
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/280563967

Distributed	Current	Flow	Betweenness	Centrality

CONFERENCE	PAPER	·	JANUARY	2015

READS

22

4	AUTHORS:

Alessandro	Lulli

Università	di	Pisa

6	PUBLICATIONS			3	CITATIONS			

SEE	PROFILE

Laura	Ricci

Università	di	Pisa

70	PUBLICATIONS			192	CITATIONS			

SEE	PROFILE

Emanuele	Carlini

Italian	National	Research	Council

27	PUBLICATIONS			68	CITATIONS			

SEE	PROFILE

Patrizio	Dazzi

Italian	National	Research	Council

56	PUBLICATIONS			267	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Patrizio	Dazzi

Retrieved	on:	11	January	2016

https://www.researchgate.net/publication/280563967_Distributed_Current_Flow_Betweenness_Centrality?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_2
https://www.researchgate.net/publication/280563967_Distributed_Current_Flow_Betweenness_Centrality?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Alessandro_Lulli?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Alessandro_Lulli?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Universita_di_Pisa?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Alessandro_Lulli?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Laura_Ricci?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Laura_Ricci?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Universita_di_Pisa?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Laura_Ricci?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Emanuele_Carlini?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Emanuele_Carlini?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Italian_National_Research_Council?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Emanuele_Carlini?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Patrizio_Dazzi?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Patrizio_Dazzi?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Italian_National_Research_Council?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Patrizio_Dazzi?enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw%3D%3D&el=1_x_7

Distributed Current Flow Betweenness Centrality
Alessandro Lulli∗†, Laura Ricci∗†, Emanuele Carlini†, Patrizio Dazzi†

∗University of Pisa, Italy
{surname}@di.unipi.it
†ISTI, CNR, Pisa, Italy
{name.surname}@isti.cnr.it

Abstract—The computation of nodes centrality is of great im-
portance for the analysis of graphs. The current flow betweenness
is an interesting centrality index that is computed by considering
how the information travels along all the possible paths of a
graph. The current flow betweenness exploits basic results from
electrical circuits, i.e. Kirchhoff’s laws, to evaluate the centrality
of vertices. The computation of the current flow betweenness may
exceed the computational capability of a single machine for very
large graphs composed by millions of nodes. In this paper we
propose a solution that estimates the current flow betweenness in
a distributed setting, by defining a vertex-centric, gossip-based
algorithm. Each node, relying on its local information, in a self-
adaptive way generates new flows to improve the betweenness of
all the nodes of the graph. Our experimental evaluation shows
that our proposal achieves high correlation with the exact current
flow betweenness, and provides a good centrality measure for
large graphs.

I. INTRODUCTION

In the last years the broad diffusion of the internet and,
more in general, the communication networks, allowed people,
information, computing devices and even simpler “things” to
be always reachable, according to the “always-on” paradigm.
Operatively, this world of connections is often supported by
social networks and/or the underlying physical communication
networks. The web of interactions among the entities com-
posing such environments can be even more interesting; both
from the amount and richness of information viewpoints. Such
network of interactions is often represented as a graph, that
if analysed can provide useful information, both regarding the
graph as a whole or regarding specific vertices. Specifically,
centrality measures are an important tool in graph analysis,
as they provide information on the structural prominence of
nodes and edges and, as a consequence, they support the
identification of the key elements of the network. For instance,
in a social network it could be interesting to find the most
important actors in large social interaction graphs; or in a data
network could be worth to find the nodes that are subject to the
highest traffic to prevent network congestion and disruption.

Over the years, many different centrality measures have
been proposed. One of the most popular measures is the
vertex betweenness centrality. The Betweenness Centrality [1]
measures the importance of a node as the number of times
it lies on the shortest path between two other nodes. It is
an appropriate index in networks where information flows
mostly along geodesic paths, and it is currently adopted for the
analysis of a wide set of complex networks. A common limit

of shortest-paths based measures is that they do not take into
account the information spread occurring along non-shortest
paths, hence, they are not the best choice when information
conveying is governed by other rules. To overcome this limi-
tation, in literature have been proposed betweenness measures
that are based on the information flow along the graph.

Freeman et al. [2] suggested a sophisticated betweenness
measure, the flow betweenness, that includes contributions
from some non-geodesic paths. The flow betweenness is
computed by considering a network where a maximal amount
of information (with respect to edges capacity) is continuously
injected between all the source vertices and the target vertices.
However, using this measure there might be paths that are
central in the networks, but are not crossed by any flow unit
for particular pairs of sources and targets. To address these
issues, Newman [3] and Brandes et al. [4] proposed to model
the network as a electric circuit where a current flow is injected
to a source node and exits to the target node. The resulting
index, the current flow betweenness named also random-
walk betweenness is able to compute contributions from all
paths existing between the source and the target node. The
current state-of-the-art for the computation of the current flow
betweenness includes both exact [5], [4] and approximated
[4], [6], [7] approaches. However, these solutions are all
centralized, and their applicability is limited only to small
graphs.

To overcome this limitation, this paper proposes DUCK-
WEED, a novel algorithm for the distributed computation
of the approximated current flow betweenness centrality. In
DUCKWEED, each node, using only locally available informa-
tion, exploits, in a self-adaptive way, the Kirchhoff’s laws of
electrical circuits to incrementally compute the current flow
betweenness of the graph. Our algorithm can be implemented
in both distributed frameworks for the analysis of large graphs
(such as Apache Spark [8] or Hadoop [9]) and in peer-to-peer
networks.

