1	Beachrock: A tool for reconstructing relative sea level in the far-field
2 3	Barbara Mauz ¹ , Matteo Vacchi ² , Andrew Green ³ , Goesta Hoffmann ⁴ and Andrew Cooper ⁵
4	¹ School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
5	² Aix-Marseille Université, CEREGE CNRS-IRD UMR 34, Aix en Provence, France
6	³ School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag
7	X54001, Durban, South Africa
8	4 German University of Technology in Oman, P.O. Box 1816, Athaibah, PC 130, Sultanate of Oman
9	⁵ School of Environmental Sciences, University of Ulster, Coleraine BT52 1SA, UK
10	
11	
12	Abstract
13	Today's understanding of sea-level change developed through a combination of process-based
14	physical modelling and observational data. These data were recorded from coral reefs in the far-field
15	of the former ice sheets where a geographically variable relative sea-level signal is expected as a
16	response of the earth to ocean loading. Given this variability and the limited geographical
17	distribution of coral reefs, there is a need to explore other, non-coral based sea-level markers to
18	further understand and 'fingerprint' melt-water. Here, we present beachrock, a coastal deposit
19	suitable for relative sea-level (RSL) observations in the far-field. Beachrock is an intertidal deposit
20	forming in the zone where carbonate saturated meteoric and marine water mix and pCO_2 decreases.
21	We provide the conceptual framework for beachrock analysis and describe techniques suitable for
22	analysing and dating the deposit. The approach is standardised by outlining the sediment
23	characteristics in terms of RSL indicative meaning and indicative range, and is tested against
24	published data. A study conducted on coasts of the Mediterranean Sea exemplifies the utility of
25	beachrock for RSL reconstruction. It is shown that the precision of the reconstruction is derived from
26	the combined uncertainty of burial age and tidal amplitude or tidal range. The uncertainty can be
27	reduced to half the tidal amplitude when a deposit can be ascribed to the upper (or lower) intertidal
28	zone. Beachrock-based data benefit from the lack of non-quantifiable error terms such as post
29	sedimentary compaction due to the instantaneous formation and high preservation potential of the

deposit. This underlines the high precision of the RSL reconstruction using beachrock, a prime
 requirement for testing coral-based records.

32 **1.** Introduction

33 Observational data from many coasts around the world indicate that sea level is rising with as yet 34 undetermined consequences for low-lying coasts (e.g., Nicolls and Cazenave, 2010). Extrapolation 35 into the future suggests moderate sea-level rise, however, with a high degree of uncertainty, in 36 particular at the regional scale. Informed decisions at a regional scale are highly dependent on 37 precise sea-level projections, which improve the longer the regional relative sea-level (RSL) curve 38 stretches back into the past. During the last deglaciation the sea level rose with both fast and slow 39 velocities; a regional RSL curve that covers the last deglaciation therefore improves our 40 understanding of the regional coastal response to various forms of sea-level rise. 41 In the far-field of the former ice sheets the relative sea-level signal varies due to the variable 42 response of the earth to ocean loading. While the physics of this spatial variation is well understood, 43 the effect of the mechanisms on a regional scale is poorly constrained due to insufficient 44 observations over wider areas. While coral reef deposits are excellent RSL markers, the vertical living 45 range of the coral species is large and their growth rate is not linear (Montaggioni, 2005). There is 46 therefore a need to find alternative RSL markers that can be used to test the coral-based records 47 from Tahiti and Barbados and to establish records where no coral markers are available (e.g., Livsey 48 and Simms, 2013). 49 One of these markers is beachrock, a littoral deposit occurring predominantly in the far-field that is 50 lithified almost instantaneously and thereby records the position of the corresponding shoreline. 51 Many workers have studied the deposit and Vousdoukas et al. (2007) provided a comprehensive 52 overview on formation, occurrence and relevant literature. After the early description of Stoddart 53 and Cann (1965), the properties suitable for RSL reconstruction were first highlighted by Hopley 54 (1986), but, in comparison to other RSL markers, beachrock remained understudied. Here, we 55 highlight the properties of beachrock that are useful for RSL reconstruction and quantify associated

56 uncertainties. We aim at providing the basic methodology for increasing the number of

57 observational data in mid-latitudinal and far-field regions and at standardising the scientific

58 approach of using beachrock as a RSL indicator. Using an example, we show how the beachrock can

59 be transformed into a sea-level index point (SLIP) with well-defined indicative meaning and tidal

60 datum. We discuss potential and limitation of the approach in the light of our own results and other

61 published data.

62

2 **Beachrock: Sea-level related characteristics**

Beachrock is a lithified coastal deposit where lithification is a function of CO_3^{-2} ion concentration in 63

64 seawater, microbial activity and degassing of CO₂ from seaward flowing groundwater. Field

65 experiments (e.g., Hanor, 1978) and coastal observations (e.g., Hopley, 1986) suggest that

66 cementation occurs within a few decades where suitable coastal morphology provides sufficient

67 accommodation space for soft sediment to settle. Beachrock occurs as a single, isolated deposit with

68 limited lateral continuity due to its dependence on suitable chemical conditions.

69 2.1 The sediment

70 Sediment that is suitable for transformation into rock on a decadal time scale needs to provide

71 sufficient pore space for carbonate crystals to precipitate and grow. Typically, its texture is coarse

72 silt to sand, sometimes with pebbles. The rate of sediment supply is limited in order for the diffusive

73 transport of CO₂ through overlying sediment to be effective (Hanor, 1978) and for the carbonate

74 factory to operate without perturbation. The cementation rate must therefore outpace the

75 sedimentation rate for the rock to form.

76 Beachrock has sedimentary textures and bedding structures indicative of the upper shoreface to

77 beach sedimentary environment where shoaling waves and longshore currents operate. The upper

- 78 shoreface to foreshore environment is typically characterised by small asymmetrical ripple foreset
- 79 laminae (Fig. 1), low angle laminar or foreset beds dipping seaward (Fig. 2) or by horizontal plane-
- 80 parallel laminar beds, depending on the dip of the shore profile and flow criticality (see also Bezzerra

81	et al., 1998). Between the wave-breaker surf zone and swash and back-wash zone a lag deposit may
82	form. Towards land symmetrical ripples and horizontal bedding characterise the foreshore zone (Fig.
83	3). These structures vary depending on the morphology of the coast and its tidal and wave regime
84	(e.g., Vieira et al. 2007).
85	The thickness and lateral extent of a beachrock deposit depends on both sediment supply and
86	accommodation space. Thin (<2 m) and probably isolated beds form in pockets on reflective,
87	bedrock-controlled coasts; these beds are larger on intermediate and dissipative coasts. Beachrocks
88	may preserve antecedent morphologies such as coastline-parallel ridge and runnel-type features.
89	2.2 The cement
90	The cement by which the loose sand is locked into position is indicative of the nearshore zone
91	between shoreface and beach, at the interface between seawater and meteroric water (Fig. 4). The
92	interface is the mixing zone, the chemically most active zone, where beachrock forms. The zone is
93	characterised by a pore fluid that is a mixture of different end-member solutions, originating from
94	the adjacent environments (e.g. hypersaline waters from sabkhas; meteoric water from
95	groundwater). The chemical characteristics of the solutions, in particular acidity and under- or
96	supersaturation with respect to calcite, control the precipitation of the carbonate mineral when the
97	initial pCO_2 falls due to degassing (Plummer, 1975). As a carbonate mineral will only precipitate from
98	a solution that is supersaturated with respect to this mineral, the mixing of the groundwater and
99	seawater must result in supersaturation. Plummer (1975) showed that for this to happen the
100	mixture must contain more than 50% seawater, the end-member solutions are in equilibrium with
101	calcite and the pCO_2 drops below 10^{-2} Atm (Fig. 5). The higher the temperature, the less seawater is
102	required to achieve supersaturation (Fig. 6) and the more CO_2 escapes, the higher the pH and the
103	faster carbonate minerals can precipitate. Thus, the sediment layer that is closest to the water table
104	will cement first and fastest. If the end-member solution contains Mg ²⁺ , high magnesian calcite
105	(HMC) precipitates and the typical crystal form of this mineral is bladed or granular (Fig. 7B). The
106	higher the temperature of the solution, the faster aragonite precipitates relative to calcite (Burton

and Walter, 1987) and the crystal form the cement takes is mostly fibrous (Fig. 7C). Crystal

108 arrangement and fabric is controlled by environment and gravitation. HMC and aragonite form

109 circumgranular rim in meniscus fabric in the vadose environment (Fig. 7D) or symmetrical crusts in

- 110 the meteoric environment. In most beachrocks the pore space is not completely occluded but is
- filled with mosaic fabric and may remain empty in the centre. Fig. 4 depicts the spatial relationship

between carbonate cementation zones and Table 1 provides the details of the cement types in terms

113 of crystal form, size and fabric.

