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Abstract—Fuzzy decision trees (FDTs) have shown to be an
effective solution in the framework of fuzzy classification. The
approaches proposed so far to FDT learning, however, have
generally neglected time and space requirements. In this paper,
we propose a distributed FDT learning scheme shaped according
to the MapReduce programming model for generating both
binary and multi-way FDTs from big data. The scheme relies
on a novel distributed fuzzy discretizer that generates a strong
fuzzy partition for each continuous attribute based on fuzzy
information entropy. The fuzzy partitions are therefore used
as input to the FDT learning algorithm, which employs fuzzy
information gain for selecting the attributes at the decision
nodes. We have implemented the FDT learning scheme on
the Apache Spark framework. We have used ten real-world
publicly available big datasets for evaluating the behavior of
the scheme along three dimensions: i) performance in terms of
classification accuracy, model complexity and execution time,
ii) scalability varying the number of computing units and iii)
ability to efficiently accommodate an increasing dataset size. We
have demonstrated that the proposed scheme turns out to be
suitable for managing big datasets even with modest commodity
hardware support. Finally, we have used the distributed decision
tree learning algorithm implemented in the MLLib library and
the Chi-FRBCS-BigData algorithm, a MapReduce distributed
fuzzy rule-based classification system, for comparative analysis.

Keywords—Fuzzy Decision Trees, Big Data, Fuzzy Entropy,
Fuzzy Discretizer, Apache Spark, MapReduce, Fuzzy Partitioning

I. INTRODUCTION

Decision trees are widely used classifiers, successfully em-
ployed in many application domains such as security assess-
ment [1], health system [2] and road traffic congestion [3]. The
popularity of decision trees is mainly due to the simplicity of
their learning schema. Further, decision trees are considered
among the most interpretable classifiers [4], [5], that is, they
can explain how an output is inferred from the inputs. Finally,
the tree learning process usually requires only a few parameters
that must be adjusted. A large number of algorithms have been
proposed in the last decades for generating decision trees: most
of them are extensions or improvements of the well-known
ID3 proposed by Quinlan et al. [6] and CART proposed by
Brieman et al. [7]. In a decision tree, each internal (non-leaf)
node denotes a test on an attribute, each branch represents the
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outcome of the test, and each leaf (or terminal) node holds a
class label.

Several works have exploited the possibility of integrating
decision trees with the fuzzy set theory to deal with uncer-
tainty [8], [9], leading to the so-called fuzzy decision trees
(FDTs). Unlike Boolean decision trees, each node in FDTs
is characterized by a fuzzy set rather than a set. Thus, each
instance can activate different branches and reach multiple
leaves. Both Boolean and fuzzy decision trees are generated
by applying a top-down approach that partitions the training
data into homogeneous subsets, that is, subsets of instances
belonging to the same class [10].

Like classical decision trees, FDTs can be categorized into
two main groups, depending on the splitting method used in
generating child nodes from a parent node [11]: binary (or
two-way) split trees and multi-way split trees. Binary split
trees are characterized by recursively partitioning the attribute
space into two subspaces so that each parent node is connected
exactly with two child nodes. On the other hand, multi-way
split trees partition the space into a number of subspaces so
that each parent node generates in general more than two
child nodes. Since a tree with multi-way splits can be always
redrawn as a binary tree [12], apparently the use of multi-
way split seems to offer no advantage. We have to consider,
however, that binary split implies that an attribute can be used
several times in the same path from the root to a leaf. Thus, a
binary split tree is generally deeper and sometimes harder to
interpret than a multi-way split tree [13], [14]. Further, in some
domain [13], multi-way splits seem to lead to more accurate
trees but, since multi-way splits tend to fragment the training
data very quickly [12], they generally need larger data size in
order to work effectively.

Typically, FDT learning algorithms require that a fuzzy
partition has been already defined upon each continuous
attribute. For this reason, continuous attributes are usually
discretized by optimizing purposely-defined indexes [15], [16].
Discretization can drastically affect the accuracy of classifiers
[17], [18], [19] and therefore should be realized with great
care. In [17], authors performed an interesting analysis by
investigating how different discretization approaches influence
the accuracy and the complexity (in terms of number of nodes)
of the generated FDTs: they employed several well-known
fuzzy partitioning methods and different approaches for, given
a Boolean partition generated by well-known discretization
algorithms [18] [19], defining different types of membership
functions. The experimental results reported on 111 different
combinations highlight that seven of them outperform the
others in both accuracy and number of nodes.

FDTs have been mainly used in the literature for classifying
small datasets. Thus, FDT learning approaches have focused
on increasing classification accuracy, often neglecting time
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and space requirements, by adopting several heavy tasks such
as pruning steps, genetic algorithms, and computation of the
optimal split among all points at each node [20] [21] [22] [23].
Thus, these approaches are not generally suitable for dealing
with a huge amount of data. A possible simple solution for
applying these approaches would be to select only a subset
of data objects by applying some downsampling technique.
However, these techniques may ignore some useful knowledge,
making FDT learning approaches purposely designed for man-
aging the overall dataset more desirable and effective. In our
context, this means explicitly addressing Big Data.

Big Data is a term which identifies datasets so large and
complex that traditional data processing approaches are inade-
quate. Big Data requires specific technologies to support semi-
structured or unstructured data and scale out with commodity
hardware in parallel to cope with ever-growing data volumes.
To address these challenges several solutions have been pro-
posed in the last years [24], such as (i) cloud computing, an
infrastructure layer for big data systems to meet requirements
on cost-effectiveness, elasticity, and ability to scale up/out; (ii)
distributed file systems and NoSQL databases, for persistent
storage and management of massive scheme-free datasets; (iii)
MapReduce [25] and Pregel [26], two programming models
proposed by Google for simplifying the distribution of the
computation flow across large-scale clusters of machines; (iv)
cluster computing frameworks, powerful system-level solu-
tions, like Apache Hadoop [27], [28] and Apache Spark [29],
[30], for distributed data storage and processing, system and
failure management, and efficient network bandwidth and disk
usage.

Most of the studies recently proposed in the literature for
mining big data combine the MapReduce model with the
Apache Hadoop and Apache Spark cluster computing frame-
works. With regard to classification problems, some recent
works have proposed several distributed MapReduce versions
of classical algorithms, such as SVM [31], [32], prototype
reduction [33], kNN [34], associative classifiers [35], [36],
boosting [37], decision trees [38] [39] [40], naive Bayes
classifiers and neural networks [41], investigating performance
in terms of speedup [41]. Although with the increase of the
number and size of big data, researchers are continuously
investigating new algorithms, taking into account not only
the accuracy of the classifiers, but also the scalability of the
proposed approaches, only few works have integrated fuzzy
set theory [36], [42], [43].

In this paper, we propose a distributed fuzzy discretizer
and a distributed FDT (DFDT) learning scheme upon the
MapReduce programming model for managing big data. To the
best of our knowledge, in the context of big data, no distributed
discretizer for generating fuzzy partitions and no DFDT have
been proposed in the literature. Our novel discretizer generates
a strong fuzzy partition for each continuous attribute by using
a purposely adapted distributed version of the well-known
method proposed by Fayyad and Irani in [44]. The fuzzy
partitions computed by the discretizer are used as input to
the DFDT learning algorithm. We adopt and compare two
different versions of the learning algorithm based on binary
and multi-way splits, respectively. Both the versions employ

the information gain computed in terms of fuzzy entropy for
selecting the attribute to be adopted at each decision node.

We have implemented both the discretizer and the learning
scheme on Apache Spark1. We have used 10 real-world big
datasets characterized by a different number of instances (up to
11 millions) and class labels (from 2 to 50). We have compared
the results obtained by our approach with those achieved
by two state-of-the-art distributed classifiers, namely the dis-
tributed decision tree (DDT) learning algorithm implemented
in the MLLib on Spark and the Chi-FRBCS-BigData algorithm
[45], a MapReduce distributed fuzzy rule-based classification
system, with respect to accuracy, complexity, and scalability.

The paper is organized as follows. Section II discusses
some related works in the framework of distributed decision
trees and distributed fuzzy classifiers.Section III provides some
preliminaries on FDTs, the MapReduce programming model
and the Apache Spark framework. Section IV first introduces
the fuzzy discretizer and the FDT learning algorithm and
then discusses their distributed implementation, detailing each
single MapReduce job. Section V presents and discusses the
experimental results comparing the proposed approach with
the state-of-the-art DDT in terms of accuracy, complexity,
and scalability. Finally, in Section VI we draw some final
conclusion.

II. RELATED WORK

A number of works have discussed on how a decision tree
can be generated efficiently from very large datasets. The
various techniques proposed in the literature can be roughly
grouped into two categories, which are characterized by per-
forming a pre-sorting of the data or by adopting approximate
representations of the data such as samples and/or histograms
[46]. While pre-sorting techniques are more accurate, they
cannot accommodate very large datasets or streaming data
[46].

One of the oldest approaches in the first category is SLIQ,
proposed in [47]. SLIQ reduces decision tree learning time
without loss in accuracy by exploiting a pre-sorting technique
in the tree-growth phase. This technique is integrated with a
breadth-first tree growing strategy to enable classification of
disk-resident datasets. SLIQ also uses a tree-pruning algorithm,
based on the Minimum Description Length principle, which
is inexpensive and results in compact and accurate trees.
However, SLIQ requires that some data per record reside in
memory all the time. Since the size of this in-memory data
structure grows in direct proportion to the number of input
records, this limits the amount of data, which can be classified
by SLIQ. SPRINT, proposed in [48], removes these memory
restrictions. Further, it has also been designed to be easily
parallelized, achieving good scalability.

As regards the second category, the BOAT algorithm pro-
posed in [49] exploits a novel optimistic approach to tree
construction, which generates an initial tree using a small
subset of the data and refines it to arrive at the final tree.
The authors guarantee that any difference with respect to the

1The code is publicly available on GitHub at the following link:
http://github.com/BigDataMiningUnipi/FuzzyDecisionTreeSpark
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real tree (i.e., the tree that would have been constructed by
examining all the data in a traditional way) is detected and
corrected. The several levels of the tree are built in only
two scans over the training dataset. In [50] a decision tree
construction algorithm called SPIES is proposed. SPIES limits
the number of possible split points by taking a sample from
the data set, partitions the values into intervals and computes
the class histograms for candidate split points. This reduces
the space complexity of the algorithm and the communication
cost between processors.

The different ways to parallelize decision tree learning can
be grouped into 4 main categories [46], [51]: i) horizontal,
or data-based, parallelism partitions the data so that different
processors work on different examples; ii) vertical, or feature-
based, parallelism enables different processors to consider
different attributes; iii) task, or tree node-based, parallelism
distributes the tree nodes to the slave processors and iv) hybrid
parallelism combines horizontal or vertical parallelism in the
first stages of tree construction with task parallelism towards
the end. In [51], the authors show how to parallelize two
different decision tree learning algorithms, namely C4.5 and
the univariate linear discriminant tree proposed in [52], ex-
ploiting horizontal, vertical and task parallelism. Experimental
results show that performance of the parallelization highly
depends on the dataset, although node-based parallelization
shows generally good speed-ups. In [46], the authors exploit
an approximate representation and horizontal parallelism. The
core of the algorithm is an on-line method for building his-
tograms from streaming data at the processors. The histograms
are compressed representations of the data, which can be
transmitted to a master processor with low communication
complexity. The master processor integrates the information
received from all processors and determines which terminal
nodes to split and how. A short review on decision tree learning
algorithms proposed to handle very large datasets has been
presented in [53]. Following the previous works on distributed
decision trees, the FDT learning algorithms proposed in this
paper exploit both horizontal and task parallelism.