The paper is organised as follows. Section II reports an anal-
ysis of the related work. Section III presents some preliminary
notions, focusing in detail on random walks and current flow
betweenness. Then, in Section IV, is present DUCKWEED, our
proposed solution for the distributed estimation of current flow
betweenness. In Section V are reported our empirical findings.
Finally, Section VI reports our conclusions.

https://www.researchgate.net/publication/216637282_A_Set_of_Measures_of_Centrality_Based_on_Betweenness?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/30013058_Centrality_Measures_Based_on_Current_Flow?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/30013058_Centrality_Measures_Based_on_Current_Flow?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/30013058_Centrality_Measures_Based_on_Current_Flow?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/222671188_A_Measure_of_Betweenness_Centrality_based_on_Random_Walks?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/255731085_Alpha_current_flow_betweenness_centrality?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/234790155_Spark_Cluster_Computing_with_Working_Sets?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/228346723_The_Hadoop_Distributed_File_System?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==

II. RELATED WORK

The computation of the betweenness centrality index is
intrinsically expensive. In fact, to be determined it requires
the computation of all the shortest paths. The naive centralized
algorithm requires θ(n3) time and θ(n2) space, where n is the
number of vertices. An improvement to the basic solution has
been proposed by Brandes [10] in 2001. In his proposal, he
introduces the notion of vertex dependency, recursively defined
on the whole structure of the graph. Following this approach
it is no longer required the combinatorial counting of all paths
and O(n+m) space and O(nm) time bounds, respectively, are
obtained for undirected graphs (with m the number of edges).
Another approach is based on the definition of algorithms
for computing approximated values of the index. Riondato et
al. [11] proposed two efficient randomized algorithms for the
estimation of betweenness based on random sampling. These
algorithms offer probabilistic guarantees on the quality of the
approximation. To bound the size of the sample exploited to
achieve their approximated result, they rely on the results from
the Vapnik-Chervonenkis theory, which allows to use small
sample sizes.

The current flow betweenness centrality has gained mo-
mentum in the last years as an alternative index to measure
centrality of nodes in a graph. Similarly to the classical
betweenness centrality, the straightforward algorithm to deter-
mine current flow centrality is to compute information flows
for all the possible pairs of node in the graphs. Newman [3]
and Brandes et al. [4] provided a formulation derived from
Kirchoff’s law of current conservation, in which edges are
resistors with a given conductance, and the nodes are junctions
between resistors. They propose an algorithm for estimating
the current flow betweenness centrality having a computational
complexity of O(I(n− 1) +mn2), where O(I(n− 1)) is the
complexity to invert a n×n matrix. Moreover, they propose an
approximated version of the algorithm that selects uniformly at
random a small fraction of all pairs s 6= t ∈ V . The bound on
the number of pairs is computed by exploiting the Hoeffding
bound [12].

Bozzo and Franceschet [6] [13] proposed an algorithm for
current flow betweenness centrality that reduces the com-
plexity deriving from the inversion the Laplacian matrix de-
scribing the graph by choosing a subset of its eigenvalues
and eigenvectors. Avrachenkov et al. [7] introduce the α-
current flow betweenness centrality by adding a “ground node”
to the original graph, and connecting each node to it. The
introduction of the ground node simplifies the computation
and leads to a reduction of the complexity of the matrix
calculations. In addition, they approximate the betweenness by
randomly selecting a subset of all possible pairs, similarly to
Brandes et al. [4]. They also introduce the truncated α-current
flow betweenness, an approach in which the scores on the
edges starting from the source of the flow are not considered in
the computation of the betweenness. They proved empirically
that the resulting estimation increases the correlation with the
exact current flow betweenness.

Despite the optimizations introduced by the solutions men-
tioned above, the computational cost to determine path-based
centrality indices requires the adoption of distributed solutions
when dealing with large graphs. Lehmann and Kaufmann [14]
propose a general framework for defining decentralized algo-
rithms that compute centrality indices. To this end they take
into account four different centralities, closeness, stress, graph
and betweenness, with emphasis on the betweenness centrality.

As far as we know, there is no distributed algorithm for the
current flow betweenness centrality. Rather, novel definitions
of the centrality indices have been proposed, which are suitable
to be computed in a distributed environment. Wehmuth and
Ziviani [15] redefined the closeness centrality index of a
vertex by considering its h-neighbourhood, i.e., the vertices
within a radius h around it. The centrality value of each
vertex in the network is defined as the sum of the degrees
of the vertices in its h-neighbourhood, i.e., the volume of
its h-neighbourhood. This notion of centrality is equivalent to
the degree centrality when h = 0. The distributed algorithm
consists in a TTL-restricted flooding of the degree of each
node within its h-neighbourhood. The experimental results
show a high degree of correlation between this notion of
centrality and the closeness centrality. Kermarrec et al. [16]
introduces a novel notion of centrality based on random walks,
called second order centrality. According to it, each node
computes its centrality index by starting an unbiased random
walker and counting how much time the walker requires to
return to the node. Their approach collects a certain number of
this measure in order to calculate the standard deviation. This
calculation is performed incrementally each time the walker
returns to the node, improving the estimation of the centrality
of the nodes over time.

III. PRELIMINARIES

In this section we introduce the notions required for the
definition of the main theoretical framework at the basis of our
approach. We first introduce the Random Walk Betweenness
and then we present the relation between elementary electric
network theory and random walks, which is at the basis of the
definition of the Current Flow Betweenness.

A. Random Walk Betweenness

Let us consider a network and suppose that a node s
generates an information (conveyed as a message) whose target
is node t. Each node receiving the message propagates it to one
of its neighbours, chosen uniformly at random. This strategy is
usually referred as random walk. The notion of Random Walk
Betweenness Centrality introduced by Newman [5] measures,
for a given a node n, the expected net number of times a
random walker passes through n on its way from s to t,
averaged on all s and t. As Newman states, when computing
the net number of times, two visits of the walker to the same
vertex coming from opposite directions must be cancelled out.
This avoid scenarios where the walker passes forth and back
a vertex many times, without actually going anywhere.

https://www.researchgate.net/publication/30013058_Centrality_Measures_Based_on_Current_Flow?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/30013058_Centrality_Measures_Based_on_Current_Flow?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/222671188_A_Measure_of_Betweenness_Centrality_based_on_Random_Walks?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/255731085_Alpha_current_flow_betweenness_centrality?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/2887625_A_Faster_Algorithm_for_Betweenness_CentralityJ_Math_Soc?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/262313329_Fast_approximation_of_betweenness_centrality_through_sampling?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/221996154_Probability_Inequalities_For_Sums_of_Bounded_Random_Variables?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/273808510_Resistance_distance_closeness_and_betweenness?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/235638040_Decentralized_Algorithms_for_Evaluating_Centrality_in_Complex_Network?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/221931795_DACCER_Distributed_Assessment_of_the_Closeness_CEntrality_Ranking_in_complex_networks?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/222511418_Second_order_centrality_Distributed_assessment_of_nodes_criticity_in_complex_networks?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==

B. Current Flow Betweenness
Doyle and Snell [17] give an exhaustive presentation of

the relations existing between random walks end electric
networks. We briefly summarize the main results of their work
in this section.

