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Detecting strengths and weaknesses in learning mathematics 
through a model classifying mathematical skills 

1. Introduction 
Most of the literature on students’ difficulties in learning mathematics from the field 
of cognitive psychology investigates development of basic number processing, 
introducing terms for describing atypical situations. These terms include 
“Developmental Dyscalculia” (DD), “Mathematical Learning Disabilities” (MLD), 
“Mathematical Learning Difficulties” among many others (Passolunghi & Siegel, 
2004; Piazza et al., 2010; Rousselle & Noël, 2007). However, these definitions are 
still a topic of debate (e.g., Kosc, 1974; Mazzocco, 2005; Lewis & Fisher, 2016), and 
the terminology is inconsistent. For example Mazzocco and Räsänen (2013) note 
that mathematical learning difficulties “has been used as synonymous with DD […], 
but also as distinct from DD when [it] is used to refer to the larger category of 
mathematics difficulties.” (ibid., p. 66). The cause of the terminological confusion is 
that currently there is no clear generally accepted classification of developmental 
mathematical weaknesses (Szucs, 2016). Lewis and Fisher (2016), in conducting a 
systematic review of 164 studies on MLD, note that “it is unknown how much 
variability exists across the body of research, which raises questions about the 
reliability and validity of MLD identification particularly related to differentiating 
cognitive and non-cognitive sources of low achievement” (ibid., p. 341). Fletcher, 
Lyon, Fuchs and Barnes (2007) also note that there are still “no consistent standards 
by which to judge the presence or absence of LDs [learning difficulties] in math” 
(ibid, p. 207). The lack of consensus to identify the central characteristics of an MLD 
as well as the comorbidity and heterogeneity that characterize the MLD students 
(Bartelet, Ansari, Vaessen & Blomert, 2014; Watson & Gable, 2013; Szucs & 
Goswami, 2013) have also led researchers to propose various models in order to 
explain different MLD subtypes. 

In this paper we explain how and why we have developed a literature-driven a 
priori four-pronged model for detecting difficulties in learning mathematics 
(Authors & other, 2014), and we bring evidence, through an empirical study, to 
support the model’s solidity. The purpose of the study presented in this manuscript 
is (a) to empirically examine our proposed model in order to determine whether 
and how it can differentiate students with and without difficulties in learning 
mathematics, and (b) to provide educators with a means for sketching students’ 
mathematical profiles that can be used to inform educational choices. 
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2. Review of Attempts atEfforts to Defineing Types of MLD 
Our proposal of a model for detecting difficulties in learning mathematics has roots 
in a line of research in which various models have been advanced, constituting 
interesting attempts at explaining differences in the population of students who 
under achieve in mathematics (e.g, Fuchs & Fuchs, 2002; Geary, 2004; von Aster & 
Shalev, 2007). A common feature to many of these models, including our own, is the 
attempt to uncover underlying cognitive factors to students’ underachievement in 
mathematics (Shalev et al., 2001; Augustyniak, Murphy & Phillips, 2005; Fuchs et al., 
2007; Butterworth, 2010; Andersson, & Östergren, 2012; Mazzocco & Räsänen, 
2013; Szucs, 2016), either related to a specific cognitive domain (e.g., the “core 
number system”), or to general cognitive domain. For example, recent studies have 
investigated the roles of general executive functions, such as working memory and 
inhibition, in mathematical achievement (Andersson, 2008; Geary, 2004; Cragg & 
Gilmore, 2014; Passolunghi & Siegel, 2004). Also visual-spatial deficits have been 
attributed to poor mathematical achievement, including achievement in geometry 
(Mammarella & Cornoldi, 2005; Mammarella, Lucangeli & Cornoldi 2010; 
Mammarella, Giofrè, Ferrara & Cornoldi, 2013; Szucs, 2016). 
 
Models stemming from within this line of research are constructed upon the 
assumption that it is possible to link students’ cognitive abilities to their 
performances on appropriately designed assessment tasks. At the methodological 
level this assumption leads to another one common to these studies, that is, that 
high performance on one or a set of tasks corresponds to the presence or absence of 
a particular cognitive ability “in” the student. We do see this as a limitation, but in 
this type of studies we have not yet found a way around it. However, there are still 
significant differences underlying the approaches used for the development of such 
models and underlying the methodology used to validate each model. These 
differences currently contribute to make it very difficult to compare results across 
studies (Lewis & Fisher, 2016). 
 
 An important difference between the models is in how these links between 
(internal) cognitive abilities and (externally visible) performance are theorized. For 
example, Geary (2004) hypothesized a classification based on types of possible 
underlying deficits (procedural, semantic memory, spatial), and used the notion of 
“supporting competencies” that are either conceptual or procedural to link a set of 
underlying “cognitive systems” within which the deficits may reside to a 
“mathematical domain”. Geary’s classification of subtypes of MLD includes reference 
to parts of the brain containing each type of deficit. 
 
von Aster and Shalev’s model (2007) arises from a previous classification of 
subtypes – verbal, Arabic, and pervasive – (von Aster, 2000), detected through 
clinical case studies and quantitative research using cluster analysis of students’ 
performance on batteries of tasks elaborated to investigate their abilities 
considered relevant to mathematical performance. The researchers took into 
account findings pointing to the genetic underpinning of a spatially oriented number 
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line that develops through elementary school, together with working memory and 
number symbolization (explicit reference is made to Dehaene’s research on number 
sense (1997, 2001)). The four steps of the model include acquiring the core system 
of magnitude (or cardinality), the verbal number system, the Arabic number system, 
and finally the mental number line that also involves the spatial-ordinal properties 
of number. The brain areas involved in each step are listed explicitly, as well as the 
student’s mathematical abilities that develop from infancy through school, thanks 
toin parallel with the increasing working memory. Therefore this model theorizes 
links between students’ performance on numerical tasks and their overall 
mathematical achievement in school and the development of specific abilities in 
specific brain areas. 
 
As a third example of how these links have been theorized, we refer to a model 
proposed by Mulligan and her colleagues, which makes use of a specific theoretical 
construct: “awareness of mathematical patterns and structure” (AMPS)  (Mulligan, 
2009; Mulligan, 2011; Mulligan & Mitchelmore, 2013). The model describes 
different levels of structural development, or of AMPS, and relates these, oOn one 
hand, the researchers show how AMPS correlates to students’ general mathematical 
achievement; , and, on the other hand, AMPS is theorized as an underlying construct 
common to a range of concepts and skills based on a broad range of cognitive factors, 
including (though they are not limited to) visualization, visual memory and 
representation, reasoning and inference (Mulligan, Mitchelmore & Stephanou, 2015). 
 
Moreover, methodologically, some models seem to be developed in two different 
ways. The first, stemming from from personal elaborations of theoretical 
considerations emerging from a review of the literature, previous studies, and 
clinical analyses (as in the case of Geary’s model, 2004), leading to ans to “a priori” 
models (we shall refer to this approach in developing models as top-down); while 
other. The second, developed through models seem to be developed as attempts of 
grouping students’ performances on batteries of tasks in various ways (e.g, Fuchs & 
Fuchs, 2002; von Aster, 2000), leadsing to an “a posteriori” models (we shall refer to 
this approach as bottom-up). We do not have evidence to claim that either 
methodological choice is more sound than the other. However, we note that the 
choice does make a difference in the role played by the assessment tasks used in the 
studies. In a bottom-up approach, analyses of students’ performance on sets of 
assessment tasks constitute the emerging models themselves, while in top-down 
approach, assessmentIn particular, if tasks are designed to bring empirical evidence 
to potentially support an “a priori” model. In this case they must be aligned with the 
basic theoretical assumptions upon which the model is grounded, and this 
alignment must be made explicit in the experimental design. This is the approach we 
take here and we will make such alignment explicit in section 5. 
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3. A four-pronged model for detecting strengths and weaknesses 
in learning mathematics 
The models presented in the previous section, together with an analysis of existing 
literature on hypotheses underlying MLD, and the clinical experiences of the authors, 
contributed to the development of the four-pronged model we now present 
(published in Authors, 2014). In particular, our model tries to overcome some 
limitations of the previous models. For example, in Geary’s model (2004) it is not 
clear how the underlying “cognitive systems”, within which the deficits may reside, 
correspond to the “conceptual and procedural supporting competencies” in 
mathematical achievement. Moreover, this model does not take into account any 
“core number” hypotheses.  
 
