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Abstract

Predicting missing logs is an essential tool for geophysicists. In fact, geophysical measurements

in bore-holes are frequently affected by gaps in the recording of one or more logs, or else, the

recording of certain logs may be performed along limited depth extensions. In particular the sonic

and shear sonic logs are often recorded in limited depth extension along the well path, but their

knowledge is of crucial importance for many geophysical applications. It is therefore of interest to

be able to estimate the missing log intervals from a certain set of recorded logs. In this work I

propose to estimate the missing part of velocity logs by making use of a Genetic Algorithm (GA)

optimization and I demonstrate that this method is capable of extracting the linear or exponential

relations linking the sought parameter to the other available logs. This technique has been tested on

different sets of logs (gamma ray, resistivity, density, neutron, sonic and shear sonic) from three

wells  drilled in  different  geological  contexts  and through different  lithologies  (sedimentary and

intrusive).  The effectiveness of this  methodology is demonstrated by a series of blind tests and

evaluating  the  correlation  coefficient  between  the  true  versus  the  predicted  velocity  values.

Moreover, the combination of the GA optimization with a Gibbs Sampler (GS) and a subsequent

Monte Carlo simulation allow us to reliably quantify the uncertainties in the final predicted velocity.

In the final part  the GA method is  also compared with the Neural  Networks approach and the
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classical  multilinear  regression.  From  the  comparison  emerges  that  the  GA,  the  NN  and  the

multilinear  methods  return  velocity  estimations  with  the  same  prediction  capability,  when  the

relations among the input logs and the seismic velocity are close to be linear. Obviously the GA and

NN approaches are more robust when the sought relations are non linear. However, in all cases, the

main advantages of the GA optimization procedure,  compared with the NN approach, is  that it

directly provides an interpretable and simple equation that relates the input and the predicted logs.

Moreover, the GA method respect to the NN approach is not affected by the disadvantages that

characterized the gradient descent techniques. 

1. Introduction

The determination of a reliable velocity-depth trend in a particular well location is crucial in

exploration  geophysics.  For  example  a  reliable  compressional  velocity  estimation  is  needed  to

perform well to seismic tie (Herron, 2014) or to derive a low frequency trend for estimating the

absolute acoustic impedance from inverted post-stacked data (Morozov and Ma, 2009). Velocity

logs are needed to perform an efficient AVA modeling (Mazzotti, 1991; Aleardi and Mazzotti, 2014)

or to calibrate the PP and PS wave reflections (Stewart et al., 2002; Gaiser and Van Dok, 2005;

Zhang and Wang, 2009). Finally, P-, S-wave velocities are of crucial importance in building rock-

physics template for facies and lithology classification (Avseth et al, 2005; Dvorkin et al., 2014).

However, the sonic and shear sonic logs are often recorded in limited depth extension along the well

path due  to  the limited budget  in  acquiring such logs.  Therefore,  it  is  of  crucial  importance a

reliable estimation of P-wave and S-wave velocities in the missing log interval.

This task can be accomplished by finding a specific relation which links the velocity logs with a

set of other recorded logs (gamma ray, resistivity, density logs).  Once these relations are known,

they can be used to predict seismic velocities for the depth intervals in which data are missing or,

assuming negligible lateral variations in petrophysical properties, they can be applied to predict

seismic  velocities  to  nearby  wells.  However,  the non-linearity  in  the  relations  linking  seismic
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velocities to the other log data may often render their explicit evaluation a difficult task. Usually to

address this drawback a linear relation between seismic velocities and the other rock properties is

assumed (Pickett, 1963; Han, 1986; Castagna et al. 1993;  Mazzotti and Zamboni, 2003) but this

assumption is frequently violated in real cases. For examples it is well known the non linear relation

linking P-wave velocity and water saturation or P-wave velocity and clay content (Avseth et al.,

2005). 