Let G = (V,E) be an undirected graph, where E ⊆ V ×V ,
with n = |V | vertices and m = |E| edges. We assume that
there are no self-loops from one vertex to itself and no pairs
of vertices connected by multiple edges. Each edge (i, j) ∈ E
connecting vertices i and j has a weight wi,j . The matrix Ai,j
is the adjacency matrix of the graph, i.e. Ai,j = 1 if and only
if there exist an edge connecting vertices i and j.

An electrical network may be represented by a graph by
assigning to each edge a positive weight indicating the conduc-
tance of the corresponding electric wire (or the resistance of
the wire, which is the inverse of the conductance). According
to this representation, the vertices of the graph are junctions
between resistors. For the sake of simplicity, we consider
unitary conductance (or resistance), i.e., wi,j = 1, ∀i, j.

In particular, we are interested in how current flows through
the network, when injected to a source node s and picked up
at a target node t, for all possible choices of s and t.

Definition 1. We define a current flow F (s,t) over the graph
G as follows:
• s is the source of the flow, the current enters the network

through it;
• t is the target of the flow, the current leaves the network

through it;
• u

(s,t)
i , called supply vector, is a vector such that

∑
i ui =

0 and us = −ut = 1:

Let v(s,t)
i be the potential at node i for F (s,t). Kirchhoff’s

law of current conservation states that the current that enters
into a node is equal to the current that flows out of it. This
implies that the potentials of a node satisfy the following
equation for every node i:∑

j

Aij(v
(s,t)
i − v(s,t)

j) = u
(s,t)
i (1)

v
(s,t)
i =

∑
j Aijv

(s,t)
j + u

(s,t)
i∑

j Aij
(2)

By considering only unitary resistances as stated above, we
have Aij = 1 if exists the edge (i, j), otherwise 0 and that∑
j Aij = deg(i).
Given the above, let us consider the current flow that passes

through the vertex when a unit of current is injected in a source
vertex and removed from a target vertex, averaged over all
source-target pairs [4], [5]. Doyle et al. [17] show that this
current flow is equal to the net expected number of times
that a walker, starting at s and walking until it reaches t,
will pass through that vertex. The random walker betweenness
can be therefore computed by considering the electrical circuit
associated to the graph and by applying the laws of electrical
circuits. The resulting betweenness index is also referred as
Current Flow Betweenness.

To compute the current flow betweenness of a vertex i, 6=
s, t, it is therefore required to compute the current flowing
through i, which, given a flow F (s,t), is defined as half of the
sum of the absolute values of the currents flowing along the
edges incident on that vertex:

I
(s,t)
i =

1

2

∑
j

Ai,j | v(s,t)
i − v(s,t)

j | (3)

The current-flow betweenness centrality bi [4], [5] is the
average of the current flows over all the source-target pairs:

bi =

∑
s<t I

(s,t)
i

(1/2)n(n− 1)
(4)

Bozzo et al. [13] show how to solve the system of equa-
tions 2 by exploiting classical matrix calculus when consider-
ing all the possible source and target pairs. However, when the
graph is very large, this calculus may exceed the computational
capability of a single machine. On the other hand, we note
that a distributed computation of the system of equations 2 is
feasible, because each node requires only local information,
i.e. information about its neighbours, to iteratively compute
the value of its potential for a given s and t pair, and calculates
its betweenness by means of its currents flowing according to
Equation 3. This observation is at the base of the distributed
approach we present in the next section.

IV. DUCKWEED

As far as we know, current state-of-the-art approaches for
current flow betweenness centrality (CFBTW) are centralized,
and their applicability is limited to small graphs [4], [7]. In
this work we present our proposal to fill this gap. We propose
DUCKWEED, a novel distributed approach that computes an
estimation of the current flow betweenness centrality, which is
suitable for large graphs. Approximate CFBTW has a practical
applicability, essentially for two reasons: (i) computing a
precise CFBTW for a large graph is very time consuming, and
(ii) many applications of centrality indexes require to find a
ranking of the top-most central nodes, rather than the exact
values of centrality for each vertex.

A. Computational Model

The computation performed by DUCKWEED follows a
vertex-centric approach in which the nodes of the graph are
considered as the unity of computation. We assume that nodes
of the graph are processed periodically and asynchronously.
Nodes do not have access to the entire graph, but only to their
immediate neighbours in the graph, and to a small set of other
nodes, provided by means of information diffusion protocols.
DUCKWEED does not require any kind of shared memory,
as nodes communicate only through explicit messages. This
makes DUCKWEED suitable for graph computing frameworks,
and for peer-to-peer networks, in case each node is assigned
to a peer of the network.

https://www.researchgate.net/publication/30013058_Centrality_Measures_Based_on_Current_Flow?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/30013058_Centrality_Measures_Based_on_Current_Flow?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/30013058_Centrality_Measures_Based_on_Current_Flow?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/222671188_A_Measure_of_Betweenness_Centrality_based_on_Random_Walks?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/222671188_A_Measure_of_Betweenness_Centrality_based_on_Random_Walks?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/255731085_Alpha_current_flow_betweenness_centrality?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/273808510_Resistance_distance_closeness_and_betweenness?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/2094869_Random_Walks_and_Electric_Networks?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==
https://www.researchgate.net/publication/2094869_Random_Walks_and_Electric_Networks?el=1_x_8&enrichId=rgreq-a2f154f0-da71-4249-bfb6-c9976be92cde&enrichSource=Y292ZXJQYWdlOzI4MDU2Mzk2NztBUzoyNTY4NDk2Njg3MzQ5NzhAMTQzODI0OTE0MTQ1Nw==

Algorithm 1: Flow Computation
Data: F : the set of flows known by the node

1 R← receive flows from neighbours
2 N ← flowCreation()
3 F ← F ∪ R ∪N
4 forall the f ∈ F do
5 update potential for f
6 ∆f ← difference with potential of the previous iteration;
7 if ∆f < Dε then
8 mark f as completed
9 end

10 end
11 send F to neighbours
12 CentralityComputation()
13 F ← F \ {f is completed}

B. The DUCKWEED approach

The main idea behind DUCKWEED is to exploit Kirchhoff’s
law to calculate the electric potentials of all the vertices,
as building blocks for the computation of CFBTW for the
entire graph. The computation is organized in such a way
that each node, locally and autonomously, can compute its
own electric potential and its own value of CFBTW centrality.
DUCKWEED is based on the following two main modules: the
Flow computation and the Centrality computation.

