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Abstract. Location-based services rise high privacy concerns because
they make it possible to collect and infer sensitive information from a per-
son’s positions and mobility traces. Many solutions have been proposed
to safeguard the users’ privacy, at least to a certain extent. However, they
generally lack of a convincing experimental validation with real human
mobility traces. Large databases of real mobility traces are extremely
expensive to build or buy. In this paper, we present HUMsim (Human
Urban Mobility Simulator), a generator of synthetic but realistic human
traces oriented to the experimental validation of privacy solutions. HUM-
sim generates trajectories that reflect possibly privacy-sensitive habits of
people and that, at the same time, account for constraints deriving from
a real map. We also validate the soundness of the produced traces by
statistically comparing them to real human traces.
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1 Introduction

The number of GPS-equipped smartphones has recently experienced an expo-
nential growth. 850 millions of devices in 2011 became 1.2 billions in 2012 and
are expected to get 4 billion in 2018 [10]. This caused an equally considerable
proliferation of location-based services and applications. The problem with these
services is that they are invasive from a privacy point of view. Not only they
make it possible to track users, but also to collect traces, analyze them, and
discover sensitive information about users’ habits.

The scientific community has developed many solutions that strive to provide
a viable trade-off between privacy and performance in location-based services.
Among them [2, 9, 12]. The problem with most of these solutions is that they
generally lack of a convincing experimental validation on real human mobility
traces. Large databases of real human mobility traces do exist. Unfortunately
they do not come for free. Companies and organizations owning such databases
sell them at high prices. On the other hand, running in-home experimental cam-
paigns to take real traces is often impractical.

A possible solution is to use synthetic trajectories. The existing mobility
models generate trajectories that are similar to the real ones in terms of, for
example, speed, direction changes, presence of obstacles and so on. In these
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models, waypoints are typically chosen at random. This implies that the resulting
synthetic trajectories display good statistics that are useful for mobile network
analysis (cellular networks, MANETs, etc.). However, this also implies that they
do not reflect the habits of a person and therefore they are hardly useful for the
validation of privacy solutions.

We propose HUMsim (Human Urban Mobility Simulator), a human mobil-
ity simulator aimed at the validation of location privacy solutions. HUMsim
generates semantic trajectories which are sequences of semantic waypoints, i.e.,
locations labelled with semantic tags [1, 4]. Semantic trajectories are generated
according to a behavioral model of a person, which describes his daily behavior in
terms of visited semantic waypoints (which ones and for how long). For instance,
the behavioral model describing a smoker contains semantic waypoints describ-
ing stops at a smoke shop. In short, semantic waypoints can reveal information
about the person’s habits that can put at risk his privacy. Furthermore, HUM-
sim translates semantic trajectories into raw trajectories, which take into account
real maps. It follows that the resulting trajectories not only represent “realis-
tic” movements of a person but they also convey privacy-relevant information.
As such, differently from existing mobility models which generate trajectories
without a semantic value, the semantic trajectories produced by HUMsim allow
us to validate location-privacy solutions. We evaluate the soundness of our ap-
proach by statistically comparing the trajectories generated by HUMsim to real
human traces along two dimensions: the radius of gyration and the displacement
between consecutive waypoints. In particular, we compare our results with the
results in [11], where the trajectories generated by 100,000 individuals in the Eu-
ropean territory are examined. We found some affinity with the results in [11],
which corroborates the validity of our synthetic semantic trajectories.

The rest of the paper is organized as follows. Section 2 presents relevant
related works. Section 3 describes the HUMsim simulator in detail. Section 4
experimentally evaluates the soundness of HUMsim traces. Finally, the paper is
concluded in Section 5.

2 Related Works

The analysis and the modeling of human mobility have always been a challenge
for scientists of different disciplines. It allows us to optimize many processes
which are related to the daily life of many people. At the same time, under-
standing the human mobility model allows us to reproduce human behavior in
new scenarios. Many models have been proposed to approximate the movements
of a person. In this section we survey some of them.

Random Walk (RW) model [6] aims at simulating the unpredictable move-
ment of entities in nature. In RW, each node chooses a random speed inside a
predefined range [Vmin, Vmax], and a random direction.

In Random Waypoint (RWP) model [3], a mobile node begins by staying in
one location for a certain period of time. The node then travels towards a new
random destination at a random speed in a predefined range [Vmin, Vmax]. Upon



HUMsim 3

arrival, the node pauses for a specified time period before starting the process
again. The problem of this approach is the clustering of nodes that occurs at
the center of the simulation area. This happens because the mobile nodes tend
to pass through it to reach other destinations.