However,  in  the  last  few  years,  the  development  of  so-called  computer-based  intelligence

methods has enabled researchers to handle the non-linearity that characterize these optimization

problems with high accuracy. In particular the artificial neural network (NN) method has received

the most  attention in  exploration geophysics.  In  general,  neural  network technology help us in

finding nontrivial correlations between geophysical data. This method has been widely applied in

many  geophysical  problems:  wavelet  estimations  (Wang  and  Mendel,  1992),  velocity  analysis

(Calderón-Mac et al, 1998), automatic horizon picking (Huang, 1997), seismic facies classification

(Coleou et al. 2003; Herrera 2006; Marroquín et al. 2008), or to relate seismic derived attributes to

reservoir properties (i.e relate seismic attributes with porosity log as shown in Dorrington and Link,

2004).  The NN method has  been  widely  applied  also  for  predicting  the  missing  log  intervals,

namely to find a specific relation linking a set of input logs with another, desired log, (Arandia et

al., 2001; Poulton, 2002; Srisutthiyakorn, 2012). However, notwithstanding their many successful

applications  in  exploration  geophysics  the  classical  Neural  Network  approach  suffers  of  many

limitations and drawbacks. In particular, as discussed in Saggaf et al (2003) or Van der Baan and

Jutten (2000), the NN method is primarily limited by its gradient-based nature.

In this study I try to overcome the drawbacks and imitations of a NN by applying a different

method, namely the Genetic Algorithm, to find the linking relation between a set of input log  and a

desired log. In particular I focus the attention on P- and S-wave velocity predictions from a set of

input log. Similarly to the classical NN approach the proposed methodology is based on the fact that

seismic  velocities  are  related  to  the  rock  petrophysical  properties  such  as  texture,  mineralogy,
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saturation and pore fluid content. However, other logs are also dependent on these petrophysical

properties and thus, without requiring any a priori information, the GA can retrieve the existing

quantitative relations among the recorded logs.  Therefore, linear and/or exponential relations are

assumed  to  relate  the  seismic  velocities  with  a  set  of  input  logs  and  the  coefficients  which

characterize these relations are determined performing a GA optimization. 

However, the aim of any inversion or optimization process should be not only to find an optimal

solution but also to quantify the uncertainties which affect the final result (Sen and Stoffa, 2013). In

fact, it is know that the geophysical inverse problem suffers from the non-uniqueness problem, that

is many solutions fit the observed data equally well (Tarantola, 2005). To address this problem the

geophysical  inverse  problem is  often  cast  in  a  statistical  framework (Dujindam,  1988).  In  this

statistical approach the solution of an inverse problem is not only a single set of predicted model

parameters  but  is  also  represented  by  a  posterior  probability  density  function  in  model  space.

However, it is known that the GA (similarly to other global search algorithms) are not a Markov

Chain Monte Carlo method and do not honor the principle of importance sampling (Rubinstein and

Kroese, 2011). Therefore, a biased posterior probability distribution will be estimated if it is directly

computed from the set of GA sampled models and their associated likelihoods (Sen and Stoffa,

1996). In particular it has been shown that the GA method is prone to underestimate the variance

and thus the uncertainty associated with each inverted parameter (Sen and Stoffa, 1996; Aleardi and

Mazzotti,  2014).  As  discussed  in  Sen  and  Stoffa  (1996)  MCMC  methods,  due  to  their  high

computational cost, can be only applied in case of a limited number of unknowns (no more than

four or five). Therefore, several methods have been introduced to obtain a reliable and unbiased

estimation of the posterior distributions after a GA inversion (see for example Sen and Stoffa, 1996;

Mallick 1999; Hong and Sen, 2009). In this work we follow the strategy proposed by Sambridge

(1999) in which a stochastic global search algorithm is combined with a subsequent resampling of

the explored portion of the model space performed by a MCMC method such as the Gibbs Sampler

(Geman and Geman, 1984). Therefore, this approach try to combine the speed of GA, in finding an
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optimal  solution,  with  the  accuracy of  a  subsequent  GS,  to  obtain  a  reliable  estimation  of  the

marginal probability distributions. Once that the uncertainties in the coefficient contained in the

estimated  relation  have  been  derived,  such  uncertainties  are  then  propagated  in  the  predicted

seismic velocity via a Monte Carlo simulation (see Avseth et al 2005 for many examples of Monte

Carlo simulations is exploration geophysics). 

This paper starts with a brief overview of the genetic algorithms and of the neural network and

multilinear  methods.  Then,  I  introduce  the  methodology  that  has  been  used  to  estimate  the

uncertainties in the regression coefficients that relate the velocity with the set of input variables.