In the last years, some decision tree learning algorithms
have been proposed for managing big data by adopting the
MapReduce paradigm on the top of Apache Hadoop [38] [39]
[40]. MapReduce is based on functional programming and
divides the computational flow into two main phases, namely
Map and Reduce, which communicate by 〈key, value〉 pairs.
The MapReduce implementation of a distributed decision
tree proposed in [40] employs, for instance, four map-reduce
stages. The first stage scans the dataset for creating the initial
data structures employed in the other three stages. These stages
are executed iteratively for, respectively, (i) selecting the best
attribute, (ii) updating the statistics for the new nodes and (iii)
growing the tree. The experimental results discussed in the
paper are limited only to the scalability analysis by varying
the number of nodes and the dataset size (up to 3 millions of
instances). The effectiveness of the decision trees for managing
big data has been demonstrated in real application domains
such as stock futures prediction [54] and clinical decision
support [55]. Other works [56] [57] [58] exploit decision trees
for generating ensemble of classifiers such as random forest.

To deal with big data, the proposed algorithms first build
concurrently multiple trees from different chunks of data and
then group all of them for generating the forest. However, the
generation of each tree is not distributed on the cluster but is
performed sequentially on a single chunk of the entire dataset.

To the best of our knowledge, only a few classifiers proposed
for managing big data employ fuzzy sets. In [42], [45], the
authors describe Chi-FRBCS-BigData, a fuzzy rule-based clas-
sification system based on the Chi et al.’s approach [59]. This
approach has been modified to deal with big data by employing
two map-reduce stages. The first stage builds the model from
chunks of the training set: a group of fuzzy rules is generated
from each chunk. Then, these groups are fused together in the
reduce phase. The second stage estimates the class using the
model learned in the first stage. The authors have investigated
different approaches for fusing the fuzzy rules by developing
two different versions, named Chi-FRBCS-BigData-Max and
Chi-FRBCS-BigData-Ave. Moreover, an improved version,
called Chi-FRBCS-BigDataCS, has been proposed in [43] for
handling imbalanced big datasets.

Since, to the best of our knowledge, there do not exist works
that have discussed FDT for cloud computing environments,
taking into account accuracy, complexity and scalability, we
think that this paper can represent a significant contribution for
future researches on how to handle big datasets using FDTs.

III. BACKGROUND

In this section, we first introduce the FDT and the necessary
notations used in the paper and then we describe both the
MapReduce programming model and the Apache Spark cluster
computing framework. This framework is exploited in our
DFDT.

A. Fuzzy Decision Tree
Instance classification consists of assigning a class Cm from

a predefined set C = {C1, . . . , CM} of M classes to an
unlabeled instance. Each instance can be described by both
numerical and categorical attributes. Let X = {X1, . . . , XF }
be the set of attributes. In case of numerical attributes, Xf is
defined on a universe Uf ⊂ <. In case of categorical attributes,
Xf is defined on a set Lf = {Lf,1, . . . , Lf,Tf

} of categorical
values. An FDT is a directed acyclic graph, where each internal
(non-leaf) node denotes a test on an attribute, each branch
represents the outcome of the test, and each leaf (or terminal)
node holds one or more class labels. The topmost node is the
root node. In general, each leaf node is labeled with one or
more classes Cm with an associated weight wm: weight wm
determines the strength of class Cm in the leaf node.

Let TR = {(x1, y1), (x2, y2), ..., (xN , yN )} be the training
set, where, for each instance (xi, yi), with i = 1, ..., N , yi ∈ C
and xi,f ∈ Uf in case of continuous attribute and xi,f ∈ Lf
in case of categorical attribute, with f = 1, ..., F . FDTs
are generated in a top-down way by performing recursive
partitions of the attribute space.

Algorithm 1 shows the scheme of a generic FDT learning
process. The SelectAttribute procedure selects the attribute
used in the decision node and determines the splits generated
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from the values of this attribute. The selection of the attribute
is carried out by using appropriate metrics, which measure
the difference between the levels of homogeneity of the class
labels in the parent node and in the child nodes generated
by the splits. The commonly used metrics are the fuzzy
information gain [17], fuzzy Gini index [21], minimal ambi-
guity of a possibility distribution [15], maximum classification
importance of attribute contributing to its consequent [60] and
normalized fuzzy Kolmogorov-Smirnov discrimination quality
measure [61]. In this paper, we adopt the fuzzy information
gain, which will be defined in Section IV-B. The splitting
method adopted in the SelectAttribute procedure determines
the attribute to be selected and also the number of child nodes.
In the literature, both multi-way and binary splits are used. We
have implemented both the approaches and evaluated their pros
and cons.

Once the tree has been generated, a given unlabeled instance
x̂ is assigned to a class Cm ∈ C by following the activation of
nodes from the root to one or more leaves. In classical decision
trees, each node represents a crisp set and each leaf is labeled
with a unique class label. It follows that x̂ activates a unique
path and is assigned to a unique class. In FDT, each node
represents a fuzzy subset. Thus, x̂ can activate multiple paths in
the tree, reaching more than one leaf with different strengths of
activation, named matching degrees. Given a current node CN ,
the matching degree mdCN (x̂) of x̂ with CN is calculated as:

mdCN (x̂) = TN(µCN (x̂f ),mdPN (x̂)) (1)

where TN is a T-norm, µCN (x̂f ) is the membership degree of
x̂f to the current node CN , which considers Xf as splitting
attribute, and mdPN (x̂) is the matching degree of x̂ with the
parent node PN .

The association degree ADLN
m (x̂) of x̂ with the class Cm

at leaf node LN is calculated as:

ADLN
m (x̂) = mdLN (x̂) · wLNm (2)

where mdLN (x̂) is the matching degree of x̂ with LN and
wLNm is the class weight associated with Cm at leaf node LN .
In the literature, different definitions have been proposed for
weight wLNm [62]. Further, it has been proved that the use of
class weights can increase the performance of fuzzy classifiers
[63]. To determine the output class label of the unlabeled
instance x̂, two different approaches are often adopted in the
literature:
• maximum matching: the class corresponds to the maxi-

mum association degree calculated for the instance;
• weighed vote: the class corresponds to the maximum

total strength of vote. The total strength of vote for each
class is computed by summing all the activation degrees
in each leaf for the class. If no leaf has been reached,
the instance x̂ is classified as unknown.

B. MapReduce and Apache Spark
In 2004, Google proposed the MapReduce programming

framework [25] for distributing the computation flow across
large-scale clusters of machines, taking care of communica-
tion, network bandwidth, disk usage and possible failures.

Algorithm 1 Pseudo code of a generic FDT learning process.
Require: training set TR, set X of attributes, splitting method

SplitMet, stopping method StopMet
1: procedure FDTLEARNING(in: TR, X , SplitMet,
StopMet)

2: root← create a new node
3: tree ← TREEGROWING(root, TR, X , SplitMet,
StopMet)

4: return tree
5: end procedure
6: procedure TREEGROWING(in: node, S, X , SplitMet,
StopMet)

7: if STOPMET(node) then
8: node← mark node as leaf
9: else

10: splits← SELECTATTRIBUTE(X , S, SplitMet)
11: for each splitz in splits do
12: Sz ← get the set of instances from S deter-

mined by splitz
13: childz ← create one node by using splitz and

Sz
14: node ← connect the node with TREEGROW-

ING(childz , Sz , Xz , SplitMet, StopMet)
15: end for
16: end if
17: return node
18: end procedure

At high level, the framework, which is based on func-
tional programming, divides the computational flow into two
main phases, namely Map and Reduce, organized around
〈key, value〉 pairs.

When the MapReduce execution environment runs a user
program, the framework automatically partitions the data into
a set of independent chunks, that can be processed in parallel
by different machines. Each machine can host several Map
and Reduce tasks. In the Map phase, each Map task is fed by
one chunk of data and, for each 〈key, value〉 pair as input, it
generates a list of intermediate 〈key, value〉 pairs as output.
In the Reduce phase, all the intermediate results are grouped
together according to a key-partitioning scheme, so that each
Reduce task processes a list of values associated with a specific
key as input for generating a new list of values as output. In
general, developers are able to implement parallel algorithms
that can be executed across the cluster by simply defining Map
and Reduce functions.

In the last years, several open source projects have been
developed to deal with big data [64]. So far, the most pop-
ular execution environment for the MapReduce programming
model is Apache Hadoop [27] [28], that allows the execution
of custom applications for processing big datasets stored in its
distributed file system, called Hadoop Distributed FileSystem
(HDFS). However, due to a poor inter-communication capa-
bility and inadequacy for in-memory computation [29] [65],
Hadoop is not suitable for specific types of applications such
as the ones that need iterative or online computations. Re-
cently, different projects have been implemented to overcome
these drawbacks. Apache Spark is certainly the most popular
among these projects, thanks to its flexibility and efficiency.
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Indeed, it allows implementing several distributed models like
MapReduce and Pregel [26]. Further, it has proved to perform
faster than Hadoop [29], especially for iterative and online
processing.

The main abstraction provided by Spark [29] is the resilient
distributed dataset (RDD), which is a fault-tolerant collection
of elements, partitioned across the machines of the cluster, that
can be processed in parallel. At high level, a Spark application
runs as an independent set of processes on the top of the RDDs
and consists of a driver program and a number of executors.
The driver program, hosted in the master machine, is in charge
to both run the user’s main function and distribute operations
on the cluster by sending several units of work, called tasks, to
the executors. Each executor, hosted in a slave machine, runs
tasks in parallel and keeps data in memory or disk storage
across them.

Regarding data mining tools for big data, the MLlib library
[66] is the most popular machine learning library running
on top of Spark. It implements a wide range of machine
learning and data mining algorithms for Extract, Transform,
Load (ETL) operations, attribute selection, clustering, recom-
mendation systems, frequent pattern mining, classification and
regression problems.

IV. THE PROPOSED DISTRIBUTED FUZZY DECISION
TREE FOR BIG DATA

In this section, we introduce the DFDT learning algorithm
for handling Big Data. We aim to propose an approach that is
easy to implement, is computationally light and guarantees to
achieve accuracy values and execution times comparable with
other distributed classifiers. We discuss two distinct versions,
which differ from each other on the nature of the splitting
mechanism.

The workflow of the DFDT learning process consists of the
two following main steps:

1) Fuzzy Partitioning: a strong fuzzy partition is deter-
mined on each continuous attribute by using a novel
discretizer based on fuzzy entropy;

2) FDT Learning: an FDT is induced from data by using
either a multi-way or a binary splitting mechanism
based on the concept of fuzzy information gain.

In the following, we first discuss the two steps in detail
and then we describe the adopted distributed implementation
for handling Big Data, by specifying how the execution can be
parallelized and distributed among the Computing Units (CUs)
available on the cluster.

A. Fuzzy Partitioning
Partitioning of continuous attributes is a crucial aspect in the

generation of FDTs and therefore should be performed care-
fully. An interesting study proposed in [17] has investigated
111 different approaches for generating fuzzy partitions and
has analyzed how these approaches can influence the accuracy
and the complexity (in terms of number of nodes) of the
generated FDTs. Among them, Fuzzy Partitioning based on
Fuzzy Entropy (FPFE) has proved to be very effective. In this

section, we propose an FPFE for generating strong triangular
fuzzy partitions when handling big data.