The Flow computation drives the creation of flows and the
computation of potentials. In particular, for a given F (s,t), the
corresponding potential can be computed using Equation 2 and
exploiting only the knowledge about the neighbours potentials
(due to the fact that the conductance between two nodes is zero
if they are not neighbours, see considerations in Section III).
The detailed description of the Flow computation is given in
Section IV-C.

For Centrality computation, each node collects the potentials
of its neighbours to compute independently the actual values of
the CFBTW. In particular, to compute the incremental CFBTW
for a vertex i, Centrality computation exploits Equations 3 and
4 in the following way:

bki =
(k − 1)bk−1

i + I
(s,t)
i

k
(5)

where k is the amount of computed flows known by the vertex.
The fact that DUCKWEED computes the CFBTW incrementally
yields two relevant impacts. First, it is possible to have an
idea of what are the most central nodes without waiting
for the computation to be completed. Second, it is possible
to define an automatic mechanism of termination, so that
DUCKWEED stops the computation when it reaches a given
level of approximation. A detailed description of the Centrality
computation is provided in Section IV-D.

C. Flow computation

This section describes in details how the computation of
a single generic flow F (s,t) is realized in DUCKWEED. The
computation of a single flow is then extended to the concurrent
computation of n flows, considering that each flow F (s,t)

can be identified uniquely using its source and target vertex,
respectively s and t, with s < t.

Algorithm 1 shows the pseudo code of the Flow computa-
tion in a node. The node first receives the information about
the flows computed at the previous iteration by its neighbours,
and then, if necessary, creates new flows. Subsequently, it
updates the potential relative to each flow and marks a flow as
terminated if the changing in potential is under the threshold
Dε. Further, the node sends the set of updated flows to its
neighbours, it updates its current flow betweenness centrality
value, and removes the completed flows from the local state.
For the sake of the explanation, we divide the Flow computa-
tion into three main steps: creation, update, and termination.
In the following we describe these three steps.

1) Creation: The creation of a flow F (s,t) is done locally by
each node, by considering itself as the source s and choosing
a target t among the other nodes. Since the algorithm is fully
distributed, deciding when to start a new flow, and which node
to choose as target are relevant aspects.

To define when a node shall create a flow, we designed
DUCKWEED such that the number of concurrent flows in the
network are probabilistically limited in any given point in time,
so to avoid to oversaturate the nodes. To this end, we define
the system-wide parameter ϕ as the number of maximum
concurrent flows active on each node; the number of flows
active on a generic node i is defined as ϕi. In addition, to
avoid the re-creation of an already computed flow, each vertex
u maintains a list of all the flows processed for which u is the
source or the target of the flow.

The flow creation relies on a combination of different
gossip-like protocols, organized in layers (as usual), to realize
the distributed computation of the flows. These protocols are
popular in peer-to-peer networks, as they proved to be efficient
solutions to tackle very different problems, ranging from
distributed data clustering [18], [19], [20], [21], resource and
service discovery [22], [23], online games [24]. Moreover, they
can also be implemented and exploited in graph computing
frameworks [25]. These protocols are based on a random node
sampling layer that provides a selection of random nodes from
the graph, similarly to the random peer sampling gossip pro-
tocols used in distributed applications [26], [27]. In addition,
the Flow computation exploits the following protocols: (i) the
size estimator implements a well-know protocol to count the
number of peers in a gossip fashion scenario [28], [29]; note
that, at any given time, a node has its own estimation of
the graph size, which in general is different from the one
of the other nodes. In the following, we refer to the size
estimation of node i as ni. (ii) The average betweenness
provides an estimation of the average CFBTW of the whole
graph. This protocol is similar to the size estimator protocols,
and we refer to the CFBTW average estimation of node i as
BTWi. (iii) The k-partitioning performs a distributed k-way
partitioning on input graph, similar to the one proposed in [30].
The result of the partitioning is to colour the nodes of the
graph with different colours according to their partition. The
k-partitioning and average betweenness are optional, as they
depends on the particular strategy used for the generation of
the flow.

s

CA B

t

0.613 0.25 -0.584

-1.7230.957

s

CA B

t

0.604 0.329 -0.737

-1.5840.932

s

CA B

t

0.617 0.323 -0.736

-1.6280.989

IA = 0.313
IB = 0.99
IC = 0.976

Current values
relative to the

flow at t+n

s

CA B

t

0.58 0.333 -0.723

-1.5010.893

s

CA B

t

steps
t t+1 t+2 t+n0

Fig. 1: Evolution of a flow from s to t over time

Using these concepts, we defined three different strategies
to generate a new flow:
• random: a node generates a new flow F (s,t) with a certain

probability prandom, computed as the following:

prandom = max

(
0,
ϕ− ϕi
n

)
(6)

where n is the number of (estimated) nodes in the graph.
If the node is supposed to create a flow, selects t from
its random sampling view.

• adaptive: the aim of this strategy is to favour the creation
of flows between nodes that are at the border of the
graph, and to disfavour flow betweens nodes in the center.
Recall that to be source (or target) of a flow, do not
improve its own betweenness value. In other words, this
strategy tries to accelerate the computation of the nodes
with already an higher betweenness. To implement this
strategy, a generic node i considers the local estimation
of the average CFBTW for the whole graph (BTWi). If
i has its current centrality value larger than BTWi, then
it generates no flow. Otherwise, it creates a flow with
probability padaptive, defined as the following:

padaptive = max

(
0,
ϕ− ϕi
n/2

)
(7)

Note that padaptive is twice prandom, so to compensate
the node with no chance to create a flow. A node u elected
to generate a new flow sets s = u and t equals to the node
having the smallest CFBTW value in its random sampling
view.

• partitioner: the aim of this strategy is to favour the
generation of flows with s and t being in different
partitions of the graph. Intuitively, nodes on the path
between two nodes of different partitions are more likely
to have higher betweenness centrality. A node u generates
a new flow with a probability equals to prandom and
s = u, and exploits the colouring from the k-partitioning
protocol to choose t from the random sampling view, such
as t’s colour is different from s’s colour.

2) Update: During every step, each vertex collects all the
flows received by its neighbourhood in the previous step and
applies Equation 2 to update the potential of each flow. The
updated potentials, along with the flow identifiers, are then
sent to all the neighbourhood to continue the computation
in the next step. This computation can be easily extended to
handle weighted graphs introducing the weights in Equation

2 as described by Bozzo et al [13] using as A the weighted
adjacency matrix.