After the theoretical background three different example are detailed discussed. In the final part the

GA results are also compared with the NN and the classical multilinear regression.

2. A brief introduction to Genetic Algorithms

Genetic Algorithms are search algorithms developed by Holland (1975) belonging to the larger

class of evolutionary algorithms, and are based on the mechanics of natural selection and evolution

(the  “survival  of  the  fittest”  Darwinian  principle)  to  search  through  model  space  for  optimal

solutions. The optimization process is driven by three main genetic operators that are mutation,

cross-over  and selection.  In a  genetic  algorithm, a  population of  strings (called chromosomes),

which encodes candidate solutions (called individuals, or phenotypes) to an optimization problem,

is evolved toward better solutions during the evolution process which starts from a population of

randomly  generated  individuals.  In  each  generation  the  fitness  (the  goodness  of  each  possible

solution) of every individual is evaluated, then multiple individuals are stochastically selected from

the current population on the basis of their fitness. Then they are modified (using crossover and

mutation operators) to form a new population which is used in the next iteration. The algorithm

terminates when either a maximum number of generations has been produced, or a satisfactory

fitness level has been reached for the current population. In all the following tests I set the number

of individuals in the initial population to ten times the number of unknown, whereas the maximum
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number of iterations is 50. In each iteration the 90% of parents is selected for reproduction and

mutation. The mutation rate (the probability of mutating a variable) is fixed to 10% whereas the

Stochastic Universal Sampling selection method and a linear ranking are used for selection. For

replacing the parents with the generated offspring I have applied a fitness-based elitist reinsertion

methods.  More  information  and  more  details  about  GA can  be  found in  Goldberg  (1989)  and

Mitchell (1996). 

3. The proposed methodology

Shear and compressional wave velocities depend on reservoir properties, such as the depth (z),

pore fluid type (fl), lithology (lit), porosity (φ), density (ρ), and other parameters, as expressed in

the following equation:

velocity= f (z , fl , lit ,ϕ ,ρ .....)  (1)

Well logs inherently contain information about the reservoir properties described in equation 1

(e.g.,  gamma  ray  and  resistivity  logs  provide  lithological  and  pore  fluid  type  information,

respectively) and thus they can be used to estimate the P- or S-wave velocity. Moreover, if we

assume that the S- or P-wave velocities are related to each log by a linear or exponential relation,

equation 1 can be simply re-written as

velocity=∑
n=1

k

aninputn
bn  (2)

Where the input variable represents the nth-log used in the prediction procedure.  The weight of

each input variable is given by the coefficient  a, whereas the exponent  b aims to reproduce the

effects of variations in the input log on seismic velocity.

Using a GA approach, each chromosome contains the coefficients (a1, a2,...,an,b1, b2,...,bn), which

express the relations between the set of input logs and the recorded velocity. The fitness of each

individual is inversely correlated with the following error function:

error=√∑ (d pre−d obs)
2  (3)
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where dpre and dobs are the predicted and the observed velocities, respectively.

After the GA inversion the Sambridge's method (Sambridge, 1999) can be applied for attaining a

reliable estimation of the marginal probability distribution for each model parameter. This method

builds Voronoi cells around each sampled model, assigning the same likelihood to all points inside

the same Voronoi cell. This first step creates an approximate marginal posterior probability density

function (PPD) for the GA solution,  then the marginal probability density functions are refined

running a fast Gibbs Sampler on the approximate PPD. Therefore, in this step the portion of the

entire model space explored in the previous GA optimization is resampled with a MCMC method.

However, one should be careful with the initial GA set, because any error due to an insufficient

sampling in GA section cannot be compensated by increasing the GS sample size. A description of

the mathematical details of this method can be found in Sambridge (1999) together with practical

recipes  for  application  and  how  to  check  the  final  results.  Applications  of  this  approach  in

exploration geophysics can be found in Fliedner et al (2012) or Aleardi and Mazzotti (2014). 

After the GS step we can numerically derive the marginal distribution of each coefficients (the a

and b terms in equation 2). Since equation 2 is non linear the uncertainties in the final velocity

distribution can not be competed analytically. Then, the marginal distribution derived from the GS

resampling serve us to compute the cumulative distribution which are used to perform a Monte

Carlo simulation of the final  velocity  distribution.  This  simulation is  performed through 10000

Monte Carlo samples.

