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Abstract—The implementation of device-to-device (D2D) un-
derlaying or overlaying pre-existing cellular networks has re-
ceived much attention due to the potential of enhancing the total
cell throughput, reducing power consumption and increasing the
instantaneous data rate. In this paper we propose a distributed
power allocation scheme for D2D OFDMA communications and,
in particular, we consider the two operating modes amenable
to a distributed implementation: dedicated and reuse modes.
The proposed schemes address the problem of maximizing the
users’ sum rate subject to power constraints, which is known
to be nonconvex and, as such, extremely difficult to be solved
exactly. We propose here a fresh approach to this well-known
problem, capitalizing on the fact that the power allocation
problem can be modeled as a potential game. Exploiting the
potential games property of converging under better response
dynamics, we propose two fully distributed iterative algorithms,
one for each operation mode considered, where each user updates
sequentially and autonomously its power allocation. Numerical
results, computed for several different user scenarios, show
that the proposed methods, which converge to one of the local
maxima of the objective function, exhibit performance close to
the maximum achievable optimum and outperform other schemes
presented in the literature.

I. INTRODUCTION

The exponential growth of mobile radio communications

has lead to a pressing demand for higher data rate of wireless

systems and, more generally, it has brought up the necessity

of improving the whole network performance. Accordingly,

a large part of recent efforts of the research community

has been focused on increasing the spectral efficiency of

wireless systems. This can be attained in several different

ways exploiting in a way or the other the inherent diversity of

mobile communications: for example by using a large number

of antennas, or by exploiting the knowledge of the propagation

channel at the transmitter to best adapt the usage of radio

resources or by optimally sharing the existing spectrum with

a larger number of users. At the same time, the devel-

opment of advanced and spectrally efficient communication

techniques has called for the deployment of more effective

interference management schemes with a great emphasis on

network densification techniques [1] as in the Third Generation

Partnership Project (3GPP) Long Term Evolution Advanced

(LTE-Advanced) systems [2].
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In this scenario, the concept of device-to-device (D2D)

communications, which enables terminal in close proximity

to exchange data without passing from the base station, has

received much attention [3]. In particular, there is a new

class of services such as online gaming, video sharing and

social networking that may be requested when the end users

are in proximity. Thanks to the D2D paradigm, these new

proximity-based services can be implemented with minimal

involvement of the controlling base station with the benefit

that a) the evolved nodeB (eNB) base stations are allowed

to offload part of their traffic burden [4], and b) due to the

physical proximity of the D2D nodes and the consequent low

attenuation of the propagation channel, the terminal power

consumption is drastically reduced and the instantaneous data

rate is enhanced. Another application for D2D communication

which is expected to deliver very large gains is content caching

[5], [6].

Nevertheless, there are many challenges yet to be addressed,

including device power consumption for D2D discovery, se-

curity issues, power control among D2D devices, radio link

design, and synchronization [7], [8]. In particular, one of the

most critical challenges is to manage the interference the D2D

network generates on the infrastructured cellular network [9].

In this work we turn to some of these challenges, focusing

our effort on the problem of power control with the goal of

devise an algorithm able to maximize the D2D users’ rate and

manage the interference the D2D nodes generate against each

other and the infrastructured network.

In order to provide the system with maximum flexibility in

sharing the available spectrum, D2D communications should

be able to operate in the following multiple modes [3]:

(i) Dedicated or overlay mode, when the cellular network

allocates a fraction of the available resources for the exclusive

use of D2D devices; (ii) Reuse or underlay mode, when

D2D devices use some of the radio resources together with

the UEs of the cellular network; (iii) Cellular mode when

D2D traffic passes though the eNB, as in traditional cellular

communications. Among these, reuse mode is potentially the

best in terms of spectral efficiency, since it allows more

than one user to communicate over the same channel within

each cell. In this case, mitigation of the interference between

cellular and D2D communications is a critical issue: good

interference management algorithms can increase the system

capacity, whereas poor interference management may have

catastrophic effects on the system performance.

Because of the complexity of resource allocation for D2D
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communications, most of the existing literature refers to cen-

tralized scenarios where the eNB is responsible for managing

the radio resources of both cellular and D2D users. The work

in [10] proposes an interference management scheme in which

the eNB defines an interference limited area where no cellular

users can occupy the same resources as the D2D pair, hence

avoiding destructive interference between D2D nodes and cel-

lular users. This comes at the expenses of a reduction of multi-

user diversity due to hard physical separation between D2D

and cellular users. The authors of [11] propose a centralized

algorithm aimed at maximizing the signal-to-interference-plus-

noise ratio (SINR) of the cellular link while satisfying the

individual target SINR constraints for the D2D links. They

also propose a distributed scheme but it is a very simple on-

off algorithm. In [12] the eNB aims at maximizing the sum of

the throughput of a single D2D link and a cellular link sharing

the same channel subject to a minimum rate constraints for the

cellular link and a maximum rate constraint for the D2D nodes.

The authors of [13] propose an allocation mechanism based

on a reverse iterative combinatorial auction. This algorithm,

although it requests active participation of the D2D nodes, is

still mostly run at the eNB, which does all the processing.

Moreover, also in this case at most one D2D communication

link is permitted to share a specific resource block with a

cellular communication link. In [14] the problem of jointly

assigning resource blocks and transmit power is solved at eNB

employing a graph-based centralized solution.

Nevertheless, in most recent systems like LTE-A, this cen-

tralized approach might not be viable. In facts, the channels

of a macro cell may be reused by user-deployed nodes such as

home NodeBs, femto base stations and D2D communication

nodes. Hence, because of the large number of nodes within

a cell, the growing complexity of the schedulers and the user

requirements on plug-and-play deployment, there is a growing

need for distributed radio resources allocation algorithms.

On the other hand, distributed techniques, which tend to be

implemented iteratively, have often the drawback of achieving

sub-optimal results and exhibiting slow or no convergence

at all [15]. In this case a key role is played by the amount

of information that the various node share with each other.

There are several techniques that allow to solve complex

problems in a distributed manner and game theory is one of

the most investigated because it offers an elegant and efficient

framework to work with [16]. In particular, several papers have

solved power control problems modelling them as potential

games. Potential games are a special class of games where

there is a a potential function which is able to track the

changes in the payoff due to the unilateral deviation of a

player. In the general framework of OFDMA communications,

in [17] the authors formulate power allocation as a distributed

potential game where each user aims at maximizing the sum

of the SINRs on its used subcarriers. In [18] potential games

are employed to study the convergence of a game aimed

at minimizing the interference power among players. More

specifically, in [19] potential games have been investigated

also in combination with D2D communications: the authors

choose the utility function as a slightly modified version of

the user’s rate to formulate power control as a potential game

and implement it in a distributed manner. A different approach

is followed in [20], where the game framework is employed

to propose an evolutionary game designed to maximize an

utility function based on the difference of the achieved rate

and power consumed.

A. Paper Contributions and Outline

In this paper we consider a distributed power allocation

scheme for D2D OFDMA communications for the two op-

erating modes amenable to a distributed implementation: ded-

icated and reuse modes. Power allocation is formulated as the

problem of maximizing the users’ sum rate subject to power

constraints. Although this formulation is known to be noncon-

vex and, as such, extremely difficult to be solved exactly, we

model the power allocation problem as a potential game and

find a fully distributed solution that provably converges to a

local maximum of the objective function. In detail, these are

the main contributions of this paper:

• While most of the literature focuses on approximated

and simplified implementations of the original sum-

rate maximization problem, we show that the sum-rate

maximization power allocation can be formulated as a

potential game with any number of users;

• By working with identical interest games, a subclass

of potential games in which all users share the same

utility function, we propose two fully distributed iterative

algorithms, one for each operation mode considered,

where each user computes sequentially and autonomously

its power allocation;

• We prove the convergence of the distributed problem for

the D2D dedicated mode to a local maximum of the sum

rate. By linearizing the log function with its first order

Taylor expansion, each user’s objective function is split in

two terms: a logarithmic one that accounts for the users’

own throughput and a linear one that can be interpreted

as the penalty cost for using a certain resource, due to

the interference generated for the other users. Such costs

are evaluated as proposed in [21], where each eNB is a

player of a non-cooperative game, and the payoff function

is the total cell throughput;

• For D2D reuse mode the allocation problem is formu-

lated with an additional requirement for each channel so

that the total interference generated at the base station

by the D2D nodes does not exceed a given threshold.