On the other hand, von Aster and Shalev’s model (2007) focuses exclusively on 
development of the core number domain. Furthermore, in such model cardinality is 
assumed to be developed before ordinality. However, there is increasing evidence 
suggesting that development proceeds in the opposite direction: already in the late 
1970’s some neuro-scientific experiments suggested that ordinality occurred in 
young children at a much earlier age than cardinality (Brainerd, 1979); and more 
recent neural evidence shows that accessing ordinal information from numerical 
symbols relies on a different network of brain regions and that such accessing has 
qualitatively different behavioral patterns when compared to ordinal processing of 
perceptual magnitudes (Lyons & Beilock, 2013; Coles, 2014; Lyons & Ansari, 2015). 
 
The model we have been developing hypothesizes associations between sets of 
mathematical skills. We chose not to introduce new theoretical constructs, but 
instead to use the existing literature to identify fundamental mathematical cognitive 
skills, and group them into four previously identified domains1, revisiting MLD 
hypotheses introduced in the cognitive psychology literature and intertwining them 
in a mathematical-holisticly meaningful way. Below we summarize the sets of 
mathematical skills that hypothetically characterize each domain, as presented in 
Authors (2014). The skills considered in Table 1 are not a comprehensive list of all 
mathematical skills, but ones that, from the literature, seem to be particularly rooted 
in each of the domains2. 
 
Table 1 
 
Domain Mathematical skills associated with the domain 
Core number estimating accurately a small number of objects (e.g., 4-5); 

estimating approximately quantities; placing numbers on number 

                                                        
1 The domains are not considered, a priori, to be hierarchical in any way. 
2 In particular, many complex mathematical skills such as counting, recognizing patterns, 
base ten structure, multiplicative reasoning, etc., are not included, since they critically 
involve more than one domain. Moreover, we see their connection with a particular domain 
to be heavily based on how they are assessed. 
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lines; managing Arabic symbols; transcoding a number from one 
representation to another (analogical-Arabic-verbal) 

Memory 
(retrieval and 
processing) 

retrieving numerical facts; decoding terminology (numerator, 
denominator, isosceles, equilateral); remembering theorems and 
formulas; performing mental calculations fluently; remembering 
procedures and keeping track of steps 

Reasoning grasping mathematical concepts, ideas and relations; understanding 
multiple steps in complex procedures/algorithms; grasping basic 
logical principles (conditionality – “if…then…” statements –  
commutativity, inversion); grasping the semantic structure of 
problems; (strategic) decision making; generalizing 

Visual-spatial interpreting and using spatial organization of representations of 
mathematical objects (for example, numbers in decimal positional 
notation, exponents, geometrical figures or rotations); placing 
numbers on a number line; confusing Arabic numerals and 
mathematics symbols; performing written calculation when 
position is important (e.g. borrowing/carrying); interpreting graphs 
and tables 

 

4. Aims of this study 
Our first aim in this study is to test the four-pronged theoretical model described 
above and developed through a top-down approach, by studying students’ 
performances on a newly designed computer-based experimental battery of 
mathematical tasks. Such tasks, designed by the first author of this paper, are 
grouped a priori assuming that certain sets of tasks tap on a particular domain of 
mathematical cognitive skills. These assumptions are made explicit, for each, set of 
tasks, in section 5. Students’ performances are analyzed a posteriori, leading to a 
bottom-up grouping that we compare with the a priori grouping to test the solidity 
of the four-pronged model introduced above. The second aim of this study is to 
detect the most commongain insight into mathematics learning profiles of students 
with or without difficulties in learning mathematics. 
 
The age we chose to target with this first trial of the experimental battery was 10-12 
years, corresponding to 5th and 6th grade in Greek primary schools. This choice was 
made due to the assumption that the development of the mathematical skills elicited 
during the battery, in cases of typical development, was likely to be complete in 
children of this age range. The population we report on in this paper is a “typical 
population”, in order to register “typical” performance on the battery, and validate a 
tool for detecting a 10-12 year old (Greek3) student’s mathematical learning profile 
(at least with respect to the skills elicited). To put our findings in relation with other 

                                                        
3 Or possibly of other nationalities once the tool has been calibrated on other 
populations. 
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research on MLD, we used a standardized test, typically used in Greece to select 
underachieving students (with different levels of severity: Low Achievement (LA), 
or MLD) in mathematics.  
 
In particular, this paper addresses the following questions: 
1) How are tasks of the experimental battery correlated with each other?   
2) Is there evidence for supporting our theoretical four-pronged model?  
3) How do performances of students in the MLD and LA groups (according to the 

selection criterion) compare on the mathematical tasks of the experimental 
battery?  

4) What types of mathematical profiles emerge in general, and, in particular, do the 
under achieving students constitute separate groups?   

5. Method 

5.1 Participants 
The participants were 165 grade 5 and grade 6 Greek children (mean age=11.26, 
SD=.59 years), 91 of whom were males. They were randomly recruited within four 
public schools in Athens and the surrounding areas, from different socio-economic 
backgrounds. All children were fluent speakers of Greek, had normal visual acuity, 
and no hearing loss. Once schools had agreed to participate in the study, an 
information letter was sent to each child’s parents, together with an opt-out form. 
Once we received each approval form, a non-verbal IQ test (see section 5.4) was 
administered and students were excluded if they had a score below 1.5 SD. Approval 
forms were received for a sample of 169 students. Four students were excluded due 
to low non-verbal IQ scores. 

5.2 Materials and procedure 
To the students who met the non-verbal IQ requirements, two other tests were 
administered: first a standardized test for assessing the student’s mathematics 
achievement (NUCALC battery, see section 5.3), and finally the experimental battery. 
All tests were administered individually by one of five trained research assistants, 
within the school context, in a computer lab in the school. The experimental battery 
was computer-based and was administered under the supervision of the research 
assistants, who would orally give instructions at the beginning of each new set of 
tasks. In all tasks there were two practice trials before the testing phase, to ensure 
that the student understood the task. The order of the tasks of the test was the same 
for all students. Generally, the individual test administration was completed within 
one session lasting about 70 min. The administration procedure took place within 
two weeks. 

5.3 Mathematics achievement selection criterion  
The selection criterion was based on students’ total score on the Greek standardized 
version of Neuropsychological Test Battery for Number Processing and Calculation in 
Children (NUCALC battery) (Koumoula et al., 2004). It is an untimed paper-and-
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pencil arithmetic fluency test which consists of six subtests: Dictation of Numbers, 
Mental Addition, Reading Numbers, Oral Comparison, Problem Solving and Written 
Comparison. Children with low achievement below the 16th percentile on NUCALC 
battery were classified as MLD students, children with low average achievement 
between 17th and 30th percentile were classified as low achievement (LA) students 
and children with scores above the 40th percentile were classified as typical 
achievement (TA) students. The above cut off scores were based on the Greek 
standardized norms of the NUCALC battery. 

5.4 Non-verbal IQ 
The Colored Raven Progressive Matrices is a normed untimed visual-spatial 
reasoning test for children in the age range of 5–11 (Raven, Court, & Raven, 1995). 
Children were assessed on 36 items involving colored patterns and were asked to 
select the missing piece out of six choices. 

5.5 The experimental battery 
The experimental battery is a computer-based total of 13 tasks which was 
developed by the first author especially for the purpose of the present study. All 
tasks was programmed in the C++ language using the open-source cross-platform 
application framework QT version 4.7 and the open-source GNU compiler gcc. All 
the functions were implemented using generic QT/C++ approaches, so that the same 
code can be compiled for different operating systems (OS) such as Windows, Mac OS 
X and Linux, with only minor differences in the appearance. The actual tests were 
executed on Windows machines. Once the battery had been completed on the 
computer, output was extracted in the form of a bar chart in which the student’s 
Stanine Score (Thorndike, 1982) on each task was shown. Below we describe the 
tasks of the experimental battery and explain their a priori grouping in the domains 
of the four-pronged model.  
 