5. The neural network and multilinear approaches

A neural network is a mathematical algorithm inspired by the animal's central nervous system

that can be trained to solve a problem that would normally require human intervention (Haykin,

1999). In particular a supervised neural network corresponds to a problem where a set of input data

and their  corresponding output  are  available:  in  this  way,  the  networks  can  attempt  to  infer  a

relationship between the training set and the output. 
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Among the many different types of supervised neural networks implementations the one that has

found the most applications in solving geophysical problems is the multilayer feedforward neural

network (Van der Baan and Jutten, 2000). The architecture of this network mainly consists of one

input layer, one output layer, and one or more hidden layers. The nodes of each layer are connected

with weights, and the nodes of the hidden layers consist of non-linear or linear activation functions.

The  most  commonly  used  activation  or  transfer  function  is  the  sigmoid  function,  which is  a

continuously  differentiable,  monotonically  increasing  function  that  can  best  be  described  as  a

smooth step function. No unique rule exists for determining the best configuration for the network

structure (i.e. number of hidden layers, number of input nodes, type of activation function, number

of node for each hidden layers). For more insight into this topic see Huang and Huang (1991).

Usually the NN training is performed by first setting the value of the weights to small random

numbers and then updating these values using a technique called back-propagation (Haykin, 1999).

This method is essentially a steepest descent algorithm. Hence it suffers from all disadvantages of

the  gradient-based  methods.  For  instance,  in  the  case  of  multiminima  objective  function,  the

gradient will not always point to the desired global minimum and the algorithm is prone to get

trapped in local minima. To overcome this problem several authors have suggested to incorporate

global  search  algorithms  (such  as  Simulating  annealing  or  Genetic  algorithms)  with  the  NN

methods (for a review of such methods see Van der Baan and Jutten, 2000). These hybrid methods

are not considered here. 

Following, Mazzotti and Zamboni (2003) a stepwise regression (Draper and Smith, 1985) will be

applied in the multilinear approach.  Basically this method is a semi-automated process of deriving

a linear equation by successively adding or removing variables in the regression procedure basing

solely  on  the  t-statistics  of  their  estimated  coefficients.  There  are  three  main  approach  to  this

regression method: Forward selection, backward elimination and bidirectional elimination. The first

starts  with no variable in the model  and proceed forward (adding one variable  at  a  time).  The

second start with all potential variables in the model and proceed backward (removing one variable
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at a time). In this work we applied the third method which is a combination of the above mentioned

approaches. This is essentially a forward selection procedure but with the possibility of eliminating

a selected variable at each optimization stage.   

4.1 Example 1: Estimating Vs in a shale-sand sequence

In  the  first  case,  I  compute  the  S-wave  velocity  from the  variables  depth  (Z),  gamma  ray

radiation (GR), density (DEN) and deep resistivity (RES). The relations between S-wave velocity

and each input log are shown in the cross-plots of Figure 1.

The used logged interval spans from 3700 m to 4000 m below sea level (Figure 1a), and due to

this limited depth range, the depth variable shows a weak influence on the S-wave velocity. Figures

1b and d show that the density and the gamma ray radiation versus the shear wave velocity separate

into two classes: the shales, with high densities and high gamma ray radiation, and the sands, with

significantly  lower  values  for  both  indicators.  A strong  interdependence  between  the  S-wave

velocity and resistivity is evident in the cross-plot of Figure 1c, where the samples in the upper right

corner pertain to gas-saturated sands. 

Using the GA to find the relations among the input logs and the S-wave velocity (as indicated in

Figure  1:  Cross-plots of  the  measured  S-wave  velocities  against  each  input  log  used  in  the
optimization procedure .a) S-wave velocity vs. depth. b) S-wave velocity vs. density. c)  S-wave
velocity vs. resistivity.  d) S-wave velocity vs. gamma ray radiation.

a) b)

c) d)
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equation 2), for this example, I find the following expression:

Vss=0.27 Z s
0.99+0.43 DEN s

2.94+0.3 RES s
0.68+0.01GRs

−0.45  (4)

In equation  4, to better compare the values assumed by each coefficient, I have scaled the log

data to a mean of one (as indicated by the subscript  s). Figure 2 shows the Vs velocity computes

according  to  equation  4.  Velocity  is  plotted  versus  depth  and  density  (Figure  2a)  and  versus

resistivity and gamma ray (Figure 2b). 