Accordingly, after finding the optimal solution, which is

too complex for practical implementation, we propose a

heuristic algorithm, which builds on the power allocation

algorithm devised for the dedicated D2D mode to find a

feasible solution.

• We discuss about possible practical implementation of

the proposed allocation schemes. In particular, we first

propose an approach based on the exchange of messages

between D2D terminals and the eNB. Each message

carries the cost needed to evaluate the negative impact,

in terms of global utility, of using a resource with

a given power. In alternative, in order to avoid the

protocol overhead resulting from network-wide message
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passing, we propose a second approach based on the

use of a broadcast sounding signal. In this case, the

required information to perform power allocation can

be gathered from interference measurements, without

requiring neither message passing nor additional channel

gain estimations.

Numerical simulations, carried out for several different user

scenarios, show that the proposed methods, which converge to

one of the local maxima of the objective function, exhibit per-

formance close to the maximum achievable optimum, so that

they outperform two of the most studied algorithms presented

in the literature, i.e., the standard iterative waterfilling (IWF)

[22], and SCALE [23]. Finally, comparisons between the

proposed allocation schemes in a typical cellular scenario show

the superiority of the reuse mode, thus proving the algorithms’

effectiveness in exploiting the available radio resources.

The remainder of this paper is organized as follows. Section

II sets the background by introducing the D2D paradigm

and signal model. Sections III describes the power allocation

algorithm for the dedicated mode and presents its solution

based on a game theoretic approach. Section IV addresses the

problem of power allocation for the reuse mode. In Section

V we discuss some implementation aspects of the proposed

algorithms. Numerical results are illustrated in Section VI and

conclusions are drawn in Section VII.

II. BACKGROUND

The two D2D scenarios considered in this paper, namely,

dedicated and reuse D2D transmission modes, are illustrated

in Fig. 1. In particular, we envisage a cellular scenario where

cellular and D2D connections coexist in the same cell and

transmit over the same bandwidth. In dedicated mode, a

fraction of the total available bandwidth is assigned exclusively

to D2D transmissions, so that interference between cellular

and D2D terminals is completely avoided. The interference

between D2D connections is managed through distributed

power allocation among D2D terminals, without requiring

any cellular network control. Nevertheless, in order to avoid

interference with cellular terminals located in adjacent cells,

we assume that a power mask, i.e., a maximum transmitting

power, is imposed to each D2D terminal on each channel.

In reuse mode the whole uplink bandwidth is available to

each D2D terminal so that D2D nodes and UEs are free to

interfere with each other. Hence, in this mode the interference

from D2D communications to the cellular receivers at the

eNB must be controlled to prevent it from disrupting the

QoS of cellular communications. This requires a form of cen-

tralized control, which actively involves the cellular network.

Conversely, interference from cellular terminals to the D2D

receivers is treated as uncontrollable additional noise.

Although the algorithms we propose are distributed and

operate autonomously at the D2D nodes, it is the eNB [3]

that is in charge of choosing which of the two D2D modes is

selected on the base of several factors such as available radio

resources, network congestion and number of active mobile

terminal.

We consider a classical OFDMA interface where the overall

frequency bandwidth is divided into orthogonal subcarriers

(a) Dedicated (overlay) mode

D2D interference

(a) Dedicated (overlay) mode

D2D interferenceD2D interference

D2D interference

UE interference

(b) Reuse (underlay) mode

D2D interference

UE interference

D2D interferenceD2D interference

UE interferenceUE interference

(b) Reuse (underlay) mode

Cellular UE

D2D node

Cellular UE

D2D node

Fig. 1. D2D communication modes: (a) Dedicated mode, where D2D
connections are assigned a fraction of the total available bandwidth, so that
there is no interference between cellular and D2D terminals; (b) Reuse mode,
where the whole uplink bandwidth is available to each D2D terminal, so that
D2D nodes and UE terminals interfere with each other.

and we assume a user-multiplexing scheme that groups sets of

adjacent subcarriers into N equally sized and non-overlapping

OFDMA channels. The bandwidth spanned by an OFDMA

channel is smaller than the channel coherence bandwidth and

the spectrum can be approximated as flat.

To elaborate, we then consider to have a set K =
{1, . . . ,K} of K D2D terminals that transmit over the set

N = {1, . . . , N} of shared OFDMA channels. For each D2D

terminal that transmits there is another one that receives to

form a D2D couple, so that Hn
k,i is the complex channel gain

on channel n between the transmit node of the D2D couple k
and the receive node of the D2D couple i. Assuming perfect

synchronization, the signal at the k-th receiver on link n is

Yk,n = Hn
k,kSk,n +

∑

j∈K\k

Hn
j,kSj,n +Wk,n, (1)

where Sk,n is the transmitted symbol with power pk,n =
E
{
|Sk,n|2

}
and Wk,n is an additive zero-mean Gaussian

disturb with variance σ2
k,n, which, to a first approximation,

includes the thermal noise and the interference from the

infrastructured network. Accordingly, employing the Shannon

capacity formula, the throughput of the k-th couple over the

N available links is

Rk(pk) =
∑

n∈N

log2




1 +

Gn
k,kpk,n

∑

j∈K\k

Gn
j,kpj,n + σ2

k,n




 , (2)

where Gn
k,k = |Hn

k,k|2, pk = [pk,1, pk,2, . . . , pk,N ] ∈ Pk is

the vector stacking the power transmitted on the N channels

by user k. The set Pk = {pk ∈ [0, Pk,1] × [0, Pk,2] × · · · ×
[0, Pk,N ]} is the set of admissible power levels for user k
where Pk,n is the power mask for user k on channel n.

III. D2D DEDICATED MODE: RATE MAXIMIZATION

UNDER A POWER CONSTRAINT

In dedicated operation mode, the D2D nodes transmit over

a fraction of the bandwidth which is dedicated exclusively

to D2D transmissions. In this case we focus on the problem

of finding the power allocation that maximizes the sum of

the rates of the D2D network with a power constraint per

user. Since we are considering a distributed scenario, where

each device tries to optimize its performance with a strategy
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that is influenced by other users’ decisions, the presence of

interference greatly complicates the problem with respect to

the standard waterfilling solution.

A. Joint Optimal Problem

The problem of jointly maximizing the overall rate of the

D2D network (joint rate maximization problem, JRMP) can

be formulated as

R(p∗) = max
p∈P

∑

k∈K

∑

n∈N

log2




1 +

Gn
k,kpk,n

∑

j∈K\k

Gn
j,kpj,n + σ2

k,n






subject to (3)
∑

n∈N

pk,n ≤ Pk k ∈ K

where Pk is the maximum power constraint for the kth D2D

node, p = [p1,p2, . . . ,pK ] and P = P1 × P2 × · · · × PK .