5.5.1 Tasks in the core number domain 
 
Subitizing-Enumeration 
Students were instructed to compare a random array of dots shown on the left half 
of the computer screen to an Arabic digit shown on the right half of the screen. 
Underneath the array of dots appeared the word “NO”, and underneath the Arabic 
digit appeared the word “YES”. Children were asked to respond by pressing a “YES” 
key (Q, W, E, R, A, S, D, F, Z, X, C) on the left side of the keyboard or a “NO” key (U, I, O, 
P, J, K, L, N, M, ; , <) on the right side of the keyboard according to whether the two 
numbers represented the same numerosity or not. Numerosities varied between 1 
and 10. Trials including 1–4 dots (10 with the same numerosity and 10 with 
different numerosities) were combined into a subitizing measure and trials 
including 5–10 dots (18 with the same numerosity and 18 with different 
numerosities) were combined into an enumeration measure. The task consisted of 
56 stimuli (Cronbach’s α=.83) presented in a fixed, pseudo-random order (the same 
item never appeared in two consecutive trials). Each trial started with the 
presentation of a pair remaining on the screen until a response was given, followed 
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by an ISI (white screen) of 500 milliseconds (ms). The software recorded both 
accuracy and reaction times to the order of ms. The inverse efficient score (IES) was 
used as the measure. IES consists of the mean reaction time of the correct responses 
divided by the proportion of the correct responses (Townsend & Ashby, 1978).  
Since the reaction times are expresseds in ms and divided by proportions, IES is 
expressed in ms as well. The larger the IES of a student, the worse his performance. 
 
Number Magnitude Comparison 
Two numbers from 1 to 98 in Arabic digits were simultaneously displayed on the 
computer screen, one on the left half of the computer screen and the other on the 
right half. Underneath of each number appeared the word “LARGER.” Children were 
asked to select the larger number by pressing a “LEFT” key (Q, W, E, R, A, S, D, F, Z, X, 
C) on the left side of the keyboard or a “RIGHT” key (U, I, O, P, J, K, L, N, M, ; , <) on 
the right side of the keyboard corresponding to the right correct response. The 
numbers were displayed until the students responded by pressing the button to 
response. Comparison pairs varied along two variables: size (small: from 1 to 9; 
large: from 23 to 98) and distance (close: distance of 1; far: distance of 4 or 5). The 
pairs were presented as follows: eight small pairs with small distance and eight 
small pairs with large distance, eight large pairs and eight large pairs with large 
distance and small distance, respectively. Each pair appeared twice, once in 
ascending and once in descending order. The 64 stimuli (Cronbach’s α=.70) were 
presented in a fixed, pseudo-random order (the same item never appeared in two 
consecutive trials). Each trial started with the presentation of a pair, shown until a 
response was given, followed by an ISI (white screen) of 500 ms. The inverse 
efficient score (IES) was used as the measure. 
 
Dots Magnitude Comparison 
Students were simultaneously presented with two arrays of dots, one on the left half 
of the computer screen and the other on the right half. Underneath each array of 
dots appeared the word “MORE.” Children were asked to select the one that 
contained more dots by pressing a “LEFT” or a “RIGHT” key of the keyboard 
corresponding to the right response. Stimuli were pairs of black dots, created based 
on Gebuis and Reynvoet’s work (2011), and the matlab code publicly provided by 
the authors4. Comparison pairs varied along the Weber fraction (1; 0.5; 0.3; 0.25; 
0.2; 0.16 and 0.14) in two numerical sizes: seven small pairs (1-8 dots) and seven 
large pairs (14-28 dots). Each pair appeared twice, once in ascending and once in 
descending order in a fixed, pseudo-random order (the same item never appeared in 
two consecutive trials). Each of the 28 trials (Cronbach’s α=.88) started with the 
presentation of a pair that remained on the screen until a response was given, 
followed by an ISI (white screen) of 500 ms. The mean response time (of the correct 
answers only) was used as the measure. 
 
The above three tasks were designed based on main hypotheses advanced in the 
literature on deficits within the two preverbal (or non-symbolic) systems for 
                                                        
4 See http://titiagebuis.eu/Materials_files/comp_dots_version180112.m 
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processing quantities. A first system is: (1) the object tracking system (OTS) that is 
precise, limited by its absolute set size, and that creates an object file with concrete 
information for each objects observed simultaneously (e.g., Piazza, 2010); (2). A 
second system is the approximate number system (ANS) that is extensible to very 
large quantities, operates on continuous dimensions, and yields and approximate 
evaluation in accordance with Weber’s law (e.g., Halberda & Feigenson, 2008; Piazza, 
2010). The hypotheses on deficits within the OTS or the ANS, as well as hypotheses 
on deficits in other mechanisms specific to numerical (symbolic and non-symbolic) 
processing have been reviewed by Andersson and Östergren (2012), and classified 
into the following categories: defective ANS; defective OTS; defective numerosity-
coding; access deficit; multiple deficit.  
 
For example, De Smedt, Noel, Gilmore and Ansari (2013) highlight how results on 
the specific association between numerical magnitude processing and mathematics 
achievement differ depending on the number format used: for symbolic numbers 
(digits), data seem to be consistent and robust across studies and populations, while 
for non-symbolic formats (dots), many conflicting findings have been reported. 
These and other hypotheses related to numerical cognition are also being 
investigated in neuroscience (Dehaene, 1997; Piazza et al., 2004;  Pinel, Piazza, Le 
Bihan & Dehaene, 2004); Nieder, 2005; Butterworth, 2010). Because of the 
important role these hypotheses have played in the literature, we will refer to them 
as hypotheses on “core number” deficits. The three tasks designed for our study aim 
at detecting domain specific deficits in core number processing. 
 
5.5.2 Tasks in the memory domain 
 
Addition Facts Retrieval 
Students were simultaneously presented with a single-digit addition (with operands 
between 2 and 9) that appeared in the center of the screen, and with two possible 
answers underneath (one on the left half of the screen and the other on the right 
half). The possible answers were displayed until the child responded by pressing, as 
quickly as possible, a “RIGHT” or a “LEFT key of the keyboard corresponding to the 
correct response. Each trial was followed by an ISI (white screen) of 500 ms. The 
items varied based on the numerical sizes of the sums (equal to or less than 10 or 
greater than 10), and on the relationship between the two possible answers (they 
differed by one unit or had the same parity, see Krueger & Hallford, 1984). The two 
answers always had the same tens place digit. Twelve additions presented unequal 
operands, with their sum equal to or less than 10, and the possible answers differed 
by one unit. Fifteen trials consisted of unequal operands with their sum above 10, 
and for eight trials the possible answers differed by one unit, while the rest had the 
same parity. Finally, the task included six items with equal operands (Cronbach’s 
α=.77). The inverse efficient score (IES) was used as the measure. 
 
Multiplication Facts Retrieval 
Students were simultaneously presented with a single-digit multiplication (with 
factors between 2 and 9) that appeared in the center of the screen, and with two 
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possible answers underneath (one on the left half of the screen and the other on the 
right half). They were instructed to choose the right answer as quickly as possible 
by pressing a “RIGHT” or a “LEFT key of the keyboard. The trials varied based on the 
numerical size of the factors (equal to or less than 5 or greater than 5) and on the 
relationship between the two possible answers (the wrong answer could be a 
multiple of one of the factors or not). The two answers always had the same tens 
place digit. The wrong answer had the same parity as the correct one, thus 
preventing the use of a short-cut based on parity checking (Krueger & Hallford, 
1984). In 10 trials both factors were equal to or less than 5, in 15 trials one factor 
was equal to or less than 5 and the other greater than 5, and nine trials contained 
factors which were both greater than 5. In 28 trials the wrong answer was a 
multiple of one of the factors (Cronbach’s α=.75). The possible answers were 
displayed until the child responded by pressing the right or left key corresponding 
to the correct response. The inverse efficient score (IES) was used as the measure. 
 
 
Math Terms 
Students were simultaneously presented each time with a shape or a number on the 
center of the screen, in red, and with three math terms underneath. They were 
instructed to choose the term which corresponded to the red stimulus by clicking 
with the mouse on one of the possibilities. Twelve trials displayed shapes related to 
geometry (e.g., Is the colored shape L called “right”, “acute” or “obtuse”?), while the 
remaining 18 trials pertained to the content area of arithmetic, (e.g., Is the colored 
digit in 238 called “unit”, “ten” or “tenth”?), presenting numbers as stimuli 
(Cronbach’s α=.68). The stimuli remained on the screen until a response was given 
and there was no time limit. The percentage of correct responses was used as the 
measure.  
 
Mental Calculations 
This task consisted of 10 trials (Cronbach’s α=.78) in which students were asked to 
type in the result of an operation that appeared horizontally in the center of the 
computer screen. The operations were between numbers with up to 3 digits and 
they did not include division (e.g., 245 + 55 = _ ; 52 - 13=_; 3 x 25 =_). The stimuli 
remained on the screen until a response was given. There was no time limit. After 
each response the student could move on to the next trial by clicking with the mouse 
on the label “NEXT” which was on the right corner of the screen. The percentage of 
correct responses was used as the measure. 
 