Figure 1 depicts a flow computation where a unit of current
is injected in node s and removed from node t. In step t+1 the
node B receives from its neighbours {A,C, s} the potentials
calculated on step t equals to {0.62,−0.73, 0.94}. It applies
Equation 2 and it obtains a potential equals to 0.28. This
potential will be available to its neighbours in the following
step.

3) Termination: The termination of a flow is regulated by
the system-wide parameter Dε, which represent the minimum
difference in the potential of a flow between two consecutive
steps. Therefore, on a generic vertex i, the flow F (s,t) is
completed when both the following conditions are verified:

• v
(s,t)
i has converged to at least Dε;

• all the neighbours of i have converged to at least Dε.

When a flow is marked as completed, the vertex stops the
propagation of the potential relative to such flow. This eventu-
ally terminates the update of the flow F (s,t) in all the vertices
of the graph.

D. Centrality computation

In the previous section, we described how the computation
of a single flow is performed in DUCKWEED. This section
describes how DUCKWEED combines the results coming from
the computation of multiple flows to incrementally compute
the CFBTW for the nodes of the graph.

When the computation of a generic flow F (s,t) is completed
(as described in Section IV-C2), vertex i uses Equation 3 to
compute I(s,t)

i for the F (s,t). Vertex i then updates its current-
flow betweenness bi using I

(s,t)
i and Equation 5. Note that

the source s and target t do not consider I(s,t)
s and I(s,t)

t for
their betweenness calculation. Since we provide an estimation
of the CFBTW by computing only a subset of the all possible
flows, this assumption is required to avoid biased computation
of centrality, which would occur if considering any value for
I

(s,t)
s and I(s,t)

t , for example equals to 0 or 1 as suggested in
[6]. Figure 1 (on the right) show the current flowing on each
node of the graph calculated with Equation 3 when the flow
is completed at step t+ n. Considering node B we obtained:

IB =
1

2
(|0.323− 0.617|+ |0.323− 0.949|+ |0.323 + 0.736|)

= 0.99
(8)

This value will be used by node B in Equation 5 to incremen-
tally calculate its current flow betweenness value.

The precision of the CFBTW increases as more and more
flows are updated and completed. To detect when the results
of the CFBTW are precise enough, and hence to terminate the
generation of new flows, it is possible to define a parameter
k to stop the generation of new flows when all the nodes
have already processed k flows. Otherwise it is possible to
introduce more sophisticated techniques to let each node de-
cide autonomously when stopping flow generation and hence
terminate the computation. Note that the termination of the
computation of the CFBTW is different from the termination
of a single flow. In the former case we refer to the termination
of the whole system (i.e. no more flows are created), in the
latter (described in Section IV-C3) we refer to the termination
of a single flow.

In order to equip each node with the possibility of locally
terminating the computation of the CFBTW, we adapt the
centralized mechanism introduced by Brandes et al. [4] to
a distribute context. This method exploits the Hoeffdings
bound [31] to identify a value of k such that the error εBTW on
the betweenness values bv on each node is sufficiently small.
Hoeffding’s bound gives:

P

(∣∣∣∣∣c∗k
k∑
i=1

X(i)
v − bv

∣∣∣∣∣ ≥ εBTW
)
≤ 2

n2l (9)

when choosing:

k = l · d(c∗/εBTW)2 logne (10)

for arbitrary l, where c∗ = n/(n − 2) and X
(1)
v , ..., X

(k)
v

are independent random variables that return F (s,t), for a
pair s 6= t, picked uniformly at random. We adapted the
above calculation to be suited for the distributed environment
of DUCKWEED. To pick a flow uniformly at random we
exploited a random peer sampling layer and each node, for
instance using the random flow creation heuristic, has the
same probability to generate a flow with a node taken from
the random peer sampling. Also, each node has its estimation
ki about the number of flows already computed in the system
equals to the number of flows that i has computed. The size of
the network n can be estimated in the same way explained in
Section IV-C1. Given the above, each node can autonomously
calculate k and stop the flow generation when ki > k.

V. EXPERIMENTAL EVALUATION

The aim of the evaluation is to verify the effectiveness of
DUCKWEED both in terms of the quality of results, and on its
applicability on large graphs. The evaluation of DUCKWEED
was conducted by means of simulations. We implemented
DUCKWEED, and all the associated protocols, on the discrete-
event PeerSim [32] simulator.

A. Evaluation of Correlation

To conduct an evaluation of DUCKWEED we measured the
correlation of the results provided by our approach with the

ones given by the other algorithms. To measure the correlation,
we use the KENDALL TAU metrics, which is a measure of rank
correlation. It measures the degree of similarity between two
distinct rankings by assigning a value in the range [−1, 1].
If two rankings have the same values, the coefficient equals
to 1, whereas if the disagreement between the two rankings
is perfect (i.e., one ranking is the reverse of the other) the
coefficient has value −1. For this evaluation we generated 3
graphs of 1000 nodes each, using the Snap library [33] with the
following strategies: preferential attachment (Barabasi-Albert),
random (Erdos-Renyi) and RMAT1 [34]. These graphs are
purposely small to ease the computation of exact values for
all the centrality measures.

1) Validation against NetworkX: In this first set of ex-
periments we validate the precision of the current flow be-
tweenness centrality provided by DUCKWEED against the one
provided by NetworkX [35]. NetworkX is a popular tool to
analyse network structure and it provides an implementation
of the algorithm presented by Brandes et al. [4] to calculate
the current flow betweenness centrality. We run NetworkX on
the three aforementioned graphs to compute the exact CFBTW.
Then, we run DUCKWEED on the same graphs, computing
all flows and varying the decimal precision of Dε up to five
decimals. We compared the top 100 nodes of NetworkX and
DUCKWEED with the KENDALL TAU metrics. It is worth to
point out that in the context of all our experiments we refer
to the top X nodes to indicate the X nodes that received the
highest value of centrality according to a given measure.

Results are presented in Figure 2. It is evident that in all
datasets the correlation increases when increasing the decimal
precision. This is an expected result because increasing the
precision on each flow leads to a more precise calculation of
the current flow betweenness. The value of centrality, com-
puted by DUCKWEED on the preferential attachment graph,
exhibits the best correlation in all the configurations. In fact,
even with a single-decimal precision the value of its correlation
with NetworkX is around 0.9. Conversely, the random graph
exhibits a correlation of 0.7 when adopting single-decimal
precision, however the correlation value rapidly increases
when using additional decimal precision. It is worth to notice
that with a precision of 4 decimals, all the datasets exhibits a
correlation value greater than 0.9, suggesting that DUCKWEED
correctly approximates the current flow betweenness centrality
also with a reasonable value of Dε.