Figure 2: Graphical representation of the terms in equation 4: the relations linking each input log
with the S-wave velocity as estimated by the GA optimization. a) influence of Depth and Density on
Vs. b) influence of Gamma Ray and resistivity on Vs. Note the strongly non-linear relation between
Vs and resistivity. The black lines indicate the velocity isolines.

Figure  3: a)  Comparison between the real and the predicted velocity versus depth. b) Cross-plot
between the real and the predicted velocity with the resulting correlation coefficient R2. 

a)a) b)

a) b)
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Figure  2 shows that the most important variables in this regression are density and resistivity,

whereas the gamma ray information has a minor effect on the S-wave velocity estimation.  The

quantitative relations of equation 4 have been derived by considering short segments of the logged

intervals for which all of the logs, including the velocity logs, are available. Therefore, to verify the

applicability of equation 4 in predicting the velocity, I have performed a blind test outside the used

log interval. The result of the blind test for this example is illustrated in Figure 3.  Figure 3a shows a

close-up of the real, that is the logged, velocity (blue curve) and the predicted velocity (red curve).

Note the satisfactory match between the two curves for this first example. Figure  3b shows the

regression plot and the correlation coefficient (R²) for the real and predicted velocities. Very high

correlation is achieved in this case. After the GA optimization aimed at deriving the relation shown

in  equation  4,  the  entire  set  of  models  (each  one  representing  a  different  combination  of  the

coefficients and exponent an and bn of equation 2) and their associated likelihoods have been used in

the GS resampling. In deriving the final posterior probability we have assumed an uninformative

prior model uniformly distributed in the entire search range for each inverted parameter. In this

contest  the  final  posterior  probability  density  function  is  mainly  influenced  by  the  likelihood

function.  For deriving the likelihood associated with each explored model the classical formula

described in Sen and Stoffa, 1996 have been applied.

 Figures 4a, b, c and d illustrate examples of the final marginal posterior distributions pertaining

to the coefficient and exponent of the depth and density logs. A very good resolution is attained in

both cases. The final marginal distributions have been used to perform a Monte Carlo simulation in

order to propagate the uncertainties in the regression coefficient to the uncertainties in the seismic

S-wave velocity. In this simulation each model parameters has been considered as an indipendent

realization. The simulation, performed employing 10000 Monte Carlo samples, yields the final S-

wave  velocity  distribution  shown  in  Figure  5.  Note  the  very  high  resolution  obtained  in  this

example. 
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Figure 4: Examples of the final marginal distributions derived after the GS resampling. 
a) and b) marginal distributions for the z coefficient and z exponent, respectively. c) and
d) Marginal distributions for the density coefficient and density exponent, respectively. 

a) b)

c) d)



Figure 5: Predicted S-wave velocity distribution derived after the Monte Carlo 
simulation and using the marginal distribution of each regression coefficient of 
equation 4 has been obtained combining the GA optimization with the GS method. 



4.2 Example 2: Estimating Vp in a shale-sand sequence

The second case differs from the previous one in that only gamma ray and density logs are

available in addition to the standard sonic log. Although the used depth range is limited from 200 m

to 350 m below the rotary table, it is clear (Figure 6a) that the depth has a significant impact on the

P-wave velocity. 

In Figures 6b and c, the two populations of sands and shales are distinguishable on the basis of

their P-wave velocities and gamma ray radiation, with the shales having lower velocities and higher

gamma ray radiation than the sands. In this second case the GA finds the following equation to

relate the variables depth, density and gamma ray radiation to the P-wave velocity:

Vps=0.53 Z s
0.71+1.16 DEN s

0.07−0.7GRs
0.41  (5)

Figure  6: Cross-plots of  the  measured  P-wave  velocity  against  each  input  log  used  in  the
optimization procedure. a) P-wave velocity vs. depth. b) P-wave velocity vs. density. c)  P-wave
velocities vs. gamma ray radiation. 

a) b)

c)
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As in equation 4 the subscript s indicated the scaled version of the considered logs. 

