Spatial behavioral responses to the spread of an infectious disease can
suppress Turing and Turing—Hopf patterning of the discase
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Abstract

Reducing risky behaviour and/or avoiding sites where the risk of infection is perceived as higher
- i.e. social and spatial distancing - represent the two main forms of non—pharmaceutical behavioral
responses of humans to the threats of infectious diseases. Here we investigate, within a reaction-
diffusion setting, a family of new models for an endemic SIR (susceptible-infective-removed) infectious
disease for which no vaccine is available and individuals’ responses to the infection threat are entirely
based on changes in either their social behavior or in their mobility behavior, that is avoiding to visit
sites with a high infection prevalence.
First, we derive general conditions for the onset of Turing patterns for a general class of spatially
inhomogeneous SIR models with a prevalence-dependent contact rate and constant recruitment. Then,
we characterize our main family of models where the behavioural response also includes a spatial
component, and show the condition bringing to the mitigation, or even the destruction, of Turing
patterns. The same conditions allows the transition from Turing-Hopf spatiotemporal
patterns to pure Hopf temporal patterns. The same is also done for two SIS models. These
results bring an inference of interest: the reduction of spatial clustering typically observed during the
course of an epidemics might be related to a combination of agents’ spontaneous social and spatial
distancing.
To validate our theoretical results and further explore other spatio—temporal impact of
the proposed spatial behavioral responses, numerical simulations of a SIR model have
been performed.
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1 Introduction

The effects of spatial mobility and spatial diffusion on the spread of infectious diseases have been in-
vestigated in many specific models described by different mathematical tools ranging from simple de-
terministic, spatially implicit, ODE models, to spatially explicit reaction-diffusion PDE models, up to
fully stochastic models, ranging from network up to IMB models, and a wide body of results is now
available [1-6]. Though some recent models are highly sophisticated and include a huge amount of struc-
tural details on the underlying population, as is the case e.g., of the highly realistic IBM models used
for pandemic prediction [7-9] they suffer the general shortcoming of most mathematical epidemiology
literature, namely the fact they treat humans as passive actors keeping the same behavior regardless
of the state of the epidemics in the population considered. This fact, possibly already untrue in the
pre-scientific period, is fully denied in the current days by a large body of evidence [10,11]. Important
contemporary example are constituted by the recent Ebola epidemics [12—14] and H1N1
flu epidemics [15-17] . However, analysis of Spanish flu data have shown that even one
century ago the spread and control of that infamous pandemics were deeply influenced by
important effects related to spontaneous and forced changes of behaviour [18-20]. This
was shown both for Europe [18,19] and in USA [20]. This dramatic change of perspective in the
relation between humans and infectious diseases has led, during the last 15 years, to the development
of the behavioral epidemiology of infectious diseases (BE), a new branch of mathematical epidemiology
(see [10,11] and references therein) using a range of multidisciplinary tools to investigate how humans
can adapt their behavior to respond to the threats brought by infections.

However, given that a large part of the behavioural epidemiology research carried out so far has been
based on simple models, little work has been done yet to incorporate the agents’ behavioral within spa-
tially structured epidemiological models, especially with regard to the area of epidemic models within
reaction-diffusion PDE settings. In this area the few attempts to include - mostly indirectly - behavioral
components, have followed two main separate directions.

The first one is represented by those efforts including nonlinear cross diffusion terms initiated by
[21, 22], where susceptible individuals are assumed to be repelled away by the gradient of the function
representing the (spatial) prevalence of infective individuals. This area has seen a number of more recent
contributions [23-26].

The second direction is represented by those works considering nonlinear incidence
rates [27-33], and which extended to reaction-diffusion settings the pioneering paper by
Capasso and Serio [34] and of later researches [35-37]. The works [27—-33] focused on the
search for the conditions leading to the onset of Turing bifurcations [2,3,5,38] and of Turing-
Hopf instabilities [39]. Turing bifurcations are not only a hallmark of system complexity
but represent in epidemiology the ability of infectious diseases to spatially clustering [27].
Turing—Hopf instability [5], being characterized by both a temporal and a spatial symmetry
breaking instead represent a higher degree of complexity, often an evidence of spatiotem-
poral chaos [40]. And chaotic time—series are very frequent in epidemiology of childhood
infectious diseases [41]. Very importantly, beside classical models where continous or regu-
lar lattice spaces were considered, many recent epidemiological works have been conducted
on network—based structures [11,42—46].