114 Diagenesis takes place in the subsurface in response to a change in water-table elevation,

115 temperature or pressure. Diagenesis involves processes such as dissolution, reprecipitation and

recrystallisation and the end-point of these processes is chemical stability. The process follows the

117 relative thermodynamic stability of magnesian calcite and aragonite and the chemistry of the pore

118 fluid. The thermodynamic calculations reveal the metastability of aragonite with respect to calcite,

and of magnesian calcite with respect to calcite and dolomite (Morse and Mackenzie, 1990). Most

120 effective in terms of creating the end-members calcite and dolomite is the infiltration of meteoric

121 water depleting the cement in Mg, Sr and Na and enriching it with other elements (e.g. Fe^{2+}).

122 Dissolution and subsequent creation of secondary porosity can occur through infiltration of meteoric

123 water where the dissolution capacity of the water is largely controlled by the amount of dissolved

124 CO₂ and the permeability of the arenite frame resulting often in molds and vugs. These can be later

125 filled with marine cement or intraclasts.

The pathway of the diagenetic process is influenced by the original composition of the sediment. For example, coralline algae colonising the foreshore of many coasts, has the highest MgCO₂ content of all coastal magnesian calcite components (7-20 mol% MgCO3; Milliman, 1971) and is the least susceptible to replacement by calcite (Walter and Hanor 1979). In the Mediterranean calcite cement in algae has about 15 mol % MgCO3 and this cement is petrographically identical to beachrock cement in many regions (Alexandersson, 1985). HMC is thus the likely cement where red algae constitute part of the coastal sediment.

133 The diagenetic process can be reversed under the presence of foreign substances (e.g.

134 orthophosphate from an overlying soil; Walter and Hanor, 1979) which changes the relative stability

135 of the three carbonate minerals and thereby impacts on the preferential dissolution of one or the

136 other carbonate mineral. The process can also be delayed, in particular in the presence of Mg,

137 because geochemically, it functions as an inhibitor of carbonate precipitation. The less Mg the pore

138 fluid contains, the larger calcite crystals and the less fragile the rock.

139 The burial history is thus characterised by cement phases and these phases can constitute

140 compositional zoning (Meyers, 1974) on surfaces of components and in pore spaces. It is important

141 to identify this zoning, mostly represented by carbonate fringes and granular mosaics, because

142 diagenesis can obscure the beachrock origin and thus overprint its usefulness as a RSL indicator.

143 2.3 Preservation

144 The degree of preservation depends on the rate of sea-level change and the rate of lithification

145 where the latter must exceed the rate of RSL change. The lithification is fastest from beach

146 groundwater where larger crystals bind components. With increasing sea-water mixing the process

147 is slower (Hanor, 1978); smaller carbonate crystals alongside high porosity make the rock more

148 friable on the seaward side of the deposit. Under constant hydrodynamic conditions the landward

149 part of a beachrock bed is therefore better preserved while its seaward part may be reworked under

150 changing wave energy. We consider two types of reworking: synsedimentary and postsedimentary.

151 As cementation is so rapid, contemporaneous reworking (e.g. by storm surge) is easily identified

152 through intraclasts which become part of the deposit immediately after the high-magnitude event. If

153 such an event occurs after deposition, parts of the deposit are displaced and deposited as boulders

154 downdip or updip of the storm surge trajectory.

155 **3** Suitable analytical techniques

Several standard techniques apply to beachrock analysis. These include: surveying to estimate
 elevation, mapping and logging to identify macroscopically lateral facies relationships and thin
 section-based petrographic microscopy to identify the depositional environment including the type

of cement. Here, we highlight other suitable sediment analysis techniques less used in beachrockanalysis and outline the two most suitable dating techniques.

161 3.1 Ground Penetrating Radar

162 Ground Penetrating Radar (GPR) is a fast, non-destructive and non-invasive geophysical method 163 used for high-resolution mapping of the shallow subsurface. The method relies on short pulses of 164 high frequency electromagnetic energy transmitted into the ground by a transmitting antenna. 165 There, the waves are reflected in zones of contrasting material properties. The reflected waves are 166 received by the system and the two-way travel time is recorded. The penetration depth of the radar-167 waves depends on the sediment, the water content and the antenna frequency. Depending on the 168 frequency, the vertical resolution is in the range of a few centimeters and the penetration depth 169 may be tens of meters. A 2D-cross section (radargram) is generated while moving the system along a 170 line. The radargram reveals layer boundaries and sedimentary structures essential for correlation 171 between outcrops and mapping of the stratigraphic architecture. Limitations of the method are high 172 electrical conductivity in the subsurface (e.g. due to sea water intrusion) and fine-grained sediments 173 (silt, clay) that reduce the penetration depths. GPR surveys on sandstones and other hardrock are a 174 common procedure, whereas GPR surveys on beachrock (Fig. 8) have rarely been performed. Davis 175 and Annan (1989), Bristow and Jol (2003) and Neal (2004) provide a general overview of this and 176 Koster et al. (2014) describe the use of GPR in an arid coastal setting. As beachrocks are relatively 177 thin deposits, high frequency antennas (400 MHz or higher) are appropriate for the scale of 178 resolution required. Uplifted coastal areas where the beachrock is situated above the water table 179 are prime targets for such GPR surveys.

180 3.2. <u>Underwater mapping and sampling</u>

A yet to explore number of beachrock deposits occur below modern mean sea level. Direct SCUBA
diving techniques are suitable to describe and to sample beachrocks down to around 35 m water
depth (Desruelles et al., 2009; Vacchi et al., 2012a). The exact water depth is recorded by averaging
2 electronic depth gauges with a precision of 0.5 m (at depths ≥ - 3 m). In shallower water, precise

measures can be obtained using a 3 m metal bar with a precision ≤ 0.5 m (Rovere et al., 2010, 2011;
Vacchi et al., 2012a, b).

187 3.3 Cathodoluminescence

188 This technique is a tool to identify type and zonation of the cement. The luminescence is a function of the relative concentration of Mn^{2+} as the primary activator ion and Fe^{2+} as the deactivator ion. Its 189 190 intensity is controlled by the absolute amount of Mn²⁺ concentration, by the Fe/Mn ratio in calcite 191 (Hemming et al., 1989) and by rate of crystal growth (Ten Have and Heijnen, 1985). The colours are 192 visually categorised as bright, moderate, dull and non-luminescent. The early precipitation of 193 carbonate cement is from oxidising pore water and this water is free of Mn and Fe so that the first 194 zone is non luminescent. When the water begins to stagnate, Mn-bearing carbonate minerals 195 precipitate and these emit yellow to red colours. The intensity of these colours is a function of the 196 reducing conditions of the pore water and the extent to which Fe is exported. Thus, marine cement 197 is virtually non-luminescent due to the positive Eh of sea water and changes to yellow-orange 198 colours when the cement precipitates from more Eh-negative waters (Fig. 9). The spatial mix of 199 colours may indicate repeated dissolution and precipitation phases cutting across crystal tops and 200 isolation zones of earlier versus later cementation. Amieux et al. (1989) studied tropical beachrock 201 and found primary cement of isopachous fibrous aragonite rim emitting very dull orange and blue 202 colour; the pores were filled by equant crystals emitting a bright yellow-orange colour and larger 203 equant crystals emitting dull blue and medium orange colours. The zonation was interpreted as 204 indicating a progression from a marine to a freshwater environment, characterised by early marine 205 cementation and subsequent early diagenesis in mixed water followed by freshwater.

206 3.4 Dating

Radiocarbon and optically stimulated luminescence (OSL) are the two most suitable dating
techniques for determining a burial age of the deposit. OSL relies on the exposure of quartz grains to
daylight. After burial, i.e. during formation of the beachrock, the grains are sheltered from daylight
and acquire a luminescence signal by exposure to environmental radioactivity. For radiocarbon

211 dating, shells or cement can be used. The accuracy of both techniques depends on the suitability of 212 the material used for dating and a number of other requirements specific to the technique. For the 213 OSL technique it is, amongst others, the ability to reconstruct the change of dose rate during burial 214 (Nathan and Mauz, 2008). For radiocarbon it is the ability to correct for isotope fractionation and 215 reservoir effects, in particular when cement is used because its carbon isotopes originate from two 216 solutions with two different isotopic compositions. As a result both the marine reservoir effect and 217 the terrestrial hardwater effect must be considered, which might be difficult in practice without 218 information from additional stable isotopes (e.g., strontium). 219 Thomas (2009) was the first to employ the OSL technique to accurately date beachrock deposits

deposit of Holocene age while its OSL age is around 80 ka suggesting that the RSL was situated at the

occurring on the coast of southeast India. An OSL data set is listed in Tables 2. The sample from

Torre Vieja demonstrates the importance of dating: its morphological setting (Fig. 10) suggests a

223 modern level during MIS 5a.

A comparison between ages obtained from radiocarbon and OSL dating techniques shows

systematically lower OSL ages regardless of the calibration curve used for radiocarbon, the

226 differences within ¹⁴C or whether whole rock or shell was used (Bosman, 2012). Ages obtained from

227 mollusc shells tend to agree better with quartz OSL ages (Bosman, 2012). As such, careful selection

of the material used for radiocarbon dating can circumvent the effect of old carbon (e.g., Desruelleset al. 2009).