Figure  7 shows the influence of each input variable (depth, density and gamma ray) on the P-

wave velocity.  In  this  case,  in  addition to  the depth and the  density  variables,  the  gamma ray

radiation exerts a major effect on the P-wave velocity. In contrast to the previous case for the S-

wave velocity, the shale content strongly influences the P-wave velocity prediction. Figure 7 also

shows that in this case, likely due to the rather limited depth range, the relations display a quasi-

Figure 7: Graphical representation of the terms in equation 5: the relations linking each input log
with the P-wave velocity as estimated by the GA optimization. a) influence of Depth and Density on
Vp. b) influence of density and Gamma Ray on Vp. The black lines indicate the velocity isolines.

Figure 8:  a) Comparison between the real and the predicted velocity versus depth. b) Cross-plot
between the real and the predicted velocity with the resulting correlation coefficient R2. 

a) b)

a)a) b)
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linear behavior. The result of the blind test for this example is illustrated in Figure 8, where good

prediction  is  shown by comparing  the  measured  and predicted  velocity  and  by the  correlation

coefficient (R²) (Figure 8a and b, respectively). Even in this example, where i have used only two

input logs (density and gamma ray) and a very limited depth interval (200 m-350 m), the match is

good.  Furthermore,  the  anomalous  velocity  values  present  in  the  actual  log  (such  as  the  high

velocity peak near a depth of 150 m) can be corrected using the predicted values. Also in this case

after the GA optimization the uncertainty in the final Vp has been quantified by means of the GS

step, aimed at determining the uncertainties in the regression coefficient in equation 5, and of the

successive Monte Carlo simulation. Figure 9 represents the final uncertainty in the P-wave velocity

estimation. Also this example is characterized by a satisfactory resolution on the velocity value.

Figure 9: Predicted P-wave velocity distribution derived after the Monte Carlo 
simulation and using the marginal distribution of each regression coefficient of 
equation 5 has been obtained combining the GA optimization with the GS approach. 
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4.3 Example 3: Estimating Vs in a fractured intrusive rock

In  contrast  to  the  previous  two cases  for  different  sand and shale  sequences,  the  third  case

considers a geothermal reservoir hosted in an intrusive fractured rock. 

In this example, I attempt to estimate the S-wave velocity using the depth, P-wave velocity and

resistivity information. In this case, the depth interval used in the estimation procedure ranges from

2980 to 3120 m below the rotary table. As shown in Figure 10a, it is clear that the depth has a minor

influence on the S-wave velocity in this interval, which shows a clear quasi-linear correlation with

the P-wave velocity and resistivity (Figures  10b and c, respectively). The increase in the S-wave

velocity with resistivity can be explained by considering the low resistivity values pertaining to the

fractured  intervals  inside  the intrusive rock.  In  this  last  example,  I  have derived the  following

formula relating the S-wave velocity to the input logs:

Vss=0.3 Z s
2+0.48 Vp s

1.05+0.2 RES s
1.8  (6)

The predicted relations between the S-wave velocity and the input logs are illustrated in Figure

11. In this case the S-wave velocity is plotted versus depth and P-wave velocity (Figure 11 a) and

versus P-wave velocity and resistivity (Figure  11 b and c). From this figure emerges the strong

influence of the Vp and resistivity in determining the Vs values and the minor role played by the

depth.

The  results  of  the  blind  test  show  a  lower  correlation  coefficient  (Figure  12b)  than  in  the

previous cases, most likely due to the more complex geological context and the lower performance

of the logging tools in these lithologies at high temperatures. However, Figure  12a, presenting a

comparison between the real and predicted S-wave velocity values, shows that the results of the

blind test are satisfactory. In particular, we can estimate the sudden decrease in S-wave velocity

occurring near 3350 m due to the presence of a fractured zone. Therefore, for this more stringent

test, the reliability and applicability for predicting the velocity values are confirmed.
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Similarly to the previous example, the GA optimization has been followed by the GS step to

reliably determined the uncertainties in the regression coefficient shown in equation 6. Examples of

the  final  marginal  distributions  pertaining  to  the  coefficient  and  exponent  associated  with  the

resistivity variable are illustrated in Figure  13. In this  case due to the very complex geological

contest  and  to  larger  scatter  visible  in  Figure  10 the  marginal  distribution  are  multimodal.  In

addition, if we compare Figure 13 with Figure 4 (showing examples of the marginal distribution in

Figure  10:  Cross-plots of  the  measured  S-wave  velocities  against  each  input  log  used  in  the
optimization  procedure.  a)  S-wave  velocity  vs.  depth.  b)  S-wave  velocity  vs.  Vp.  c)   S-wave
velocities vs. resistivity. 