The proposed FPFE is a recursive supervised method, which
generates candidate fuzzy partitions and evaluates these parti-
tions employing the fuzzy entropy. The algorithm selects the
candidate fuzzy partition that minimizes the fuzzy entropy and
then splits the continuous attribute domain into two subsets.
Similar to the Entropy Minimization method proposed by
Fayyad and Irani in [44], the process is repeated for each gen-
erated subset until a stopping condition is met. The candidate
fuzzy partitions are generated for each value of the attribute in
the training set: the values are sorted in increasing order. Since
both the sorting process and the evaluation of this huge amount
of candidate fuzzy partitions are computationally very heavy
when dealing with big data, we will discuss in Section IV-C
an approximated version of the fuzzy partitioning approach,
which exploits equi-frequency bins.

In the following, we first recall some definition and then we
describe the method.

Let TRf = [x1,f , ..., xN,f ]T be the projection of the training
set TR along attribute Xf . We assume that the values xi,f
are sorted in increasing order. Let If be an interval defined
on the universe of attribute Xf . Let lf and uf be the lower
and upper bounds of If . Let Sf be the set of values xi,f ∈
TRf contained in If . Let us assume that a fuzzy partition
PIf = {Bf,1, . . . , Bf,KPIf

}, where KPIf
is the number of

fuzzy sets in PIf , is defined on If . Let Sf,1, . . . , Sf,KPIf

be the subsets of points in Sf , contained in the supports of
Bf,1, . . . , Bf,KPIf

, respectively. The weighted fuzzy entropy
WFEnt(PIf , If ) of partition PIf is defined as:

WFEnt(PIf ; If ) =
∑KPIf

j=1
|Bf,j |
|Sf | FEnt(Bf,j) (3)

where |Bf,j | is the fuzzy cardinality of fuzzy set Bf,j , |Sf | is
the cardinality of set Sf and FEnt(Bf,j) is the fuzzy entropy
of Bf,j .

We recall that the fuzzy cardinality of a fuzzy set Bf,j is
computed as

|Bf,j | =
∑Nf,j

i=1 µBf,j
(xi,f ) (4)

where Nf,j is the number of points in Sf,j and µBf,j
(xi,f )

is the membership degree of xi to fuzzy set Bf,j . The fuzzy
entropy of Bf,j is defined as

FEnt(Bf,j) =
∑M
m=1−

|Bf,j,Cm |
|Bf,j | log2(

|Bf,j,Cm |
|Bf,j | ) (5)

where fuzzy cardinality |Bf,j,Cm
| is computed on the set of

instances in Sf,j with class label Cm.
At the beginning, If coincides with the universe of Xf and

Sf = TRf . For each value xi,f between lf and uf (at the
beginning of the partitioning procedure, i = 1, . . . , N ), we
define a strong fuzzy partition Pxi,f

on If by using three
triangular fuzzy sets, namely Bf,1, Bf,2 and Bf,3, as shown in
Fig. 1. The cores of Bf,1, Bf,2 and Bf,3 coincide with lf , xi,f
and uf , respectively. Let Sf,1, Sf,2 and Sf,3 be the subsets of
points in Sf , contained in the supports of Bf,1, Bf,2 and Bf,3,
respectively.
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For each partition Pxi,f
induced by xi,f , we compute the

weighted fuzzy entropy WFEnt(Pxi,f
, If ) using Eq. 3. The

optimal value x0
i,f , which minimizes WFEnt(Pxi,f

, If ) over
all possible candidate fuzzy partitions, is then selected. This
value identifies the fuzzy partition Px0

i,f
= {B0

f,1, B
0
f,2, B

0
f,3}.

Let S0
f,1, S0

f,2 and S0
f,3 be the subsets of points in Sf ,

contained in the supports of the three fuzzy sets, respectively.
Then, we apply recursively the procedure for determining the
optimal strong fuzzy partition to the intervals I1

f = [lf , x
0
i,f ]

and I2
f = (x0

i,f , uf ] identified by x0
i,f , by considering Sf =

S0
f,1 and Sf = S0

f,3, respectively.
As an example, let us consider If = I1

f . We have an
initial partition P 0

If
on I1

f , which consists of the fuzzy set
B̂0
f,1 = B0

f,1 and of fuzzy set B̂0
f,2, which coincides from

lf to x0
i,f with fuzzy set B0

f,2. For each value xi,f in I1
f ,

we define a strong fuzzy partition Pxi,f
on If = I1

f and
compute the corresponding fuzzy entropy WFEnt(Pxi,f

, If )
as explained above. Let x1

i,f be the value, which minimizes
WFEnt(Pxi,f

, If ). This value identifies the optimal fuzzy
partition Px1

i,f
= {B1

f,1, B
1
f,2, B

1
f,3}. Let S1

f,1, S1
f,2 and S1

f,3

be the subsets of points in Sf , contained in the supports of the
three fuzzy sets, respectively.

The partitioning process continues until the following stop-
ping condition proposed in [17] has been met:

FGain(x1
i,f ; If ) <

log2(|Sf |−1)
|Sf | +

∆(x1
i,f ;If )

|Sf | (6)

where

FGain(x1
i,f ; If ) = WFEnt(P 0

If
, If )−WFEnt(Px1

i,f
; If ) (7)

∆(x1
i,f ; If ) = log2(3kf − 2)−

[∑2
t=1 kf · FEnt(B̂0

f,t)−
∑3
j=1 k

1
f,j · FEnt(B1

f,j)
]

(8)

and kf and k1
f,j are the numbers of class labels represented in

the sets Sf and S1
f,j , respectively.

If no initial partition exists on If (this occurs when If
coincides with the universe of Xf and Sf = TRf ), we
assume that only a fuzzy set B̂0

f is defined on If with mem-
bership function equal to 1 for the overall interval If . Thus,
WFEnt(P 0

If
, If ) = FEnt(B̂0

f ). In this case, if the stopping
condition is satisfied and therefore no partition is possible for
attribute Xf , then Xf is discarded and not employed in the
FDT learning.
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Fig. 1. An example of fuzzy partition defined on x3,f .

Fig. 2 shows an example of application of the recursive
procedure to the fuzzy partition shown in Fig. 1. We can
observe that the partitioning of both I1

f and I2
f generates three

fuzzy sets in both [lf , x
0
i,f ] and in (x0

i,f , uf ]. Actually, the
two fuzzy sets, which have the core in x0

i,f , are fused for

generating a unique fuzzy set. Thus, the resulting partition
is a strong partition with five fuzzy sets. This fusion can be
applied at each level of the recursion. The final result is a
strong fuzzy partition Pf = {Af,1, ..., Af,Tf

} on Uf , where
Af,j , with j = 1, ..., Tf , is the jth triangular fuzzy set. 1
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Fig. 2. An example of application of the recursive procedure to the fuzzy
partition shown in Fig. 1 (x0i,f = x3,f ).

The procedure adopted for the fuzzy partition generation
is simple, although computationally quite heavy. Further, it
generates strong fuzzy partitions, which are widely assumed to
have a high interpretability [67]. Finally, it allows performing
an attribute selection because it may lead to the elimination of
attributes, speeding up the FDT learning process.

B. FDT Learning

In this section, we introduce the FDT learning algorithm.
We describe two distinct approaches, which differ from each
other for the splitting mechanism used in the decision nodes.
We adopt the FDT learning scheme described in Algorithm
1. The SelectAttribute procedure selects the attribute, which
maximizes the fuzzy information gain. Then Z child nodes are
created. The number of child nodes as well as the computation
of the fuzzy information gain depend on the employed split-
ting method. We have experimented two different methods:
binary and multi-way splitting. The two methods generate
Fuzzy Binary Decision Trees (FBDTs) and Fuzzy Multi-way
Decision Trees (FMDTs), respectively. Both the trees use fuzzy
linguistic terms to specify recursively branching condition
of nodes until one of the following termination conditions
(StopMethod in Algorithm 1) is met:

1) the node contains only instances of the same class;
2) the node contains a number of instances lower than a

fixed threshold λ;
3) the tree has reached a maximum fixed depth β;
4) the value of the fuzzy information gain is lower than a

fixed threshold ε. In our experiments, we set ε = 10−6.
In case of multi-way splitting, for each parent node PN ,

FMDT generates as many child nodes CNj as the number Tf
of linguistic values defined on the splitting attribute Xf : each
child node CNj contains only the instances belonging to the
support of the fuzzy set Af,j corresponding to the linguistic
value. Let Sf be the set of instances in the parent node and Sf,j
be the set of instances in child node CNj . Set Sf,j contains
the instances that belong to the support of Af,j . Each node
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CNj is characterized by a fuzzy set Gj , whose cardinality is
defined as

|Gj | =
∑Nj

i=1 µGj
(xi) =

∑Nj

i=1 TN(µAf,j
(xf,i), µG(xi)) (9)

where Nj is the number of instances (crisp cardinality) in set
Sf,j , µG(xi) is the membership degree of instance xi to parent
node PN (for the root of the decision tree, µG(xi) = 1) and
the operator TN is a T-norm.

In the SelectAttribute procedure in Algorithm 1, we adopt
the fuzzy information gain FGain, computed for a generic
attribute Xf as:

FGain(Pf ; IG) = FEnt(G)−WFEnt(Pf ; IG) (10)

where IG is the support of fuzzy set G, and FEnt(G)
and WFEnt(Pf ; IG) are computed as in Eq. 5 and Eq. 3,
respectively.

In case of categorical attributes, we split the parent node into
a number of child nodes CNj equal to the number of possible
values for the attribute. Each node CNj is characterized by a
fuzzy set Gj , whose cardinality is

|Gj | =
∑Nj

i=1 µGj (xi) =
∑Nj

i=1 TN(1, µG(xi)) (11)

Note that an attribute can be considered only once in the same
path from the root to the leaf.

Figure 3 illustrates an example of how multi-way splitting is
performed. Let us suppose that a fuzzy partition Pf with five
triangular fuzzy sets has been defined on a continuous attribute
Xf . For a given parent node, the method generates exactly five
child nodes, one for each fuzzy set. Let us suppose that, a given
instance, represented as a blue circle in Figure 3, belongs to
Af,1 and Af,2 with membership values equal to 0.3 and 0.7,
respectively. Thus, the instance belongs to only the child nodes
corresponding to Af,1 and Af,2 and contributes to |G1| and
|G2| with TN(0.3, µG) and TN(0.7, µG), respectively.
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Fig. 3. An example of multiple splitting of a continuous attribute with five
triangular fuzzy sets. The blue circle shows an example of how a given instance
contributes to the cardinality computation.

Unlike FMDT, FBDT performs binary splitting at each node.
As shown in Figure 4, the algorithm generates exactly 2
child nodes. To calculate the split with the maximum FGain,
we exploit all possible candidates, by grouping together ad-
jacent fuzzy sets into two disjoint groups Z1 and Z2. The
two subsets G1 and G2 of instances contain the points that
belong to the supports of the fuzzy sets contained in Z1

and Z2, respectively. A fuzzy partition with Tf fuzzy sets
generates Tf − 1 candidates. Starting with Z1 = {Af,1} and
Z2 = {Af,2, ..., Af,Tf

}, we compute the fuzzy information
gain by applying Eq. 10, with Pf = {Z1, Z2} and cardi-
nality |G1| =

∑N1

i=1 TN(µAf,1
(xf,i), µG(xi)) and |G2| =∑N2

i=1 TN(µAf,2
(xf,i) + . . . + µAf,Tf

(xf,i), µG(xi)), where
N1 and N2 are the numbers of instances in the supports

of the fuzzy sets in Z1 and Z2, respectively, and µG(xi) is
the membership degree of instance xi to the parent node.
Iteratively, the algorithm investigates all candidates by moving
the first fuzzy set in Z2 to Z1 and computing the corresponding
FGain, until Z2 = {Af,Tf

}. The pair (Z1,Z2), which obtains
the highest FGain, is used for creating the two child nodes.
The two nodes contain, respectively, the examples that belong
to the support of the fuzzy sets in Z1 and Z2.
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Fig. 4. An example of binary split performed by FBDT on a continuous
attribute partitioned by five triangular fuzzy sets.