JRMP is a well-studied allocation problem, which, as

clearly shown in [23] in another framework, is not convex

and therefore standard solvers can not be directly applied to

investigate its solution. In particular, considering that we are

dealing with a D2D scenario, where distributed independent

devices communicate with each other, we need to implement

a distributed solution and the performance of a centralized

allocator would only represent a performance bound rather

than a viable practical option. Therefore, instead of trying to

solve the joint centralized problem employing the classical

tools of convex optimization, we invoke some important game

theoretic results about potential games to find a solution for

the rate maximization in (3) and we propose a distributed

iterative solution, that indeed requires the exchange of some

information between the nodes, but that can be implemented

locally at each transmitter.

As for any iterative strategy, two are the major concerns:

the optimality of the algorithm and its convergence. Regarding

the optimality, since the original problem is not convex, it

may admit the existence of several local maxima and any

iterative solution is not guaranteed to converge to the global

optimum. Algorithm’s convergence is a major issue for this

type of problems. For instance, iterative waterfilling [22], i.e.,

the distributed approach where each user aims selfishly at

maximizing its own rate individually, is known to converge

only when interference does not exceed a certain critical level.

In the following we prove that the distributed solution always

converges to a local maximizer of the objective function in (3)

regardless of the level of interference.

B. Game theoretic formulation

First of all we need a few definitions. A game

G(K, {Sk}k∈K, {Uk}k∈K) is described by the set of players

K, the set Sk of all possible strategies and the utility function

Uk for each player k ∈ K. Moreover, a set of strategies

s∗1, s
∗
2, . . . , s

∗
K is a Nash equilibrium (NE), if no user has any

benefit to change individually its strategy, i.e.

Uk(s
∗
k, s

∗
−k) > Uk(xk, s

∗
−k) ∀xk 6= s∗k, ∀k ∈ K (4)

where xk ∈ Sk is an arbitrary strategy of player k and s∗−k

are the joint strategies of the other K − 1 players. The best

response dynamics of player k are the set of strategies which

maximize the payoff of player k given its opponents strategies

s−k. Better response dynamics for player k employing strategy

yk are the set of strategies xk ∈ Sk such that Uk(xk, s−k) >
Uk(yk, s−k).

One particular class of games is represented by poten-

tial games, which are games in which the preferences of

all players are aligned with a global objective. A game

G(K, {Sk}k∈K, {Uk}k∈K) is an exact potential game if it

exists a potential function f : S1 × S2 × · · · × SK 7→ R such

that for any player k ∈ K and any two arbitrary strategies

xk, yk ∈ Sk the following equality holds

Uk(xk, s−k)− Uk(yk, s−k) = f(xk, s−k)− f(yk, s−k). (5)

In a potential game, where strategy sets are continuous and

compact and the game is played sequentially, best/better

response dynamics always converge from any arbitrary initial

outcome to a NE, which is also a maximizer of the potential

function [24].

Theorem 1: The power allocation game

G
(
K, {P̃k}, R(pk,p−k)

)
is an exact potential game.

Proof: Let us consider the game

G
(
K, {P̃k}, R(pk,p−k)

)
, where the players are the K

D2D rx-tx couples, the set of strategies for player k is

P̃k =
{
pk ∈ Pk|

∑

n∈N pk,n ≤ Pk

}
, the set of all possible

power profiles that meet the power constraint Pk, and the

payoff function is R(pk,p−k), where the power vector

profile p−k, as customary in the game-theoretic literature,

denotes the vector of the powers of all users but the kth one.

Since the rate of the whole system R(pk,p−k) is the payoff

for each player k ∈ K, the utility function is the same for

all players and this type of games, where all players share

the same interest, are also called identical interest games

[25]. As a result of this formulation, it follows that R(p)
satisfies (5) and as such is a potential function of the game

G
(
K, {P̃k}, R(pk,p−k)

)
.

As a result of Theorem 1, the JRMP (3) can be formulated

as the potential game G
(
K, {P̃k}, R(pk,p−k)

)
. The best

response dynamic for user k in the game G is the solution of

the following distributed rate maximization problem (DRMP)

p∗
k =arg max

pk∈Pk

∑

n∈N

log2

(

1 +
pk,n
ik,n

)

︸ ︷︷ ︸

a)

+
∑

ℓ∈K\k

∑

n∈N

log2



1 +
pℓ,n

iℓ,k,n +
Gn

k,ℓ

Gn
ℓ,ℓ

pk,n





︸ ︷︷ ︸

b)

(6)

subject to
∑

n∈N

pk,n ≤ Pk k ∈ K

where the interference terms are ik,n =
∑

j∈K\k Gn
j,kpj,n+σ2

k,n

Gn
k,k

and iℓ,k,n =
∑

j∈K\{k,ℓ} Gn
j,ℓpj,n+σ2

ℓ,n

Gn
ℓ,ℓ

= iℓ,n − Gn
k,ℓ

Gn
ℓ,ℓ

pk,n.
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The objective functions in (3) and (6) are exactly the same,

the difference between the two problems is that now the

optimization is performed just on the power vector of only

user k.

The objective function (6) is formulated to underline the

fact that allocating power to user k has two separate effects:

a) it contributes to the rate for user k and b) it also affects the

way that k interferes with all other users. It is important to

notice that, although the objective function of JRMP and of

the kth DRMP are exactly the same, for the latter problem the

optimization is performed only with respect to the power of the

kth user and not jointly for all users as in (3). Unfortunately,

the optimization in (6) is still not convex and can not be easily

solved. Accordingly, we replace the part b) of (6) with its first

order Taylor expansion f(x) ≈ f(x0) + ∇fT (x0)(x − x0),
so that the objective function R(pk,p−k) of the kth DRMP

can be approximated around the vector pk(0) by the function

R̃(pk,p−k;pk(0)) as

R̃(pk,p−k;pk(0)) =
∑

n∈N

log2

(

1 +
pk,n
ik,n

)

+
∑

ℓ∈K\k

∑

n∈N

log2




1 +

pℓ,n

iℓ,k,n +
Gn

k,ℓ
pk,n(0)

Gn
ℓ,ℓ






+
∑

n∈N

αk,n

(

pk,n − pk,n(0)
)

(7)

where

αk,n =
∑

ℓ∈K\k

∂

∂pk,n
log2



1 +
pℓ,n

iℓ,k,n +
Gn

k,ℓ
pk,n

Gn
ℓ,ℓ





∣
∣
∣
∣
∣
∣
pk,n=pk,n(0)

=−
∑

ℓ∈K\k

Gn
ℓ,ℓG

n
k,ℓpℓ,n

ln 2
(

Iℓ,k,n(0) +Gn
ℓ,ℓpℓ,n

)

Iℓ,k,n(0)
(8)

and it is Iℓ,k,n(0) =
∑

j∈K\{k,ℓ} G
n
j,ℓpj,n+Gn

k,ℓpk,n(0)+σ2
ℓ,n.

Intuitively, the term αk,n, which is the nth element of the

gradient of R(pk,p−k) computed in pk(0), represents the

sensitivity of all other users to the variations of the power

of user k: by construction αk,n is always negative and any

increment of pk,n increases the rate of user k on channel

n but is coming with the negative penalty αk,npk,n. The

rate approximation in (7) is the sum of a concave function

and an affine function in pk and therefore it is a concave

function. Neglecting the terms not dependent on pk and

thus irrelevant to the optimization, the approximated DRMP

(ADRMP) optimization can be written as

max
pk∈Pk

∑

n∈N

log2

(

1 +
pk,n
ik,n

)

+
∑

n∈N

αk,npk,n

subject to (9)
∑

n∈N

pk,n ≤ Pk

Appendix A illustrates the procedure to compute the solution

of (9), which only partially resembles conventional waterfill-

ing. We are now ready to state the following theorem.

Theorem 2: The iterative ADRMP algorithm that updates

sequentially the power of each user k ∈ K according to

(9) converges to a Nash equilibrium that is also a (local)

maximizer for the global rate of the system R(p).
Proof: To prove this theorem, we need to show first that

the solution of ADRMP in (9) is a better response for user k.