220

221

230 4 Establishing a sea-level index point

To qualify as a sea-level index point (SLIP), the sea-level indicator has to be characterised by (1)

location, (2) age, (3) sampling elevation and (4) indicative meaning which is the known relationship

between the indicator and the corresponding shoreline (van de Plassche, 1986; Shennan, 1986). This

known relationship is described by the reference water level and the midpoint of the indicative

range where the indicative range is the elevation range occupied by the sea-level indicator

236 (Shennan, 1986; van de Plasche, 1986). The sea-level indicator with its known indicative range is

237 converted into a SLIP once its age is known.

238 An undisturbed in situ beachrock is a sea-level indicator on the basis of its cement and its sediment 239 texture and bedding structures. The clarity of its indicative meaning depends largely on the 240 preservation of the original cement and the ability to link cement with other sedimentary 241 information. 242 In the intertidal zone the metastable aragonite and HMC form as rim cements. This fabric linked with 243 small-scale trough cross bedding is indicative of the lower intertidal zone. Its indicative range spans 244 from mean low water level (MLW) to mean tidal level (MTL) and, using the midpoint of this zone as 245 reference water level, the associated error is half the tidal amplitude $(a_1/2, where a=tidal)$ 246 amplitude). When this fabric is linked with low angle seaward-dipping tabular cross bedding and 247 keystone vugs, the indicative range spans from MTL to mean high water level (MHW) and the error 248 term is $a_2/2$. In the absence of sediment bedding information, the indicative range associated with 249 the intertidal cement fabrics ranges from the MLW to the MHW. The zone is called 'undifferentiated 250 intertidal' and its error term is a_1+a_2 which is the average tidal range. 251 Samples exhibiting sparitic cements infilling cavities, micrite forming meniscus between grains and 252 internal sediments as geopedal infilling are characteristic of the vadose zone. The relationship of 253 these samples with a former tidal level is the upper intertidal zone and the spray zone. The elevation 254 of this zone depends on wave exposure and the local geomorphology (Leeuw et al., 2000). For error 255 calculation we include the spray zone due to its potential contribution to the cementation so that 256 the error term is $(a_2/2)+s$, where s is the elevation of the spray zone. Low angle seaward-dipping 257 tabular cross bedding with keystone vugs provide an upper intertidal indicative range (but no 258 example for this assemblage was found in literature). In the absence of sediment bedding 259 information, samples exhibiting these types of cement fabric provide a terrestrial limiting point (i.e. 260 MTL is situated below this point). Likewise, samples showing LMC equant spar crystals (typically

261 consisting of equigranular, anhedral to subhedral crystals) formed near or above the high tide and
 262 represent a terrestrial limiting point.

263 Where only sediment bedding information is available, the indicative meaning is less precise. Small-264 scale trough cross-bedding is generally evidence of the lower intertidal environment (Strasser and 265 Davaud, 1986; Bezerra et al., 2003; Caldas et al., 2006) and without cement information, such 266 samples represent a marine limiting point (i.e. MTL is above this point). Likewise, low angle seaward 267 dipping tabular cross bedding indicates upper intertidal to supratidal formation (Bezerra et al., 2003) and without cement information, these samples should be used as a terrestrial limiting point (i.e. 268 269 MTL is below this point). However, in the presence of keystone vugs, an indicative range from MTL 270 to MHW with an error term of $a_2/2$ can be ascribed (Dunham, 1970; Strasser and Davaud, 1986). 271 Notwithstanding this evidence, marine cements should be present to ascribe the sample to the 272 upper intertidal zone (Desruelles et al., 2009). A summary of indicative meaning and error terms is 273 provided in Table 3 and Fig. 11. 274 The total uncertainty of this vertical shoreline reconstruction is quantified from levelling, indicative 275 range (as described above) and tidal range, applying the square root rule. We assume negligible 276 beachrock formation in the zone of the highest tide and use the spring/neap tide range as an error 277 of tidal range. Other potential errors such as changes in the water table and sediment compaction 278 are regarded as negligible due to the instantaneous cementation of the sediment. 279 5 Relative sea-level reconstruction using beachrock

280 We outline previous work where beachrock was used for RSL reconstruction. The most

281 comprehensive studies are described in the text and other relevant studies are listed in Table 3. The

282 compilation focuses on sediment characteristics and techniques used to determine a SLIP and builds

283 on the review of Vousdoukas et al. (2007) where formation and cementation processes as well as

criteria for identification are described. The map in Fig. 12 displays the spatial distribution of

285 beachrock-based RSL reconstructions listed in Table 4.

Most authors used the cement type to infer the position of the shoreline with uncertainties between 0.5 m and 1.5 m (Table 3). The standard setting for this approach was Strasser et al. (1989) who used data from field surveying, petrography, microprobe and SEM analyses to infer timing of cementation and migration of shoreline.

290 Desruelles et al. (2009) built on the example of Strasser et al (1989) and determined the indicative 291 meaning through SEM, petrographic and cathodoluminescence analyses and used keystone vugs to 292 determine the position of the sea level with a precision of ± 0.25 -0.50 cm. The radiocarbon age of the 293 deposits was obtained using the cement and the ages seem to confirm that the hand-picked samples 294 were not contaminated by external carbonate. Studying details of the cement, Vacchi et al. (2012a) 295 found primary marine phreatic cement, typical for the intertidal zone, followed by meteoric cement 296 and bioclast dissolution. These findings allowed the authors to correlate the beachrock with other 297 RSL indicators in order to reconstruct palaeo-shorelines in distinct tectonic domains.

298 Some authors combined evidence from cement, sediment bedding and local features to reconstruct 299 the shoreline. Michelli (2008) and Stategger et al. (2013) linked saltmarsh, mangrove and beachrock 300 deposits to reconstruct the RSL. The relationship of each sample with the contemporary tidal levels 301 was assessed through sediment bedding and cement analysis. Radiocarbon dating was performed on 302 well preserved marine shells and coral fragments in beachrock samples. Ramsay (1995) established a 303 RSL curve based entirely on beachrock observational data. The indicative meaning was deduced 304 from the present-day beach where beachrock forms at 10-20 cm above mean sea level and from the 305 presence of aragonitic rim cements. These were interpreted as indicating shoreline position with an 306 uncertainty of 0.5 m (Ramsay 1995). The modern beachrock deposits were later ascribed to the 307 intertidal environment due to their position at mean low tide level and the cementation by micritic, 308 aragonitic and iron oxide infilled voids (Cawthra and Uken, 2012). Cawthra et al. (2012) revisited 309 these deposits and found micritic coatings followed by isopachous prismatic crystal rims and equant 310 calcite spars in pores often capped by cryptocrystalline coatings. On the basis of this two-step 311 cementation history, alongside trough cross-bedded and often heavy mineral lined foresets, the

depositional environment was considered intertidal, analogous with the low tide trough of

313 contemporary beaches. Bosman (2012) confirmed the intertidal environment and determined a 2 m

uncertainty based on the position of the modern beachrock and the tidal range.

Bezerra et al. (1998) attributed medium to coarse sandstone that was deposited in seaward dipping

316 cross-stratified beds with increasing grain size seawards, to the middle to lower foreshore with a RSL

317 precision of ±1 m. With medium to fine sandstone the upper shoreface part of the deposit was

identified and the corresponding position of the shoreline was estimated with an error of ±0.5 m.

319 Vieira et al. (2007) refined this approach by mapping out lithofacies with distinct characteristics

320 relevant for the position of the corresponding shoreline.

321 A few authors have used the associated coastal fauna. Yaltirak et al. (2002) identified the beachrock

322 deposits situated in various altitudes above modern sea level through the presence of the fauna

323 Balanus, Alvania lacteal and Truncatella subcylindrica and deduced the indicative meaning through

324 comparison with the modern analogue. In this study U-series dating on shells was employed

resulting in consistent MIS 5e and MIS 7 ages but also with some age reversals and unexplained age

326 differences.

327 Beachrock deposits occur not only on modern coasts above or a few meters below water level, but 328 also on submerged continental shelves where access is more challenging. Bosman (2012) used high-329 resolution geophysical profiling and sampling to establish a geological map that included 3 distinct 330 beachrock ridges situated in around 25 m water depth. Using a similar method, Locker et al. (1996) 331 mapped 4 distinct ridges partly composed of beachrock, which occur between 120 m and 60 m 332 water depth. Two of these ridges may have recorded the meltwater pulse 1A. This and subsequent 333 studies (Jarrett et al., 2005; Gardner et al., 2007) show also, that laterally continuous shoreline 334 deposits can form at the edge of the inner shelf in places where the steepness of the slope is 335 reduced to around 0.02 m/m.

336 **6 Example**

We highlight an example where beachrock data collected from an outcrop was used to infer thelocal RSL history.