Random Direction (RD) model [16] is designed to overcome the clustering
behavior of RWP. The RD mobility model lets the nodes choose a random di-
rection, rather than random position, in which to travel similarly to RW.

Markovian Random Path (MRP) model [6] reduces the sudden changes of
speed and direction that afflict the previous models. Improvements to this ap-
proach have been introduced with Gauss-Markov (GM) [15] and Markovian Way-
point (MWP) [13]. These models are slight variants of previous random models
as they implement Markovian transition probabilities among waypoints or pro-
hibit unrealistic abrupt velocity changes.

All these mobility models are useful to describe the movements of particles
or other physical entities which follow random paths, but they badly fit the
mobility of human entities which are affected by many variables like personal
interests, habits, etc.

Self-similar Least Action Walk model (SLAW) [14] is more accurate and
realistic than the previous mobility models. SLAW represents inherent social
contexts among walkers manifested as common gathering places and walk pat-
terns therein. SLAW can also express the trip patterns present in the daily
mobility of humans. People typically keep a routine of visiting the same places
every day, such as an office, but at the same time make irregular trips. SLAW
uses Least Action Trip Planning (LATP) to calculate the trip sequence among
all the selected waypoints. SLAW effectively expresses mobility patterns arising
from people with some common interests or within a single community. Relevant
examples are students in the same university campus or people in theme parks
where they tend to share common gathering places. But on a larger scale, such
as the urban environment, the choice of the waypoints is driven by the habits
of a person, or the nearest destination to accomplish a task, or the best path to
pass through all the planned waypoints. These are choices taken automatically
by an actual driver around the city. Thus, the traces generated by SLAW do not
reflect a behavioral model of a person and are not suitable for validating privacy
solutions.

In realistic situations, the travel pattern of a node is restricted by the city
section that is a urban area with a street network. The mobile nodes have to take
into account the traffic limitations and avoid obstacles. City Section Mobility
model [7] considers these aspects. The simulation takes place in a realistic city
section with different kinds of roads. But, even if the generated trajectories are
more similar to those of an actual driver, the destination points are still chosen
randomly and they do not have any semantic validity.

All these “artificial” mobility models have to be compared with real hu-
man traces in order to prove their validity. Recently, the scientific literature
approached the analysis of human mobility from real traces, and supposed that
humans follow a Lévy-flight model [5, 8, 11]. This model foresees many short
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movements around a spot, mixed to few long movements. The length of the
movements follows a power-law probability distribution. Such a distribution is
long-tailed, thus it gives a non-negligible probability of long movements. This
model has shown to be consistent with large databases of real human traces, mea-
sured by means of banknote spending [5], mobile phone calls [11], or location-
sharing check-in’s [8]. We used the Lévy-flight model in order to validate the
soundness of the paths generated by HUMsim.

3 Human Urban Mobility Simulator

HUMsim (Human Urban Mobility simulator) is a generator of synthetic human
traces, aimed at the validation of location privacy solutions. HUMsim has the
following characteristics:

– During the day, a person follows a semantic trajectory that touches some se-
mantic waypoints (home, work, shops, etc.). Some of these waypoints can be
privacy-sensitive, i.e. they can reveal private habits or other sensitive infor-
mation about the person. For example, where the person lives, or whether the
person visits a hospital specialized on some particular disease, etc. The defi-
nition of what is privacy-sensitive and what is not depends on the particular
application, and does not fall in the scope of the simulator.

– The waypoints can be usual (e.g. home, work, etc.), which are chosen once and
never changed for a person, or opportunistic (e.g. markets, shops, etc.), which
are chosen time-by-time depending on the current position of the person.

– The daily path and the pause times on the various waypoints can change
day-by-day in a probabilistic manner, following a behavioral model.

– Once the semantic trajectories have been generated, they are translated into
raw trajectories, which take into account the mobility constraints, the streets,
and the travel times.

Fig. 1. HUMsim block diagram
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HUMsim is composed by four main components, as shown in Figure 1. The
waypoint generator generates a database of usual and opportunistic waypoints.
Depending on their semantic, the waypoints are generated by means of two
techniques: Google Places query or random generation. Some waypoints (typi-
cally shops, restaurants, etc.) are generated by means of Google Places query.
In this case, the waypoint generator queries the Google Places API by means of
a keyword (e.g. “restaurant”). All the other waypoints (typically houses, work-
places, etc.) are generated randomly. The randomly generated waypoints follow
a Gaussian distribution centered on a urban center specified by the user. The
user can specify more than one urban center, each of which is identified by a
circle. The radius of each circle is proportional to the size of the urban center.
The generation process first chooses a particular urban center with a probability
proportional to its radius, then generates the waypoint according to the Gaus-
sian distribution. Randomly generated waypoints may end up in unaccessible
areas such as rural fields or lakes. We use the Google Maps service to move them
to the nearest valid locations. The resulting waypoints are stored in a waypoint
database.