Let us assume that the current strategy for user k is yk and

let xk ∈ Pk be the power distribution obtained as solution of

(9) with pk(0) = yk, the following inequality holds

R (yk,p−k) ≤ R̃ (xk,p−k;yk) ≤ R (xk,p−k) (10)

The first inequality follows from R (yk,p−k) =
R̃ (yk,p−k;yk) ≤ R̃ (xk,p−k;yk). The second inequality

descends directly from the fact that in (9) we approximate

part b) of (6), which is a convex function, with its

tangent in yk and thus by definition of convexity is

R̃ (xk,p−k;yk) ≤ R (xk,p−k). Since the power allocation

game G
(
K, {P̃k}, R(pk,p−k)

)
is an exact potential game,

the set P̃ is continuous and compact and the iterative strategy

based on (9) that sequentially updates the users’ power

profiles is a better response dynamic, the game converges to a

pure NE, which is also a maximizer of the potential function,

i.e. the global rate R(p).
Given a fixed scheduling order π(K), Algorithm 1 illustrates

the iterative procedure to allocate the power among the K
D2D tx-rx couples: the algorithm is iterated until the difference

between the overall rate computed in two successive iterations

does not exceed a certain threshold ǫ, whose value depend on

the system designer. At each iteration only one user updates

its power, while all other users do not change their strategies.

Note that, owing to the sequential nature of the proposed

algorithm, in the term p
(j)
−ℓ in line 6 of Algorithm 1, which

represents the power vector of all users in the system except

the ℓ-th one, the power of the users with index k < ℓ has been

already updated and the power of the users with index k > ℓ
has yet to be updated. In row 7 the new power allocation for

user ℓ at iteration j+1 is computed solving problem (9) with

pℓ(0) = p
(j)
ℓ .

The asynchronous nature of the proposed scheme requires

that only one user updates its power at each time. This can be

realized without central coordination. Indeed, assuming that

each D2D user randomly decides the instant when it performs

power allocation within one scheduling time and that the time

spent in this operation is much lower than the scheduling

time itself, the probability that two users update their powers

simultaneously is practically zero.

C. A Multi-start approach to the solution of (3)

Since there might be more than one maximum for the

JRMP, it is not straightforward to assess the ‘optimality’ of the

local maximum found with the iterative technique described in

Algorithm 1. In cases like this, a practical means of addressing

a global optimization problem might be to run a local opti-

mization routine several times starting it from many different

points and to select the best solution among those found.

This approach, sometimes termed controlled randomization

[26] or multi-start [27], in principle does not guarantee that
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Algorithm 1 Iterative ADRMP

Initialization
1: j ← 0
2: Set p(0) ← p(ini), ∆← ǫ
3: Compute R(p(0))

j + 1 recursion given the power vector p(j)

4: while ∆ ≥ ǫ do
5: for ℓ ∈ π(K) do

6: p
(j)
−ℓ ← [p

(j+1)
1 ,p

(j+1)
2 , . . . ,p

(j+1)
ℓ−1 ,p

(j)
ℓ+1, . . . ,p

(j)
K ]

7: p
(j+1)
ℓ ← arg max

x∈Pℓ

R̃
(

x,p
(j)
−ℓ ;p

(j)
ℓ

)

subject to 1Tx ≤

Pℓ

8: end for
9: Compute R(p(j+1))

10: ∆← max
k∈K

(

R
(

p
(j+1)
k ,p

(j+1)
−k

)

−R
(

p
(j)
k ,p

(j)
−k

))

11: j ← j + 1
12: end while

a global maximum is found, but increased confidence can be

gained by using a large number of starting points accurately

chosen. Accordingly, since the number of different scheduling

configurations is finite, it is possible to run the iterative power

allocation algorithm for all the user scheduling configurations

to produce a set of different local maxima and to chose the

user ordering that achieves the maximum rate within this set.

Because of the iterative nature of the ADRMP algorithm, a

specific user scheduling order directly translates into a priority

ordering. If, for example, is p(ini) = 0, at the beginning of

iteration j = 1 the first user allocates its power in absence

of any interference and is free to select the resources that are

best for her, the second user sees already a certain amount

of interference and so on until the last user, whose power

allocation is very much influenced by the allocations priorly

made by the other users. This applies also for iteration j > 1
when the users’ choices are in any case influenced by the

power allocations made at iteration j − 1. Although not

feasible in practice due to its complexity and the amount

of control information required, this multi-start approach is

a heuristic method to find the global maximum or a very near

approximation of it and it can be employed as a benchmark for

the performance of the iterative ADRMP algorithm applied to

the D2D dedicated mode. When it is not possible to pursue the

multi-start approach, one possible value for p(ini) is the power

vector obtained by each user solving problem (3) without

considering the interference of the other users, i.e., by setting

Gn
j,kpj,n = 0, ∀ k, n. Intuitively, the merit of this particular

strategy is that each user has the advantage of starting with

its best single-user power allocation, regardless of the specific

scheduling order.

IV. D2D REUSE MODE: ALLOCATION PROBLEM WITH

INTERFERENCE CONSTRAINTS

In reuse operation mode D2D communications take place

underlaying the primary cellular network. In particular, we

consider the case where the D2D network shares the available

spectrum with the uplink transmissions of the UEs. To al-

low the coexistence of the two transmissions, we follow an

approach derived from cognitive radio theory [28] and we

constrain the transmit power at the D2D nodes so that the re-

ceived interference at the eNB is below a given predetermined

threshold on each channel. This is a classical solution for D2D

communications underlying cellular networks, which, although

suboptimal in terms of performance, greatly simplifies the task

of allocating the power for both the D2D network and the

infrastructured network and reflects the higher priority given

to UEs with respect to D2D nodes in a cognitive radio fashion.

Let Qn be the threshold value for the interference caused

by the D2D nodes at the eNB on channel n, the JRMP with

interference constraints (JRMPIC) power allocation can be

formulated as a different version of (3) with a new set of

constraints

max
p∈P

∑

k∈K

∑

n∈N

log2

(

1 +
pk,n
ik,n

)

subject to (11)
∑

n∈N

pk,n ≤ Pk k ∈ K
∑

k∈K

An
k,0pk,n ≤ Qn n ∈ N

where An
k,0 is the squared absolute value of the channel gain

on channel n between the D2D transmit user of couple k
and the eNB. By setting the values of Qn the eNB can

implicitly select the specific D2D mode: very high values of

Qn make problem (11) practically equivalent to problem (3),

while Qn = 0 prevents any D2D node from using channel n.

The JRMPIC problem is formulated to control the amount

of interference that D2D communications cause to the pri-

mary cellular network. On the other hand, the interference

of primary network transmissions on the D2D secondary

network, which it is not controllable by the D2D network,

is encompassed into the noise terms σ2
k,n.

Although some of the constraints of (11) are formulated

as the global sum of the interference at the eNB, we will

show that, provided that the eNB broadcasts some information

back to the D2D network, JRMPIC can still be solved by

employing the distributed game theoretic approach discussed

in the previous Section.