339	In the Gulf of Gabès (south Tunisia) RSL observational data were generated through conventional
340	field mapping, logging and elevation measurements using differential GPS. Present-day mean low
341	and high tide shorelines were mapped from morphological evidence. Mean tidal range and mean
342	astronomical tidal range were obtained from tide gauge data (station Ganouch; Sammari et al. 2006)
343	and were taken into account to estimate the indicative range and its error. Texture, composition and
344	matrix properties of sediment samples were identified from thin sections, and the carbonate
345	mineralogy was studied using cathodoluminescence. OSL dating of quartz and radiocarbon dating of
346	mollusc shells (Morhange and Pirazzoli, 2005) were used for age estimation.
347	In the coastal cross-section (Fig. 13) the succession of two beachrock deposits was identified. One is
348	composed of planar beds of moderately sorted oolitic grainstone with isopachous HMC rim and
349	scalenohedral dog tooth cement (Fig. 9A). Its age is around 6 ka and its elevation is 1.1 ± 0.22 m.
350	Onlapping this is a well-sorted mixed bio-siliciclastic grainstone with circumgranular HMC, which is
351	blue in CL with an outer band of violet colour (Fig. 10B). Its age is around 4 ka and its elevation is
352	0.0±0.23 m.
353	Oolitic grainstone with isopachous HMC rim formed in the lower intertidal and was subsequently
354	subjected to the upper intertidal. Assuming the geometry of this tectonically stable coast has not
355	changed during the Holocene and the mean tidal range was therefore constant at 0.85 \pm 0.2 m, the
356	indicative meaning of both SLIPs is -0.4±0.2 m. With the reference water level being the midpoint of
357	the intertidal deposit, the shoreline of the mid Holocene deposit was then reconstructed to 1.4 ± 0.4
358	m and the one of the onlapping deposit to 0.2±0.4 m. The error is derived from $\sqrt{a^2 + b^2 + c^2}$,
359	where a, b, c are the independent error terms of levelling, tidal range and indicative meaning
360	respectively.

7. Discussion

362 Beachrock forms in the mixing zone between the upper shoreface and the beach where sand-sized

363 sediment is available and the morphology is suitably flat. The criteria to identify the sub-

364 environment are based on cement and bedding structure where the cement should be described in

365 terms of chemistry, crystal form and fabric. Integration of these criteria allows establishing indicative

366 meaning and vertical error and resolves doubts (cf., Kelletat, 2006).

367 Occurrence, shelf morphology and RSL change

368 Beachrock deposits are unlikely to occur on the outer shelf where a steep gradient creates reflective 369 beach morphologies. The use of beachrock for sea-level reconstruction is therefore restricted to the 370 interval between post-glacial and pre-glacial when the sea level is situated on the shelf, and, in many 371 cases, on the inner shelf. It is unlikely that beachrock forms a large-scale feature on the shelf when 372 RSL rise exceeds ~12 mm/a because the shoreface (main source of sediment for the intertidal zone 373 on subtropical coasts) is reworked at a rate that precludes preservation. Beachrock can form in 374 patches when RSL rise is <12 mm/a because sufficient sediment would be available in places and, 375 after 20 years of lithification time, the RSL would still be within the intertidal zone. Beachrock forms 376 on a larger spatial scale with RSL rise < 5mm/a (Voudoukas et al., 2007). As Quaternary RSL falls on 377 average with a slower rate than it rises, it can be hypothesised that most of the beachrock fields 378 represent a falling RSL. Either way, beachrock formation does not require a RSL stillstand; more 379 important is a continuous and almost constant carbonate accumulation rate when sea-surface 380 temperature (SST) falls during cool climate periods. For example, in the oligotrophic western (sub-381)tropical Atlantic where beachrock fields are frequent, carbonate accumulation was nearly constant 382 during the last glacial/interglacial transition (Arz et al., 1998) so that the carbonate factory did not 383 slow down during cool climate periods. But this might not have been the same elsewhere and 384 continuous beachrock formation in cooling coastal waters remains to be shown by data from the 385 currently inundated shelves.

386 Cement

387	There was a considerable amount of confusion about the interplay between cementation processes
388	and geomorphological position leading some authors to express misgivings on the reliability of
389	beachrock as a sea-level indicator (e.g., Kelletat, 2006) with subsequent discussion (Knight 2007).
390	The comprehensive review of Vousdoukas (2007) has removed these doubts and clarified that the
391	cement is crucial for identifying the spatial relationship between coastline and beachrock formation
392	zone. This key element in RSL reconstruction can be masked by multiple phases of rim cement
393	formation, dissolution or other geochemical reorganisation where the pathway of diagenesis is
394	dependent on the original mineralogy of the sediment undergoing alteration and on the chemistry of
395	the overlying bed. While staining and cathodoluminescence are excellent tools to establish cement
396	zoning, this analysis is probably the most challenging part of the SLIP investigation. The typical
397	reorganisation with rising RSL is micritisation of biotic and abiotic calcite and aragonite,
398	dolomitisation in the sulphate reduction zone and with falling sea level it is dissolution and
399	recrystallisation of aragonite to calcite and HMC to LMC. In case of complete diagenesis the
400	depositional origin may be hard to identify.
401	The cementation rate is most rapid in the landward side of the beachrock formation zone where
402	large carbonate crystals fill pore space and bind components within the space of years to decades.
403	Thus, before burial the sediment is already lithified and is likely not subject to compaction that
404	would be significant enough to impact on the vertical precision of the SLIP.
405	Chronology
406	Suitable techniques to determine the age of a beachrock sample are OSL and radiocarbon. U-series,
407	in particular when using mollusc shells is unsuitable (Kaufman et al., 1971; Mauz and Antonioli,
408	2009) due to the significant geochemical alterations and associated uranium isotope ratio and
409	profile across the shell. There are many examples that show that even corals, in particular non-
410	tropical species, suffer from diagenetic alteration impacting on the accuracy of an age derived from
411	U-series technique (e.g., Leeder et. al., 2003; Amorosi et al., 2014).

412 <u>Precision</u>

413 Hopley (1986) expressed concerns with regard to height relationships because the upper limit of 414 cementation would not be well defined. Indeed, given the potential impact of sea-water spray on 415 the cementation, the limits of the former intertidal zone cannot be determined on the basis of the 416 cement alone; information on the tidal regime is also required. Ideally, lateral facies relationships 417 based on a transect across and beyond the beachrock formation zone is also established. 418 Beachrock is an intertidal deposit. The vertical error of the RSL reconstruction is therefore a result of 419 the 3 error terms derived from levelling, indicative range and tidal range. The precision can be raised 420 up to half of the tidal amplitude by combining cement with facies analysis. Most beachrocks occur 421 on microtidal coasts with an average thickness of 2 m (e.g., Cooper, 1991); thus, the vertical errors 422 typically fall between 2 m and 0.1 m. While these error bars are comparable to RSL reconstructions 423 derived from saltmarshes (e.g., Barlow et al., 2013), they are bigger than those derived from 424 microbial mats (Livsey and Simms, 2013). They benefit, however, from the lack of additional error 425 terms that are hard to quantify (e.g., compaction). The beachrock-based reconstruction can be an 426 order of magnitude more precise than that obtained from corals. Notwithstanding this, any direction 427 of shoreline migration is hard to infer from beachrock. The deposit is usually a singularity and lacks 428 backstepping or prograding architecture and related bounding surfaces. 429 430 8. Conclusions 431 We have shown that a beachrock deposit is a reliable RSL marker. It can be used to increase the 432 number of RSL observations in the far-field and it can be used to test coral-based RSL records. The 433 error of the beachrock-based RSL reconstruction is comparable to other RSL markers with the 434 advantage that there are no additional, hard to quantify error terms. 435 A beachrock deposit is not continuous, but a point in time and space. Its zone of formation is limited 436 to coasts with low sedimentation rate, relatively flat morphology and warm SST. How a drop in SST 437 impacts on the continuity of formation at any particular location remains to be shown by

438 investigating currently inundated shelves in the far-field.