Though the adoption of nonlinear contact rates is indeed a main avenue to incorporate the agents’
behaviour responses (see [10,11] and references therein) in no one of previous paper explicit mention of
behavioural hypotheses was actually made.

In this work we introduce, within a reaction-diffusion setting, a family of new models for an endemic



SIR (susceptible-infective-removed) infectious disease for which no vaccine (or pharmaceutical treatment
either) is available and individuals’ responses to the infection threat are entirely based on changes in
either their social behavior, or in their mobility behavior, as in [21,22]. The underlying intuition is that
- once awareness of the infection has been acquired - aware individuals respond to the infection through
by increasing their "‘social distancing”’ i.e., reducing their contact and transmission rates, and/or by
increasing "‘spatial distancing”’ i.e., avoiding to visit those spatial sites where the local infective preva-
lence is perceived as relatively larger, as in [21,22]. Arguably, combinations of "‘social”’ and "‘spatial”’
distancing have represented the two key forms of humans’ behavioral responses to the threats of infectious
diseases in mankind history before the advent of pharmaceutical interventions such as vaccination and
treatments, as reviewed in [11,47]. Important historical examples are the social and spatial
distancing enacted during various plague epidemics, as documented in [48] and in funda-
mental literary works [49]. For example, the Decameron by Giovanni Boccaccio, the Diary
by Samuel Pepys and various works by William Shakespeare. Moreover, in the absence of phar-
maceutical interventions, both forms of distancing remain two main options even in modern societies as
documented e.g., by the dramatic decline of travels to Far-East during the SARS crisis - as an example of
avoidance of movements towards area perceived as ”‘high risk”’ [50]. Similar large—scale phenomena
were also evidenced , although to a lesser exent, during the HIN1 flu epidemics [51].
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In particular our model for behaviour is ”*simple”’ i.e., we do not include a specific layer for modeling
the acquisition of awareness. Therefore, our formulation of social behaviour change is implicit i.e, it
is based on a phenomenological relation between the contact (or transmission rate) and the infective
prevalence.

Our analysis focuses, from both the biophysics and the public health viewpoints, on a specific problem of
epidemiological relevance: the suppression of Turing patterns induced by the spatial behavioural reaction
modelled by (2). To achieve this aim, we analyse the proposed family of models in a hierarchical manner.
First, we analyse a general spatially homogenous SIR model with a general prevalence-dependent contact
rate. Then we re-analyse the model by including the spatial structure under the classical hypotheses on
diffusion and derive general conditions for the onset of Turing pattern around the endemic equilibrium.
Finally, we include in our family of models also a spatial component in the behavioural reponse, and
provide the conditions ensuring the mitigation, or even the destruction, of Turing patterns. Indeed,
a further motivation for the present work based on a general family of models was that all the above
cited contributions using nonlinear infection rates [27-33] exhibited - despite their specificity - many
similarities, especially in the derivation of the onset of Turing patterns.

The manuscript is organised as follows. Section 2 provides a review of the literature on epidemiological
models in reaction diffusion settings including behavioral effects. Section 3 presents and analyses a family
of models for an endemic infectious diseases with spontaneous agents’ behaviour responses in the absence
of spatial structure. The analysis of the basic spatial version of the model is reported in section four. In
section five the full model also including spatial distancing is reported. Sections six and seven extend the
analysis to the case of an SIS (susceptible-infective-susceptible) infection. In section 8 we numerically
investigate a SIR model in order to verify and fine—tune our theoretical results and obtain
further results. Concluding remarks follow.