A. An Upper Bound for JRMPIC

The solution of JRMPIC can be upper-bounded in the

Lagrangian dual domain, where the constraints on maximum

tolerated interference at the eNB are relaxed and a different

Lagrange multiplier is associated to each constraint. The

Lagrangian of problem (11) can be written as

L(p,ν) =
∑

k∈K

∑

n∈N

log2

(

1 +
pk,n
ik,n

)

+
∑

n∈N

νn



Qn −
∑

q∈K

An
q,0pq,n





(12)

where p belongs to the set of feasible power vec-

tors P̃ =
{
p ∈ P|∑n∈N pk,n ≤ Pk, ∀k ∈ K

}
and ν =

[ν1, ν2, . . . , νN ] is the vector of Lagrange multipliers associ-

ated to the set of constraints on maximum tolerated interfer-

ence at the eNB. The Lagrange dual function is computed by
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maximizing the Lagrangian with respect to the primal variable

p as

g(ν) = max
p∈P̃

L(p,ν). (13)

The Lagrangian in (12) is not convex in p and, just as in

(3), a local maximum of L(p,ν) with respect to p can be

found by letting each user k ∈ K solve iteratively a distributed

problem in pk. Neglecting the terms not dependent on pk, the

distributed maximization problem for user k can be formulated

as

max
pk∈P̃k

∑

n∈N

log2

(

1 +
pk,n
ik,n

)

+
∑

n∈N

αk,npk,n−
∑

n∈N

νnA
n
k,0pk,n,

(14)

where αk,n is computed as in (8). Replacing αk,n with the

term α′
k,n = αk,n − νnA

n
k,0, the optimization in (14) is

formally identical to (9) and it can be solved in the same

manner, adopting the multi-start approach discussed in Sect.

III-C in combination with the iterative ADRMP algorithm. The

assumption that problem (13) has been solved optimally is of

great importance because it guarantees the convexity of the

dual function g(ν) [29].

Being able to compute g(ν) in (13), one can formulate the

Lagrange dual problem, whose solution is a bound for (11),

as

min
ν

g(ν)

subject to (15)

ν � 0

Problem (15) is convex and a standard approach for finding its

solution is to follow an iterative strategy, such as the ellipsoid

method illustrated in Appendix B, which recursively updates

the vector of Lagrange variables until convergence [30]. In this

case there are two nested iterative algorithms: an outer one that

iterates on the vector of Lagrange multipliers ν to solve (15)

and an inner one that, given a value of ν, solves (13) yielding

g(ν) and the corresponding optimal power vector p(ν). A key

element for the outer iterative procedure is the availability of

the gradient or, if g(ν) is not differentiable with respect to ν

as is our case, at least of a subgradient of the Lagrangian dual

function. Adapting to our problem Proposition 1 of [31], one

can show that the vector d(ν) = [d1(ν), d2(ν), . . . , dN (ν)]T ,

whose nth element is computed as

dn(ν) = Qn −
∑

q∈K

An
q,0pq,n(ν) (16)

is a subgradient for g(ν). Therefore, given the ellipsoid

E
(
A(s),ν(s)

)
as in (B.1), the sth iteration of the algorithm

designed to solve (15) can be summarized as

1) Plug ν
(s) in (13) and compute g(ν(s));

2) Employ the power vector p(ν(s)) ∈ P̃ , solution of

the maximization in (13), to compute the subgradient

d
(
ν
(s+1)

)
as in (16);

3) Find the ellipsoid E
(
A(s+1),ν(s+1)

)
by means of equa-

tions (B.2)-(B.4) in Appendix B.

The value of the Lagrange dual function g(ν∗) at convergence

is an upper bound of the solution of JRMPIC, which can be

employed to validate heuristic algorithms designed to solve

(11) sub-optimally.

B. A Practical and Distributed approach for JRMPIC

In a practical D2D scenario, the multi-start strategy is

unviable because it is too complex and requires far too

many iterations and too much coordination among terminals.

Employing the iterative ADRMP algorithm without the multi-

start strategy to solve (14) leads to finding a local maximum

of the Lagrangian. Nevertheless, one can draw inspiration

from the algorithm presented in the previous section and

pursue a heuristic approach based on the relaxation of the

original problem with respect to the interference constraints

and employ two nested iterative algorithms to find a sub-

optimal feasible solution of JRMPIC. In the following, in

continuity with the notation used in the previous sections we

will indicate with the apex s the iteration index relative to the

outer loop designed to find the vector of multipliers ν and

with the apex j the iteration index relative to the inner power

control loop.

The main difference with the algorithm introduced in the

previous subsection is that, since we are not able to solve

exactly problem (13), we propose a heuristic strategy where

the outer iterative algorithm is based on the auxiliary func-

tion g̃(s)(ν(s)) = L(p̃(s),ν(s)), where the power vector

p̃(s) = [p̃
(s)
1 , p̃

(s)
2 , . . . , p̃

(s)
K ]T does not necessarily achieve

the global maximum since it is just a local maximizer of

L(p,ν(s)), obtained by iteratively solving (14). In particular,

since the value of p̃(s) depends on: ν(s), the starting power

vector p(ini,s) and the scheduling order π, we assume that

π is fixed and that at each iteration s, the starting power

vector is the solution of the previous local maximization, i.e.

p(ini,s) = p̃(s−1). This particular choice is motivated by the

need of algorithm speed and stability.

Under these hypothesis, we can now introduce a new lemma

about the properties of g̃(s)(ν).

Lemma 3: Let p̃(s)(ν) the power vector at iteration s,

when the vector of Lagrange multipliers is ν. The following

inequality holds for g̃(s+1)(µ) with any µ � 0

g̃(s+1)(µ) ≥ g̃(s)(ν) + d̃T (ν) (µ− ν) . (17)

where d̃(ν) is the N -dimensional vector whose entries are

d̃n(ν) = Qn −∑q∈K An
q,0p̃

(s)
q,n(ν) (n = 1, . . . , N ).

Proof: By definition it is

g̃(s)(ν) =L(p̃(s)(ν),ν) = R(p̃(s)(ν))

+
∑

n∈N

νn



Qn −
∑

q∈K

An
q,0p̃

(s)
q,n(ν)




(18)

Keeping in mind that p(ini,s+1) = p̃(s)(ν), i.e. at step s+1 the

iterative algorithm is initialized with the power vector p̃(s)(ν),
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one can write regardless of the value of µ

g̃(s+1)(µ) = L(p̃(s+1)(µ),µ) ≥ L(p̃(s)(ν),µ)

= R(p̃(s)(ν)) +
∑

n∈N

µn



Qn −
∑

q∈K

An
q,0p̃

(s)
q,n(ν)





(19)

= R(p̃(s)(ν)) +
∑

n∈N

νn



Qn −
∑

q∈K

An
q,0p̃

(s)
q,n(ν)





+
∑

n∈N

(µn − νn)



Qn −
∑

q∈K

An
q,0p̃

(s)
q,n(ν)





= g̃(s)(ν) + d̃T (ν)(µ− ν).

The first inequality in (19) is due to the better response

property of the distributed algorithm (14): each new solution

is larger than the previous one and, since p̃(s)(ν) is by

definition the starting value and p̃(s+1)(µ) is the power vector

at convergence, then it is L(p̃(s+1)(µ),µ) ≥ L(p̃(s)(ν),µ).

The inequality (17) closely resembles a subgradient for the

the auxiliary function g̃(s)(ν) and accordingly we apply a

subgradient update rule to the vector of Lagrangian multipliers,

ie

ν
(s+1) =

[

ν
(s) − γd̃(ν(s))

]+

(20)

where γ is a sufficiently small step size. Algorithm 2 illustrates

the machinery of the outer loop of the heuristic designed for

solving JRMPIC, which we will indicate with the acronym

iterative ADRMPIC. The algorithm is iterated until the max-

imum difference in power per user does not exceed a given

arbitrarily small value ǫ.