The Addition facts retrieval and Multiplication facts retrieval tasks were elaborated 
based on literature on retrieval of numerical facts (Geary, 1993; 2004; von Aster, 
2000; Woodward & Montague, 2002) and accurate performance of mental 
calculation (Andersson & Östergren, 2012; Ashcraft, 1992; Campbell, 1987a, 1987b, 
1991). Some design aspects were inspired by Krueger and Hallford’s work (1984). 
The Math terms task is based on literature on decoding terminology (Geary, 1993; 
Hecht, Torgesen, Wagner & Rashotte, 2001). Finally, the Mental calculations task 
was based on studies on students’ grasping of mathematical relations (e.g., Geary, 
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1993; Schoenfeld, 1992), classified in our theoretical model as a skill pertaining to 
the reasoning domain. In fact, we were uncertain about the placement of this task: 
although it was originally designed to elicit skills primarily from the memory domain, 
we assumed it could also be grouped with tasks eliciting skills in the reasoning 
domain. 
 
 
5.5.3 Tasks in the number lines domain 
 
Number Lines 0-100 
A series of twenty-two number lines, in pairs, containing a horizontal line with two 
endpoints (0 and 100) was presented to the student, together with a target number 
(e.g., 29) above the center of each line. In this Number to Position task (see Siegler & 
Opfer, 2003) the student was asked to consider the first number line (the one on 
top) and use the mouse to click on the position where the target number (above it, 
in the center) should lie (for a detailed description, see Siegler & Booth, 2004). The 
number line coordinates for each response were recorded, based on a pixel count 
along the length of the line. Accuracy was defined here as the absolute difference 
between the student’s placement of a number and its correct position. These 
measures were taken for the student’s placement of numbers on the 11 lines on the 
top row of each trial (Cronbach’s α=.88). The mean of these absolute differences was 
used as the measure. 
 
Ordinality 
This task was presented to the student together with the previous one (Number 
Lines 0-100) and it was performed on the second line (the one below) of the two 
presented simultaneously. The student was asked to perform the same task on the 
second number line (below it and aligned with it) placing the second target number 
on it. As this task was carried out, the first estimated position remained on the 
screen. The software checked whether the placement of the number on the 11 lines 
in the lower row of each trial was coherent with the estimation of the top target 
number (Cronbach’s α=.88). The measure was the percentage of correct responses. 
 
 Number Lines 0-1000 
This task was designed in the same way as the Number lines 0-100, except that each 
line was presented alone. The task consisted of 16 trials (Cronbach’s α=.74). 
Accuracy was defined as the absolute difference between the student’s placement of 
a number and its correct position. The mean of these absolute differences was used 
as the measure. 
 
The three aforementioned tasks focus on rather specific aspects relating visual 
spatial skills to properties of natural numbers. Based on this choice to focus on 
number lines and not include other types of visual-spatial skills, in the rest of the 
paper we will refer to what we called the “visual-spatial domain” in the theoretical 
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model as the Number lines domain5. The reasons for our focus on natural numbers 
and number lines are that we were interested in studying relationships between the 
main core number skills and other skills, while still related to numbers, also might 
pertain different domains. Indeed, MLD difficulties in mathematics, and in particular 
in arithmetic, haves also been put in relationship with the atypical development of 
an internal representation of the number line: a number of studies have explored a 
relationship between space and the processing of numbers (e.g., Pinel et al., 2004; 
Seron et al., 1991), ever since initial hypotheses on such a relationship advanced by 
Galton in 1880. These studies suggest that the (mental) number line model 
corresponds to an intuitive representation and to a natural translation of the 
sequence of (natural) numbers into a spatial dimension. The number line model is 
not a static representation, nor is it necessarily innate6, instead studies suggest that 
it evolves as the subject develops cognitively, and such evolution depends on 
cultural influences (see, for example, Zorzi, Priftis & Umiltà, 2002). Typically, the 
representation in young children seems to be of a logarithmic nature, with “smaller” 
numbers (e.g., 1, 2, 3) more distant from one another with respect to larger numbers 
(e.g., 8, 9, 10) which are ‘closer’. As the child grows and is exposed to external 
representations of the number line and to more and more activities that involve 
numbers, the representation of the number becomes more linear, that is, all 
numbers assume the same distance from one another, as on the mathematical 
number line. Moreover, studies have related other factors such as children’s 
perception of structure and mental imagery to their development of the counting 
sequence 1–100, which is closely related to development of the number line (e.g., 
Thomas, Mulligan & Goldin, 1992). 
 
Tasks such as Number Lines 0-100  and Number lines 0-1000  have been used and 
described in various studies in the literature (e.g., Siegler & Opfer; 2003; Siegler & 
Booth, 2004), and they have been put relation with sets of visual-spatial skills 
(Cooper, 1984; Dehaene & Cohen, 1997; Ward, Sagiv, & Butterworth, 2009). 
Neuroscience has also shown that numbers and space associate in the parietal 
cortex for the general population (e.g., Hubbard, Piazza, Pinel & Dehaene, 2005) 
 
The Ordinality task was designed to gain deeper insight into students’ abilities to 
spatially relate positions of numbers (given in symbolic format) to one another. 
Indeed, ordinality refers to the capacity to place numbers in sequence; for example, 
to know that 6 comes before 7 and after 5 in the sequence of natural numbers. There 
is neuro-scientific evidence that accessing ordinal information from numerical 
symbols relies on a different network of brain regions and that such accessing has 
qualitatively different behavioral patterns when compared to ordinal processing of 
perceptual magnitudes (Lyons & Beilock, 2013). Other neuro-scientific studies have 
                                                        
5  In this a priori classification we were actually uncertain about the relationship of 
these 3 tasks with the four proposed domains. In fact, in the classification of skills in 
the theoretical model we included number lines tasks both in the visual-spatial 
domain and in the core number domain. 
6 For a more complete discussion see volume 42(4) of the Journal of Cross-Cultural Psychology. 
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associated activation of the posterior IPS to the ordinal nature of number forms 
(Tang, Ward & Butterworth, 2008), so a hypothesis that has been discussed is that 
the same networks may be involved in spatial-form synesthetes (Jonas & Jarick, 
2013) and thus in specific visual-spatial abilities. These might also be involved in 
perceiving pattern and structure, fundamental abilities linked to visual-spatial skills, 
studied in depth by Mulligan and her colleagues (e.g., Mulligan & Mitchelmore, 2013; 
Mulligan, Mitchelmore & Stephanou, 2015). 
 
 
5.5.4  Tasks in the reasoning domain 
 
Calculation Principles 
Students were instructed to type a number through the computer’s arithmetic 
keyboards  into a gap in an equation that appeared horizontally in the center of the 
computer screen, above an equality. The number to be typed into the equation could 
be obtained without computation, using the “relevant principle” introduced in the 
equality. The principles used were: commutativity of addition (e.g., “what is 253 
+147 =_, if 147 + 253 = 400?”)  and multiplication (e.g., “what is 150 ÷ 12 =_, if 120 x 
15 = 1800?”), the property of the equalities representing inverse operations 
(addition/subtraction and multiplication/division) (e.g., “what is 365 + 135 =_, if 
500 - 365 = 135?” or “what is 108 ÷6 =_, if 6 x 18 = 108?”), or “double plus or minus 
one” (e.g., “what is 4173 +4172 =_, if 4173 + 4173 = 8346?”). The 10 trials 
(Cronbach’s α=.73) were presented in a vertical format on the computer screen. The 
stimuli remained on the screen until a response was given. There was no time limit. 
Once the student had responded, s/he could pass to the next questions by clicking 
on “NEXT” which was on the right corner of the screen. The percentage of correct 
responses was used as the measure. 
 