Figure 11: Graphical representation of the terms in equation 6: the relations linking each input log
with the S-wave velocity as estimated by the GA optimization.  a) influence of Depth and P-wave
velocity on Vs. b) influence of P-wave velocity and resistivity on Vs. The black lines indicate the
velocity isolines.

a) b)

c)

a)a) b)
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the first example) we can appreciate the larger uncertainty (larger variance) which characterizes this

third  example.  These  ambiguities  reflects  on  the  uncertainties  in  the  final  S-wave  velocity

prediction derived after the successive Monte Carlo simulation (Figure 14).  In Figure  14 is clearly

evident the larger ambiguities in the seismic velocity prediction in this example with respect to the

previous two (compare Figure 14 with Figures 5 and 9). However, the overall velocity-depth trend

is recovered also in this example.

Figure 12: a) Comparison between the real and the predicted velocity versus depth. b) Cross-plot
between  the  real  and  the  predicted  velocity  with  the  resulting  correlation  coefficient  R2.
Notwithstanding the lower regression coefficient attained in this example compared to the previous
ones,  the derived equations are able to  predict  the sudden decrease of  S-wave velocity around
3350m due to a fractured zone in the igneous rock.

Figure 13: Examples of the final marginal distributions derived after the GS step. a) 
and b) marginal distributions for the resistivity coefficient and exponent, respectively. 
Note the multimodality of the distribution and also the larger variance compared to the 
probability distributions shown in Figure 4 (the x-axis scale is the same in both figures).

a) b)

a) b)
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5.1 Comparison between GA, NN and multilinear inversion.

In this chapter I compare the outcomes of the GA optimization procedure with those obtained

with the very popular NN approach and the classical multilinear stepwise regression. Also for the

NN and the stepwise inversion optimization I perform a series of three blind tests considering the

same  depth  intervals  used  in  the  previous  GA examples  in  the  prediction  procedure  and  for

extending the derived relations. 

For what concerns the NN architecture in the following examples, I have used one hidden layer

with 16 neurons with a sigmoid transfer function. The input layers have as many nodes as input

logs, and the weights are computed such that the value at the output layer is equal to the training

Figure 14: Predicted S-wave velocity distribution derived after the Monte Carlo 
simulation and using the marginal distribution of each regression coefficient of 
equation 6 has been obtained combining the GA optimization with the GS sampling. 
Note the larger uncertainties with respect to the first and second examples (Figures 5 
and 9). For a better comparison the x-axis scale is the same in all these figures.
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value in the least-squares  sense.  Finally,  the early stopping criterion is  applied to  stop the NN

optimization and to prevent overfitting the training samples (Van der Baan and Jutten, 2000).

Figures  15a shows the comparison between the GA, NN and multilinear results  for the first

example regarding the Vs estimation in the shale-sand sequence. In this case very similar results are

attained by the GA and NN method while it is interesting to observe that the multilinear approach

return less accurate results as shown by the percentage error represented in Figure  15b. This is

likely do to the strongly non linear relation that exists, in this case, between Vs and resistivity (see

equation 4 and Figure 2b) that the multilinear regression can not predict.

Figure 15: a) Comparison between the true, recorded Vs velocity and the predicted velocities
by the GA, NN and multilinear (Lin.) optimization techniques for the shale-sand sequence
considered in the first example. b) the percentage error pertaining to each method.

a)a) b)
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Figure  16a  and  b  illustrate  the  comparison  between  the  recorded  P-wave  velocity  and  the

predicted  ones  by  the  GA,  NN  and  multilinear  optimizations  and  the  final  percentage  error,

respectively. Being the relations between the Vp and the other input variables very close to be linear

the three methodologies return very similar results. 

Figure 17a and b illustrate the comparison between the three methods for the third example. Also

in this case the comparison shows very similar results.

However,  as previously seen in Figure  15 a non linear method (such as the NN or the GA

approach) can be more accurate, respect to the classical multilinear regression, in case where a

clearly non linear relation exist between an input variable and the desired log.

