also Qjk. In practice, these matrices are
unknown to the BS a priori and need to be estimated.

B. Spectral Efficiency: Perfect Covariance Information

During payload transmission, the received vector yj ∈ CM
at BS j is linearly processed by vjk ∈ CM , i.e., the receive
combining vector assigned by BS j to its kth UE. If MMSE
estimation is used, then the channel capacity of UE k in cell
j can be lower bounded by the SE [2]

SEjk =

(
1− K

τc

)
E {log2 (1 + γjk)} [bit/s/Hz] (5)

where the pre-log factor accounts for pilot overhead and the
instantaneous SINR is

γjk =
|vH

jkĥjjk|2

vH

jk


 L∑
l=1

K∑
i=1

(l,i) 6=(j,k)

ĥjliĥH

jli + Zj


vjk

(6)

with Zj =
K∑
i=1

(Rjli−Φjli) +
L∑

l=1,l 6=j

K∑
i=1

Rjli+
1
ρIM . This is

the tightest capacity bound that is available for massive MIMO
systems with linear receive combining. However, this bound
strictly requires the use of MMSE estimation at the BS, which
in turn requires perfect knowledge of the covariance matrices.
In the remainder, we consider imperfect covariance matrices
and need to use an alternative capacity bound.

III. UPLINK PERFORMANCE WITH
IMPERFECT CHANNEL COVARIANCE INFORMATION

In this section, we investigate how the BS can estimate the
required covariance information and we evaluate the conse-
quences of having imperfect estimates. The channel statistics
are assumed fixed over the system bandwidth Bs and a time
interval Ts. The number of coherence blocks that are contained
into such a time-frequency block is

τs =
BsTs
BcTc

=
BsTs
τc

. (7)

To quantify τs, let us consider a mobile scenario with Bs = 10
MHz and Ts = 0.5 s. Each coherence block is Bc = 200 kHz
and Tc = 1 ms, which allows for 135 km/h mobility at a 2
GHz carrier frequency. The channel statistics are then fixed
for τs = 25000 coherence blocks. With so many blocks, one
can put some extra pilots for channel covariance estimation in
a fraction of them and still keep the overhead low; see Fig. 1
for an illustration. We will now investigate how such extra
pilots can be used to aid the covariance estimation.

A. Covariance Matrix Estimation

For BS j to compute the MMSE estimate of hjjk, (2)
shows that it has to know Rjjk = E{hjjkhH

jjk} and Qjk =
E{ypjk(y

p
jk)

H}. Since these are covariance matrices, the clas-
sical approach is to approximate them with the corresponding
sample covariance matrices. However, since these are M ×M
matrices (i.e., relatively large matrices), we might need to
regularize the estimates [8], [9].

1) Estimation of Qjk: We begin with estimation of Qjk.
Suppose BS j has received the pilot signal ypjk in (3) over
NQ ≤ τs coherence blocks. We denote the NQ observations
as ypjk[1], . . . ,y

p
jk[NQ]. Note that these are obtained from the

pilots already used for channel estimation—no extra pilots are
needed. We can then form the sample covariance matrix as

Q̂
(sample)
jk =

1

NQ

NQ∑

n=1

ypjk[n]
(
ypjk[n]

)H

. (8)

For a particular antenna index m, the sample variance con-
verges almost surely (a.s.) to the true variance as NQ →∞:

1

NQ

NQ∑

n=1

[
ypjk[n]

(
ypjk[n]

)H]
m,m

a.s.−→ [Qjk]m,m . (9)

This follows from the law of large numbers and the ergod-
icity of the channels. The standard deviation of the sample
variance decays as 1/

√
NQ, thus relatively few observations

are required to obtain a good variance estimate. Each element
of Q̂

(sample)
jk converges to the corresponding element of Qjk

in a similar way. It is more challenging to obtain a sample
covariance matrix whose eigenvalues and eigenvectors are well
aligned with those of Qjk. This is because the errors in all
M2 elements of Q̂

(sample)
jk influence the eigenstructure. This

might have a substantial impact on massive MIMO, since
the MMSE estimator exploits the eigenstructure of Qjk to
obtain a better estimate. To overcome this issue, we follow
the approach proposed in [8], [9] and estimate the covariance
matrix as the convex combination

Q̂jk(η) = ηQ̂
(sample)
jk + (1− η)Q̂(diagonal)

jk (10)

between the conventional sample covariance matrix and the
diagonalized sample covariance matrix Q̂

(diagonal)
jk , which

contains the main diagonal of Q̂
(sample)
jk and otherwise is

zero. Note that the main diagonal of Q̂jk(η) is the same
for every η ∈ [0, 1], while the off-diagonal elements are



η times smaller than in the sample covariance matrix. This
regularization makes Q̂jk(η) a full-rank matrix for any η < 1,
even if NQ < M , and it treats unreliable off-diagonal elements
by underestimating their values. If η = 0, Q̂jk(η) is diagonal
and the correlation between the channel elements is ignored.