In case of categorical attributes, FBDT still performs binary
splits. However, since a categorical attribute with L values
generates 2L−1 − 1 candidates, the computational cost can
become very prohibitive for a large number of values. In
case of binary classification, we can reduce the number of
candidates to L−1 by sorting the categorical values according
to the probability of membership to the positive class. As
proved in [7] and [68], this approach gives the optimal split in
terms of entropy. In case of multiclass classification, we adopt
the heuristic method proposed in [69] to approximate the best
split: the number of candidates is reduced to L− 1 by sorting
the categorical values according to their impurity.

In FBDT, both categorical and continuous attributes can be
considered in several fuzzy decision nodes in the same path
from the root to a leaf. In each node, we apply the same
binary splitting approach described above but restricted only
to the categorical values or fuzzy sets considered in the node.
Figure 4 shows the splitting approach performed by FBDT,
considering the same fuzzy partition used for FMDT. Let us
suppose that, at the root, the attribute Xf is selected. Further,
let us assume that the two child nodes of the root node contain
instances belonging to the supports of Z1

1 = {Af,1, Af,2, Af,3}
and Z1

2 = {Af,4, Af,5}, respectively. If Xf is selected again
in the path starting from Z1, then the two child nodes are
created by considering only the three fuzzy sets in Z1

1 and
the instances contained in [lf,1, uf,3], where lf,1 and uf,3 are
the lower and upper bounds of the supports of Af,1 and Af,3,
respectively. If the highest fuzzy information gain is obtained
by splitting the three fuzzy sets into {Af,1} and {Af,2, Af,3},
then the two child nodes contain the instances belonging to
the intervals [lf,1, uf,1] and [lf,2, uf,3], respectively.

Due to the use of the T-norm, and in particular of the product
employed in our experiments, the binary splitting approach
tends to penalize the cardinality of continuous attributes that
are repeatedly selected along a same path. To limit this effect,
we use a strategy that keeps track of the fuzzy sets, which have
been activated by an instance in the path from the root to the



8

leaves: we consider the membership value to a fuzzy set only
the first time the fuzzy set is met. The subsequent times the
membership value is set to 1 in the computation of the T-norm.
For example, let us suppose that an instance xi belongs to
fuzzy sets Af,1 and Af,2 with membership values 0.3 and 0.7,
respectively, as shown in Figure 4 (see blue circle). When split-
ting G2, the instance contributes to the cardinality computation
of G2

1 and G2
2 with µG2

1
(xi) = TN(µAf,1

(xi,f ), µG2(xi)) and
µG2

2
(xi) = TN((µAf,2

(xi,f )), µG2(xi)), respectively. When
splitting G3, the membership degree µAf,2

(xi,f ) of the in-
stance xi to Af,2 is considered equal to 1 and the instance
contributes to the cardinality computation of the subset G3

1
with µG3

1
(xi) = TN(1, µG3(xi)). On the other hand, the actual

fuzzy membership value µAf,2
(xi,f ) of instance xi to Af,2 has

been already considered in the computation of µG3(xi). Unlike
crisp decision trees, for both FMDT and FBDT, we label each
leaf node LN with all the classes that have at least one example
in the leaf node. Each class Cm has an associated weight wLNm
proportional to the fuzzy cardinality of training instances of
that mth class in the node. More formally, wLNm =

|GCm |
|G| ,

where GCm
is the set of instances in G with class label equal

to Cm.
Both FMDT and FBDT adopt the weighed vote for deciding

the class to be output for the unlabeled instance. For each
class, the vote is computed as sum of the association degrees
determined by any leaf node of the tree for that class, where
the association degree is calculated by Eq. 2 . In case of FBDT,
the fuzzy cardinality used in the computation of the matching
degree is determined by considering the membership value to
a specific fuzzy set only one time, also if the fuzzy set is met
more times in the path from the root to the leaf, as explained
above. Each activated leaf produces a list of class association
degrees, which are summed up to compute the strength of vote
for that class. The unlabeled pattern x̂ is associated with the
class with the highest strength of vote.

C. The Distributed Approach
In Section I we have pointed out that the current imple-

mentations of FDTs are not suitable for managing big data.
In this section we introduce our DFDT learning approach
by describing in detail the distributed implementation of the
two main steps, namely Fuzzy Partitioning and FDT Learn-
ing. We highlight that our approach is based on the Map-
Reduce paradigm and can be easily deployed on several cloud-
computing environments such as Hadoop and Spark.

Let V be the number of chunks used for splitting the training
set and Q the number of CUs available in the cluster. Each
chunk fed only one Map task, while one CU can process
several tasks, both Map and Reduce. Obviously, only Q tasks
can be executed in parallel.

The distributed implementation of the fuzzy partitioning
approach described in Section IV-A is similar to the one we
have proposed in [35]. In particular, the approach described in
Section IV-A is not suitable for dealing with a huge amount of
data because both the sorting of the values and the computation
of the fuzzy information gain for each possible candidate fuzzy
partition are computationally expensive in case of datasets with

millions of instances. To overcome this drawback, we adopt
an approximation of FPFE by limiting the number of possible
candidate partitions to be analyzed. In particular, for each
single chunk of the training set, independently of the others,
we apply the sorting of the values and split the domain of the
continuous attributes into a fixed number L of equi-frequency
bins. Then, we aggregate the lists of the bin boundaries
generated for each chunk and, for each pair of consecutive
bin boundaries, we generate a new bin and compute the
distribution of the classes among the instances belonging to
the bin. Finally, we generate candidate fuzzy partitions for
each bin boundary and exploit the class distribution in each
bin for computing the fuzzy entropy and fuzzy information
gain at each iteration of the algorithm. Obviously, the lower
the number of bins used for splitting the domain of the attribute
is, the coarser the approximation in determining the fuzzy
partition is. As regards the computation of the fuzzy entropy,
we consider each bin bf,l represented by its central value bf,l.
Thus, the cardinality of a fuzzy set Bf,j is computed as:

|Bf,j | =
∑Lf,j

l=1 µBf,j
(bf,l) (12)

where Lf,j is the number of bins in Sf,j and µBf,j
(bf,l) is

the membership degree of the central value bf,l of bin bf,l to
fuzzy set Bf,j . The fuzzy entropy of Bf,j is computed as

FEnt(Bf,j) =
∑M
m=1−

|Bf,j,Cm |
|Bf,j | log2(

|Bf,j,Cm |
|Bf,j | ) (13)

where the fuzzy cardinality |Bf,j,Cm
| is calculated by consid-

ering the distribution of class Cm in each bin contained in the
support of Bf,j .

Figure 5 shows the overall Fuzzy Partitioning process, which
consists of two Map-Reduce steps. The first Map-Reduce step
scans the training set to compute at most Ω = V · (L+ 1) bin
boundaries, where L is equal to the percentage γ of the chunk
size. In our experiments, we set γ = 0.1%. Algorithm 2 details
the pseudo code of the first Map-Reduce step. Each Map-Task,
first, loads the vth chunk of the training set, and then for each
continuous attribute Xf , sorts the values of Xf , and computes
and outputs the bin boundaries of equi-frequency bins, where
each bin contains a number of instances equal to the percentage
γ of the data chunk. Let BBv,f = {b(1)

v,f , ..., b
(L)
v,f } be the

sorted list of bin boundaries for the f th attribute extracted
from the vth chunk. The Map-Task outputs a key-value pair
〈key = f, value = BBv,f 〉, where f is the index of the f th
attribute. Each Reduce-Task is fed by V lists List(BBv,f )
and, for the f th attribute, outputs 〈key = f, value = BBf 〉,
where BBf = {b(1)

f , ..., b
(Ω)
f } with, ∀w ∈ [1, ...,Ω − 1],

b
(w)
f < b

(w+1)
f is the sorted list of the bin boundaries for

attribute Xf . Space and time complexities, for the Map phase,
are O(dVQe · N/V ) and O(dVQe · (F · N · (log(N/V ))/V )),
respectively, and, for the Reduce phase, are O(F · Ω/Q) and
O(F · (Ω · log(Ω))/Q), respectively.

Algorithm 3 details the pseudo code of the second Map-
Reduce step. Each Map-Task, first, loads the vth chunk of
the training set and, for each attribute Xf , initializes a vector
Wv,f of Ω−1 elements. Each element W (r)

v,f corresponds to the
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Fig. 5. The overall distributed Fuzzy Partitioning of the FDT.

Algorithm 2 Distributed Bin Generation.
Require: TR split into V chunkv .

1: procedure MAP-TASK(in: chunkv , γ)
2: for each continuous attribute Xf in X do
3: sort values of Xf
4: BBv,f ← compute boundaries of equi-frequency

bins according to γ
5: output 〈key = f, value = BBv,f 〉
6: end for
7: end procedure
8: procedure REDUCE-TASK(in: f , List(BBv,f ))
9: BBf ← sort elements of List(BBv,f )

10: output 〈key = f, value = BBf 〉
11: end procedure

Algorithm 3 Distributed Fuzzy Sets Generation.
Require: TR split into V chunkv . Matrix BB where the f th

row contains BBf .
1: procedure MAP-TASK(in: chunkv , BB, M )
2: Wv,f ← create F arrays according to BB and M
3: for each instance (xn, yn) in chunkv do
4: for each continuous attribute Xf in X do
5: W

(r)
v,f ← update number of instances of yn

6: end for
7: end for
8: for each continuous attribute Xf in X do
9: output 〈key = f, value = Wv,f 〉

10: end for
11: end procedure
12: procedure REDUCE-TASK(in: f , List(Wv,f ), BBf )
13: Wf ← element-wise addition of List(Wv,f )
14: Pf ← FUZZYPARTITIONING(Wf , Bf )
15: output 〈key = f, value = Pf 〉
16: end procedure

bin (brf , b
(r+1)
f ] and contains a vector of M elements, which

stores, for each of the M classes, the number of instances of
the class belonging to the rth bin in the vth chunk. Then, for
each instance of the chunk, the Map-Task updates Wv,f and
finally outputs a key-value pair 〈key = f, value = Wv,f 〉.
Each Reduce-Task is fed by a list List(Wv,f ) of V vectors.
For each attribute Xf , it first creates a vector Wf of Ω − 1
elements by performing an element-wise addition of all V
vectors Wv,f . Thus, Wf stores the number of instances for
each class in each bin along the overall training set. Then,
the Reduce-Task applies the Fuzzy Partitioning as described
in Section IV-A, where candidate fuzzy partitions are defined
upon bin boundaries and the fuzzy mutual information is
computed according to Wf . Finally, it outputs the key-pair
〈key = f, value = Pf 〉, where Pf is the strong fuzzy partition
defined on the f th attribute. Space and time complexities of the
Map phase are O(dVQe·N/V ) and O(dVQe·(N ·log(Ω)/V )), re-
spectively. For the Reduce phase, space and time complexities
are O(F ·(Ω−1)/Q) and O(F ·(2·max(Tf )−3)·(Ω−1)2)/Q),
respectively, where max(Tf ) is the maximum number Tf of
fuzzy sets generated for an attribute.