Algorithm 2 Iterative ADRMPIC

Initialization
1: s← 0, ν(0) ← 0, p̃(0) ← p(ini), ∆← ǫ

2: d̃n(ν)
(0) ← Qn −

∑

q∈K
An

q,0p̃
(0)
q,n ∀n ∈ N

s+ 1 recursion given the multiplier vector ν
(s)

3: while ∆ ≥ ǫ do

4: ν
(s+1) ←

(

ν
(s) − γd̃(ν(s))

)+

5: Compute p̃(s+1) and g̃(s+1)(ν(s+1)) by employing Algo-

rithm 1 to solve (13) with p(ini,s+1) = p̃(s)

6: d̃n(ν
(s+1))← Qn −

∑

q∈K
An

q,0p̃
(s+1)
q,n ∀n ∈ N

7: ∆ = max
k∈K
‖p̃(s+1)

k − p̃
(s)
k ‖2

8: s← s+ 1
9: end while

C. Extension of JRMPIC to a multi cell scenario

The JRMPIC can be easily formulated in a multi-cell

scenario and its solution, except for a few details, does not

change substantially with respect to the single-cell scenario. To

elaborate, let us refer to a general cellular setting and introduce

the set B = {0, . . . , B − 1} of the eNBs in the system and

denote by Qb,n the maximum interference tolerated at the bth
eNB on channel n. For notational convenience we still indicate

by K the whole set of D2D couples, without specifying to

which cell each node belongs. In this case, the JRMPIC power

allocation problem can be formulated as

max
p∈P

∑

k∈K

∑

n∈N

log2

(

1 +
pk,n
ik,n

)

subject to (21)
∑

n∈N

pk,n ≤ Pk k ∈ K
∑

k∈K

An
k,bpk,n ≤ Qb,n n ∈ N , b ∈ B

Problem (21) is almost identical to Problem (11) and can be

solved with the algorithms devised for the single-cell scenario,

with the difference that, in this case, the vector of Lagrange

multipliers ν = [ν1,1, ν1,2, . . . , νN,B] accounts for the NB
interference constraints, N for each cell.

V. ON THE IMPLEMENTATION OF DISTRIBUTED POWER

ALLOCATION

The proposed iterative ADRMP and ADRMPIC algorithms

are naturally amenable to a distributed implementation, where

all involved terminals act independently. Indeed, better re-

sponse dynamics guarantee convergence with a fully random

scheduling, without any coordination with the other D2D

users, neither in the same cell nor in adjacent cells. Never-

theless, to solve allocation problem (9) the kth D2D node

requires the knowledge of the term αk,n, which accounts for

how its power allocation impacts on the performance of the

other terminals.

Distributing the messages αk,n to the D2D terminals may

require the help of the eNB, which can collect the messages

from all D2D nodes under its coverage and broadcast them to

all active D2D transmitters. Moreover, when needed, eNBs in

adjacent cells can exchange the messages among each other

by using a proper inter-cell communication interface, e.g., the

X2-Interface in LTE [2].

To sum up, as in other distributed power control schemes

[23], the proposed power allocation algorithms present a strong

predisposition towards distributed implementation but they

rely on wide message passing between all involved nodes,

and as such may suffer from some overhead.

In a TDD scenario, an alternative strategy that does not

require any eNB involvement consists in letting each D2D

node broadcast a sounding signal using a proper in-band

control channel, which occupies a band so narrow that does

not interfere with direct communications. Wideband sounding

reference signals (SRS), which span all available channels, are

already envisaged in LTE [2] for estimating the uplink channel

of connected terminals across the scheduling bandwidth. It is

also possible to exploit the SRS for accomplishing control

tasks among D2D terminals, as for example proposed in [32].

In detail, in our case from (8) we can write αk,n =
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−∑ℓ∈K\k G
n
k,ℓδℓ,n, where δℓ,n is computed as

δℓ,n =
Gn

ℓ,ℓpℓ,n

ln 2

(

∑

j∈K\{ℓ}

Gn
j,ℓpj,n + σ2

ℓ,n

)(

∑

j∈K\{ℓ}

Gn
j,ℓpj,n +Gn

ℓ,ℓpℓ,n + σ2
ℓ,n

) .

(22)

By an inspection of (22) we can observe that all the terms

in δℓ,n can be measured at the ℓth receiver: the term
∑

j∈K\{ℓ}

Gn
j,ℓpj,n +Gn

ℓ,ℓpℓ,n + σ2
ℓ,n is the total power received

on the nth subchannel and Gn
ℓ,ℓpℓ,n is the received power of

the desired signal. After computing δℓ,n, the ℓth D2D receiver

signals it to all other terminals by sending over channel n a

sounding signal with power δℓ,np0. The power p0 is a reference

power level whose value is fixed and known throughout the

network. The power measured over channel n at the kth D2D

transmistter is
∑

ℓ∈K Gn
ℓ,kδℓ,np0, which becomes, exploiting

the channel reciprocity,
∑

ℓ∈K

Gn
k,ℓδℓ,np0 = Gn

k,kδk,np0 − αk,np0. (23)

Hence, observing that Gn
k,kδk,np0 can be known at the kth

D2D transmitter by exchanging messages with the intended

receiver, from (23) an estimate of αk,n is readily obtained.

Likewise, also in the underlay mode the parameter α′
k,n can

be obtained by letting also the bth eNB transmit over the

dedicated control channel a sounding signal with power νb,np0.

As for the duration of one power control iteration j in Algo-

rithm 1, we take as our reference the LTE standard, where the

fast scheduling mode envisages a minimum time granularity of

1 ms [33]. Supposing that each D2D node can solve problem

(9) in negligible time, it is reasonable to assume that each

D2D terminal can update its power allocation within the 1 ms

reference time. In fact, all that it is required from the D2D

transmitter-receiver pair k is: a) the receiver measures αk,n

(n = 1, . . . , N) and communicates it to the transmitter which

employs it to solve (9), b) the transmitter updates the sounding

signal with the parameter δk,n (n = 1, . . . , N) computed

with the new values of pk,n. Accordingly, since the number

of iterations required by Algorithm 1 to converge is rather

limited, as is going to be shown in the next section, we can

say that power allocation in the overlay mode is compatible

withe the channel coherence time of users in a medium-fast

mobility scenario. For the underlay mode, algorithm 1 requires

both an overall larger number of iterations and the involvement

of the eNB and hence, at this stage, is probably more suitable

for medium-slow mobility scenarios.

VI. NUMERICAL RESULTS

In this section we present the numerical results of the

proposed algorithms. We have considered an hexagonal cell

of radius R = 500 m. Channel attenuation is due to path loss,

proportional to the distance between transmitters and receivers,

shadowing and fading. The path loss exponent is α = 4,

while the shadowing is assumed log-normally distributed with

standard deviation σ = 8 dB. We consider a population of data

users with very limited mobility so that the channel coherence

time can be assumed very long. The propagation channel is

frequency-selective Rayleigh with independent fading coeffi-

cients on each subchannel. The variance of the additive zero-

mean Gaussian noise, which includes the interference from

the infrastructured network, is set to −130 dBW, the same for

all receivers and for all subchannels, i.e., σ2
k,n = σ2 = −130

dBW. The number of subchannels is set to N = 8 and the

maximum power constraint Pk is assumed to be the same

for all D2D couples, and equal to Pmax = 0.25 W, when

not indicated otherwise. The power mask Pk,n for user k
on subchannel n is determined by the maximum allowed

interference at the serving eNB, i.e., Pk,n = Qb(k),n/G
n
k,b(k),

where b(k) is the index of the eNB which serves the k-

th D2D couple. Eventually, the number of D2D couples is

set to K = 8 × B, i.e., we consider 8 D2D couples per

cell. Hence, at each simulation instance the D2D couples are

deployed randomly in the cell, with a tx-rx distance uniformly

distributed in the interval [0, Dmax], with Dmax = 100 m.