2) Estimation of Rjjk: A similar approach can, in princi-
ple, be taken to estimate the individual M ×M covariance
matrix Rjjk of the desired UE k in cell j. The only question
is how the BS should obtain “clean” observations of hjjk,
without interference from other UEs. As described in [6], a
specific training phase for learning Rjjk is possible, where
every UE uses a set of unique orthogonal pilots. This can
be implemented using a pattern of NRKL extra pilots, as
illustrated in Fig. 1, whereof each UE gets NR pilots.1 This
provides BS j with NR observations of hjjk in noise, from
which a sample covariance matrix can be formed. We call this
approach “R direct” and note that one needs to regularize the
estimate as described above to get robustness for small NR.

An alternative approach, which we propose here, is to rely
on a two-stage estimation procedure. Each UE is associated
with NR unique orthogonal pilots, as above, but the UE does
not send the pilot itself. Instead, all other UEs that cause pilot
contamination to it will send the pilot. This will allow BS j

to estimate the sample covariance matrix Q̂
(sample)
jk,−k of Qjk −

hjjkh
H

jjk, including all pilot-contaminating interfering UEs,
using the NR observations of the received pilot signals. If
Q̂

(sample)
jk has been already computed, this information can be

exploited to compute an estimate of the sample covariance
matrix R̂

(sample)
jjk as follows:

R̂
(sample)
jjk = Q̂

(sample)
jk − Q̂

(sample)
jk,−k (11)

from which the regularized estimate of R̂jjk is obtained as

R̂jjk(µ) = µR̂
(sample)
jjk + (1− µ)R̂(diagonal)

jjk (12)

where µ ∈ [0, 1] is the regularization factor. We call this
approach “Via Q”. Whenever NQ > NR, which is typically
the case in practice, R̂jjk(µ) contains more observations of
hjjk than in the “R direct” approach. On the other hand, it
also contains some perturbation from the imperfect subtraction
of the interfering UEs’ covariance matrices. We compare the
two approaches numerically in the next section.

B. Channel Estimation

By treating R̂jjk(µ) and Q̂jk(η) as the true covariance
matrices, we can compute an approximate MMSE estimate
of hjjk as

ĥjjk = Ajjk(µ, η)y
p
jk (13)

with Ajjk(µ, η) = R̂jjk(µ)
(
Q̂jk(η)

)−1
. Assuming that ypjk

and Ajjk(µ, η) are independent (i.e., ypjk is not used to
estimate any of the covariance matrices), the corresponding
MSE can be computed as follows.

1Each cell cannot have unique pilots in practice, but the extra pilots used
for covariance estimation can be reused very sparsely in the network.

Lemma 1. Consider the estimator ĥjjk = Wjky
p
jk, where

Wjk is a deterministic matrix, then the MSE is

E{‖hjjk −Wjky
p
jk‖2}

= tr
(
(IM−Wjk−WH

jk)Rjjk

)
+ tr

(
WjkQjkW

H

jk

)
.

Proof: Follows from direct computation of the MSE.
We use this lemma with Wjk = Ajjk(µ, η). The regular-

ization factors µ, η can be selected to minimize the MSE.

C. Spectral Efficiency

To quantify the SE under imperfect covariance information,
we need a capacity lower bound that does not require MMSE
estimates. The use-and-then-forget bound can be applied [12],
where the received combined signal in (14) is rewritten as

vH

jkyj = E{vH

jkhjjk}sjk +
(
vH

jkhjjk − E{vH

jkhjjk}
)
sjk

+
K∑

k=1,k 6=j
vH

jkhjjksjk +
L∑

l=,l 6=j

K∑

i=1

vH

jkhjlisli +
1√
ρ
vH

jknj . (14)

By treating E{vH

jkhjjk} as a known deterministic chan-
nel and noting that the other terms are uncorrelated with
E{vH

jkhjjk}sjk, the following result is obtained [12].