The proposed distributed approach can manage a large num-
ber of instances: the bin boundaries allow reducing the number
of candidate fuzzy partitions to be explored. Obviously, the
number of equi-frequency bins is a parameter of the approach,
which affects both the fuzzy partitioning of the continuous
attributes and the results of the FDT. However, this parameter
is not particularly critical. Indeed, we have to consider that
we are managing millions of data. Thus, a difference of a few
instances in determining the best fuzzy partition is generally
negligible in terms of the accuracy achieved by the FDTs.

As regards the DFDT learning, we distribute the com-
putation of the best split for each node across the CUs.
Figure 6 illustrates the overall DFDT learning algorithm, which
executes iteratively a Map-Reduce step. Algorithms 4 and 5
detail the pseudo code of the DFDT learning.

Let H be the number of iterations performed by the
algorithm and h be the index of the hth iteration. Let R
be the list of nodes to be split, initialized with only one
element consisting of the root of the tree. The algorithm
iteratively retrieves a group Rh of Y nodes from R, where
Y = min(size(R),maxY ) is computed according to the
number of nodes in R and a fixed threshold maxY , which
defines the maximum number of nodes processed at most
at each iteration. Finally, it performs a Map-Reduce step for
distributing the growing process of the tree. The vth Map-Task,
first, loads the vth chunk of the training set and then, for each
node NTy in Rh, initializes a vector Dv,y of |D| = ∑

∀f∈F Tf
instances. For each attribute of each instance of the chunk,
the Map-Task updates all Dv,y vectors by exploiting Eq. 9
or Eq. 11 in case the attribute is continuous or categorical,
respectively, and then, for each node, outputs the key-value
pair 〈key = y, value = Dv,y〉, where y is the index of the
yth node in Rh. At the end of the map phase, each element
of Dv,y stores the cardinality of each attribute value from
the root to NTy only for the instances in the vth chunk.
Each Reduce-Task is fed by a list, say List(Dv,y), of vectors
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Dv,y and creates a vector Dy by performing an element-wise
addition of all V vectors in List(Dv,y). Thus, Dy stores the
cardinality of each attribute value from the root to NTy along
the overall training set. Then, the Reduce-Task generates and
outputs the child nodes by employing multi-way or binary
splitting methods, respectively. The children generated from
each NTy are finally used to update the tree and R: if a child
node is not labeled as leaf, then it is inserted into the list and
employed at the next iterations. The algorithm repeats all the
steps until R is empty. Space and time complexities of the Map
phase are O(dVQe ·N/V ) and O(dVQe · (N · Y · log(|D|)/V )),
respectively. For the Reduce phase, space and time complexi-
ties are O(Y/Q) and O(Y ·|allSplits|/Q), respectively, where
|allSplits| is the number of splits that have to be investigated
for computing the best split among all attributes for the node.
Note that |allSplits| = F and |allSplits| = |D| for multi-
way and binary splitting approaches, respectively. Since time
complexity of the Map phase represents the heaviest part of
the computational cost, the time complexity of Algorithm 5 is
O(H · (dVQe · (N · log(|D|)/V ))).

Algorithm 4 Distributed Fuzzy Decision Tree Learning.
Require: stopping method stopMet.

1: procedure FDTLEARNING(in:stopMet, maxY )
2: tree← create root
3: R← create list and insert root
4: repeat
5: Rh ← get nodes from R
6: children← DISTRIBUTEDNODESPLITTING
7: for each child in children do
8: tree← update model with child
9: if ISNOTLEAF(child, stopMet) then

10: R← insert child
11: end if
12: end for
13: until R is not empty
14: return tree
15: end procedure

The proposed distributed approach allows managing a large
amount of data: performing the splitting on a group of nodes
significantly reduces the number of scans over the training
set, but also requires a larger quantity of memory and a
longer computation time for each iteration (the computational
cost is limited by collecting and aggregating the necessary
statistics). Thus, the maximum number maxY of nodes, which
can be processed in parallel at each iteration, depends on the
memory availability on the cluster. Obviously, the higher the
number of categorical values and fuzzy sets defined by the
fuzzy partitioning, the higher the memory used for collecting
the statistics and the lower the number of nodes that can be
processed in parallel at each iteration.

V. EXPERIMENTAL STUDY

We performed several experiments for investigating the
behavior of the proposed approach, focusing on the following
three crucial aspects: i) performance in terms of classification
accuracy, model complexity, and execution time; ii) scalability

Algorithm 5 Distributed Node Splitting.
Require: TR split into V chunkv , splitting method splitMet.

1: procedure MAP-TASK(in: chunkv , Rh)
2: for each node NTy in Rh do
3: Dv,y ← create a vector of |D| elements
4: for each instance xn in chunkv do
5: Dv,y ← update statistics with xf,n according

to Eq. 9 or Eq. 11
6: end for
7: output 〈key = y, value = Dv,y〉
8: end for
9: end procedure

10: procedure REDUCE-TASK(in: y, List(Dv,y))
11: Dy ← element-wise addition of List(Dv,y)
12: if splitMet is multiple splitting then
13: children← MULTISPITTING(NTy , Dy)
14: else
15: children← BINARYSPITTING(NTy , Dy)
16: end if
17: output 〈key = y, value = children〉
18: end procedure
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Fig. 6. The overall DFDT Learning approach.

with a complete dataset, varying the number of CUs; iii) ability
to efficiently accommodate an increasing dataset size.

As shown in Table I, we employed 10 well-known big
datasets freely available from the UCI2 repository. The datasets
are characterized by different numbers of input/output in-
stances (from 1 million to 11 millions), classes (from 2 to 50),
and attributes (from 10 to 41). For each dataset, we also report
the number of numeric (num) and categorical (cat) attributes.

All the experiments have been executed on a cluster consist-
ing of one master equipped with a 4-core CPU (Intel Core i5
CPU 750 x 2.67 GHz), 8 GB of RAM and a 500GB Hard
Drive, and three slave nodes equipped with a 4-core CPU
with Hyperthreading (Intel Core i7-2600K CPU x 3.40 GHz,
8 threads), 16GB of RAM and a 1 TB Hard Drive. All nodes

2Available at https://archive.ics.uci.edu/ml/datasets.html
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TABLE I. BIG DATASETS USED IN THE EXPERIMENTS.
Dataset # Instances # Attributes # Classes

ECO E (ECO E) 4,178,504 16 (num:16) 10
ECO CO (ECO CO) 4,178,504 16 (num:16) 21

EM E (EM E) 4,178,504 16 (num:16) 10
EM M (EM M) 4,178,504 16 (num:16) 50

Higgs (HIG) 11,000,000 28 (num:28) 2
KDDCup 1999 2 Classes (KDD99 2) 4,856,151 41 (num:26, cat:15) 2
KDDCup 1999 5 Classes (KDD99 5) 4,898,431 41 (num:26, cat:15) 5

KDDCup 1999 (KDD99) 4,898,431 41 (num:26, cat:15) 23
Poker-Hand (POK) 1,025,010 10 (cat:10) 10

Susy (SUS) 5,000,000 18 (num: 18) 2

are connected by a Gigabit Ethernet (1 Gbps) and run Ubuntu
12.04. The algorithm has been deployed upon Apache Spark
1.5.2 as data-processing framework: the master hosts the driver
program, while each slave runs an executor. The training sets
are stored in the HDFS.

A. Performance analysis
In this section, we analyze the performance of both FMDT

and FBDT in terms of accuracy, model complexity, and ex-
ecution time and compare both of them with the Distributed
Decision Tree (DDT) available in MLlib [66] and with Chi-
FRBCS-BigData3 [45]. DDT performs a recursive binary parti-
tioning of the attribute space. The partitions of the continuous
attributes are generated by dividing each attribute into equi-
frequency bins (at most maxBins) over a sampled fraction of
the data. Then, at each decision node, the best split is chosen by
selecting the one that maximizes the information gain. Entropy
or Gini index can be used for computing impurity of the node.
Further, a maximum depth maxDepth of the tree can be fixed
by the user. Chi-FRBCS-BigData was described in Section II.

Table II summarizes, for each algorithm, the parameters
used in the experiments. For FMDT, we limit the number
of fuzzy sets defined for each attribute during the fuzzy
partitioning process by forcing that the support of each fuzzy
set contains at least φ = 0.02 ·N and the number of instances
belonging to each node is at least λ = 10−4 · N . We have
performed several experiments varying φ from 0.01 · N to
0.1 ·N with step 0.01 ·N , and λ from 10−5 ·N to 10−3 ·N ,
with step 10−5 ·N . We have observed that the best accuracy
is just achieved with φ = 0.02 · N and λ = 10−4 · N .
In practice, we have verified that smaller supports tend to
fragment the data too quickly, leaving insufficient instances
at the deepest nodes of the tree. After a limited number of
levels, it is unlikely to execute further splits. On the other
hand, wider supports do not allow obtaining satisfactory fuzzy
partitions. Further, higher and lower values of λ lead to a
classifier, respectively, excessively general and specialized on
the training set, penalizing the performance on the test set.
Also, lower values for φ and λ increase the overall run-time
with no real advantage.

Binary splitting overcomes the previous discussed draw-
backs. Thus, for FBDT no specific limitation is imposed and
we set φ = λ = 1. For both FMDT and FBDT, we used
γ = 0.1% as suggested by authors in [35] and product
as T-norm. As regards DDT, we adopted the values sug-
gested in the guidelines provided with the library. As regards
Chi-FRBCS-BigData, we used the Chi-FRBCS-BigData-Ave

3Code available at https://github.com/saradelrio/Chi-FRBCS-BigData-Ave

version, which, in the reduce phase, fuses the fuzzy rules
generated in the map phase by computing the average of the
rule weights. In detail, this version first searches for rules with
the same antecedent. Then, it computes the average weight of
the rules that have the same consequent. Finally, it keeps in
the final rule base the rule with the largest average weight. As
shown in [45] the Chi-FRBCS-BigData-Ave version achieves
more accurate results than the Chi-FRBCS-BigData-Max ver-
sion. Further, as suggested in [45], we adopted three fuzzy
labels for each attribute, the product as T-norm, the winning
rule as fuzzy reasoning method, the Penalized Certain Factor
(PCF) [63] as rule weight, and 128 mappers.

TABLE II. VALUES OF THE PARAMETERS FOR EACH ALGORITHM
USED IN THE EXPERIMENTS.

Method Parameters
FMDT γ = 0.1%, φ = 0.02 ·N, λ = 10−4 ·N, TN = product
FBDT γ = 0.1%, φ = 1, λ = 1, TN = product
DDT maxBins = 32, Impurity = Entropy

Chi-FRBCS-BigData NumFuzzyLabels = 3, TN = product,
reasoningMethod = winningRule, ruleWeight = PCF

For each dataset and for each algorithm, we performed a
five-fold cross-validation by using the same folds for all the
datasets and, for the three decision trees, varying the maximum
depth β of the tree. Table III shows, for each dataset and for
each algorithm, the average values ± standard deviation of the
accuracy, both on the training (AccTr) and test (AccTs) sets
obtained by the algorithms. The highest accuracy values for
each dataset are shown in bold. Table IV shows the complexity
of each algorithm. For each dataset and for each decision
tree learning algorithm, we report the average values of the
number of nodes (#Nodes), number of leaves (#Leaves)
and minimum, maximum and average depths (Depth) of the
trees, expressed as (min,max,avg) in the table. For the Chi-
FRBCS-BigData dataset, we report the average value of the
number (#Rules) of rules.