2) DUCKWEED complete vs approximated: This test com-
pares the complete version of DUCKWEED (i.e. the one in
which all flows are computed), against the approximated
version, in which only a portion of all the flows is computed.
The results presented in Figure 3 show the KENDALL TAU
correlation of the top 100 nodes between the complete and
the approximated version of DUCKWEED, when the amount
of flows executed varies.

The experimental results show that the correlation increases
quite fast becoming closer to the complete one, even using a

1RMAT graphs were generated with parameters (.6, .1, .15, .15)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5

K
en

da
ll

T
au

 C
or

re
la

tio
n

Duckweed Decimal Precision

PREF ATTACH
RANDOM

RMAT

Fig. 2: Kendall Tau Correlation with NetworkX

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000 1200 1400

K
en

da
ll

T
au

 C
or

re
la

tio
n

Flow

PREF ATTACH
RANDOM

RMAT

Fig. 3: Kendall Tau Correlation: complete vs approximated

number of flows that represents less than the 1% of all the
possible flows. We obtained the best results when using the
preferential attachment graph. As can be observed, it starts
from 0.6 and reach 0.9 in step 200, whereas both the RMAT
and random graphs achieve a correlation value not greater than
0.7.

B. Convergence Time

In Section V-A1 we evaluated the results of DUCKWEED
when varying the Dε parameter. We found that the results
achieved using an increased value of Dε have an increased
correlation with the exact values of current flow betweenness
centrality. Here, we evaluate the impact of Dε on the time
spent to terminate a flow. We measure this time in terms of
STEP, i.e., the number of times DUCKWEED is executed on
each node.

Figure 4 presents the number of STEP required by adopting
different values of Dε for the analysis of the very same graph.
The results presented are computed as an average of 1000
flow computations. As expected, an higher decimal precision
corresponds to an higher amount of STEP. In particular, a

 0

 5

 10

 15

 20

 25

 1 2 3 4 5

S
te

p

Duckweed Decimal Precision

PREF ATTACH
RANDOM

RMAT

Fig. 4: Convergence Time

decimal precision greater than 3 leads to a sensible increase
of STEP, that reach its maximum of 22 STEP with a decimal
precision of 5 on the RMAT graph. Anyhow, it is worth to
notice that with a decimal precision below 3 the amount of
STEP is always less than 5 for any given datasets. This is quite
interesting, in fact with a decimal precision of 3, DUCKWEED
already achieves good correlation values with the exact values.

C. Centrality on Large Graphs

The evaluation of certain centrality measures in large graphs
is an issue by itself. In fact the exact computation of some
centrality measures can be very costly, from a computational
viewpoint, when the size of the graph is large. A common
strategy to evaluate the centrality of a given set of nodes,
without having to compute exact results, is to remove the
whole set from the graph and measure the amount of connected
components (CCs) characterising the graph after this process
[7], [36].

Clearly, an higher number of CCs corresponds to a better
identification of nodes responsible to maintain the network
connectivity. In the following we refer to this metrics as CC
NUMBER.

Using this metrics we conducted two different sets of exper-
iments. The first testbed is aimed at evaluating, in terms of CC
NUMBER, the quality of the results produced by DUCKWEED
with respect to the result obtained by the DEGREE centrality.
Previous results for CFBTW approximation provided result for
graphs in the order of 103 nodes in Brandes et al. [37] and
3 × 103 in Avrachenkov et al. [7]. We chose the DEGREE
centrality as the baseline since it is the least expensive in
terms of computational complexity among popular centrality
measures, and therefore suitable to be computed on large
graphs.

For our evaluation we considered three graphs taken from
the SNAP [38] website: (i) the RoadPA graph represents the
roads network of Pennsylvania; (ii) the DBLP graph provides a
co-authorship network of paper indexed by the DBLP service;
(iii) the Google graph represents web pages and hyperlinks

released in 2002 by Google.
From these graphs we extracted each largest connected

component, and we use these as the input for our evaluation.
The connected components were extracted using [39], and
measure respectively 1, 087, 562, 317, 080 and 855, 802 nodes.

The results we achieved show that DUCKWEED is able to
provide good results, i.e., identifies nodes with a centrality
index sensibly higher than the one provided by DEGREE
centrality.

The second experiment evaluates the approximation pro-
vided by DUCKWEED during the simulation. More in details,
Figure 6 shows the amount of CC NUMBER that would be
introduced if the top 100, 50 and 25 rankings were removed
by the graph. The timespan considered focuses on the initial
500 STEP of the simulation. As expected, the top 25 nodes
require less STEP to be identified with respect to the top
100. In fact, let us consider, for instance, Figure 6a. It can
be noticed how after 50 STEP the top 25 curve identifies 20
CC NUMBER, a value that increases only marginally in the
remaining of the simulation. Conversely, the top 100 curve
rapidly increases till STEP 200 and then remains stable right
to the end. In conclusion, the results presented in Figure 6a
show that DUCKWEED is able to achieve a good level of
approximation in a reasonable number of STEP (around 200).
The results reported in figures 6b and 6c, are slightly different
but still confirm the ability of DUCKWEED in quickly finding
nodes that if removed lead to the creation of a consistent
amount of connected component.

D. Message Volume

In order to evaluate the cost of DUCKWEED, in terms
of messages required for its execution, we measured the
amount of messages as the total number of flows sent during
a single STEP, and we called this metrics MSG VOLUME.
To conduct our evaluation we considered three types of
graph, each one generated according the following mod-
els: preferential attachment, random and RMAT. For each
type we generated five graphs each having a different size:
{10000, 20000, 40000, 80000, 160000}. We run the experi-
ments by varying the number of concurrent flows, per step,
in the following set: {10, 20, 40}.

As can be noticed in Figure 7a the value of MSG VOLUME
for the RMAT graph increases linearly with the graph size
(the results obtained using preferential attachment and random
graphs are not included because are equivalent to the RMAT
ones). This is easy to see in Figure 7a, in fact with 10
concurrent flows the MSG VOLUME value equals to 2.5× 106

for a graph size of 80000 nodes and about 5×106 for a graph
of 160000 nodes. Similarly, an increment on the number of
concurrent flows leads to a linear increment of MSG VOLUME.