439

440 Acknowledgements

- 441 We wish to acknowledge N Porat, E Galili, D Sivan, S Regan, N Elmjdoub, E Abdulsamad, M Egwiten, S
- 442 Emhanna, A Aljazwi and K Areig, all helping in the field with collecting samples at variously remote
- 443 coastlines. We are grateful to S Packman for the hard work with the hard samples in the OSL
- 444 laboratory and Suzanne Yee for her help with the cartographic work. MV is grateful to the Labex OT-
- 445 Med (n° ANR-11-LABX-0061) funded by the French government through the A*MIDEX project (n°
- 446 ANR-11-IDEX-0001-02). GH acknowledges financial support by The Research Council Oman (TRC-
- grant ORG GUtech EBR 10 013) and BM is grateful to the Royal Geographical Society for supporting
 field work in the Oman.
- 449

450 References

- 451 Al-Ramadan, K. 2013. Diagenesis of Holocene beachrocks: A comparative study between the Arabian
- 452 Gulf and the Gulf of Aqaba, Saudi Arabia. Arabian Journal of Geosciences; DOI 10.1007/s12517-
- 453 013-1127-7.
- 454 Alexandersson, T., 1985. Carbonate cementation in recent Coralline algal constructions, in, Toomey,
- 455 D.F. and Nitecki, M.H. (eds), Paleoalgology: Contemporary Research and Applications. Springer
- 456 Verlag Berlin Heidelberg, p. 261-269.
- 457 Amieux, P., Bernier, P., Dalongeville, R. and Medwecki, V., 1989. Cathodoluminescence of carbonate-
- 458 cemented Holocene beachrock from Togo coastline (West Africa): An approach to early
- diagenesis. Sedimentary Geology 65, 261-272.
- 460 Amorosi, A., Antonioli, F., Bertini, Marabini, S., Mastronuzzi, G., Montagna, P., Negri, A., Rossi, V.,
- 461 Scarpone, D., Taviani, M., Angeletti, L., Piva, A. and Vai, G.B., 2014. The Middle-Upper Pleistocene
- 462 Fronte Section (Taranto, Italy): An exceptionally preserved marine record of the Last Interglacial.
- 463 Global and Planetary Change 119, 23-38.
- 464 Arrieta, N., Goienaga, N., Martinez-Arkarazo, I., Murelaga, X., Baceta, J. I., Sarmiento, A. and
- 465 Madariaga, J. M. (2011). Beachrock formation in temperate coastlines: Examples in sand-gravel
- 466 beaches adjacent to the Nerbioi-Ibaizabal Estuary (Bilbao, Bay of Biscay, North of
- 467 Spain). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 80(1), 55-65.
- 468 Arz, H.W., Paetzold, J. and Wefer, G., 1998. Correlated Millennial-Scale Changes in Surface
- 469 Hydrography and Terrigenous Sediment Yield Inferred from Last-Glacial Marine Deposits off
- 470 Northeastern Brazil. Quaternary Research 50, 157-166.

- 471 Badve, R.M., Rajshekhar, C., Kumaran, K.P.N., Kamble, C.V., 1997. On the age and fauna of beachrock
- 472 of Kegaon Coast, Uran, Maharashtra. Current Science 72 (3), 168.
- 473 Bakler, N., Neev, D. and Magaritz, M., 1985. Late Holocene tectonic movements at Tel Haraz,
- 474 southern coast of Israel. Earth and Planetary Science Letters 75(2), 223-230.
- 475 Barlow, N., Shennan, I., Long, A.J., Gehrels, W.R., Saher, M.H., Woodroffe, S.A. and Hillier, C., 2013.
- 476 Salt marshes as late Holocene tide gauges. Global and Planetary Change 106, 90-110.
- 477 Bezerra, F.H.R., Lima-Filho, F.P., Amaral, R.F., Caldas, L.H.O. and Costa-Neto, L.X., 1998. Holocene
- 478 coastal tectonics in coastal Brazil, in, Steward, I.S. and Vita-Finzi, C. (eds), *Coastal tectonics*.
- 479 Geological Society, London, Special Publications 146, 279-293.
- 480 Bezerra, F.H.R., Barreto, A.M.F. and Suguio, K., 2003. Holocene sea-level history on the Rio Grande
- 481 do Norte State coast, Brazil. Marine Geology 196, 73-89.
- 482 Bosman, C., 2012. The marine geology of the Aliwal Shoal, Scottburgh, South Africa. PhD thesis,
- 483 University of KwaZulu-Natal, Durban, 581 p.
- 484 Bristow, C.S. and Jol, H.M., 2003. An introduction to ground penetrating radar (GPR) in sediments. –
- 485 Geological Society, London, Special Publications 211 (1), 1-7.
- 486 Burton, E.A. and Walter, L.M., 1987. Relative precipitation rates of aragonite and Mg calcite from
- 487 seawater: Temperature or carbonate ion control? Geology 15, 111-114.
- 488 Caldas, L.H., Stattegger, K. and Vital, H., 2006. Holocene sea-level history: Evidence from coastal
- 489 sediments of the northern Rio Grande do Norte coast, NE Brazil. Marine Geology 228, 39-53.
- 490 Calvet, F., Cabrera, M. C., Carracedo, J. C., Mangas, J., Pérez-Torrado, F. J., Recio, C., Travé, A., 2003.
- 491 Beachrocks from the island of La Palma (Canary Islands, Spain). Marine Geology 197(1), 75-93.
- 492 Caron, V., 2012. Geomorphic and sedimentologic evidence of extreme wave events recorded by
- 493 beachrocks: a case study from the Island of St. Bartholomew (Lesser Antilles). Journal of Coastal
- 494 Research 28, 811-828.
- 495 Cawthra, H. and Uken, R., 2012. Modern beachrock in Durban, KwaZulu-Natal. Afr J Sci.
- 496 2012;108(7/8), Art. #935, 5 pages. http:// dx.doi.org/10.4102/sajs. v108i7/8.935.
- 497 Cawthra, H.C., Uken, R., Ovechkina, M.N., 2012. New insights into the geological evolution of the
- 498 Durban Bluff and adjacent Blood Reef, South Africa. South African Journal of Geology 115.3, 291499 308.
- 500 Cooper, J.A.G., 1991. Beachrock formation in low latitudes: implications for coastal evolutionary
- 501 models. Marine Geology, 98: 145–154
- Davis, L. J. and Annan, A. P. (1989): Ground-penetrating radar for high-resolution mapping of soil and
 rock stratigraphy. Geophysical Prospecting, 37: 531-551.
- 504 Desruelles, S., Fouache, E., Ciner, A., Dalongeville, R., Pavlopoulos, K., Kosun, E., Coquinot, Y. and

- 505 Potdevin, J.-L., 2009. Beachrocks and sea level changes since Middle Holocene: Comparison
- 506 between the insular group of Mykonos–Delos–Rhenia (Cyclades, Greece) and the southern coast
- 507 of Turkey. Global and Planetary Change.
- Dunham, R.J. 1970. Keystone vugs in carbonate beach deposits. Bulletin of the American Association
 of Petroleum Geologist 45, 845.
- 510 El Sayed, M.K.H., 1988. Beachrock cementation in Alexandria, Egypy. Marine Geology 80, 29-35.
- 511 Erginal, A.E., Ekinci, Y.L., Demirci, A., Bozcu, M., Ozturk, M.Z., Avioglu, M. and Oztura, E., 2013. First
- record of beachrock on Black Sea coast of Turkey: Implications for Late Holocene sea-level
- 513 fluctuations. Sedimentary Geology 294, 294-302.
- 514 Erginal, A.E., 2012. Beachrock as evidence of sea-level lowstand during the classical period, Parion
- 515 antique city, Marmara Sea, Turkey. Geodinamica Acta 25(1-2), 96-103.
- 516 Friedman, G.M., 2011. Beachrocks record Holocene events, including natural disasters. Carbonates
- 517 and Evaporites 26, 97–109.
- 518 Fuzhi, B., and Youshen, Y., 1988. Study on the "beachrock field" in Haishan Island, Guangdong
- 519 Province. Chinese Journal of Oceanology and Limnology, 6(4), 343-357.
- 520 Galbraith, R.F. and Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation
- and display in OSL dating: An overview and some recommendations. Quaternary Geochronology11, 1-27.
- 523 Gardner, J V., Calder, B.R., Hughes Clark, J.E., Mayer, L.A., Elston, G., Rzhanov, Y., 2007. Drowned
- shelf-edge deltas, barrier islands and related features along the outer continental shelf north of
- the head of De Soto Canyon, NE Gulf of Mexico. Geomorphology 89, 370-390.
- 526 Ghandour, I. M., Al-Washmi, H. A., Bantan, R. A., and Gadallah, M. M., 2014. Petrographical and
- 527 petrophysical characteristics of asynchronous beachrocks along Al-Shoaiba Coast, Red Sea, Saudi
- 528 Arabia. Arabian Journal of Geosciences 7, 355-365.
- 529 Gischler, E. and Lomando, A.J., 1997. Holocene cemented beach deposit in Belize. Sedimentary
 530 Geology 110, 277-297.
- 531 Hanor, J.S., 1978. Precipitation of beachrock cements: Mixing of marine and meteoric waters vs. CO₂-
- 532 degassing. Journal of Sedimentary Petrology 48, 489-501.
- 533 Hemming, N.G., Meyers, W.J. and Grams, J.C., 1989. Cathodoluminescence in diagenetic calcites: the
- roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements.
- 535 Journal of Sedimentary Petrology 59, 404-411.
- 536 Hoffmann, G., Rupprechter, M. and Mayerhofer, C., 2013. Review of the long-term coastal evolution
- 537 of Oman subsidence versus uplift. Zeitschrift der deutschen Gesellschaft für Geowissenschaften
- 538 164, 237–252.

- 539 Holail, H. and Rashed, M., 1992. Stable isotopic composition of carbonate-cemented recent
- 540 beachrock along the Mediterranean and the Red Sea coasts of Egypt. Marine Geology 106, 141-

541 148.