The person generator generates a set of people. A person is represented
by (i) a set of usual waypoints, and (ii) a behavioral model. In practice, the
person generator randomly selects a set of usual waypoints from the waypoint
database, and associates a behavioral model to them. The “home” waypoint is
selected for first. The other waypoints are chosen in such a way their distance
from “home” follows a power-law distribution. Therefore, a person prefers usual
waypoints which are close to home but he does not exclude the possibility of
longer distances. We notice that this way of choosing the usual waypoints makes
the final raw trajectories more realistic (i.e. closer to a Lévy-flight model, see
Section 4).

The semantic trajectory generator generates a given number of daily semantic
trajectories for each person. A daily semantic trajectory is a sequence of semantic
waypoints (Wi) that the person visits in a day, together with a pause time (Πi)
for each semantic waypoint.

semantic trajectory ::= (W1, Π1) . . . (Wn, Πn)

The raw trajectory generator translates the semantic trajectory into a raw
trajectory, that is an ordered sequence of tuples on the form:

raw trajectory ::= (lat1, lng1, t1) . . . (latm, lngm, tm)

similar to a GPS trace, where lati and lngi are respectively latitude and longitude
and ti is the timestamp associated to the position. While the semantic trajectory
considers the movement between two waypoints to be instantaneous, the raw
trajectory takes into account also the travel time and path among them.
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Fig. 2. Example of behavioral model (transition scheme)

State Tc Tv State Tc Tv State Tc Tv

H0 0 min 30 min O0 270 min 30 min M0 5 min 25 min
H1 120 min 60 min O1 180 min 60 min M1 15 min 45 min
H2 - - S0,1,2 5 min 5 min M2 10 min 30 min

Table 1. Example of behavioral model (pause scheme)

3.1 Behavioral model

The behavioral model specifies the daily mobility of a person in probabilistic
terms. It is described by a transition scheme and pause scheme. The transition
scheme is a discrete-time Markov chain, whose states represent distinct visits of
semantic waypoints. Figure 2 shows an example of transition scheme.

In this scheme, we modeled a person which moves between four semantic
waypoints, “home” (H), “office” (O), “markets” (M) and “smoke shops” (S).
Each semantic waypoint can be visited several times during a day. For example,
O0 and O1 represent same waypoint O that is visited twice in a day.

The pause scheme (Table 1) is a table used to compute the pause time Πi

for each state, that is how long the person waits in that state. This parameter
is fundamental for algorithms that analyze the trajectories in order to profile
a person, because it gives a quantitative indication of how important the place
is for the person. The pause time is composed by two values: a constant value
Tc added to a variable value Tv. The Tc is the minimum pause time for that
position. The Tv indicates the variation of the pause time.

Πi = [Tci , Tci + Tvi ] (1)

The table keeps the values of Tc and Tv for each state. Table 1 shows an ex-
ample of pause scheme. The example behavioral model of Figure 2 and Table 1
represents a smoker that works and returns home at the end of the day. During
the day, the person makes some stops at markets or smoke shops. For each sim-
ulated day, the simulator starts in state H0 and computes a sequence of states
that ends in state H2. In the morning, the person goes to work, possibly visiting
a smoke shop (states H0, S0, O0). In the afternoon, he possibly visits a market,
or a smoke shop, or both (S1, M0), and then he returns to work or goes home
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(H1, O1). In the late afternoon, he possibly visits again a market, or a smoke
shop, or both (S2, M1, M2), and he finally returns to home (H2). An example
of semantic trajectory is:

(H0, 10), (O0, 275), (S1, 6), (O1, 192), (M2, 15), (H2,−)

where the pause times are expressed in minutes. The semantic waypoint H2

does not have a pause time because it is the end of the semantic trajectory.
This simple behavioral model serves only as a proof of concept, and does not
aim to be fully realistic and representative of all people’s habits. HUMsim allows
the user to define more complex and realistic behavioral models. The user can
also specify several behavioral models, describing the daily behavior of different
people. When the person generator creates a person with his usual waypoints,
it assigns a behavioral model to him for the entire simulation.