Figure 7b presents the results achieved using different types
of graphs and fixing the number of concurrent flows to
10. We observed that all the graphs behave a similar way
when increasing the network size. However, the preferential
attachment graph requires the largest MSG VOLUME, whereas
RMAT the smallest. This is essentially due to the total amount

of edges in each graph: the greatest in preferential attachment
and the lowest in RMAT.

Figure 7c shows the MSG VOLUME per node, with the
number of concurrent flows fixed to 10. The results we
achieved show that the network size affects only marginally
the MSG VOLUME per node. In particular, with the preferential
attachment and RMAT the MSG VOLUME remains constant,
whereas it slightly increases with random graph. These results
suggest that DUCKWEED scales in terms on MSG VOLUME
with the size of the graph, which makes it suitable for
computation on large graphs.

E. Flow Creation Strategy

This last set of experiments is aimed at evaluating the impact
of the flow creation strategies (random, adaptive, partitioner,
described in Section IV-C1) on the identification of central
nodes. To this end we executed a simulation of 5000 flows with
all the graph types, but fixing the graph size to 160000 nodes.
The CC NUMBER achieved by DUCKWEED were sampled every
10 completed flows by removing the top-{25,50,100} most
central nodes. From the sample, we computed the minimum,
maximum, average and standard deviation. An overview of
the results for the Random graph are reported in Table I (the
results with the other graph types are omitted as the results
were almost the same).

Even if Brandes et al. [37] observed that from a theoretical
viewpoint a random selection of the flow performs better than
more complex heuristics, from the results we achieved it can
be observed that the adaptive strategy provides the best result
on average. However, some aspects are worth to notice: (i)
the random strategy considered by Brandes et al. exploits
a “perfect” uniform random, rather, the random nodes in
DUCKWEED are taken from the random peer sampling service,
that only from a theoretical point of view converges to an
uniform random; (ii) from a temporal analysis of the results,
we observed that the differences among the strategies is more
evident during the initial steps of the simulation when the
number of completed flows is still low. Instead, at the end of
the simulation all the strategies achieved similar results.

Overall, these considerations suggest that in a distributed
context where an uniform random distribution is not easily
available, a more elaborate strategies can have an impact on
the computation of the CFBTW, especially if does not require
to compute complex global measures of the graph. Instead,
the considerations of Brandes et al. still hold in a controlled
environment that provides an uniform random.

A last consideration can be made about the partitioner
strategy, which appears to be, on average, the least performer.
In this case the introduction of a gossip layer to compute the
distributed partitioning of a graph appears to be not justified,
according to the poor performances of the strategy.

VI. CONCLUSION

In this paper we presented DUCKWEED, a distributed ap-
proach to calculate the current flow betweenness centrality. To
the best of our knowledge, our approach is the first solution

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

C
C

 N
um

be
r

Nodes Removed

DUCKWEED
DEGREE

(a) Road PA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100

C
C

 N
um

be
r

Nodes Removed

DUCKWEED
DEGREE

(b) Google

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

C
C

 N
um

be
r

Nodes Removed

DUCKWEED
DEGREE

(c) Dblp

Fig. 5: CC Number (large number is better)

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

C
C

 N
um

be
r

Step

TOP 100
TOP 50
TOP 25

(a) Road PA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500

C
C

 N
um

be
r

Step

TOP 100
TOP 50
TOP 25

(b) Google

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100 200 300 400 500

C
C

 N
um

be
r

Step

TOP 100
TOP 50
TOP 25

(c) Dblp

Fig. 6: CC Number: Graph Cut While Increasing Duckweed approximation

0x100

2x106

4x106

6x106

8x106

10x106

12x106

14x106

16x106

18x106

20x106

20000 40000 80000 160000

M
es

sa
ge

 V
ol

um
e

Graph Size

10 FLOW CONCURRENT
20 FLOW CONCURRENT
40 FLOW CONCURRENT

(a) Increasing graph size

0x100

2x106

4x106

6x106

8x106

10x106

12x106

14x106

20000 40000 80000 160000

M
es

sa
ge

 V
ol

um
e

Graph Size

PREF ATTACH
RANDOM

RMAT

(b) Different Graph Model

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

20000 40000 80000 160000

M
es

sa
ge

 V
ol

um
e

Graph Size

PREF ATTACH
RANDOM

RMAT

(c) Volume Per Node

Fig. 7: Message Volume Evaluation

able to compute a centrality index, based on global properties
of the graph, in a fully distribute way.

Each node relies only on local information, i.e. on informa-
tion stored by itself or by its neighbours, to adaptively estimate
the value of its current flow betweenness. We empirically
prove that DUCKWEED is able to provide a good approxi-
mation of the CFBTW and correctly identifies central nodes
which guarantee network connectivity. DUCKWEED delivers
good results also for large graphs over millions of nodes, while
previous approaches considered only thousands of nodes, and
is characterized by a good scalability.

As a future work, we plan to conduct further studies to

analyse the behaviour of our approach for dynamic graphs.
Furthermore, we believe our approach is able to return good
results also in the context of the cluster based data intensive
computation. In this case, we plan to investigate whether
Kirchhoff’s circuit simplification rules can be exploited to
detect block of nodes which can be reduced to a single node,
with the aim of optimizing the overall computation.

REFERENCES

[1] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, pp. 35–41, 1977.

[2] L. Freeman, S. Borgatti, and D. White, “Centrality in valued graphs:
A measure of betweenness based on network flow,” Social Networks,
vol. 13, no. 2, 1991.

TOP 25 TOP 50 TOP 100
MIN MAX AVG SDEV MIN MAX AVG SDEV MIN MAX AVG SDEV

RANDOM 2 11 8.49 2.25 4 12 10.28 1.79 8 18 13.46 2.3
ADAPTIVE 3 14 9.45 2.74 4 17 11.63 2.51 11 21 15.54 2.68
PARTITIONER 3 11 7.48 1.37 5 14 9.24 1.79 7 19 12.28 3

TABLE I: Comparison of the flow creation strategies for the Random graph (in terms of CCs created)

[3] M. Newman, “A measure of betweeness centrality based on random
walks,” Social Networks, vol. 27, 2005.

[4] U. Brandes and D. Fleischer, “Centrality measures based on current
flow,” in Lecture Notes in Computer Science, vol. 3404, 2005, pp. 533–
544.

[5] M. E. Newman, “A measure of betweenness centrality based on random
walks,” Social networks, vol. 27, no. 1, pp. 39–54, 2005.