Lemma 2. The channel capacity of UE k in cell j is lower
bounded by

SEjk =

(
1− K

τc
− α

)
log2

(
1 + γ

jk

)
[bit/s/Hz] (15)

with α = NRKL
τs

accounting for the extra pilots used for
covariance matrix estimation and

γ
jk

=
|E{vH

jkhjjk}|2
L∑
l=1

K∑
i=1

E
{
|vH

jkhjli|2
}
−
∣∣∣E{vH

jkhjjk}
∣∣∣
2

+ 1
ρE{‖vjk‖2}

(16)
where the expectations are with respect to channel realizations.

The lower bound in Lemma 2 is intuitively less tight than
(5), since the channel estimates are only utilized for receive
combining but not for signal detection. This is what the use-
and-then-forget terminology refers to. The benefit of Lemma 2
is that the capacity bound does not require the use of MMSE
channel estimation, but can be applied along with any channel
estimator and any combining scheme. In particular, RZF with

vjk =

(
K∑

i=1

ĥjjiĥ
H

jji +
1

ρ
IM

)−1
ĥjjk (17)

is a good choice in practice [13]. Each of the expectations
in (16) can be computed by Monte-Carlo simulations for any
set of channel distributions. Closed-form expressions can be
obtained with MRC type of schemes, expressed as vjk =
Wjky

p
jk. By selecting Wjk ∈ CM×M in different ways, vjk

becomes an estimate of hjjk with different characteristics:

Wjk=





RjjkQ
−1
jk MMSE estimator

Ajjk(µ, η) Approximate MMSE estimator
IM LS estimator.

(18)



γ
jk

=
|tr(WH

jkRjjk)|2
L∑
l=1

K∑
i=1

tr
(
WjkQjkWH

jkRjli

)
+

L∑
l=1

|tr(WH

jkRjlk)|2 + 1
ρ tr(WjkQjkWH

jk)

(24)

BS

UE

Fig. 2. Multi-cell setup with L = 7 cells and K = 10 UE in each cell, with
each pilot being reused by the UE at the corresponding position in every cell.

The following lemma computes the expectations in (16) for
any deterministic choice of Wjk. Note that Wjk is a deter-
ministic matrix for the MMSE and LS estimators, while it
can be treated as deterministic in the case of an approximate
MMSE estimator, if Ajjk(µ, η) is based on a different set
of channel realizations than those used for data transmission
(with respect to which the expectations are computed).

Lemma 3. If the combining vector vjk = Wjky
p
jk is used,

for some deterministic matrix Wjk, then

E{vH

jkhjjk} = tr(WH

jjkRjjk) (19)
E{vH

jkvjk} = tr(WjjkQjkW
H

jjk) (20)

and

E
{
|vH

jkhjli|2
}
= tr

(
WjjkQjkW

H

jjkRjli

)

+




0 if i 6= k∣∣∣tr(WH

jjkRjli)
∣∣∣
2

if i = k.
(21)

Proof: The proof is available in the appendix.
By utilizing these results, we obtain a closed-form expres-

sion for the SE with MRC using an arbitrary channel estimator.

Theorem 1. If the MRC vector vjk = Wjky
p
jk is used, for

some deterministic matrix Wjk, then the channel capacity of
UE k in cell j is lower bounded by (15) with γ

jk
given in

(24) at the top of the page.

IV. NUMERICAL EVALUATION

We consider the urban multi-cell scenario in Fig. 2, with
L = 7 cells and 300 m inter-BS distance. The uplink
performance is evaluated in the center cell where the BS has
M = 100 antennas. Each cell contains K = 10 UEs at
120 m distance from the serving BS, in a circular pattern,
and the UEs that are at the same position in different cells
reuse the same pilot. Inspired by the 3GPP pathloss mod-
els, the SNR at distance d m from a BS is computed as
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Fig. 3. Normalized MSE for intra-cell UE channels, achieved with different
channel estimators for M = 100 in the scenario depicted in Fig. 2.

78.7 − 37.6 log10(d) dB. The channel coherence is modeled
as exemplified in the beginning of Section III: each coherence
block has Bc = 200 kHz and Tc = 1 ms such that τc = 200.
With Bs = 10 MHz and Ts = 0.5 s, we have τs = 25000.

We will illustrate the estimation performance by using the
one-ring model for the channel covariance matrices. This
model describes a uniform linear array (here with half-
wavlength antenna separation) where the multipath compo-
nents from a UE arrive uniformly distributed in an angular
interval (here 20◦) centered around the geographical angle
to the UE. This model has been used in the massive MIMO
literature to show the impact of strong spatial correlation [5],
[6], but we stress that results similar to those presented in this
section can be obtained with other covariance models as well.