 
Equations 
This set consisted of 10 trials (Cronbach’s α=.77) in which the students were 
instructed to fill the gap in an equation containing numbers with 1 to 3 digits, which 
appeared horizontally in the center of the computer screen. To fill the gap the 
student by using mouse had to click on the gap and select from a menu of possible 
answers which appeared under the gap. Only one answer was correct for each 
equation, and it could be a number or the math symbol of an operation. Four 
equations were made up of one operation, with the choice having to be made 
between numbers (e.g., _ ÷ 2 = 400, choosing between 200 or 800); in the other six 
trials the gaps had to be filled by choosing between the four basic math’s symbols (+ 
- x ÷) and the equations could have more than one operation (e.g., 37_5 = 185 or 10 _ 
8 _ 79 = 1). The stimuli remained on the screen until a response was given by 
choosing the proper number or symbol. There was no time limit. After each 
response students could move on to the next trial by clicking on the label “NEXT”. 
The percentage of correct responses was used as the measure. 
 
Word Problems 
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Each student was asked to solve short story problems involving addition, 
subtraction, multiplication, and division, according to the classification described 
below. In order to impose as light a linguistic demand as possible, the problems 
were one to three sentences long and the experimenter read the individual 
problems while the student followed along on the computer screen. The student 
was instructed to respond mentally (paper and pencil was not permitted) and type 
the numerical answer into an empty box, in the right hand corner of the screen by 
using the computer’s arithmetic keyboards. Six trials contained addition-subtraction 
problems (Carpenter & Moser, 1982): two comparison problems (e.g., “Chris has 35 
markers. We know that he has 5 less markers than John. How many markers does 
John have?”); three change problems (e.g., “Stella has washed 5 pairs of socks. When 
she went to take them out of the washing machine one sock was missing. How many 
socks did Stella take out of the washing machine?”); one equalization problem (e.g., 
“Peter has 40 cards. If Alex looses 10 cards, he will have as many as cards Peter does. 
How many cards does Alex have?”). The other seven trials consisted of 
multiplication-division problems (Vergnaud, 1983) (e.g.,  “One family has 3 children. 
Each child of the family drinks 2 glasses of milk every day. How many glasses of milk 
will the family drink during 10 days?”). One problem contained irrelevant 
information and four required two calculation steps (Cronbach’s α=.73). The stimuli 
remained on the screen until a response was given. There was no time limit. After 
each response students could move on to the next trial by clicking on the label 
“NEXT”. The percentage of correct responses was used as the measure. 
 
Calculation principles task was designed based on literature on students’ grasping of 
numerical relations, basic logical principles (e.g., Geary, 1993; Núñez & Lakoff, 
2005) and decision making (Desoete, & Roeyers, 2006). Previous studies have used 
tasks similar this one (e.g., Hanich et al., 2001). The design of Equations task was 
based on the same literature as for Calculation principles task. Word problems task 
was designed based on the vast literature on MLD and students’ problem solving 
skills. As has been done in many other studies, we based the addition and 
subtraction problems on seminal work by Carpenter and Moser (1982), while the 
multiplication-division problems on ideas of Vergnaud (1983), later developed and 
studied, for example, by Kouba (1989) and Mullligan and Mitchelmore (1997). 

 

5.6 Statistical analyses 
Statistical analyses were performed on IBM SPSS 21 and AMOS 21. Analysis of 
Variance and Pearson’s correlation coefficients were used to test for group 
differences and bivariate relationships respectively. Principal Components Analysis  
and Confirmatory Factor Analysis  were used to obtain an a posteriori grouping of 
the tasks in the battery, and elaborate and test the fit of three tested models  (one 
with all tasks grouped into a single factor, the second with the tasks grouped as in 
the a priori analysis, and the third with the tasks grouped as obtained from the PCA).  
Confirmatory Factor Analyses (CFA) were conducted using AMOS 21 (Arbuckle, 
2012). The following criteria were used in evaluating overall goodness of fit for the 
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measurement models: (a) the chi-square/degrees of freedom ratio, for which a 
value less than 2.0 indicates a good fit; (b) the robust Comparative Fit Index (CFI); 
(c) the Goodness of Fit Index (GFI); the Adjusted Goodness of Fit Index (AGFI); (e) 
the Root Mean-Square Error of Approximation (RMSEA) with 90% confidence 
intervals; and (f) the Standardized Root Mean-Square Residual (SRMR). These 
indices take sample size into consideration and specify the amount of covariation in 
the data, which is accounted for by the hypothesized each time model relative to a 
null model that assumes independence among variables. For the CFI, where 1.0 
indicates a perfect fit, a value in the range of .95 is generally accepted as indicating a 
good fit (Hu & Bentler, 1999). For the RMSEA, an adequately fitting model will have 
a value between .00 and .06, with 90% CIs between .00 and .10 (Browne & Cudeck, 
1993). Finally, regarding SRMR, a value less than .08 is considered a good fit (Hu & 
Bentler, 1999). 
Finally, K-means cluster analysis was conducted on the data from the tested 
population to gain insight into possible types of mathematical profiles, in particular 
those of underachieving students, as has been done in previous studies (e.g., von 
Aster, 2000; Bartelet, Ansari, Vaessen & Blomert, 2014). In this method the number 
of clusters is defined in advance; the criterion used to decide the number of clusters 
was the maximum number for which the differences between groups remained 
statistically significant (Tan, Steinbach & Kumar, 2006). 
 

5.7 Descriptive statistics of the three groups 
Background information and results on the NUCALC battery and the Nonverbal IQ 
are displayed separately for the mathematical learning disabilities (MLD), the low 
achievement (LA) and the typical achievement (TA) groups in Table 21.  
 
TABLE 21 here 
 
Comparisons among groups were made using analysis of variance (ANOVA), and 
significant group effects were investigated using the Tukey post hoc test, controlling 
alpha at p < .05. The groups differed both in NUCALC battery score, F(3, 164) = 
182.21, p < .001 and in Non-verbal IQ, F(3, 164) = 4.55, p < .01.  
 
Table 32 presents descriptive statistics (means and standard deviations) for each 
task of the experimental battery and for each one of the three ability groups. The 
tasks in Table 32 are presented in the order in which they were administered. In 
addition, Hedges’ g coefficients were calculated on the mean differences of the MLD 
and TA students only. Hedges’ g is a variation of Cohen's d that corrects for biases 
due to small sample sizes (Hedges & Olkin, 1985). The magnitude of Hedges’ g may 
be interpreted using Cohen's (1988) convention as small (0.2), medium (0.5), and 
large (0.8). It is apparent that in all cases (with the exception of the Dots Magnitude 
Comparison task) effect sizes were large. 
 
Table 32 here 
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6. Results 

6.1 Pearson correlation coefficients for the experimental battery 
Pearson correlation coefficients were calculated between the values of the tasks of 
the experimental battery (see Table 43). Most of the coefficients were statistically 
significant. The highest were (all statistically significant at the .001 level of 
significance): between tasks 4 and 5 (r = .92); between tasks 11 and 12 (r = .66); 
between tasks 1 and 2 (r = .64); between tasks 11 and 13 (r= .56); between tasks 12 
and 13 (r = .55); between tasks 2 and 4 (r = .55); between tasks 9 and 12 (r = .54). 
Other correlations worthy of attention are between the three tasks (1, 2, 3) designed 
to elicit core number skills. These three tasks also correlate moderately well with  
tasks 4 and 5 (r = .48, r = .55, r = .30 and r = .47, r = .49, r = .30, respectively). 
Moreover, task 2 has a moderately high correlation with task 12 (r = .48), and tasks 
4 and 5 with tasks 9 (r = .41, r = .42) and 12(r = .43, r = .40). Task 9, was found to 
correlate moderately well not only with task 12, but also with task 10 (r = .46), task 
11 (r = .47), and task 13 (r = .42). Also tasks 11, 12, and 13 were found to correlate 
moderately well. Task 8, Number Lines 0-1000, was unexpectedly found to correlate 
moderately with tasks 9, 11, 12 and 13. Finally we remark on one unexpected low 
correlation between tasks 6, Number Line 0-100 and 8, Number Line 0-1000. 
 
TABLE 43 here 

6.2 Principal Component Analysis 
Principal Component Analysis (PCA) was conducted on the tasks of the 
experimental battery. An orthogonal rotation (varimax) was chosen since the 
components were expected to be independent. The Kaiser–Meyer–Olkin measure 
(KMO = .81) verified the sampling adequacy for the analysis, and Bartlett’s test of 
sphericity [χ²(78) = 654.60, p < .001] indicated that correlations between items 
were sufficiently large for PCA (Field, 2009). All KMO values for individual items 
were >.51, which is above the acceptable limit of .5 (Field, 2009). An initial analysis 
was run to obtain eigenvalues for each component in the data. Four components had 
eigenvalues over Kaiser’s criterion of 1 and average communality was .68; in 
combination these four components explained 67.9% of the variance. Table 54 
shows the factor loadings after rotation. The items that cluster on the same 
components suggest that the first component groups tasks eliciting skills from the 
reasoning domain, the second groups tasks eliciting skills from the memory domain7, 
the third groups tasks eliciting skills from the core number domain and four 
component groups tasks eliciting skills from the number lines domain. 
 