The analysis of the three tables highlights that, on average,
both FMDT and FBDT outperform DDT and Chi-FRBCS-
BigData. With respect to the FDTs, we can observe that,
when comparing trees of the same depth, the multi-way
splitting tends to achieve higher accuracy because it is able to
investigate a higher number of correlations between attributes
by generating a higher number of nodes at each level. On the
other hand, as shown in Table IV, the trees are characterized by
a significantly higher number of nodes and therefore are more
complex. For instance, for ECO CO, ECO E, EM E, EM M,
HIG and SUS, FMDT employs more than 160,000 leaves with
only five levels of depth. For higher values of β, the algorithm
generates too many nodes and the overall process takes an
unreasonable amount of time. For this reason, no result for
higher values of β has been reported in Table III. However,
we can observe that for β = 5, FMDT achieves accuracy
comparable to the one obtained by the other algorithms. On
the other hand, FBDT and DDT are able to generate deeper
trees. Note that deeper trees are more expressive and achieve
higher accuracy on the training set, but are typically also
affected by a higher probability of over-training. However,
FBDT tends to be more tolerant to over-training than DDT.
In particular, unlike DDT, for β = 15, FBDT achieves results
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TABLE III. AVERAGE ACCURACY ± STANDARD DEVIATION ACHIEVED BY FMDT, FBDT, DDT AND CHI-FRBCS-BIGDATA.

FMDT FBDT DDT Chi-FRBCS-BigData
Dataset β AccTr AccTs AccTr AccTs AccTr AccTs AccTr AccTs

5 97.641± 0.019 97.585± 0.041 78.244± 0.015 78.242± 0.037 77.718± 0.765 77.721± 0.729
ECO E 10 − − 89.347± 0.105 89.335± 0.142 88.099± 0.164 88.082± 0.179 54.454± 7.813 54.485± 7.806

15 − − 97.315± 0.025 97.262± 0.045 95.874± 0.269 95.756± 0.286
5 97.559± 0.001 97.526± 0.023 68.049± 0.006 68.030± 0.032 68.902± 0.154 68.892± 0.173

ECO CO 10 − − 89.375± 0.139 89.374± 0.147 88.046± 0.476 88.039± 0.475 73.639± 6.415 73.604± 6.406
15 − − 97.847± 0.027 97.795± 0.022 96.670± 0.164 96.563± 0.161
5 96.962± 0.008 96.913± 0.018 77.381± 0.245 77.354± 0.303 77.270± 1.569 77.254± 1.592

EM E 10 − − 90.751± 0.051 90.705± 0.051 89.756± 0.171 89.729± 0.186 67.285± 8.962 67.277± 8.952
15 − − 96.991± 0.021 96.928± 0.032 95.856± 0.203 95.726± 0.194
5 96.078± 0.008 96.001± 0.026 74.311± 0.045 74.319± 0.011 72.484± 0.315 72.493± 0.312

EM M 10 − − 91.044± 0.077 91.036± 0.085 90.061± 0.243 90.062± 0.251 93.179± 7.629 92.707± 7.601
15 − − 96.879± 0.024 96.746± 0.023 95.894± 0.040 95.669± 0.058
5 72.638± 0.018 71.253± 0.029 66.451± 0.013 66.441± 0.025 66.344± 0.080 66.335± 0.106

HIG 10 − − 70.723± 0.013 70.697± 0.022 70.481± 0.040 70.403± 0.063 55.933± 0.080 55.897± 0.119
15 − − 72.631± 0.019 72.266± 0.008 73.073± 0.031 71.871± 0.013
5 99.986± 0.006 99.986± 0.005 99.989± 0.000 99.987± 0.000 99.980± 0.008 99.979± 0.008

KDD99 2 10 − − 99.999± 0.000 99.999± 0.000 99.999± 0.001 99.999± 0.001 99.934± 0.001 99.933± 0.002
15 − − 99.999± 0.000 99.999± 0.000 100.000± 0.000 99.999± 0.000
5 99.976± 0.002 99.973± 0.003 99.893± 0.000 99.894± 0.002 99.669± 0.010 99.882± 0.010

KDD99 5 10 − − 99.995± 0.000 99.992± 0.001 99.991± 0.001 99.989± 0.001 96.395± 0.043 96.302± 0.044
15 − − 99.999± 0.000 99.995± 0.000 99.999± 0.001 99.994± 0.001
5 99.950± 0.001 99.948± 0.002 99.597± 0.008 99.598± 0.009 99.669± 0.104 99.669± 0.103

KDD99 10 − − 99.990± 0.000 99.971± 0.001 99.991± 0.001 99.989± 0.001 99.988± 0.001 99.610± 0.010
15 − − 99.997± 0.000 99.994± 0.001 99.999± 0.000 99.993± 0.001
5 78.479± 0.031 77.176± 0.068 54.708± 0.405 54.696± 0.432 54.708± 0.405 54.696± 0.432

POK 10 − − 58.806± 0.508 58.490± 0.599 58.806± 0.508 58.490± 0.599 99.711± 0.002 5.178± 0.049
15 − − 67.553± 0.422 62.479± 0.504 67.553± 0.422 62.479± 0.504
5 80.962± 0.007 79.639± 0.016 77.312± 0.060 77.230± 0.057 77.023± 0.025 77.018± 0.038

SUS 10 − − 79.118± 0.016 79.091± 0.024 79.022± 0.043 78.940± 0.052 55.747± 0.110 55.751± 0.157
15 − − 79.969± 0.030 79.722± 0.043 80.393± 0.026 79.304± 0.032

TABLE IV. COMPLEXITIES OF FMDT, FBDT, DDT AND CHI-FRBCS-BIGDATA.
FMDT FBDT DDT Chi-FRBCS-BigData

Dataset β #Nodes #Leaves Depth #Nodes #Leaves Depth #Nodes #Leaves Depth #Rules

5 222,694 200,048 (2,5,2.73) 63 32 (5,5,5) 63 32 (5,5,5)
ECO E 10 - - - 1,695 849 (6,10,9.87) 1,530 765 (6,10,9.78) 4,148

15 - - - 17,532 8,741 (6,15,14.23) 12,323 6,162 (6,15,13.99)
5 190,637 169,621 (2,5,2.38) 63 32 (5,5,5) 63 32 (5,5,5)

ECO CO 10 - - - 1,746 872 (6,10,9.88) 1,552 777 (5,10,9.80) 25,717
15 - - - 18,785 9,370 (6,15,14.26) 13,827 6,914 (5,15,14.06)
5 240,406 218,557 (5,5,5) 63 32 (5,5,5) 63 32 (5,5,5)

EM E 10 - - - 1,694 847 (5,10,9.88) 1,702 851 (6,10,9.86) 13,711
15 - - - 20,996 10,477 (5,15,14.38) 14,515 7,258 (5,15,14.11)
5 218,562 196,344 (2,5,2.76) 63 32 (5,5,5) 63 32 (5,5,5)

EM M 10 - - - 1,792 897 (6,10,9.90) 1,521 761 (5,10,9.81) 665,160
15 - - - 23,022 11,495 (6,15,14.40) 18,900 9,451 (5,15,14.25)
5 972.779 920,942 (2,5,3.30) 63 32 (5,5,5) 63 32 (5,5,5)

HIG 10 - - - 1,686 844 (5,10,9.89) 2,045 1,023 (9,10,9.99) 24,058
15 - - - 34,444 17,209 (5,15,14.79) 49,822 24,911 (9,15,14.80)
5 703 630 (2,5,2.54) 41 21 (3,5,4.62) 37 19 (3,5,4.50)

KDD99 2 10 - - - 131 66 (3,10,7.76) 95 48 (3,10,7.12) 1,020
15 - - - 222 112 (3,15,10.18) 121 61 (3,15,8.18)
5 2,716 2,351 (2,5,2.60) 46 24 (2,5,4.83) 49 25 (2,5,4.83)

KDD99 5 10 - - - 335 168 (2,10,8.78) 356 179 (2,10,8.70) 11,585
15 - - - 779 389 (2,15,11.68) 544 272 (2,15,10.65)
5 2,164 1,875 (2,5,2.79) 37 19 (2,5,4.63) 40 20 (2,5,4.83)

KDD99 10 - - - 369 185 (2,10,9.03) 303 152 (2,10,8.58) 102,014
15 - - - 972 485 (2,15,12.11) 581 291 (2,15,10.94)
5 30,940 28,561 (4,4,4) 63 32 (5,5,5) 63 32 (5,5,5)

POK 10 - - - 2,024 1,012 (9,10,9.99) 2,024 1,012 (9,10,9.99) 813,193
15 - - - 44,297 22.149 (9,15,14.75) 44,297 22,149 (9,15,14.75)
5 805,076 758,064 (2,5,3.46) 63 32 (5,5,5) 63 32 (5,5,5)

SUS 10 - - - 1,360 681 (5,10,9.76) 1,984 993 (8,10,9.98) 678
15 - - - 21,452 10,723 (5,15,14.62) 35,133 17,567 (8,15,14.59)

comparable to FMDT on both training and test sets, with the
only exception for POK. We have to consider that the attributes
in POK are categorical. As explained in Section IV-B, FBDT
employs the method proposed in [69] for limiting the number
of candidate splits when managing categorical attributes. The
method determines an approximation of the optimal split and
the error generated by such approximation is propagated to
the child nodes. Thus, deeper trees are more affected by this
problem. In general, however, both FMDT and FBDT do not
particularly suffer from over-training. Indeed, the difference
between the classification rates obtained on the training and
test sets is quite limited for all the datasets, except for HIG,
POK and SUS for FMDT, and POK for FBDT. Actually, for

HIG and SUS, FMDT generates trees with a very high number
of nodes and leaves, and therefore particularly specialized on
the training set.

As regards Chi-FRBCS-BigData, we can observe that the
accuracy is strongly dependent on the specific dataset, but in
general much lower than the one obtained by the three decision
trees. In particular, we note that, for the POK dataset, Chi-
FRBCS-BigData suffers from a strong over-training, probably
due to the high number (13) of possible different categorical
values for five attributes, which brings the learning algorithm
to generate a very high number of rules and therefore to
specialize very much the classifier on the training set. In all
datasets, except for the three KDD datasets, the classification
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rates both on the training and test sets are much lower that the
ones obtained by the other three approaches. As regards the
complexity, it is well-known in the literature that a decision
tree can be expressed as a rule base, with the number of rules
equal to the number of leaves. We have to consider however
that the rules extracted from the binary decision trees are
different from those extracted from the multi-way decision
tree and from those in the rule base generated by Chi-FRBCS-
BigData. Indeed, the rules extracted from the binary decision
trees can have conditions that are expressed by using “or”
of categorical values rather than a unique value. Although
considering this difference, we note that the complexity of the
fuzzy rule-based classifiers generated by Chi-FRBCS-BigData
is much higher than the one of the decision trees, except for
three datasets, namely ECO E, HIG and SUS.

To statistically compare the four approaches, for each al-
gorithm, we generate a distribution consisting of the mean
values of the accuracy of solutions on the test set by using
all the datasets. Then, we apply the Friedman test in order
to compute a ranking among the distributions [70], and the
Iman and Davenport test [71] to evaluate whether there exists
a statistical difference among the distributions. If the Iman
and Davenport p-value is lower than the level of significance
α (in the experiments α = 0.05), we can reject the null
hypothesis and affirm that there exist statistical differences
between the multiple distributions associated with each ap-
proach. Otherwise, no statistical difference exists. If there
exists a statistical difference, we apply a post-hoc procedure,
namely the Holm test [72]. This test allows detecting effective
statistical differences between the control approach, i.e. the one
with the lowest Friedman rank, and the remaining approaches.