- 542 Hopley, D., 1986. Beachrock as a sea-level indicator. In: Van de Plassche O. (ed), Sea-level Research:
- a manual for the collection and evaluation of data. Geo Books, Norwich, pp. 157–173.
- Jarrett, B.D., Hine, A.C., Halley, R.B., Naar, D.F., Locker, S.D., Neumann, A.C., Twichell, D., Hu, C.,
- 545 Donahue, B.T., Jaap., W.C., Palandro, D., Ciembronowicz, K., 2005. Strange bedfellows—a deep-
- 546 water hermatypic coral reef superimposed on a drowned barrier island; southern Pulley Ridge,
- 547 SW Florida platform margin. Marine Geology, 214, 295–307.
- 548 Kaufman, A., Broecker, W.S., Ku, T.L. and Thurber, D.L., 1971. The status of U-series methods of
- 549 mollusc dating. Geochimica et Cosmochimica Acta 35, 1115–1183.
- 550 Kelletat, D., 2006. Beachrock as sea-level indicator? Remarks from a geomorphological point of view.
- Journal of Coastal Research 22, 1555–1564.
- 552 Kindler, P. and Bain, R. J., 1993. Submerged Upper Holocene beachrock on San Salvador Island,
- 553 Bahamas: implications for recent sea-level history. Geologische Rundschau, 82(2), 241-247.
- 554 Knight, J., 2007. Beachrock reconsidered. Discussion of: Kelletat , D., 2006. Beachrock as sea-level
- 555 indicator? Remarks from a geomorphological point of view. Journal of Coastal Research, 22(6),
- 556 1558–1564. Journal of Coastal Research 234, 1074–1078.
- 557 Koster, B., Hoffmann, G., Grützner, C. and Reicherter, K., 2014. Ground penetrating radar facies of
- inferred tsunami deposits on the shores of the Arabian Sea (Northern Indian Ocean). MarineGeology 351, 13-34.
- Lambeck, K., Antonioli, F., Purcell, A. and Silenzi, S., 2004. Sea-level change along the Italian coast for
 the past 10,000 yr. Quaternary Science Reviews 1567-1598.
- Leeuw, G., Neele, F. P., Hill, M., Smith, M. H., Vignati, E. 2000. Production of sea spray aerosol in the
- surf zone. Journal of Geophysical Research: Atmospheres (1984–2012), 105(D24), 29397-29409.
- Livsey, D. and Simms, A.R., 2013. Holocene sea-level change derived from microbial mats. Geology
 41, 971-974.
- 566 Leeder, M.R., McNeill, L.C., Collier, R.E.L1, Portman, C., Rowe, P.J., Andrews, J.E. and Gawthorpe,
- 567 R.L., 2003. Corinth rift margin uplift: New evidence from Later Quaternary marine shorelines.
- 568 Geophysical Research Letters 30, NO. 12, 1611, doi:10.1029/2003GL017382.
- 569 Locker, S.D., Hine, A.C., Tedesco, L.P. and Shinn, E.A., 1996. Magnitude and timing of episodic sea-
- 570 level rise during the last deglaciation. Geology 24, 827-830.

- 571 Mauz, B. and Antonioli, F., 2009. Comment on "Sea Level and Climate Changes during OIS 5e in the
- 572 Western Mediterranean" by T. Bardají, J.L. Goy, J.L., C. Zazo, C. Hillaire-Marcel, C.J. Dabrio, A.
- 573 Cabero, B. Ghaleb, P.G. Silva, J. Lario, Geomorphology 104 (2009). Geomorphology 110, 227-230.
- 574 Meyers, W.J., 1974. Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian)
- 575 Sacromento Mountains, New Mexico. Journal of Sedimentary Petrology 44, 837-861.
- 576 Meyers, W.J., 1987. Marine vadose beachrock cementation by cryptocrystalline magnesian calcite –
- 577 Maui, Hawaii. Journal of Sedimentary Petrology 57, 558-570.
- 578 Michelli, M. 2008. Sea-level changes, coastal evolution and paleoceanography of coastal waters in
- 579 SE-Vietnam since the mid-Holocene. Ph.D. Thesis, Christian-Albrechts-Universität Kiel, Germany,
 580 159 pp.
- 581 Milliman, J.D., Gastner, M, and Müller, J., 1971. Utilization of magnesium in coralline algae. Geol.
 582 Soc. Am. Bull. 82, 573-580.
- 583 Milne, G.A., Long, A.J. and Bassett, S.E., 2005. Modelling Holocene relative sea-level observations
- from the Caribbean and South America. Quaternary Science Reviews 24, 1183–1202.
- 585 Mohange, C. and Pirazzoli, P., 2005. Mid-Holocene emergence of southern Tunisian coasts. Marine 586 Geology 220, 205-213.
- 587 Montaggioni, L.F., 2005. History of Indo-Pacific coral reef systems since the last glaciation:
- 588 Development patterns and controlling factors. Earth Science Reviews 71, 1-75.
- 589 Moore, C.H., 1973. Intertidal carbonate cementation, Grand Cayman, West Indies. Journal of
- 590 Sedimentary Petrology 43, 591-602.
- 591 Morse, J.W. and Mackenzie, F.T., 1990. Geochemistry of sedimentary carbonates. Developments in
- 592 Sedimentology 48. Elsevier, 707p.
- 593 Nathan, R.P. and Mauz, B., 2008. On the dose-rate estimate of carbonate-rich sediments for trapped
- charge dating. Radiation Measurements 43, 14-25.
- Neal, A., 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and
 progress. Earth-Science Reviews 66, 261-330.
- 597 Neumeier, U., 1998. Experimental modelling of beachrock cementation under microbial influence.
- 598 Sedimentary Geology 126, 35-46.
- Nicolls, R.J. and Cazenave, A., 2010. Sea-level rise and its impact on coastal zones. Science 328, 15171520.
- 601 Plummer, L.N., 1975. Mixing of sea water with calcium carbonate ground water. Geol. Soc. Amer.
- 602 Memoir 142, 219-236.
- Ramsay, P.J. and Cooper, J.A.G., 2002. Late Quaternary Sea-Level Change in South Africa. Quaternary
 Research, 57, 82–90.
 - 22

- Ramsay, P.J., 1995. 9000 Years of sea-level change along the southern African coastline. Quaternary
 International 31, 71–75.
- 607 Rey, D., Rubio, B., Bernabeu, A. M., and Vilas, F. (2004). Formation, exposure, and evolution of a
- high-latitude beachrock in the intertidal zone of the Corrubedo complex (Ria de Arousa, Galicia,
- 609 NW Spain). Sedimentary Geology, 169, 93-105.
- 610 Rovere, A., Vacchi, M., Firpo, M., Carobene, L., 2011. Underwater geomorphology of the rocky
- 611 coastal tracts between Finale Ligure and Vado Ligure (western Liguria, NW Mediterranean Sea).
- 612 Quaternary International 232(1), 187-200.
- 613 Rovere, A., Parravicini, V., Vacchi, M., Montefalcone, M., Morri, C., Bianchi, C. N., Firpo, M., 2010.
- 614 Geo-environmental cartography of the marine protected area "Isola di Bergeggi"(Liguria, NW
- 615 Mediterranean Sea). Journal of Maps, 6(1), 505-519.
- Sammari, C., Koutitonsky, V.G., Moussa, M., 2006. Sea level variability and tidal resonance in the Gulf
 of Gabès, Tunisia. Continental Shelf Research 26, 338-350.
- 618 Shen, J. W., Long, J. P., Pedoja, K., Yang, H. Q., Xu, H. L., and Sun, J. L., 2013. Holocene coquina
- 619 beachrock from Haishan Island, east coast of Guangdong Province, China. Quaternary
- 620 International, 310, 199-212.
- 621 Shennan, I., 1986. Flandrian sea-level changes in the Fenland. II: Tendencies of sea-level movement,
- altitudinal changes, and local and regional factors. Journal of Quaternary Science 1, 155-179.
- 623 Siesser, W. G., 1974. Relict and recent beachrock from southern Africa. Geological Society of
- 624 America Bulletin, 85, 1849-1854.
- 625 Spurgeon, D., Davis Jr, R. A., and Shinnu, E. A., 2003. Formation of 'Beach Rock' at Siesta Key, Florida
- and its influence on barrier island development. Marine Geology, 200, 19-29.
- 627 Stattegger, K., Tjallingii, R., Saito, Y., Michelli, M., Thanh, N.T. and Wetzel, A., 2013. Mid to late
- 628 Holocene sea-level reconstruction of southeast Vietnam using beachrock and beach-ridge
- deposits. Global and Planetary Change 110, 214-222.
- 630 Stoddart, D.R. and Cann, J.R., 1965. Nature and origin of beach rock. Journal of Sedimentary
- 631 Petrology 35, 243-247.
- 632 Strasser, A. and Davaud, E., 1986. Formation of Holocene limestone sequences by progradation,
- cementation, and erosion. Two examples from the Bahamas. Journal of Sedimentary Petrology 56,422-428.
- 635 Strasser, A., Davaud, E. and Jedoui, Y., 1989. Carbonate cements in Holocene beachrock: example
- 636 from Bahiret el Biban, southeastern Tunisia. Sedimentary Geology 62, 89-100.
- 637 Ten Have, T. and Heijen, W., 1985. Cathodoluminescene activation and zonation in carbonate rocks:
- an experimental approach. Geologie en Mijnbouw 64, 297-310.