[6] E. Bozzo and M. Franceschet, “Approximations of the generalized
inverse of the graph laplacian matrix,” Internet Mathematics, vol. 8,
no. 4, pp. 456–481, 2012.

[7] K. Avrachenkov, N. Litvak, V. Medyanikov, and M. Sokol, “Alpha
current flow betweenness centrality,” in Algorithms and Models for the
Web Graph. Springer, 2013, pp. 106–117.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, 2010, pp. 10–10.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[10] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, pp. 163–177, 2001.

[11] M. Riondato and E. M. Kornaropoulos, “Fast approximation of be-
tweenness centrality through sampling,” in Proceedings of the 7th ACM
Conference on Web Search and Data Mining, WSDM, vol. 14, 2013.

[12] W. Hoeffding, “Probabilty inequalities for sums of bounded random
variales,” Journal of american Statistical Association, vol. 58, pp. 13–
30, 1963.

[13] E. Bozzo and M. Franceschet, “Resistance distance, closeness, and
betweenness,” Social Networks, vol. 35, no. 3, pp. 460–469, 2013.

[14] K. A. Lehmann and M. Kaufmann, “Decentralized algorithms for
evaluating centrality in complex networks,” Department of Computer
Science, Michigan State University, Wilhelm-Schickard-Institut, Tech.
Rep. WSI-2003-10, October 2003.

[15] K. Wehmuth and A. Ziviani, “DACCER: distributed assessment of the
closeness centrality ranking in complex networks,” Computer Networks,
vol. 57, no. 13, pp. 2536–2548, 2013.

[16] A. Kermarrec, E. L. Merrer, B. Sericola, and G. Trédan, “Second
order centrality: Distributed assessment of nodes criticity in complex
networks,” Computer Communications, vol. 34, no. 5, pp. 619–628,
2011.

[17] P. G. Doyle and J. L. Snell, “Random walks and electric networks,”
2006.

[18] R. Baraglia, P. Dazzi, M. Mordacchini, and L. Ricci, “A peer-to-peer
recommender system for self-emerging user communities based on
gossip overlays,” Journal of Computer and System Sciences, vol. 79,
no. 2, pp. 291–308, 2013.

[19] R. Baraglia, P. Dazzi, M. Mordacchini, L. Ricci, and L. Alessi, “Group:
A gossip based building community protocol,” in Smart Spaces and Next
Generation Wired/Wireless Networking. Springer Berlin Heidelberg,
2011, pp. 496–507.

[20] P. Dazzi, P. Felber, L. Leonini, M. Mordacchini, R. Perego, M. Rajman,
and É. Rivière, “Peer-to-peer clustering of web-browsing users,” Proc.
LSDS-IR, pp. 71–78, 2009.

[21] M. Mordacchini, P. Dazzi, G. Tolomei, R. Baraglia, F. Silvestri, and
S. Orlando, “Challenges in designing an interest-based distributed ag-
gregation of users in p2p systems,” in Ultra Modern Telecommunications
& Workshops, 2009. ICUMT’09. International Conference on. IEEE,
2009, pp. 1–8.

[22] E. Carlini, M. Coppola, P. Dazzi, D. Laforenza, S. Martinelli, and
L. Ricci, “Service and resource discovery supports over p2p overlays,”
in Ultra Modern Telecommunications & Workshops, 2009. ICUMT’09.
International Conference on. IEEE, 2009, pp. 1–8.

[23] R. Baraglia, P. Dazzi, B. Guidi, and L. Ricci, “Godel: Delaunay overlays
in p2p networks via gossip,” in IEEE 12th International Conference on
Peer-to-Peer Computing (P2P). IEEE, 2012, pp. 1–12.

[24] E. Carlini, L. Ricci, and M. Coppola, “Reducing server load in mmog via
p2p gossip,” in Proceedings of the 11th Annual Workshop on Network
and Systems Support for Games. IEEE Press, 2012, p. 11.

[25] E. Carlini, P. Dazzi, A. Esposito, A. Lulli, and L. Ricci, “Balanced graph
partitioning with apache spark,” in Euro-Par 2014: Parallel Processing
Workshops. Springer, 2014, pp. 129–140.

[26] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. Van Steen, “Gossip-based peer sampling,” ACM Transactions on
Computer Systems (TOCS), vol. 25, no. 3, p. 8, 2007.

[27] S. Voulgaris, D. Gavidia, and M. Van Steen, “Cyclon: Inexpensive
membership management for unstructured p2p overlays,” Journal of
Network and Systems Management, vol. 13, no. 2, pp. 197–217, 2005.

[28] L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and A. Ganesh, “Peer
counting and sampling in overlay networks: random walk methods,” in
Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing. ACM, 2006, pp. 123–132.

[29] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Transactions on Computer Systems
(TOCS), vol. 23, no. 3, pp. 219–252, 2005.

[30] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and
S. Haridi, “Ja-be-ja: A distributed algorithm for balanced graph par-
titioning,” in Self-Adaptive and Self-Organizing Systems (SASO), 2013
IEEE 7th International Conference on. IEEE, 2013, pp. 51–60.

[31] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, vol. 58, no.
301, pp. 13–30, 1963.

[32] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,”
in Peer-to-Peer Computing, 2009, Ninth International Conference on.
IEEE, 2009, pp. 99–100.

[33] J. Leskovec and R. Sosič, “Snap.py: SNAP for Python, a general purpose
network analysis and graph mining tool in Python,” http://snap.stanford.
edu/snappy, Jun. 2014.

[34] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining.” in SDM, vol. 4. SIAM, 2004, pp. 442–446.

[35] D. A. Schult and P. Swart, “Exploring network structure, dynamics, and
function using networkx,” in Proceedings of the 7th Python in Science
Conferences (SciPy 2008), vol. 2008, 2008, pp. 11–16.

[36] U. Demšar, O. Špatenková, and K. Virrantaus, “Identifying critical
locations in a spatial network with graph theory,” Transactions in GIS,
vol. 12, no. 1, pp. 61–82, 2008.

[37] U. Brandes and C. Pich, “Centrality estimation in large networks,”
International Journal of Bifurcation and Chaos, vol. 17, no. 07, pp.
2303–2318, 2007.

[38] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[39] A. Lulli, L. Ricci, E. Carlini, P. Dazzi, and C. Lucchese, “Cracker:
Crumbling large graphs into connected components,” in 20th IEEE
Symposium on Computers and Communication (ISCC) (ISCC2015),
Larnaca, Cyprus, Jul. 2015.