2 Spatial epidemiological models with behavioral responses: a review
of the literature

Milner and coworkers introduced [21,22] a modification of the spatial version of Kermack and McKendrick
SIR model [1] where they added to the "‘classical”’ term repelling individuals (irrespective of their
epidemiological state) away from crowded areas, a truly behavioral term repelling susceptible individuals
from sites characterized by large prevalence of infective individuals. Consequently they modeled the
spatial flux of susceptible individuals including the gradient of infectives [21,22]

Js = —aSVN —cSVI (1)

where a > 0 and ¢ > 0.
Here we assume that only the second phenomenon is enacted as spatial component of behavioural response
of the healthy subjects to which one has to add the diffusive flow of the susceptible:

Jg = —cSVI — DgVS (2)

Given a compartmental population model u fluxes of the type

n
Ji=— Z Dl(g)VuJ- — U Z Di jVu;. )
j=1 JFi

where D; ; > 0 and Dg?j) > (, first introduced in mathematical epidemiology by Capasso and coworkers
[52] are termed in the literature non linear cross—diffusion fluxes.

At the best of our knowledge the current mathematical epidemiology literature has only focused on
problems of existence, uniqueness and positiveness of the solution of the resulting dynamical systems.
For example, in [23] Bendhamane and Langlais provided existence results for nonnegative solutions of a
special SIR epidemic model characterised by nonlinear cross—diffusion for all the three epidemic classes
and by absence of births (but presence of death). However, no justification was given for the presence of
nonlinear cross diffusion.

The following nonlinear cross diffusion flux in the susceptible:

Jg = —a(S,1)VS —c(S,I)VI

(2) was introduced first by Berres and Ruiz—Baier in [24] (see also [25,26]), who also gave an implicit
behavioural description of the flux, in the context of a specific SI model. They investigated two specific
cases: ¢(S,I) = ¢y > 0 (i.e. classical linar cross-diffusion) and ¢(S,I) = coSI(c; —S — I)4 with ¢; > 0.
The focus of their investigation was on defining new numerical methods and, from the modeling view-
point, on the cross-diffusion driven onset of spatial patterns.

Finally, it is important to stress that in ecology and eco—epidemiology recently were pro-
posed models where an opposite behavioural effect is included: a population (for example
of predators or of male animals) that follows a second population (for example of preys
or female animals) [53—-55]. This would correspond, in the simple framework of our model
to the case of ¢ < 0. By adopting (with abuse of meaning) a terminology of theoretical
cellular biology [56] our model describe a chemorepulsion-like phenomenon, whereas mod-
els [53-55] are chemotaxis-like model. Two opposite phenomena. Moreover, in our model
the chemorepulsion—like behaviour is due to reduce the contagion of the disease, whereas
in [53-55] the chemotaxis—like behaviour is due to disease—unrelated bio—phenomena.
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In the forthcoming sections we propose a general family of models combining nonlinear cross diffusion
- mimicking a behaviour-related reduced mobility of at risk individuals, with an appropriate functional
specification of the infection incidence, mimicking social-distancing - to represent the overall behavioral
response to the infection threat in a situation where no vaccination or treatments are available.

3 A general family of SIR models for behaviour change: the space-
homogeneous case

Our general formulation considers an SIR-type infection which is endemic in a stationary population and
for which neither prevention through vaccination nor pharmaceutical control measures are available. To
make our presentation as smooth as possible we depart from the space-homogeneous case in the absence
of any behavioural responses.

3.1 General SIR models for behaviour change: the space-homogeneous case without
behavioural response

Let S, I, R, denoted the numbers of individuals who at time ¢ are susceptible, infectious, and recovered
respectively. Our formulation reads as follows:

%5* =( — S« — Cu(Sx, L) (4)
d
EI* = C(Si, I.) — (v + p) I, (5)
d
ER* =vl, — uR, (6)

where v > 0 is the (constant) recovery rate, p > 0 is the (constant) mortality rate, ¢ > 0 the (constant)
recruitment rate, and finally C,(Sy, I,) > 0 is the overall infection rate, also termed the infection incidence
rate.

The overall population N = 5 + I + R obeys

d
N =(—uN
7 C—p

In what follows we assume that the the population has achieved its steady state

]Vss:£
1

and normalize the state variables and the infection rate as follows
1

(S,1,R) = (Sk, L, Ry)
1
C(S,I) = (NssS, N.;SI).
NSS
Given that R =1 — Sg¢ — Iss we can disregard the R variable obtaining the system:
d
S5 = p(1-8) = C(8,1) (7)
d
SI=C(S.1) (v + )l (8)



As regards the (normalized) infection rate C(S, I'), we assume it is a continuous function with the following
properties: i) no flux from the susceptible to infectious exists in absence of infectious (no epidemics) or
of susceptible (theoretical removal by quarantine or vaccination of all the healthy population)

C(9,0) = C(0,S5) =0;
ii)the larger is the infectious prevalence the larger is the infection rate
01C(S,1I) > 0;
ii)the larger is S the larger is the infection rate

9sC(S, 1) > 0.