In the D2D overlay scenario we compare the performance

of the iterative ADRMP (IADRMP) scheme presented in

Algorithm 1 with the performance of the classical iterative

waterfilling (IWF) algorithm [22], the SCALE algorithm pro-

posed in [23] and the near-optimal multi-start solution, denoted

in the following by IADRMP-MS. The IADRMP algorithm

is implemented employing a fixed scheduling order π for

all simulations and setting the initial power allocation p(ini)

as described at the end of Section III-C. The IWF scheme

allocates the power selfishly aiming at maximizing the rate of

each user individually, neglecting the effect of the interference

generated towards other users and as such can be derived from

IADRMP by setting αk,n = 0. Since IWF convergence is not

always guaranteed, its performance is evaluated terminating

the simulation after a sufficiently high number of iterations.

As for the SCALE algorithm, it makes use of successive

convex approximations so that the original problem can be

decomposed into a sequence of convex subproblems, which

are solved iteratively until convergence. The SCALE algorithm

requires that all nodes exchange messages among them: each

node upon receiving its messages simultaneously updates its

transmitting power, i.e., implementing a network-wide parallel

update rule. For this reason, the distributed implementation of

SCALE in a wireless network is more complex with respect to

the proposed IADRMP scheme, where all nodes update their

powers independently.

Figs. 2-4 plot the achieved spectral efficiency η per cell

measured as the sum rate per cell over the bandwidth for

the various allocation schemes obtained for 20 independent

channel realizations in the case of a system with B = 1,

B = 3 and B = 7 cells, respectively. Each channel realization

represents a new instance of nodes’ positions, large and small

scale fading. We observe that in most of the considered chan-

nel realizations, IADRMP outperforms the SCALE algorithm

and its performance is very close to that of the ADRMP-MS

scheme. On the other hand, IWF performs significantly worse

than the other schemes in all the considered cases.

More extensive results, obtained by averaging the aggre-

gated throughput over 100 independent channel realizations,

are shown in Table I. In general, as the number of eNBs

increases the achievable spectral efficiency is reduced but all
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Fig. 2. Spectral efficiency for IADRMP-MS, IADRMP, SCALE and IWF
allocation schemes, obtained for 20 independent channel realizations, in the
case of B = 1.
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Fig. 3. Spectral efficiency for IADRMP-MS, IADRMP, SCALE and IWF
allocation schemes, obtained for 20 independent channel realizations, in the
case of B = 3.

algorithms show that they are able to efficiently deal with both

inter- and intra-cell interference and the difference between the

optimal IARDMP-MS and IADRMP tend to vanish.

Fig. 5 reports the convergence behavior of IADRMP,

SCALE and IWF. To this aim, we show the aggregated

throughput versus the number of iterations in the case B = 7
for a single channel snapshot. More precisely, we count any

cicle j in Algorithm 1 as one iteration. The convergence speed

of IADRMP and SCALE is similar, whereas, as expected, IWF

keeps on fluctuating without achieving convergence. Similar

results are obtained considering different realizations and are

omitted here for the sake of conciseness. Assuming 1 ms

duration for each iteration of the power control algorithm,

these results confirm that IADRMP can converge in a time

compatible with the coherence time of the channel of medium-

fast users.

To analyze the performance of the proposed algorithms

in the D2D underlay scenario, we compare the iterative

ADRMPIC (IADRMPIC) scheme presented in Algorithm 2

with its upper bound derived in Section IV-A, referred to as

IADRMPIC-UB. Note that, since SCALE and IWF schemes
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Fig. 4. Spectral efficiency for IADRMP-MS, IADRMP, SCALE and IWF
allocation schemes, obtained for 20 independent channel realizations, in the
case of B = 7.

IADRMP-MS IADRMP SCALE IWF

B = 1 285.26 283.33 273.41 246.43

B = 3 844.72 837.49 825.67 714.92

B = 7 1840.06 1833.02 1807.49 1527.7

TABLE I
AGGREGATED THROUGHPUT AVERAGED OVER 100 INDEPENDENT

CHANNEL REALIZATIONS FOR IADRMP-MS, IADRMP, SCALE AND

IWF.

are not designed to cope with global interference constraints,

they are not considered in the results for the D2D reuse mode.

The maximum allowed interference at the eNB is set to the

power of the AWGN noise on each subchannel of each cell,

i.e., Qb,n = σ2, ∀b ∈ B, n ∈ N . The initial power allocation

p(ini) for the IADRMPIC scheme is set as discussed for the

IADRMP case, while for the IADRMPIC-UB we iteratively

run the multi-start scheme to optimally solve (13) for each ν,

where ν are updated according to the ellipsoid method. This

task is computationally very expensive, particularly when the

dimension of the problem is high. For this reason, we limit the

evaluation of the IADRMPIC-UB performance to the single

cell case.

Fig. 6 plots the spectral efficiency results for IADRMPIC-

UB and IADRMPIC, obtained for 20 independent channel

realizations in the case B = 1. In most of the considered

channel realizations IADRMPIC achieves performance very

close to bound. As a matter of fact, the average aggregated

throughput obtained over the considered channel realizations

is 235.9 for IADRMPIC and 240.3 for IADRMPIC-UB, i.e.,

the IADRMPIC performs worse by nearly 2% with respect to

the upper bound.

Fig. 7 shows the convergence behavior of IADRMPIC for

the case B = 7 for a single simulation realization by plotting

the interference experienced at the eNB in the central cell

on all the subchannels versus the number of iterations. These

results show the merit of the heuristic approach proposed: in a

reasonably small number of iterations the interference power

on each channel is close to the target Qb,n = σ2. Similar

results are obtained considering different realizations and are
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Fig. 5. Convergence behavior of IADRMP, SCALE and IWF in the case
B = 7, for a single simulation realization.

0 5 10 15 20
Channel realization index

0

1

2

3

4

5

6

η
(b
it
/s
/H

z)

IADRMPIC-UB
IADRMPIC

Fig. 6. Spectral efficiency for IADRMPIC-UB, and IADRMPIC obtained for
20 independent channel realizations, in the case of B = 1 and for Qmax =

σ2.

omitted here for the sake of brevity. Note that, comparing

these results with those in Fig. 5, the number of iterations of

the whole procedure scales up to more than 100, and hence,

even considering fast scheduling with time granularity of 1

ms, the system becomes compatible only with medium-to-

slow mobility scenarios. Nevertheless, in case convergence

speed is a critical issue, we have experimentally observed

that Algorithm 2 can be modified by updating the Lagrange

multipliers after a fixed number of iterations of the inner power

control loop even before having achieved full convergence in

line 5. This heuristic approach, which is yet to be studied in

detail but shows excellent convergence properties, requires a

much smaller number of iterations and is more suitable for

fast moving users.

In Fig. 8 we report the spectral efficiency for IADRMPIC

as a function of the power constraints. In this case we set

B = 7, Pk = P ∀k ∈ K, Qb,n = Qmax ∀n ∈ N and assign

different values to the maximum interference constraint Qmax.

When Qmax = −150 dBW, the performance of the D2D

nodes are dominated by the interference constraints so that

already at low power levels any power increase does not result

in any efficiency increment. Gradually, as more interference

is tolerated at eNB also the spectral efficiency of the D2D

nodes grows proportionally. For Qmax > −110 dBW the

interference constraints are not binding in most of the cases

and the performance mainly depend on the available power.

The case of Qmax = −100 dBW is roughly equivalent to

the optimization in the overlay scenario where no interference

constraints are present at all.
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Fig. 7. Interference experienced at the eNB on all the available channels
versus the number of iterations, for a single simulation realization in the case
of B = 7 and for Qb,n = σ2.
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Fig. 8. Spectral efficiency for IADRMPIC as a function of P for different
interference constraints Qmax in the case B = 7.