3.2 Semantic trajectory and raw trajectory generators

The semantic trajectory generator receives a behavioral model as input and
generates a semantic trajectory for each simulated day and for each person. This
is done by realizing the Markov chain stochastic process for each day. Then, it
assigns a position to each semantic waypoint. As we said before, the positions
of the usual waypoints of a person are fixed, decided a priori by the person
generator. On the contrary, the positions of the opportunistic waypoints are
chosen on-the-fly by the semantic trajectory generator, depending on the current
position of the person and an opportunistic choice rule. HUMsim supports several
opportunistic choice rules. For example the “nearest” rule, e.g. choosing the
market nearest to the current position, or the “nearest-with-score” rule, e.g.
choosing the nearest market having a certain score, etc.

Fig. 3. Example of daily trajectory

The raw trajectory generator translates the semantic trajectory into a raw
trajectory. This component uses the positions of the semantic waypoints to cal-
culate the raw trajectory. It leverages on the Direction Service (DS) provided
by Google Maps API. The query to the DS needs the list of the visited posi-
tions and the mode of transport used. By now, HUMsim implements a single
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Fig. 4. Statistical comparison between HUMsim and real human traces

mode of transport for all simulated people (car). Future improvements of the
simulator will include transport preferences as part of the behavioral model of
the person. The DS responds with one or more possible paths and a travel time
for each of them. The raw trajectory generator chooses a path and extracts the
sequence of points (latitude and longitude) which identify the raw trajectory
between two semantic waypoints. Moreover, for each point the raw trajectory
generator computes a timestamp abiding by the trip time of the path. During
a pause in a waypoint, the trajectory generator continues to produce position
samples around the position of the semantic waypoint.

Figure 3 shows an example of daily trajectory of a person which lives in
Pisa, Italy. The positions of the semantic waypoints are displayed. Note that
the person opportunistically chooses two positions for the smoke shop (semantic
waypoint S), depending on his current position.

4 Experimental Validation

We run HUMsim using the example behavioral model of Figure 2 and Table 1,
which represents a smoker that works and returns home at the end of the day.
Our simulation is focused on the area around Pisa, Italy. We have simulated
5000 users which generate daily trajectories for a period of 30 days. We used
the “nearest” opportunistic choice rule for choosing the opportunistic waypoints.
We evaluated the soundness of the synthetic traces generated by HUMsim, by
statistically comparing them with real human traces. We focused our analysis
on two parameters which are at the basis of many studies on human mobility
patterns [5, 8, 11]: the displacement (∆r) and the radius of gyration (rg). By ∆r
we indicate the movement of a person from a waypoint to another. In [11], the
authors found that the distribution of displacements, recorded over a six-month
period for 100,000 individuals in the European territory, follows a truncated
power-law with the following shape:
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P (∆r) ∝ (∆r −∆r0)−βe−∆r/κ (2)

where ∆r0 = 1.5km, β = 1.75, and κ = 400km. Figure 4a shows the proba-
bility distribution of the displacements generated by HUMsim compared to the
distribution found by [11]. It can be seen that the synthetic traces well fit the
truncated power-law distribution.

We studied also the distribution of the radius of gyration according to the
scale of our simulation. The radius of gyration is an estimation of the general
mobility of a person. It is computed in the following way:

rg =

√
1

N

∑
i

‖Xi −Xcm‖2 (3)

where Xcm indicates the center of mass of the person’s movements. Even in this
case, the authors in [11] found that the radius of gyration can be approximated
with a truncated power-law:

P (rg) ∝ (rg − r0g)−βre−rg/κr (4)

where r0g = 5.8km, βr = 1.65, and κr = 350km.
Figure 4b shows the probability distribution of the radius of gyration over

all people generated by HUMsim, compared to the distribution theoretically
supposed by [11]. We noticed a discrepancy due to the difference in the scale of
the scenario. In fact, in the case of [11] the people move in the whole European
continent, whereas our simulations are limited to few urban centers. We found
that the theoretic distribution better fits the synthetic data by reducing the
parameter r0g to 0.8km, as shown in Figure 4b. Such a parameter correction
lowers the probability of large radii of gyration (cfr. Figure 4b), and thus makes
the power-law more suitable to the scale of our simulation scenario.

From these statistical comparisons, we can claim that our synthetic traces
well approximate real traces.

5 Conclusion and Future Works

In this paper we presented a human mobility simulator called HUMsim that
generates daily trajectories reflecting the habits of a person. The simulator al-
lows us to define a user’s behavioral model in terms of semantically annotated
waypoints and then generates trajectories passing through those waypoints and
accounting for map constraints. The resulting trajectories are realistic as the sta-
tistical evaluation showed. Furthermore, given their semantic value, trajectories
can also be used to validate the privacy countermeasures aimed at protecting
privacy in location-based services.

We leave for future works the comparative analysis with real human traces,
for example from public datasets like CROWDAD or the Nokia Mobile Data
Challenge.
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