3.2 General SIR models for behaviour change: the space-homogeneous case with
behaviour response

To include the behavioral component we next suppose that the population is able to enact measures to
reduce the risk to acquire the infection. In the practice individuals can achieve this by reducing their
social contact rate (i.e., the average number of social contacts per unit of time) and/or by reducing the
transmission probability per single social contact. In our general formulation, which does not specify
these parameters in an explicit manner, the risk reduction will be represented by a suitable continuous
and decreasing function of prevalence ¢(I) multiplying the incidence rate. The transmission model has
to be modified as follows:

&5 = (1 - 8) ~ o(NC(S, 1) (9)
L1 =o(N0(s.1) ~ v+ )l (10)

where the function ¢(I), 0leqp(I)leql is such that: i) no risk reduction is observed at very low prevalence
levels:

$(0) =1

ii)the function is decreasing:
(1) < 0.

Henceforward we will call the incidence rate in absence of behavioural reponse, C(S, I), the baseline, or
normalincidence rate (NIR), while we we will call the incidence rate

U(S, 1) = ¢(I)C(S, )

the behavioral incidence rate (BIR).

Note that the introduction of the behavioural response impacts on infection transmission because the
sign of d;Wis no more determined a priori. This happens in situations where I is sufficiently large so that
the decrease of ¢ is able to compensate the increase of C' thus giving 0;¥ < 0.

Model (9)-(10) always admits a disease free equilibrium DFE = (1,0). Setting

(S,I):(l—fb,y)



with 0 < x << 1 and 0 < y << 1 and writing
Y(1—z,y)~ ay”
the equation for I at the DFE reads:

Y =ay’ — (p+v)y,

implying that for p < 1 then the DFE is not stable, for p > 1 then the DFE is always stable. Note that
for p = 1 the condition for the LAS of the DFE is

a
At v

<1.

which allows to give the parameter a/u + v the interpretation of basic reproduction number (BRN) of
the infection considered, allowed by the fact that in this case parameter a represents the growth rate of
incidence per unit time in the situation where the population is essentially wholly susceptible. From the
differential inequality:

%: WS, I) — (v + )l < U1 —1,1) — (v + )1,

it follows that if for I > 0
V1l-0L1)<(v+wpl

then the DFE is Globally stable.
As regards the existence of endemic equilibria EE = (Se, I.) > (0,0), from (S + I)" = 0 it follows that

S=1-(1+p)l,
where p = (v/u) >> 1. As a consequence, I’ = 0 implies that:
V1-014+pl,1)=w+pnl (12)

Equation (12) is generic, and it can have none, one or more than one (typically two) positive solutions.
In other words, the system can have none, one or multiple endemic equilibria.
The Jacobian matrix J at an endemic equilibrium is such that

Jii = —p— 0s¥(Se, 1)
Jig = —0rY(Se, I.)
J21 = aS\II(SevIe)

J22 = 61@(867[8) - (,U + V)

In the following, for the sake of notational simplicty we will write dsW and dgW instead of, respectively,
05U (Se, Ic) and O;¥(Se, I¢).
From the characteristic polynomial

A2 = (i1 + Jo2)A + Ji1Jas — JiaJon
the standard conditions for the local stability are: i) —(J11 + Jog) > 0, i.e.

2u+v+0sV — 0¥ >0 (13)



and Ji1Jo9 — JioJo1 > 0, i.e.
plp+v—0r¥) + (u+v)os¥ >0 (14)

If at an endemic equilibrium point £ £ the previous conditions are not fulfilled, then the EE is unstable.
The global behaviour of the system can be quite complex, and needs to consider specific examples of
U(S,I). In other words we ought to renounce to work at level of the entire family of models to move
to the study of specific subcases. There is nonetheless one important case where the analysis remains
fully general which is the case where the F'E is unique and the DFE is unstable. In this case Yakubovich
theorem [57] implies that the solutions of the system will be oscillating (either periodically or aperiodically:
the type of oscillations depends on the specific model and it cannot be predicted analytically).