In Table V we show the Friedman rank and the Iman
and Davenport p-value for each algorithm (we consider the
results for β = 15 for both FBDT and DDT). We observe
that the statistical hypothesis of equivalence is rejected. Thus,
we apply the Holm post-hoc procedure considering FBDT as
control algorithm (associated with the lowest rank and in bold
in the Table). As shown in Table VI, we observe that the
FBDT statistically outperforms FMDT, DDT and Chi-FRBCS-
BigData.

For the sake of completeness, we mention that the classi-
fication rates of both FMDT and FBDT are also higher than
the ones reported in [33] [35]. In [33], the authors investigate
several prototype reduction techniques on Apache Hadoop with
the aim of improving the classification rates of the nearest
neighbor classifier. The experimental results on three big
datasets have proven that these methods are very competitive in
reducing the computational cost and high storage requirements
of the nearest neighbor classifier, improving its classification
performance. In [35], the authors have proposed MRAC+,
a fast MapReduce associative classifier based on frequent
pattern mining on Apache Hadoop. The experimental results
performed on seven big datasets show that MRAC+ obtains
comparable performance in terms of accuracy to DDT and
is able to achieve speedup and scalability close to the ideal
ones. Due to the limited number of datasets adopted by the
authors, we have not shown the results in Table III, but
however, we highlight that the average accuracy achieved by

FMDT and FBDT in the common datasets is higher than
the one obtained by the algorithms proposed in [33] [35].
The unique exception is the POK dataset, where MRAC+
achieves an average accuracy of 94.480%. We recall that POK
contains only categorical attributes and associative classifiers
have proved to perform particularly well on this type of
datasets [35].

Table VII shows the main characteristics of the partitions
obtained by applying the fuzzy partitioning approach. In par-
ticular, the table reports the average number (NFS) of fuzzy
sets determined for the continuous attributes, the number of
fuzzy sets for the attributes with the lowest (minNFS) and
highest (maxNFS) numbers of fuzzy sets, and the number
DA of attributes discarded by the fuzzy partitioning process.
Obviously, for POK, which is characterized by only categorical
attributes, fuzzy partitioning is not performed.

TABLE VII. COMPLEXITIES OF FUZZY PARTITIONING FOR BOTH
FMDT AND FBDT.

FMDT FBDT
Dataset NFS minNFS maxNFS DA NFS minNFS maxNFS DA
ECO E 36.625 35 41 0 180.05 91 257 0

ECO CO 35.613 32 41 0 184.75 93 273 0
EM E 36.875 35 42 0 176.225 98 245 0
EM M 34.863 35 39 0 165.55 96 206 0

HIG 8.229 3 32 6 10.136 3 42 6
KDD99 2 2.654 3 15 4 9.315 3 31 0
KDD99 5 3.3 3 15 4 15.131 3 42 0

KDD99 3.269 3 15 4 14.962 3 41 0
SUS 13.989 5 25 3 18.9 5 45 3

As shown in Table VII, for ECO CO, ECO E, EM E,
EM M, HIG and SUS, fuzzy partitioning generates a high
number of fuzzy sets, making the partitions hardly inter-
pretable. To limit the number of fuzzy sets, a possible solution
is to increment the value of φ as exploited for FMDT. On the
other hand, the parameter can affect the number of attributes
discarded from the fuzzy partitioning. For instance, unlike
FBDT, for KDD99 2, KDD99 5 and KDD99, the algorithm
removes 4 attributes that will be not employed by the FMDT.

Table VIII summarizes the execution times (in seconds) of
each approach. For all approaches, we show the execution time
of the learning process (Learning), and only for FMDT and
FBDT, the execution time of the fuzzy partitioning process
(FP) and the overall execution time (Tot). Here, the datasets
have been split into a number of chunks equal to the number
of cores available in the cluster, so that each core processes
more or less the same number of instances. DDT is much
faster than the two DFDTs: the execution time of DDT is
more than one order of magnitude lower than the one of the
two DFDTs. This is mainly due to two factors. First, the
total execution time of FMDT and FBDT is affected by the
fuzzy partitioning process. Such process is not performed by
DDT. Second, the amount of information managed by the FDT
learning is higher than the one managed by the DDT learning.
Indeed, since each value xf,n ∈ Uf belongs to two fuzzy sets,
space complexity of FDT learning step is, in the worst case,
twice than the one of DDT. The overall execution time of
FBDT is comparable with the one of FMDT. In particular, as
shown in Table VII, although FBDT employs a lower number
of nodes than FMDT, it evaluates different binary splits for
each attribute. However, the choice of the best split is bounded
by the number of fuzzy sets defined on the attribute, which is
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TABLE V. FRIEDMAN RANK AND IMAN AND DAVENPORT
P-VALUE FOR FMDT, FBDT, DDT AND CHI-FRBCS-BIGDATA

.

Algorithm Friedman rank Iman and Davenport
p-value

Hypothesis

FBDT 1.3
FMDT 2.2 0.000047 Rejected
DDT 2.5

Chi-FRBCS-BigData 4

TABLE VI. HOLM POST HOC PROCEDURE FOR α = 0.05

i algorithm z-value p-value alpha/i Hypothesis
3 Chi-FRBCS-BigData 4.676537 0.000003 0.016667 Rejected
2 DDT 2.683282 0.00729 0.025 Rejected
1 FMDT 2.012461 0.044171 0.05 Rejected

significantly lower than the number of instances. On the other
hand, FMDT can perform only one split for each attribute
for a given node, thus speeding up the computation of the
splitting procedure. Chi-FRBCS-BigData is much slower than
the other approaches. We have to consider however that Chi-
FRBCS-BigData is implemented on Apache Hadoop, which
has proved to be less efficient than Apache Spark, although
the operations performed by Chi-FRBCS-BigData should not
particularly suffer from the inefficiencies of Apache Hadoop.

B. Scalability analysis
In this section, we investigate the scalability of the proposed

approaches by employing an increasing number of CUs. To
this aim, we measure the values assumed by the speedup σ
that represents the main metrics used in parallel computing.
According to the speedup definition, the efficiency of a pro-
gram using multiple CUs is calculated comparing the execution
time of the parallel implementation against the corresponding
sequential version. Unfortunately, due to the large size of
the involved datasets, the sequential version of the overall
algorithm would take an unreasonable amount of time. Thus,
for the scalability analysis we refer to a run over Q∗ identical
CUs, with Q∗ > 1. With this aim, we adopt the following
slightly different definition for the speedup on n identical CUs:

σQ∗(n) = Q∗·τ(Q∗)
τ(n) (14)

where τ(n) is the run-time using n CUs, and Q∗ is the number
of CUs used to run the reference execution, which lets us
estimate a fictitious, ideal single-core run-time as Q∗ · τ(Q∗).
Of course, σQ∗(n) makes sense only for n ≥ Q∗. Note
that τ(Q∗) accounts also for the basic overhead due to the
Apache Spark platform. Obviously, for n > Q∗ the speedup is
expected to be sub-linear due to the increasing overhead from
the Spark tasks, the behavior of the algorithm (considering
also the granularity of the necessary sequential parts) and
the contention for shared resources. In our tests, we assumed
Q∗ = 8 so as to have 1 working slave available in the cluster
and thus accounting in σ8 also for the basic overhead due to
thread interference. Horizontal scalability has been studied by
varying the number of switched-on CUs: we vary the number
of slaves from 1 to 3, each with one executor with 8 cores.
Considering the structure of our approach, we split the RDD
into a number of partitions equal to the total number of cores
available on the cluster.

Table IX summarizes the results obtained on the Susy
dataset by FBDT with β = 15. For the sake of brevity,
we considered only one dataset and FBDT. However, similar
results can be obtained on the other datasets and/or using
FMDT.

TABLE IX. RUN-TIME, SPEEDUP (σ8), AND UTILIZATION (σ8(Q)/Q)
OF BOTH FUZZY PARTITIONING AND FBDT LEARNING PROCESSES FOR

THE SUSY DATASET.
Fuzzy Partitioning Learning

# Cores Time (s) σ8(Q) σ8(Q)/Q Time (s) σ8(Q) σ8(Q)/Q
8 185 8 1.00 636 8 1.00

16 141 10.50 0.66 324 15.70 0.98
24 153 9.67 0.40 230 22.12 0.92

The actual speedup shows a different behavior depending on
the algorithm. As regards Fuzzy Partitioning, σ8 rapidly de-
creases and using 24 cores does not produce a real advantage;
indeed the execution time with 24 cores is higher than the
one obtained by using 16 cores. The result is mainly affected
by two factors. First, the number of bins, namely Ω = V · γ,
used to split the domain of each attribute is equal to 8,000,
16,000 and 24,000 for 8, 16 and 24 cores, respectively. Thus,
in case of 24 cores, the amount of information handled by
the algorithm is higher than the one handled for the other
experiments, affecting the overall execution time. Second, the
fuzzy partitioning of each continuous attribute is distributed
among the cores available in the cluster so that each attribute
is assigned to one core. Since Susy is characterized by 18
continuous attributes, each core processes approximately 3, 2
and 1 attributes in case of 8, 16 and 24 cores, respectively.
However, as shown in Table VII, three attributes are discarded
by the fuzzy partitioning process, thus for such attributes
the overall process is performed in a few milliseconds (it
requires exactly one scan for the exploration of candidate fuzzy
partitions). Considering this result, the overall execution time
can be roughly approximated with the same time required
for 18-3=15 continuous attributes, thus each core processes
approximately 2, 1 and 1 attributes in case of 8, 16 and 24
cores, respectively. The result highlights that, as regards the
distribution of the computational flow, using a number of cores
higher than 16 does not produce a real advantage and in such
cases the execution time is only affected by the number of bins
employed to explore the candidate fuzzy partitions.

As regard FBDT learning, σ8 does not excessively diverge
from the linear trend, i.e. the number of CUs: σ8(16)/16 =
0.98 and σ8(24)/24 = 0.92. The overhead is mainly due to
higher number of executors handled by the Spark frameworks
and the communication cost required to send the nodes that
must be split from the master to the slaves.

C. Dealing the dataset size
From a practical point of view, it is crucial to understand

how the proposed algorithms behave as the size of the input
dataset increases. To evaluate this aspect, we have performed
several experiments using different dataset sizes. We have
employed the Susy dataset and have used different percentages
of this dataset. We indicate with the notation Susyx the dataset
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TABLE VIII. THE EXECUTION TIMES (IN SECONDS) FOR FMDT, FBDT, DDT AND CHI-FRBCS-BIGDATA

.

FMDT FBDT DDT Chi-FRBCS-BigData
Dataset β FP Learning Tot FP Learning Tot Learning Learning

5 28 364 392 29 64 93 11
ECO E 10 - - - 29 215 244 13 1,263

15 - - - 29 691 720 16
5 88 691 779 36 47 83 17

ECO CO 10 - - - 36 180 216 18 1,491
15 - - - 36 1,034 1070 29
5 23 349 372 24 42 66 11

EM E 10 - - - 24 138 162 13 1,276
15 - - - 24 579 603 17
5 58 3,947 4,005 48 39 87 15

EM M 10 - - - 48 174 222 21 62,175
15 - - - 48 3,868 3,916 67
5 180 706 886 180 131 311 130

HIG 10 - - - 180 224 404 132 19889
15 - - - 180 424 604 149
5 15 17 32 21 26 47 15

KDD99 2 10 - - - 21 49 70 16 2,756
15 - - - 21 68 89 17
5 16 24 40 30 41 71 17

KDD99 5 10 - - - 30 67 97 20 3,615
15 - - - 30 86 116 21
5 16 22 38 46 41 87 17

KDD99 10 - - - 46 67 113 19 6,551
15 - - - 46 78 124 20
5 - 3 3 - 4 4 4

POK 10 - - - - 6 6 6 18,918
15 - - - - 11 11 11
5 122 133 255 126 22 148 47

SUS 10 - - - 126 66 192 49 1,444
15 - - - 126 130 255 54

composed with x% of instances of the Susy dataset (the com-
plete dataset is Susy100). Moreover, we limit the experiments
only to FBDT with β = 15 but similar considerations can be
applied to FMDT.