TABLE 54 here 

6.3 Confirmatory Factor Analysis  
 
                                                        
7 Since both the tasks that loaded on this component elicit fact retrieval, in the rest 
of the paper we will refer to this component as facts retrieval domain. 
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The following three models were tested through CFA. In Model I all thirteen tasks 
were hypothesized to load on a single factor. In Model II the thirteen domains 
served as indicators for four factors as grouped in a priori four-pronged model: Dots 
magnitude comparison, Subitizing-Enumeration and Number Magnitude 
Comparison for factor 1; Multiplication Facts Retrieval, Addition Facts Retrieval, 
Maths Terms and Mental Calculations for factor 2; Equations, Word Problems and 
Calculation Principles for factor 3; and, finally, Number Lines 0-100, Ordinality and 
Number Lines 0-1000 for factor 4 (see also Table 98). Finally, the last model  (III) 
tested was the one identified by the PCA reported earlier (see Table 54). The fit 
indices of the three structure models of CFA are shown in Table 65. To compare the 
three models, the Akaike information criterion (AIC) was used with smaller values 
representing a better fit for the hypothesized model. 
 
TABLE 65 here 
 
As shown in Table 65, only model III provided acceptable fit to the data and 
exhibited the lowest AIC value. Based on these results, the a posteriori groupings 
identified by the PCA was found to be the best in capturing the structure of the 
battery of tasks. 
Based on the results of the PCA and CFA reported above, mean values for the four 
components (reasoning, facts retrieval, core number and number lines) were 
calculated. To rescale students’ raw scores on the 13 tasks into a standardized scale, 
Stanine scores were calculated. Table 76 presents the Pearson’s correlation 
coefficients between the four components of Grouping III. Four coefficients were 
statistically significant, but their values were low suggesting independence between 
the four components. Only those between facts retrieval and reasoning (r = .43) and 
facts retrieval and core number (r = .49) were large enough, indicating a percentage 
of shared variance around 20%. 
 
TABLE 76 here 

6.4 K-means cluster analysis 
Finally k-means clustering was used to partition the sample into homogenous 
subgroups. Table 87 shows the results obtained for six distinguishable clusters, the 
maximum number for which the differences between groups remained statistically 
significant (Tan, et al., 2006) as well as the distribution of MLD and LA students 
among the six clusters. The clusters describe two TA groups, the 2nd (no MLD or LA 
students) and the 3rd (no MLD and 3 LA students) with performances above average 
on all tasks, and with the following differences: the 2nd group performs less well on 
the core number tasks, but better than the 3rd group on the number lines and 
reasoning domain. The four other groups in which the LA and MLD students are 
distributed are characterized by the presence of different specific weaknesses we 
will discuss in section 7.4. 
 
Table 87 here 
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7. Discussion 

7.1  Correlations among the mathematical tasks of the experimental battery 
Tasks designed to elicit skills from the core number domain were correlated with 
each other, as expected. The same was found for the tasks assumed to elicit skills 
from the reasoning domain. However high correlations were also found between 
these tasks and two of the tasks designed to elicit skills from the memory domain: 
the Maths Terms task (task 9) and the Mental Calculations task (task 11). This result 
is not surprising when we consider recent findings correlating memory (working 
memory) and high achievement in mathematics (e.g., Passolunghi & Siegel, 2004; 
Andersson, 2008; Mammarella et al., 2010). A similar explanation holds for the 
correlation found between the Equation task (task 12) and the Facts Retrieval tasks 
(tasks 4 and 5). On the other hand, the correlation found between the same tasks (4 
and 5) and Maths Terms (task 9) can be explained by their common reliance on  the 
use of memory. The correlation between the Equation task (task 12) and the 
Number Magnitude Comparison (task 2) can possibly be explained by their eliciting 
the ability of dealing with the symbolic representations of numerosity. Weaknesses 
in this ability have been studied elsewhere in relation to underachievement in 
mathematics (e.g., Rousselle & Noël, 2007). 
 
A surprising result was the negative correlation of the Number Lines 0-1000 task 
(task 8) with the Number Lines 0-100 task (task 6). This finding needs further 
investigation, but a possible hypothesis could be that mathematical instruction 
frequently (this is the case in Greece, where the study was carried out) focuses on 
numbers up to 100 in early grades (pre-K, 1st and 2nd grade), and only later is 
extended to larger numbers up to 1000 (3rd grade), with less focus. Therefore skills 
related to placing numbers on 0-100 lines and ordering numbers may be 
fundamentally different from those developed for 0-1000 lines.  

 

7.2 Evidences for supporting the four-pronged model for detecting strengths 
and weaknesses in learning mathematics 
PCA revealed that the tasks designed do indeed fall into four components, which 
correspond to our a priori grouping of the tasks, with only a few changes. Both the a 
priori and posteriori grouping of the tasks are shown in Table 98. 
 
TABLE 98 HERE 
 
The differences of this grouping compared to the original hypothesized grouping 
appear clearly in Table 98 comparing the a priori and a posteriori classification of 
the tasks: three of the thirteen types of tasks did not load on the expected 
components. 1) The Number Lines 0-1000 task loaded with the tasks designed to 
elicit skills from the reasoning component; 2) the Maths Terms task also loaded on 
the reasoning component; 3) the Mental Calculations task also loaded on the 
reasoning component. Although the Maths Terms task was expected to fall on the 
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memory component, we could explain its tight relationship to the reasoning tasks 
because of a possible significant semantic component of the tasks. The placement of 
the Number Lines 0-1000 task differed from that of the  Number lines 0-100 tasks. 
This finding is consistent with the weak correlation found and discussed in section 
7.1; it needs further investigation, and we suggested a possible hypothesis for it 
above. 
 
Moreover, within each component the tasks were also highly correlated. Particularly 
strong correlations were obtained for the following components: reasoning – 
between Mental Calculation and Equations, Mental Calculation and Word Problems, 
Equations and Word Problems; facts retrieval – between Addition Facts Retrieval 
and Multiplication Facts Retrieval; core number – between Subitizing-Enumeration 
and Number-Magnitude Comparison.  
 
The only other high correlation obtained that does not correlate tasks grouped in a 
same component is between Number Magnitude Comparison and Addition Facts 
Retrieval. This finding suggests that managing Arabic digits is highly correlated with 
facts retrieval, which is consistent with studies that suggest that students who have 
trouble overcoming difficulties in arithmetic may have weak symbolic comparison 
abilities (Rousselle & Noël, 2007) and/or weak fact retrieval mechanisms 
(Andersson, 2008; Geary, 1993). 
 
Confirmatory factor analysis also revealed that such grouping into the four expected 
components is also the best fit of three models analyzed. Pearson’s correlation 
coefficients between the four components of model III emerging from the PCA 
revealed that the components are mutually independent. This suggests 
independence between the sets of skills elicited by the tasks, which can, in turn, and 
in a much weaker way, suggest independence of the four dimensions of the model. 
Therefore, we can expect that if the mathematical skills of a student (including those 
with an MLD or LA profile emerging from a standardized test like NUCALC battery) 
are weak within a component, they will not necessarily be weak on other 
components. This is further supported by the different profiles that emerged from 
cluster analysis. 
 

7.3 MLD and LA students’ performance on the mathematical tasks of the 
experimental battery 
As expected, we found that the TA group outperformed both the LA and the MLD 
groups on all tasks of the battery; moreover, the LA group outperformed the MLD 
group on all tasks except for the Dots Magnitude Comparison task; and the MLD 
group performed significantly less well than the control TA group (even with 
corrections of biases due to the small sample size obtained through use of Hedges’ 
g) on all tasks except the Dots Magnitude Comparison task. 
These findings, a part from the anomaly on the performances on the Dots Magnitude 
Comparison task that we explain in the section on limitations of this study (section 
8), suggest a continuum in students’ math abilities that goes from low, to average, up 
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to exceptional, a result which is in line with other studies (e.g.,  Dowker, 2005; 
Raghubar et al., 2009; Reigosa-Crespo et el., 2011). 