Since we want both to keep our analysis at level of meta-models and to focus on spatial patterning, in
this work we will not proceed further in the investigation of specific subcases.

4 The spatially structured case with behaviour change and Turing
patterns

In this section we will consider the baseline spatial version of the model of the previous section where
the agents’ behavioral responses do not involve their mobility patterns i.e., individuals keep the same
mobility regardless of their epidemiological status. The model then reads as follows:

0,5 = DgAS + p(1— S) — W(S, I (15)
Ol = DyAT+U(S, T) — (v + p)l (16)
Onl|oq = 0nSlag =0 (17)

Many complex phenomena can of course arise, but here we are mainly interested to the onset of Turing
patterning around a spatially homogeneous locally stable endemic equilibrium EE. By linearizing spatio—
temporally around the endemic equilibrium, and applying the Fourier’s transform one gets the following
spatio—temporal jacobian matrix [3]

Jsr(k) = J(EE) + Diag(—Dgk*, —Drk?)
whose characteristic polynomial reads
M+ ay (k)X + ao(k) =0

where
a1(k) = (Dg + Dp)k?* — (Ji1 + Ja2) > 0

ao(k) = DgDrk* — (D1 Jy1 + DgJ)k? 4 (Ji1Jog — JioJa1)

Thus, since (due to the postulated local stability of the endemic equilibrium) it holds a;(k) > 0 and
ap(0) > 0, then the condition to have spatial frequencies that can destabilize EE are the following [3,27]

DiJiy+ DgJag >0 (18)

(DrJii + DsJaz)? > 4DsDr(J11J2a — Ji2J21) (19)

It is easy to show that conditions (18)-(18) can be summarized into the following constraint:

DyJyy + DsJaa > 2v/DgDray(0) (20)



Since the r.h.s. of (20) automatically implies the LAS condition (14), otherwise one would have an
imaginary number, it follows that (20) must only be complemented by (13).

Despite the fact we are considering a family of models, the above conditions provide interpretable and
useful information. For example by rewriting (20) as follows:

Ds (0r% — (n+v)) > Di(p+ 9sV) + 2/ DgDjag(0) (21)

we obtain two results: i) if 0;0 < (u + v) then no Turing patterns can occur; ii) since from (13)
(JQQ < —JH), it holds that

OV — (u+v) < p+ 05V = 05V — (u+v) = (u+ ds¥)(1 — F?)

then one can rewrite (21) in the following form:

D
Dg > 1_%2 +ad (22)

i.e. the Turing pattern can only occur for diffusion coefficients of susceptible individuals that are larger
than the diffusion coefficients of the Infectious, which is what we obviously expect in normal conditions.
By resorting to specific subcases of function ¥(S,I) one can study the ensuing specific type of patterns
by the method of the amplitude equation [3,58].

5 Spatial distancing and its impact on spatial patterning

Model (15)-(16), although including the individuals’ behavioural response - i.e., what we nowadays term
"*social-distancing”’ - in the presence of spatial movements, is incomplete as it lacks a spatial component
in the behavioral response, what we previously termed ”‘spatial distancing”’. We therefore now amend
model (15)-(16) by adding to the spatial flow 9 of susceptible subjects a component that goes in direction
opposite to the gradient of the spatial density of infectious individuals. This yields:

¢ =—DVS— ASVI,

where A > 0. This modeling of spatial behavioural response is remindful of the phenomenon of chemore-
pulsion, which is the opposite of chemotaxis. The resulting model reads:

048 = DsAS + div(ASVI) + pu(1 — S) — ¥(S, 1) (23)
Ol = DIAT +U(S, 1) — (v+p)l (24)
Ond o = OnSloa =0 (25)

After linearizing around a space-homogenous stable but spatially—patterned endemic state, and applying
the Fourier transform, we obtain the following spatio-temporal jacobian matrix:

o Ji — Dst J19 — Ak’z

Tor = Jo1 Joo — Drk? (26)

where A = ASpp. The characteristic polynomial associated to J S is

A2+ by (k)X + bo(k) = 0