Figure 16: a) Comparison between the true, recorded Vp velocity and the predicted velocities
by the GA, NN and multilinear (Lin.) optimization techniques for the shale-sand sequence
considered in the second example. b) the percentage error pertaining to each method.

a) b)
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However, among the non linear methods, the main advantage in utilizing the GA optimization

respect  to  the  NN method,  is  that  this  approach  directly  provides  an  interpretable  and simple

equation relating the input and the predicted logs. In addiction the NN method is essentially a linear

gradient-based optimization and then, it is not well-suited for uncertainties analysis because only a

very small and localized model space portion is explored during the inversion. Differently the GA

method is able to explore different model space zones and thus the entire set of explored models

and associated likelihoods can be used to quantify the uncertainties affecting the coefficients in the

derived equation. However, I remind that the GA method is not a MCMC algorithm and then for

attaining an unbiased estimation of the marginal probability  of each inverted parameter,  I  have

combined the stochastic optimization with the following GS method. A last remark must be made

for what concerns the differences between the classical NN and the GA methods. Usually in a NN

optimization the weights associate to each neuron are randomly initialized and are subsequently

optimized by means of a gradient-based strategy. This make clear the importance of a good starting

model to prevent the convergence toward a local minimum in case of complex multiminima misfit

function. To overcame these limitations the NN optimization must be repeated many times, starting

from different starting models, from which the best result will be selected. This procedure can be

very time consuming in case of a huge numbers of training samples. An alternative procedure, not

Figure 17: a) Comparison between the true, recorded Vs velocity and the predicted velocities
by the GA, NN and multilinear (Lin.) optimization techniques for the third example. b) the
percentage error pertaining to each method.

a) b)
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discussed here but mentioned by several authors (for a review see Van deer Ban and Jutten, 2000),

is to use a global training scheme to obtain several good initial guesses to start a localized inversion.

However,  the  GA method,  or  other  global  search  algorithms,  circumvent  this  drawback  by

performing in a single inversion run a wide and efficient exploration of the entire model space. In

this way the final result is much less affected by multiple minima and by the initial guess of the

starting model.

6. Conclusions

The  good  match  between  the  measured  and  predicted  seismic  velocities  demonstrates  the

potential of genetic algorithms to yield prediction equations capable of estimating the shear and

compressional wave velocities from a set of input log data to a good degree of approximation.  A

slightly lower correlation and matching were observed for the intrusive rock example. This result

might be due to the more complex geological context and the lower performance of the logging

tools in the lithologies at high temperatures. 

Moreover, these examples demonstrate the relations linking seismic velocity with the other logs

exhibit a strongly case-dependent behavior, that is, the  a and  b coefficients of equation  2 for the

same log can be quite different from case to case. 

If needed, the predicted relations can be extended along the well path, where velocity measures

have not been measured or are  affected by errors,  or,  assuming negligible lateral  variations,  to

nearby wells. This same approach has also been applied to the prediction of other quantities, such as

the porosity, density or resistivity, from a set of input logs that may include P- and S-wave velocity

measures, and also in these cases, high-quality results were obtained. 

Combining the GA algorithm with a Markov Chain Monte Carlo method, such as the Gibbs

Sampler, enables us to quantify the uncertainties in the derived equations. Through a resampling of

the model space explored during the GA optimization it is possible to derive an unbiased estimation

of the posterior marginal probability distribution associated to each coefficient in the final equation. 
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Comparing the results produced by the GA approach with the outcomes derived from a neural

network method and a multilinear inversion it turns out that the three methods give rise to very

similar results when the relation between velocity and the set  of input logs is linear.  When the

relations are strongly not linear it is advisable to apply a non linear optimization such GA or NN

method. However, the main advantage of the GA optimization procedure respect to the NN, is that it

directly provides an interpretable and simple equation relating the input and the predicted logs.

Moreover, the GA method overcomes the well known limitations (i.e entrapment in local minima,

results strongly dependent on the initial guess of the starting model) that frequently affect the NN

approach. Finally, the GA method is best suited respect to the NN, in casting the inversion problem

in a probabilistic framework. In fact after the GA inversion the entire set of explored models and

associated likelihood can be used to quantify the uncertainties affecting the final result.
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