 

7.4 Types of emerged mathematical profiles in general and those of MLD and LA 
specifically   
Our results from the k-means cluster analysis support that students, both the 
normal/high achievers and the underachievers, do not all share the same sets of 
strong and weaker mathematical skills; nor that under achievement in mathematics 
is related to weaknesses in a single domain. These results are consistent with other 
studies attempting to identify defining characteristics of MLD (e.g., Geary, 2004; 
Andersson, & Östergren, 2012; Lewis & Fisher, 2016; Szucs, 2016). Although the 
population in the present study contains only 9 MLD and 17 LA students, the 
distribution of these 26 students within the 1st, 4th, 5th and 6th cluster identified 
suggests that the mathematical profiles of the weaker students are not of a same 
type. Instead, our results suggest that for these students, just like for the other 
students, cognitive strengths or weaknesses may rely in any of the four domains of 
the four-pronged model. In particular, we found that  

• 4th cluster performs very poorly on tasks eliciting skills from the facts 
retrieval and core number domain, while their performance on tasks on the 
number lines or eliciting skills from the reasoning domain are around average, 
or slightly above average;  

• 5th cluster performs very poorly on the reasoning domain, but around or 
above average on tasks eliciting skills from the other domains;  

• 6th cluster performs very poorly on the core number domain, but around or 
above average on tasks eliciting skills from the other domains;  

• 1st cluster performs poorly on all tasks. 
Both the 2nd and the 3rd clusters perform above average on all tasks, but excel 
respectively on tasks eliciting skills from the reasoning domain or the core number 
domain. Consistently with studies suggesting a continuum in students’ math abilities 
that goes from low, to average, up to exceptional (Dowker, 2005), tThe 1st cluster we 
found contains the weakest students and the other clusters identify students with 
performances characterized by weaknesses on certain types tasks (4th, 5th, 6th) up to 
the 2nd and 3rd clusters identifying the normal to high achievers. This is consistent 
with studies suggesting a continuum in students’ math abilities that goes from low, 
to average, up to exceptional (Dowker, 2005). These results are also consistent with 
Szucs’s plea to better understand MLD and its possible subtypes by taking a 
multidimensional parametric approach, positioning individuals in a 
multidimensional parametric space, in order to understand the multidimensional 
structure of cognitive functions and their relationship to mathematical performance 
(Szucs, 2016). 
Finally, although the 1st cluster may stand for a persistent and serious math 
disability due to very low performance in all domains, because of the distribution of 
the 26 under achieving students in 5 groups, we prefer to see our results as 
supporting the hypothesis that developmental mathematical  difficulties can have 
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multiple origins (Jordan, Hanich & Kaplan, 2003; Mazzocco & Myers, 2003; Dowker, 
2005). 

8. Limitations 
 
A first limitation of the study is the still limited selection of mathematical skills 
assessed in the battery: we mostly focused on tasks within the domain of arithmetic, 
that are related to main hypotheses advanced on MLD in the literature. Moreover, 
the detection of skills pertaining to the visual-spatial domain through the 
experimental battery is particularly weak. In fact we spoke of the number lines 
domain, instead of the visual-spatial domain because the only tasks in the battery 
used to assess this domain involved the number line. This issue is being addressed 
in an ongoing study in which a broader range of tasks eliciting visual-spatial skills 
are used. 
A few limitations have to do with programming defects of the computer software 
used to administer the battery. In evaluating the students’ performance on the 
battery, we did not control for reaction time, which implies that we cannot know 
whether the correlation between tasks and the factors identified is due to the 
content of the tasks or to the measure used. Other studies do control for this factor 
(e.g.  Reigosa-Crespo et al., 2011) and we have already  implemented this in the 
newer version of the battery. Moreover, in the Dots Magnitude Comparison task 
there is a programming defect: when the sets of dots were presented to the students 
on the screen, they did not disappear until the students provided an answer. This 
allowed some students to count the dots, delaying their response time, even though 
they were asked not to do so and answer as quickly as possible. We also note that in 
the new version of the battery the arrays of dots appear for a controlled period of 
time. 
A final limitation regards the generalizability of the results of the study based on the 
age-range and nationality of the participants. The authors are currently adjusting 
and enriching the battery so that it can be administered to an international 
population of school students. 
 
9  Conclusion and future directions 
In this study we described and tested a literature driven four-pronged model 
designed to identify stronger and weaker sets of students’ mathematical skills. To do 
this we designed a computer based experimental battery for students aged 10-12 
inspired by the model, and we compared an a priori grouping of the tasks to a 
posteriori groupings obtained through explanatory and confirmatory on the data 
obtained from students’ performances. The analyses confirmed a posteriori 
grouping of the mathematical skills elicited in the experimental battery that is 
mostly consistent with the a priori grouping supporting the solidity of the four-
pronged model. 
We also searched for mathematical profiles through k-means cluster analysis, which 
showed how it is possible for both MLD students and non-MLD students to belong to 
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clusters with quite different characteristics, and thus apparently have completely 
different mathematical profiles. Moreover, our results suggest a continuum in 
students’ mathematical abilities and supporting the hypothesis that MLD can have 
multiple origins, as has been suggested by other research studies (e.g., Jordan, 
Hanich & Kaplan, 2003; Mazzocco & Myers, 2003; Dowker, 2005; Szucs, 2016). 
 
We believe it is a high priority that research on mathematical learning and teaching, 
including research on difficulties in learning mathematics, is approached in an 
interdisciplinary way. However, as educators, we acknowledge the difficulty of 
implementing in the field of mathematics education some important findings from 
neighboring fields of research in which different research paradigms are used (e.g., 
Ansari & Lyons, 2016). Our theoretical four-pronged model was a first attempt at 
intertwining main MLD hypotheses in a mathematically holistic way, with the aim of 
constructing a tool giving insight to educators (classroom teachers, one-on-one after 
school coaches, clinicians who propose remedial interventions) on how to better 
understand the needs of the students they are working with. This is the direction we 
have been working in, trying to develop tools for unearthing a student’s cognitive 
weaknesses and strengths in mathematics, no longer focusing on specific 
“syndromes” (frequently labeled as “dyscalculia”, “dyslexia”, “ADHD”, or “autistic 
spectrum”) but instead bringing to the forefront their acquisition of specific 
mathematical skills. This direction of research seems to be in line with the approach 
to specific learning disorders with impairment in mathematics suggested in DSM V 
(2013). 
 
One of our more long term aims is to design assessment tools that elicit greater 
numbers of skills pertaining to the four domains of the four-pronged model. This 
could provide further insight into relationships between students’ stronger and 
weaker skills and their overall mathematical performance. More in general, within 
tThis trend of research, we propose to could, more in general, investigate 
relationships between students’ performance on this (and more complete versions 
of the) battery of tasks and their performance on tasks in the mathematics curricula 
introduced by their teachers. This line of research should explore the potential of 
the model for sketching out students’ mathematical learning profiles,, which could 
eventually lead to more efficient design of remedial interventions. Indeed, we expect 
that (but for the time being this is only a working hypothesis) students with 
different profiles respond differently to a same remedial intervention. In particular, 
interventions could be better tailored to lead the student they are designed for to 
repeated success by building on his/her strengths, while avoiding to propose 
repetitive tasks that cause repetitive failure experiences (Author and other, 2014), 
maximizing the learning opportunities of all students (as proposed in other & 
Author, 2015). 
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Table 1. 

Domains of the four-pronged model and sets of mathematical skills associated with each 

domain. 

 

Domain Mathematical skills associated with the domain 
Core number estimating accurately a small number of objects (e.g., 4-5); 

estimating approximately quantities; placing numbers on number 
lines; managing Arabic symbols; transcoding a number from one 
representation to another (analogical-Arabic-verbal) 

Memory 
(retrieval and 
processing) 

retrieving numerical facts; decoding terminology (numerator, 
denominator, isosceles, equilateral); remembering theorems and 
formulas; performing mental calculations fluently; remembering 
procedures and keeping track of steps 

Reasoning grasping mathematical concepts, ideas and relations; understanding 
multiple steps in complex procedures/algorithms; grasping basic 
logical principles (conditionality – “if…then…” statements –  
commutativity, inversion); grasping the semantic structure of 
problems; (strategic) decision making; generalizing 

Visual-spatial interpreting and using spatial organization of representations of 
mathematical objects (for example, numbers in decimal positional 
notation, exponents, geometrical figures or rotations); placing 
numbers on a number line; confusing Arabic numerals and 
mathematics symbols; performing written calculation when 
position is important (e.g. borrowing/carrying); interpreting graphs 
and tables 
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Table 2. 