Fig. 9 compares the performance of the dedicated and reuse

modes by plotting the spectral efficiency η, achieved by the

IADRMP and IADRMPIC schemes, respectively, versus the

maximum distance Dmax between each D2D pair. In particu-

lar, the three different scenarios (a), (b) and (c) represent the

cases in which 12.5%, 25% and 50% of the available resources

are dedicated to D2D communications. The spectral efficiency

is computed as the average bit rate of the D2D connections

normalized by the the whole system bandwidth, i.e., the

normalization factor is the same in the three scenarios. In this

case we slightly change the simulation settings with respect to

the previous figures and consider a cellular environment with

N = 24 available channels and B = 3 cells, each serving 8

UEs and 4 D2D pairs. Regarding the infrastructured network,
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Fig. 9. Spectral efficiency for dedicated and reuse mode versus the maximum distance Dmax between each D2D pair in the case B = 3.

we assume that the available channels are assigned uniformly

to the UEs and that each UE allocates its power employing the

waterfilling algorithm with a power budget Pmax = 1 W and

a fixed interference-plus-noise term for each channel, given by

Qmax + σ2.

For the dedicated case the three different scenarios of

Fig. 9 are obtained by setting Nd, the number of channels

which are reserved to D2D communications, to Nd = 4, 8,

and 12, respectively. To perform a fair comparison between

the two D2D modes, the value of the parameter Qmax for

the reuse mode is set so that the effect of the D2D inter-

ference on the UEs’ throughput is completely compensated

by the availability of a larger number of channels and the

total throughput of cellular UEs is exactly the same as that

obtained in the dedicated mode. Hence, the higher Nd, the

worse the performance of cellular UEs (on account of the

minor bandwidth), and, accordingly, the higher the tolerated

interference Qmax, whose value increases from Qmax = −132
dBW in scenario (a) to Qmax = −125 dBW in scenario (c).

In all scenarios η decreases with the increase of Dmax, but

such an effect is more evident in the reuse case due to the

stringent constraints on the interference at the eNB. It is also

worth noting that, as expected, any increment of Nd causes

an increase of η in the dedicated case since Nd is a measure

of the actual bandwidth available for D2D connections and η
is computed by normalizing the total D2D rate by the total

system bandwidth. In line with this reasoning, the higher

Qmax the better is the reuse mode performance since there

is a higher level of D2D interference tolerated at the eNB. In

both modes, any improvement achieved by the D2D network

is obtained at the expense of the performance of the UEs in the

infrastructured network. The curves in Fig. 9 show that, with

these simulation settings, despite the the fact that the reuse gain

diminishes with the increase of Dmax, the more flexible reuse

mode, implemented with the proposed IADRMPIC allocation

scheme, always outperforms the dedicated mode being able to

more efficiently exploit the available radio resources.

VII. CONCLUSIONS

We have presented a distributed resource allocation frame-

work for D2D communication considering both dedicated and

reuse mode. As for the dedicated mode, due to the NP-

hardness of original resource allocation problem, we have

invoked some important game theoretic results about potential

games to find a distributed iterative solution for the rate

maximization problem which provably converges to a local

maximum. For D2D reuse mode the allocation problem is

formulated with an additional requirement for each channel so

that the total interference generated at the base station by the

D2D nodes does not exceed a given threshold. Accordingly,

after finding the optimal solution, which is too complex for

practical implementation, we propose a heuristic algorithm,

which builds on the power allocation algorithm devised for

the dedicated D2D mode to find a feasible solution. Hence,

we have discussed about possible practical implementations

of the proposed allocation schemes. In particular, we have

proposed an approach based on the use of a broadcast sounding

signal, so that the required information to perform power

allocation can be gathered from interference measurements,

without requiring neither message passing nor additional

channel gain estimations. Numerical simulations, carried out

for several different user scenarios, show that the proposed

methods, which converge to one of the local maxima of the

objective function, exhibit performance close to the maximum

achievable optimum and outperform other schemes presented

in the literature. Moreover, comparisons between the proposed

allocation schemes in a typical cellular scenario, where cellular

and D2D UEs coexist in the same area, assess the superiority

of the reuse mode, thus proving the effectiveness of the

proposed allocation schemes in exploiting the available radio

resources.

APPENDIX A: SOLUTION ADRMP (9)

In this appendix we derive the solution of the linearized

power allocation problem (9), which, for ease of readability,
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we rewrite here

max
pk∈Pk

∑

n∈N

log2

(

1 +
pk,n
ik,n

)

+
∑

n∈N

αk,npk,n

subject to (A.1)
∑

n∈N

pk,n ≤ Pk

where ik,n =

∑

j∈K\k

Gn
j,kpj,n+σ2

k,n

Gn
k,k

is the noise plus interference

term normalized to the kth user gain. The problem is con-

vex with differentiable objective and constraint function and,

hence, any points that satisfy the KKT conditions are primal

and dual optimal and have zero duality gap. The problem’s

Lagrangian is

L(pk, µ) =
∑

n∈N

log2

(

1 +
pk,n
ik,n

)

+
∑

n∈N

(αk,n − µ) pk,n+µPk

(A.2)

where µ is the dual variable associate to the user’s total power

constraint. Accordingly, we find that the optimum allocation

p∗
k ∈ Pk must satisfy the following KKT conditions:

∑

n∈N

pk,n − Pk ≤ 0 (A.3)

µ ≥ 0 (A.4)

µ

(
∑

n∈N

pk,n − Pk

)

= 0 (A.5)

1

log(2) (ik,n + pk,n)
+ αk,n − µ = 0 (A.6)

As a consequence of the complementary slackness condition

(A.5) when µ = 0 it is
∑

n∈N pk,n < Pk and when µ > 0 it

is
∑

n∈N pk,n = Pk. Thus, unlike conventional waterfilling,

user k might not need to use all the available power Pk. By

elaborating (A.6) and assuming that
∑

n∈N p∗k,n < Pk, the

optimal solution is

p∗k,n =

[

− 1

log(2)

1

αk,n

− ik,n

]Pk,n

0

(A.7)

where

[x]
A

0 =







0 x < 0
x 0 ≤ x ≤ A
A A < x

(A.8)

In case the power distribution found in (A.7) exceeds the

power limit Pk, we have to assume that µ > 0 and power

is found as

p∗k,n =

[
1

log(2)

1

µ− αk,n

− ik,n

]Pk,n

0

(A.9)

where the value of µ is such that the power constraint Pk is

met.

APPENDIX B: THE ELLIPSOID METHOD

The ellipsoid method is an iterative technique that starts

with the ellipsoid

E
(

A(0),ν(0)
)

=
{

z ∈ R
N : (z − ν

(0))TA(0)(z − ν
(0)) ≤ 1

}

(B.1)

centered in ν
(0) and with a shape defined by the symmetric

and positive definite matrix A(0). By choosing appropriate

values for A(0) and ν
(0), the ellipsoid E

(
A(0),µ(0)

)
contains

the solution ν
∗ of problem (13) and, by construction, at each

iteration the algorithm finds a new ellipsoid that still contains

the solution ν
∗ but with a smaller volume. Hence, given an

arbitrary small volume ǫ, after a certain number of iterations

the ellipsoid’s volume will be smaller than ǫ. Thus, we can

choose an adequate value of ǫ, such that the centre of the

ellipsoid practically coincides with ν
∗.

Given the subgradient vector d(s), the update rule for the

ellipsoid algorithm for iteration s is [29]:

d̃(s) =
d(s)

√
d(s)TA(s)−1d(s)

(B.2)

µ
(s+1) = µ

(s) − 1

N + 1
A(s)−1d̃(s) (B.3)

A(s+1) =
N2

N2 − 1

(

A(s)−1 − 2

N + 1
A(s)−1d̃(s)d̃(s)TA(s)−1

)

.

(B.4)
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