- 639 Thomas, P.J., 2009. Luminescence Dating of beachrock in th southeast coast of India Potential for
- 640 Holocene shoreline reconstruction. Journal of Coastal Research 25, 1-7.
- 641 Vacchi, M., Rovere, A., Zouros, N., Desruelles, S., Caron, V. and Firpo, M., 2012a. Spatial distribution
- of sea-level markers on Lesvos Island (NE Aegean Sea): Evidence of differential relative sea-level
- changes and the neotectonic implications. Geomorphology 159-160, 50-62.
- 644 Vacchi, M., Rovere, A., Schiaffino, C. F., Ferrari, M., 2012b. Monitoring the effectiveness of re-
- 645 establishing beaches artificially: methodological and practical insights into the use of video
- 646 transects and SCUBA-operated coring devices. Underwater Technology-Journal of the Society for
- 647 Underwater Technology 30(4), 201-206.
- van de Plassche, O., 1986. Sea-level Research: A manual for the collection and evaluation of data.
- 649 Geo Books, Norwich, pp. 157–173.
- 650 Vieira, M.M., De Ros, L.F. and Bezerra, F.H.R., 2007. Lithofaciology and palaeoenvironmental analysis
- of Holocene beachrocks in northeastern Brazil. Journal of Coastal Research 23, 1535-1548.
- Vousdoukas, M.I., Velegrakis, A.F. and Plomaritis, T.A., 2007. Beachrock occurrence, characteristics,
- 653 formation mechanisms and impacts. Earth-Science Reviews 85, 23-46.
- 654 Walter, L.M. and Hanor, J.S., 1979. Orthophosphate: Effect on the relative stability of aragonite and
- magnesian calcite during early diagenesis. Journal of Sedimentary Petrology 49, 937-944.
- 456 Yaltirak, C., Sakinç, M., Aksu, A. E., Hiscott, R. N., Galleb, B. and Ulgen, U. B. 2002. Late Pleistocene
- 657 uplift history along the southwestern Marmara Sea determined from raised coastal deposits and
- 658 global sea-level variations. Marine Geology 190, 283-305.

- 659 Figures
- 660 Fig. 1. Cross-bedded beachrock at the seaward end of beachrock deposit at 1 m water depth. Tidal
- range is around 0.2 m (Naxos Island, Mediterranean Sea, 37,09° N 25,36° E; (see hammer of
 35 cm length for scale).
- Fig. 2. Beachrock showing low angle trough cross bedded foreset beds dipping seaward (abovedashed black line).
- Fig. 3. Beachrock showing horizontal bedding (below dashed black line) and planar forest beds. Each
 sediment package is around 25 cm thick.
- 667 Fig. 4. Schematic illustration of the coast and its zones of cement fabrics, preferred carbonate
- 668 geochemistry and sediment bedding structures. Beachrock form in the mixing zone which
- 669 includes the marine-vadose and the marine-phreatic environment.
- Fig. 5. Calcite saturation index for mixtures of solutions that were saturated with calcite at different
- 671 pCO₂ at 25 °C and pH of 7.5 (Plummer 1975).
- Fig. 6. Calcite saturation index for mixtures of solutions that were in equilibrium with calcite at 10^{-2.5}
 Atm and 25 °C (Plummer 1975).
- 674 Fig. 7. Various cement types forming in the intertidal mixing zone. A Isopachous rim cement
- 675 composed of microcrystalline HMC; B small calcite crystals filling pore space in granular
- 676 fabric; C Fibrous aragonite crystals growing normal on surface of quartz grains.
- Fig. 8. GPR image illustrating the potential of the technique if beachrock is situated away from
- 678 modern marine zone.
- 679 Fig. 9. Thin section images of beachrock deposits (North Africa, Mediterranean Sea). A Moderately
- 680 sorted oolitic grainstone with isopachous HMC rim (dull blue in CL) indicative for the lower
- 681 intertidal zone. B Well-sorted mixed bio-siliciclastic grainstone with syntaxial echinoderm
- overgrowth and circumgranular calcite, which is blue in CL with an outer band of violet colour.
- 683 Isopachous fabric and faint Mn as CL activator indicate precipitation from oxidising water
- 684 under shallow marine conditions in the lower intertidal zone.

Fig. 10. The coast at Torre Vieja (37°N, 00°E) and its beachrock deposit. The morphological setting
suggest a Holocene age of the deposit while its OSL age (83±6 ka) suggests a RSL level similar
to today during MIS 5a. For scale see person (ca 1.60 m).

- 688 Fig. 11. Illustration of indicative range of beachrock and associated error. The indicative range spans
- 689 from upper shoreface to spray zone encompassing the range from mean low water level
- 690 (MLW) to mean high water level (MHL). The midpoint of each zone is the reference water
- 691 level. The minimum vertical error is half the tidal amplitude (a/2) and the maximum error is
- 692 the tidal range (a_1+a_2) . Tidal amplitude is half of the tidal range; a_1 = tidal amplitude between
- 693 MTL and MLW; a_2 = tidal amplitude between MLT and MHW; d = maximum water depth of
- 694 beachrock formation zone (typically upper shoreface); *s* = elevation of the spray zone.
- Fig. 12. Location of beachrock deposits used for RSL reconstruction. See table 3 for references.
- Fig. 13. Cross section at El Grine illustrating two Holocene beachrock deposits with their indicative
 meaning and associated uncertainty.
- 698
- 699 <u>Tables</u>
- 700 Table 1. Typical primary cement types and fabrics in beachrock. Listed are crystal form and
- orientation of c-axis on surface of components and in pore space in comparison to the water
 from which they precipitate, fabric of crystal assemblage, chemistry of precipitate and CL
- 703 colours.
- Table 2A. Description of beachrock samples dated using the OSL technique. The model used to
 determine the equivalent dose (D_e) is listed in Table 2C.
- Table 2B. Analytical data used for OSL age estimation. For details on age modelling of carbonate-rich
 sediments see Nathan and Mauz (2008).
- Table 2C. Analytical and statistical data used to estimate the equivalent dose (D_e). For details on
 statistics see Galbraith and Roberts (2012).

710	Table 3. Indicative meanings of beachrock with respect to the sea-level index point (SLIP) and
711	limiting point. Reference water level for all SLIPS is the midpoint between the relevant water
712	levels. Mean tide level (MTL) is the mean sea level (0 m); the vertical distance between mean
713	high water (MHW) and mean low water (MLW) constitutes the tidal range which ideally
714	oscillates symmetrically around the mean; tidal amplitude is half of the tidal range; a_1 = tidal
715	amplitude between MTL and MLW; a_2 = tidal amplitude between MLT and MHW; d =
716	maximum water depth of beachrock formation zone (typically upper shoreface); <i>s</i> = elevation
717	of the spray zone.
718	Table 4. Beachrock characteristics and dating techniques used in studies. Listed are attributes used
719	to establish the indicative meaning. Columns in italic indicate new interpretation inferred from
720	our approach. Error of time is combined systematic and random uncertainty of respective
721	dating technique (not listed). For details of indicative meaning and uncertainty see Table 2.
722	Ar=aragonite; LMC=low magnesian calcite; HMC=high magnesian calcite.

Figure 7 Click here to download high resolution image

Figure 8 Click here to download high resolution image

Profile 30 Sur_beachrock_outcrop

Table 1.

Environment	Water	Grain Surfaces	Pore Space	Fabric	Chemistry/	CL
					Mineral	
Upper beach	Unmixed groundwater	Scalenohedral to rhombohedral (dog tooth), normal orientation	Equant subhedral, crystal size >30 ₪m; random orientation	Drusy to blocky, gravitational, syntaxial overgrowth	LMC or HMC	Blue
Lower beach to upper foreshore	Mixed water	Bladed, fibrous, normal orientation	Granular, crystal size 30 ⊠m or empty	Gravitational, mosaic, syntaxial overgrowth	НМС	Subdued blue, violet
Lower foreshore to upper shoreface	Sea water	Microcrystalline, fibrous	Often empty, or granular	Symmetrical around grains	HMC, aragonite	orange
Lower shoreface	Sea water	Microcrystalline, fibrous	Empty, micrite (below fair- weather base)	Symmetrical around grains	HMC, aragonite	Bright orange

Table 2A.

Sample code (LV)	Origin	Coordinates	D₀ (median)± σ (Gy)	D _e (model, Gy)	OSL age (ka, ±1 5)	
249	E-Mediterranean	32.14N	1.20±0.33	1.1±0.1	2.3±0.1	
	(Levant)	34.49E			2.3-0.1	
365	Levant	32.40N	84±2	85±1	113±5	
		34.56E	-			
404	Levant	32.49N	0.51±0.02	0.51±0.02	1.01±0.06	
		34.57E				
426	Iberia (Torre Vieja)	37.56N	79±4	73±5	83±6	
	J	00.42E				
493	Gulf of Gabès	33.64N	3.37±0.09	3.3±0.1	4.3±0.2	
		10.55E				
494	Gulf of Gabès	33.64N	80±3	82±3	106±4	
		10.56E			100-1	
565	E-Arabia (Oman)	22.30N	50 ± 3	48±3	80±3	
000		59.56E	00-0	10-0	00-5	

Table 2B.