Descriptive statistics for the NUCALC and nonverbal IQ tests for students in Grades 5 

and 6. 

 MLD  LA  TA 
N (Number of boys) 9 (6)   17 (6)   121 (74)  
N per Grade 5/6 5/4   8/9   66/55  
 M SD  M SD  M SD 
Age 10.92 0.29  11.27 0.64  11.33 0.59 
NUCALC battery 51.33 7.05  58.97 1.67  66.27 1.49 
Nonverbal IQ 27.67 3.67  27.59 3.73  30.44 3.60 
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Table 3. 

Descriptive statistics for each task of the experimental battery per group and Hedges’ g coefficients 

 MLD (N=9) LA (N=17) TA (N=121)  

M SD zskew zkurt M SD zskew zkurt M SD zskew zkurt Hedge’s g * 

1. Subitizing-Enumeration 3557.80 1491.74 2.61 2.87 3107.62 818.96 .33 -.03 2558.80 960.12 11.08 23.69 1.00 

2. Number Magnitude 

Comparison 
1500.21 415.93 1.68 1.57 1292.52 323.35 1.43 .69 1115.90 228.84 3.10 1.19 1.57 

3. Dots Magnitude 

Comparison 
1815.52 697.90 -.21 -.45 2167.16 1310.70 2.14 .58 1801.94 1009.08 8.48 9.20 .01 

4. Addition Facts Retrieval 4261.41 1167.97 .67 -.19 3361.68 1000.61 1.49 1.06 2913.72 1150.77 6.17 7.92 1.17 

5. Multiplication Facts 

6. Retrieval 
4789.81 1751.48 .72 .48 3346.77 1209.82 1.81 1.65 3012.14 1313.90 6.74 7.13 1.32 

7. Number Lines 0-100 7.50 4.19 1.89 1.20 4.89 1.33 .10 -.68 4.47 1.68 7.29 8.57 1.57 

8. Ordinality .86 .14 -.59 -.97 .94 .06 -.56 -.45 .96 .07 -8.04 6.59 1.31 

9. Number Lines 0-1000 136.64 57.09 .53 -.44 131.68 53.81 .66 .47 76.02 33.15 5.19 2.70 1.73 

10. Maths Terms .39 .12 .58 -.77 .49 .15 -.63 -.54 .65 .20 -.59 -1.76 1.32 

11. Calculation Principles .43 .20 .02 -.99 .70 .18 -.56 -.69 .81 .15 -6.79 7.03 2.47 

12. Mental Calculations .26 .22 -.29 -1.15 .51 .30 .25 -.84 .76 .22 -3.53 -.23 2.27 

13. Equations .31 .22 -.50 -.94 .54 .16 .36 1.14 .74 .17 -1.60 -1.30 2.48 

14. Word Problems .21 .12 -.37 .39 .48 .21 -.49 .71 .68 .24 -4.02 .66 2.01 
* Hedges’ g was calculated on the mean differences between the control and the MLD students only 
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Table 4.  

Pearson’s correlation coefficients between the tasks in the experimental battery. 

 
2 3 4 5 6 7 8 9 10 11 12 13 

1. Subitizing-Enumeration .64*** .49** .48** .47** .20* .14 .09 .29** .23** .17* .33** .29**

2. Number Magnitude Comparison - .41*** .55*** .49*** .21* .21** .18* .34*** .30*** .19* .48*** .30***

3. Dots Magnitude Comparison 
 

- .30*** .30*** -.00 .00 .16 .03 -.01 -.12 .11 .04 

4. Addition Facts Retrieval 
  

- .92*** .10 .17* .18* .41*** .25** .27** .43*** .25** 

5. Multiplication Facts Retrieval 
   

- .17* .18* .21* .42*** .25** .27** .40*** .18* 

6. Number Lines 0-100 
    

- .33*** .22** .28*** .33*** .20* .25** .28***

7. Ordinality 
     

- .03 .19* .28*** .17* .22** .24** 

8. Number Lines 0-1000 
      

- .41*** .21** .45*** .45*** .40***

9. Maths Terms 
       

- .46*** .47*** .54*** .42***

10. Calculation Principles 
        

- .36*** .46*** .48***

11. Mental Calculations 
         

- .66*** .56***

12. Equations 
          

- .55***

13. Word Problems 
           

- 

 *p<.05; **p<.01;  ***p<.001 

Page 32 of 37

URL: http://mc.manuscriptcentral.com/rald

Australian Journal of Learning Difficulties

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Table 5.  

Principle Component Analysis (varimax) of the tasks of the experimental battery. 

 Components 

 Reasoning Facts 
retrieval 

Core 
number 

Number 
lines 

Mental Calculations .77    

Equations .74    

Word problems .70    

Number Lines 0-1000 .70    

Maths Terms .59    

Calculations Principles .59   .47 

Multiplication Facts Retrieval  .88   

Addition Facts Retrieval  .86   

Dots Magnitude Comparison   .80  

Subitizing-Enumeration   .79  

Number Magnitude Comparison   .66  

Ordinality    .84 

Number Lines 0-100    .64 

Eigenvalues 4.57 2.14 1.09 1.03 

% of variance 35.12 16.47 8.41 7.93 
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Table 6. 

Summary of Fit Statistics for the three models tested (N=148). 

 

 χ2/df CFI GFI AGFI SRMR RMSE

A 

RMSEA 

90% CI 

AIC 

Model I 5.72 .59 .68 .55 .12 .18 .16 - .20 423.87 

Model II 3.26 .82 .83 .74 .13 .12 .11 - .14 256.13 

Model III 1.19 .99 .93 .89 .07 .04 .00 - .07 134.42 

Note. CFI = Comparative Fit Index; GFI = Goodness of Fit Index; AGFI = Adjusted 
Goodness of Fit Index; SRMR = Standardized Root Mean-square Residual; RMSEA = 
Root Mean-square Error of Approximation; CI = Confidence Intervals; AIC = Akaike 
Information Criterion. 
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Table 7. 

Pearson’s correlation coefficients between the four components as detected by the 

experimental battery. 

 
1 2 3 4 

1. Reasoning - .43*** .23** .34*** 

2. Facts retrieval  - .49*** .11 

3. Core number  
 

- .09 

4. Number lines  
  

- 

       **p<.01; ***p<.001 
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Table 8. 

Results of K-means cluster analysis (number of clusters = 6). 

 

 Clusters  

Mean  (SD) 1 (n=6) 2 (n=29) 3 (n=37) 4 (n=31) 5 (n=23) 6 (n=39)  

Core number 4.75  (1.77) 1.58 5.73 6.68 3.29 5.26 3.54 F=82.03, p<.001 

Number lines 4.94  (1.11) 2.95 5.77 4.95 5.18 4.24 4.82 F=8.53, p<.001 

Facts retrieval 4.77  (2.51) 3.14 6.65 6.52 1.46 4.13 4.99 F=132.25, p<.001 

Reasoning 4.91  (1.48) 1.97 6.80 5.02 4.29 3.50 5.16 F=41.93, p<.001 

 MLD (n=9)  3 0 0 4 2 0  

 LA (n=17)  3 0 3 4 2 5  
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 Table 9. 
    A priori and posteriori grouping of the tasks of the experimental battery 

A priori  Posteriori 
Core number Memory Number lines Reasoning  Core number Facts retrieval Number lines Reasoning 
Dots 
Magnitude 
Comparison 

Addition  
Facts  
Retrieval 

Number  
Lines 0-100 

Equations  Dots    
 Magnitude   
 Comparison 

Multiplication 
Facts  
Retrieval 

Number  
Lines 0-100 

Equations 

Subitizing-
Enumeration 

Multiplication 
Facts  
Retrieval 

Ordinality Word  
Problems 

 Subitizing- 
 Enumeration 

Addition   
Facts  
Retrieval 

Ordinality Word 
 Problems 

Number 
Magnitude 
Comparison 

Mental 
Calculations 

Number  
Lines 0-1000 

Calculations 
Principles 

 Number  
 Magnitude  
 Comparison 

  Calculations 
Principles 

 Maths 
Terms     

                                    Mental 
Calculations 

       Maths 
Terms 

       Number  
Lines 0-1000                     
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