Table X shows the run-time (in seconds) for building the
tree (including the fuzzy partitioning), according to different
dataset sizes. We report also the total number of instances N
and the total number of instances in each chunk Nv = N/V .
Like in the previous experiments, we distribute uniformly the
entire dataset upon the number of available cores, i.e. V =
Q = 24 in our tests. Note that for Susy50, the average run-
time of three different experiments executed over three distinct
subsets of Susy (with instances randomly sampled) is reported.

TABLE X. RUN-TIME (IN SECONDS) OF FBDT ON THE SUSY
DATASET, VARYING THE DATASET SIZE.

Dataset FBDT
Size (%) N Nv Fuzzy Partitioning Learning Tot

50 (Susy50) 2,500,000 104,167 124 111 238
100 (Susy100) 5,000,000 208,333 153 230 383
200 (Susy200) 10,000,000 416,667 204 477 681
300 (Susy300) 15,000,000 625,000 255 800 1055

The execution time of the two algorithms increases with
different trends. However, the results are consistent with the
time complexity analysis described in Section IV-C. As regards
Fuzzy Partitioning, the computational cost is mainly driven
by the number of bins Ω employed to explore the candidate
fuzzy partitions. Since such value is constant in all tests, i.e.
Ω = 24, 000, the execution time of the two reduce phases of
fuzzy partitioning is more or less the same in all experiments.
On the other hand, both map phases depend on the number of
instances processed by each Map-Task. We recall that the first
Map-Task performs a sorting of the instances for retrieving the
equi-frequency bins and the second Map-Task computes for
each bin the number of instances belonging to the different
classes. Such operations are performed in O(F ·Nv · log(Nv))
and O(F · Nv · log(Ω)), respectively. However, considering

the experiments and the number of instances involved, Ω
and F are constants and log(Nv) assumes more or less the
same values (i.e. log(Nv) ranges from about 5.02 to 5.8).
Thus, we can expect that the run-time trend for both Map-
Tasks is slightly higher than the linear one. These observations
can be used to get a very rough estimation of the run-time
expected for different dataset sizes. For instance, if adding
2,500,000 instances (from Susy50 to Susy100), the run-time
increases of 153 − 129 = 24 seconds, in the ideal case,
we expect that adding 5,000,000 instances the execution time
is slightly longer than twice. Thus we should obtain about
153+24×2 = 201 and 153+24×4 = 249 seconds for Susy200

and Susy300, respectively. As it can be noted, such values do
not excessively differ from the measured ones. Of course, the
actual run-times are necessarily higher due to the logarithmic
factor log(Nv) of the first Map-Task and the overheads for the
sharing of memory resources.

As regards FBDT learning, we can perform the same
observations exploited for Fuzzy Partitioning. In particular,
as described in Section IV-C, time complexity of Reduce-
Task depends only on the number of splits, which have to
be evaluated for computing the best splits among all attributes
for the node, and is not affected by the number of instances.
On the other hand, time complexity of Map-Task is equal
to O(Nv · Y · log(|D|)). Since the number of nodes to split
Y and the total number of fuzzy sets |D| defined by Fuzzy
Partitioning are more or less the same in all experiments, the
overall run-time is mainly affected by Nv . Thus, increasing
the number of instances, we expect that in the ideal case the
execution time trend is linear, i.e. 111×2 = 222, 111×4 = 444
and 111 × 6 = 666 for Susy100, Susy200 and Susy300,
respectively. As it can be noted, such values do not excessively
differ from the measured ones. Of course, the actual run-times
are necessarily higher due to the overheads for the sharing of
memory resources.
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VI. CONCLUSIONS

We have proposed a distributed fuzzy decision tree (FDT)
learning scheme shaped according to the MapReduce program-
ming model for generating both binary (FBDT) and multi-
way (FMDT) FDTs from big data. We have first introduced
a novel distributed fuzzy discretizer, which generates strong
fuzzy partitions for each continuous attribute based on fuzzy
information entropy. Then, we have discussed a distributed
implementation of an FDT learning algorithm, which employs
the fuzzy information gain for selecting the attributes to be
used in the decision nodes. We have implemented the FDT
learning scheme on the Apache Spark framework.

Experimental results performed on ten real-world big
datasets show that our scheme is able to achieve speedup
and scalability figures close to the ideal ones. It is worth
highlighting that such results can be obtained without adopting
any specific dedicated hardware, but rather by using just a
few personal computers connected by a Gigabit Ethernet. The
results have been compared with the ones obtained by the
distributed decision tree (DDT) implemented in the MLlib li-
brary on the Apache Spark framework and by the Chi-FRBCS-
BigData algorithm, a MapReduce distributed fuzzy rule-based
classification system. In the comparison we have considered
accuracy, complexity and execution time. We have shown that
FBDT statistically outperforms FMDT, DDT and Chi-FRBCS-
BigData in terms of accuracy. In terms of complexity, FBDT
and DDT employ a lower (generally one order of magnitude)
number of nodes than FMDT. Further, the number of rules,
which can be extracted from the three decision trees, is on
average lower than the one of Chi-FRBCS-BigData. From the
run-time perspective, FBDT and FMDT require comparable
computation times, but both of them are slower than DDT
(not surprisingly, considering that FBDT and FMDT perform
a fuzzy partitioning step and manage more information, due
to fuzzy logic), but faster than Chi-FRBCS-BigData. Finally,
computation time scales approximately linear with the number
of computational units and instances.

As highlighted in the overall paper, the main reason for
proposing FBDT and FMDT is to generate effective and
efficient classifiers when managing big data. Obviously, the
distribution of the dataset along the computer cluster implies
the parallelization of the fuzzy decision tree learning and
therefore a faster tree generation. Thus, FBDT and FMDT find
a natural use in all the application domains where decision
trees have to be generated very quickly from a large amount
of data. As an example, the increase of the number of sensors
deployed everywhere and the subsequent intent to extract
useful knowledge from the data collected by these sensors, has
given rise to a growing interest in data mining approaches for
streaming data, possibly able to manage concept drift. Most
strategies used in this context use sliding windows of fixed
or variable sizes and a retraining learning mode. A window
is maintained that keeps the most recently acquired examples,
and from which older examples are dropped according to some
set of rules. Periodically, the retraining learning mode discards
the current model and builds a new model from scratch using
the buffered data in the windows. An interesting survey of

streaming data analysis and concept drift adaptation can be
found in [73]. Our fuzzy decision tree learning algorithms
result to be particularly suitable for the retraining learning
mode, especially when the size of the window is particularly
large.

Concluding, we believe that the work presented in this paper
is the first extensive study on the application of FDTs to big
data, considering both binary and multi-way splits. We expect
that the experimental results can be used as baseline for future
research in this field.
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[18] S. Garcia, J. Luengo, J. A. Sáez, V. Lopez, and F. Herrera, “A survey of
discretization techniques: Taxonomy and empirical analysis in supervised
learning,” IEEE Trans. on Knowledge and Data Engineering, vol. 25,
no. 4, pp. 734–750, 2013.



17

[19] S. Kotsiantis and D. Kanellopoulos, “Discretization techniques: A recent
survey,” GESTS International Transactions on Computer Science and
Engineering, vol. 32, no. 1, pp. 47–58, 2006.

[20] A. D. D. Matteis, F. Marcelloni, and A. Segatori, “A new approach to
fuzzy random forest generation,” in IEEE International Conference on
Fuzzy Systems, 2015, pp. 1–8.

[21] B. Chandra and P. P. Varghese, “Fuzzy SLIQ decision tree algorithm,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cyber-
netics, vol. 38, no. 5, pp. 1294–1301, 2008.

[22] C. Z. Janikow, “A genetic algorithm method for optimizing fuzzy
decision trees,” Information Sciences, vol. 89, no. 3, pp. 275–296, 1996.

[23] A. Myles and S. Brown, “Induction of decision trees using fuzzy
partitions,” Journal of chemometrics, vol. 17, no. 10, pp. 531–536, 2003.

[24] X. Cheng, X. Jin, Y. Wang, J. Guo, T. Zhang, and G. Li, “Survey on
big data system and analytic technology,” J. Softw, vol. 25, no. 9, pp.
1889–1908, 2014.

[25] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[26] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 135–146.

[27] T. White, Hadoop: The definitive guide. ”O’Reilly Media, Inc.”, 2012.
[28] “Apache Hadoop,” https://hadoop.apache.org/, accessed: March 2016.
[29] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, vol. 10, 2010,
p. 10.

[30] “Apache Spark,” http://spark.apache.org/, accessed: March 2016.
[31] N. K. Alham, M. Li, Y. Liu, and S. Hammoud, “A MapReduce-based

distributed SVM algorithm for automatic image annotation,” Computers
& Mathematics with Applications, vol. 62, no. 7, pp. 2801–2811, 2011.

[32] G. Caruana, M. Li, and M. Qi, “A MapReduce based parallel SVM for
large scale spam filtering,” in Fuzzy Systems and Knowledge Discovery
(FSKD), 2011 Eighth International Conference on, vol. 4, 2011, pp.
2659–2662.

[33] I. Triguero, D. Peralta, J. Bacardit, S. Garcı́a, and F. Herrera, “MRPR:
A MapReduce solution for prototype reduction in big data classification,”
Neurocomputing, vol. 150, pp. 331–345, 2015.

[34] C. Zhang, F. Li, and J. Jestes, “Efficient parallel kNN joins for large
data in MapReduce,” in Proceedings of the 15th International Conference
on Extending Database Technology, 2012, pp. 38–49.

[35] A. Bechini, F. Marcelloni, and A. Segatori, “A MapReduce solution for
associative classification of big data,” Information Sciences, vol. 332, pp.
33–55, 2016.

[36] P. Ducange, F. Marcelloni, and A. Segatori, “A MapReduce-based fuzzy
associative classifier for big data,” in IEEE International Conference on
Fuzzy Systems, 2015, pp. 1–8.

[37] I. Palit and C. K. Reddy, “Scalable and parallel boosting with MapRe-
duce,” IEEE Transactions on Knowledge and Data Engineering, vol. 24,
no. 10, pp. 1904–1916, 2012.

[38] R. Wang, Y.-L. He, C.-Y. Chow, F.-F. Ou, and J. Zhang, “Learning
ELM-Tree from big data based on uncertainty reduction,” Fuzzy Sets
and Systems, vol. 258, pp. 79–100, 2015.

[39] S. Wang, J. Zhai, H. Zhu, and X. Wang, “Parallel ordinal decision
tree algorithm and its implementation in framework of MapReduce,” in
Machine Learning and Cybernetics, 2014, pp. 241–251.

[40] W. Dai and W. Ji, “A MapReduce implementation of C4.5 decision tree
algorithm,” International Journal of Database Theory and Application,
vol. 7, no. 1, pp. 49–60, 2014.

[41] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,” Advances
in neural information processing systems, vol. 19, p. 281, 2007.

[42] V. Lopez, S. del Rio, J. M. Benitez, and F. Herrera, “On the use of
MapReduce to build linguistic fuzzy rule based classification systems
for big data,” in IEEE International Conference on Fuzzy Systems, 2014,
pp. 1905–1912.
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