The normalized MSE, E{‖hjjk −Wjky
p
jk‖2}/tr(Rjjk),

is shown in Fig. 3 for an average UE in the center cell.
The horizontal axis shows different numbers of extra pilots
NR used to estimate Rjjk. For every such value, we assume
that NQ = 10NR, since every coherence block can be used
to estimate Qjk. The approximate MMSE estimator (with
optimized η and µ) is implemented using either the method in
[6], which estimates Rjjk directly, or the proposed approach,
which operates as in (11)–(12). Comparisons are made with
the LS and MMSE estimators. We notice that NR = 10 is
sufficient for both approaches to outperform the LS estimator.
The MSE reduces monotonically with NR and a few hundred
samples are required to achieve performance close to the
MMSE estimator. The proposed estimation approach “Via Q”
largely outperforms “R direct” from [6] for all values of NR.
The main reason is that the estimate of Rjjk contains NQ
realizations of hjjk, instead of NR as in “R direct”.

Next, the impact that imperfect channel covariance informa-
tion has on the SE in the center cell is evaluated, using either
MRC or RZF. Fig. 4 shows the sum SE as a function of NR.
Firstly, we notice that the LS estimator performs reasonably
well, without knowing the channel covariance matrices. In
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particular, 82% of the SE obtained with the MMSE estimator is
achieved for MRC, while 70% of the SE is achieved for RZF.
Secondly, the proposed approximate MMSE estimator “Via Q”
outperforms the LS estimator when using as little as NR = 10
extra pilots. To achieve 95% of the SE of the MMSE estimator,
NR = 100 is needed with MRC and NR = 250 with RZF.
The gain in estimation quality clearly outweighs the extra pilot
overhead (larger α in (15)). Thirdly, the approach “R direct”
from [6] performs poorly when NR is small (roughly around
a few tens of extra pilots). When used with RZF, the value of
NR needed to achieve 95% of the SE of the MMSE estimator
is increased by a factor 2.5 compared to the proposed scheme.
The performance gap is somewhat smaller when using MRC.

V. CONCLUSIONS

We discussed how a BS can estimate the covariance infor-
mation needed in massive MIMO systems for MMSE channel
estimation. We proposed a new covariance estimation ap-
proach, which outperforms previous solutions under the same
pilot overhead. We derived MSE and SE expressions that apply
under imperfect covariance information, for any combining
scheme. A closed-form SE expression was computed for
MRC. Numerical results showed that covariance knowledge
is not critical, but largely improves the system performance,
especially when interference suppression schemes, such as
RZF, are used. Only a few tens of extra pilots are sufficient
to outperform a system using the LS estimator (for which no
covariance information is needed) either with MRC or RZF.

APPENDIX

Proof of Lemma 3: The expectations in (19)–(21) are
computed using channel statistics. First, we prove (19) as

E{vH

jkhjjk} = E{(ypjk)HWH

jkhjjk} = E{hH

jjkW
H

jkhjjk}
= tr(WH

jkE{hjjkhH

jjk}) = tr(WH

jkRjjk) (25)

where the second equality follows from the fact that hjjk is
independent of the noise and all other channels and the third
equality utilizes the following rule: xHy = tr(yxH) for any
vectors x,y. Next, we prove (20) by noting that

E{vH

jkvjk} = E{(ypjk)HWH

jkWjky
p
jk} =

= tr(WjkE{ypjk(y
p
jk)

H}WH

jk) = tr(WjkQjkW
H

jk) (26)

by using the same trace rule as above and identifying Qjk

from (4). Finally, we need to compute (21) and begin with
i 6= k, which implies that vjk and hjli are independent. Direct
computation yields

E{|vH

jkhjli|2} = E
{
vH

jkRjlivjk
}

= tr(WjkE{ypjk(y
p
jk)

H}WH

jkRjli) = tr
(
WjkQjkW

H

jkRjli

)

(27)

by exploiting the independence and then following the same
procedure as in (26). If i = k, vjk and hjli dependent, but
we notice that vjk −Wjkhjli and hjli are independent. We
utilize this to compute E{|vH

jkhjli|2} as

E
{
|(vjk −Wjkhjli)

Hhjli|2
}
+ E

{
|hH

jliWjkhjli|2
}

= tr
(
Wjk(Qjk −Rjli)W

H

jkRjli

)

+ |tr(WH

jkRjli)|2 + tr
(
WjkRjliW

H

jkRjli

)

= tr
(
WjkQjkW

H

jkRjli

)
+ |tr(WH

jkRjli)|2 (28)

where the first equality utilizes the independence and the
second one utilizes [14, Lemma 3] and the procedure in (27).
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