Sample Code (LV)	Grain size (µm)	Water content (%)	U (μg g ⁻¹)	Th (µg g⁻¹)	K (wt %)	D _{cosm} (Gy ka ⁻¹)	Carbonate (%)
249	180-250	8±3	0.399±0.018	0.626±0.063	0.169±0.010	0.212±0.010	71±4
365	150-200	5±3	1.353±0.036	0.763±0.058	0.227±0.010	0.153±0.008	60±3
404	200-250	5±3	0.247±0.012	0.288±0.069	0.194±0.010	0.21±0.01	65±4

426	200-250	5±2	1.156±0.032	1.785±0.069	0.474±0.014	0.21±0.01	75±4
493	200-300	5±2	1.440±0.035	0.765±0.039	0.072±0.006	0.21±0.01	87±5
494	90-150	6±2	1.732±0.045	0.679±0.058	0.201±0.010	0.098±0.004	69±4
565	200-300	5±2	1.708±0.045	0.796±0.085	0.122±0.009	0.172±0.009	90±3

Table 2C.

Sample code (LV)	Aliquot# (accepted/ measured)	Aliquot size (mm)		Rejection		Descriptive Statistics				Statistical age model
			D₀<53 Gy	RR1/2	Dim/fit	σ(%)	С	S	k	
249	33/72	3	n/a	18	21	43±5	-0.85	0.33	1.07	CAM
365	22/72	3	31	1	18	28±5	-1.06	-1.1	-0.25	CAM
404	42/96	5	n/a	35	19	24±3	0.86	0.25	2.79	median
426	22/24	3	-	-	2	39±6	-0.87	0.39	0.89	CAM
493	168/38	3	n/a	57	73	15±2	-0.37	0.16	0.38	CAM
494	31/96	3	22	18	25	17±3	0.94	0.189	1.61	CAM
565	23/111	3	57	24	7	24±4	-0.13	0.26	-0.07	CAM

Table 3.

Sample Evidence	SLIP	Indicative Meaning	±
Irregularly distributed needles or isopachous fibres of aragonite or isopachous rims (bladed or fibrous) and micritic HMC cement and small-scaled trough cross stratification	Lower Intertidal	MTL to MLW	a ₁ /2
Irregularly distributed needles or isopachous fibres of aragonitic cement or isopachous rims (bladed or fibrous) and micritic HMC cement or HMC cement in stalactitic position and meniscus between grains and low angle seaward dipping tabular cross bedding with presence of keystone vugs	Upper intertidal	MHW to MTL	a ₂ /2
Irregularly distributed needles or isopachous fibres of aragonitic cement or isopachous rims (bladed or fibrous) and micritic HMC cement without bedding architecture information	Intertidal, undifferentiated	MHW to MLW	<i>a</i> ₁ + <i>a</i> ₂
Small-scale trough cross stratification without cement fabric and chemistry information	Marine limiting	Below MTL	a1+d
HMC cement in stalactitic position and meniscus between grains and internal sediments Low angle seaward dipping tabular cross bedding without keystone vugs and cement fabric and chemistry information Equant or subequant spar of LMC cement	Terrestrial limiting	Above MTL	a ₂ +s

Table 4.

Region	Site	Refer- ence	Dating (material; technique)	Sediment bedding and architecture	Primary chemistry and mineralogy	Primary fabric	Other obser- vations	Markers used for indicative meaning	Authors' indicative meaning and uncertainty	New indicative meaning	Uncertainty
South Africa	False bay (34° S)	Siesser, 1974	Bulk carbonate; ¹⁴ C	Not provided	LMC; Ar	Isopachous micritic rim	Extensive solution pits and vertical channels in the rock	Modern analogue; fossil assemblage; cement	Upper intertidal	(MHW- MTL)/2	Tidal amplitude (MTL to MHW)
Mozam- bique	Vilan- culo (22°S)	Siesser, 1974	Bulk carbonate; ¹⁴ C	Not provided	Ar	lsopachous fibrous needles	Intertidal fossil assem- blage	Modern analogue; fossil assemblage; cement	Intertidal	(MHW- MLW)/2	Tidal range
Brazil	Macau (1°S)	Bezerra et al., 2003	Articulated shell; ¹⁴ C	Trough-cross bedding	Not provided	Not provided	Not provided	Sediment bedding	Lower foreshore to upper shoreface, ±1 m	MTL	undefined
Brazil	Macau (1°S)	Bezerra et al., 2003	Articulated shell; ¹⁴ C	Seaward dipping swash-cross beds	Not provided	Not provided	Not provided	Sediment architecture	mid to lower foreshore, ±1 m	MTL	undefined
Greece	Mykonos (37°N)	Desruelle s et al., 2009	Bulk carbonate; ¹⁴ C	Not provided	НМС	lsopachous small bladed rim	Not provided	Cement	Intertidal, ±0.5 m	(MHW- MLW)/2	Tidal range

Greece	Delos (37°N)	Desruelle s et al., 2009	Bulk carbonate; ¹⁴ C	Not provided	НМС	lsopachous small bladed rim	Not provided	Cement	Intertidal, ±0.5 m	(MHW- MLW)/2	Tidal range
Greece	Delos (37°N)	Desruelle s et al., 2009	Bulk carbonate; ¹⁴ C	Not provided	НМС	Internal sediments	Not provided	Cement	Intertidal, ±0.5 m	(MHW- MLW)/2	Tidal range
Greece	Rhenia (37°N)	Desruelle s et al., 2009	Bulk carbonate; ¹⁴ C	Not provided	НМС	lsopachous small bladed rim	Not provided	Cement	Intertidal, ±0.5 m	(MHW- MLW)/2	Tidal range
Turkey	Kemer (36°N)	Desruelle s et al., 2009	Cement; ¹⁴ C	Not provided	НМС	Internal sediments	Not provided	Cement	Intertidal, ±0.5 m	(MHW- MLW)/2	Tidal range
Turkey	Kemer (36°N)	Desruelle s et al., 2009	Cement; ¹⁴ C	Not provided	Ar	Fibrous needles	Not provided	Cement	Intertidal, ±0.5 m	(MHW- MLW)/2	Tidal range
Turkey	Gozculer(36°N)	Desruelle s et al., 2009	Cement; ¹⁴ C	Not provided	НМС	Isopachous fibrous rim	Not provided	Cement	Intertidal, ±0.5 m	(MHW- MLW)/2	Tidal range
Egypt	Alexandri a (31° N)	El-Sayed, 1988	no dating	Not provided	НМС	Isopachous micritic rim	Not provided	Not provided	Not provided	(MHW- MLW)/2	Tidal range
Egypt	Safaga (34° N)	Holail and Rashed (1992)	no dating	Not provided	HMC, Ar	lsopachous micritic and fibrous rim	Not provided	Not provided	Not provided	(MHW- MLW)/2	Tidal range
Egypt	El Daba (31° N)	Holail and Rashed (1992)	no dating	Not provided	HMC, Ar	Isopachous micritic and fibrous rim	Not provided	Not provided	Not provided	(MHW- MLW)/2	Tidal range

Тодо	Lomè (6° N)	Amieux et al., 1989	Mollusc shell; ¹⁴ C	Cross bedding	HMC, Ar, LMC	lsopachous micritic and fibrous rim	Not provided	Not provided	Not provided	MLW to supratidal	Tidal range
Belize	Cay (16°N)	Gischler and Lomando, 1997	Bulk carbonate; ¹⁴ C	Not provided	Ar; HMC	lsopachous micritic and fibrous rim	Not provided	Cement	Marine- phreatic zone	(MTL+ML W)/2	Tidal amplitude (MHW to MTL)
Vietnam	Cà Nà (10°N)	Michelli et al., 2008; Stattegge r et al., 2013	Coral and Bivalve; ¹⁴ C	Cross bedding	HMC, Ar	lsopachous micritic and fibrous rim	Not provided	Sediment architecture; cement	Intertidal, ±1.15 m	(MHW- MLW)/2	Tidal range
Italy	Sardinia (40°N)	Lambeck et al. <i>,</i> 2004	Bulk carbonate; ¹⁴ C	Cross bedding	НМС	lsopachous fibrous rim	Not provided	Cement	Palaeo- shoreline, +1 m, -5 m	MTL	undefined
Turkey	Thracia Black Sea (41°N)	Erginal et al., 2013	Bulk carbonate; ¹⁴ C	Not provided	LMC	Micritic	Not provided	Cement	Upper intertidal	(MHW- MTL)/2	Tidal amplitude (MTL to MHW)
Brazil	Cabelo (12°S)	Caldas et al., 2006	Bivalve; ¹⁴ C	Swash-cross- bedding	Not provided	Not provided	Not provided	Modern analogue; sediment architecture	Foreshore, ±1.4	MTL	undefined
Saudi Arabia	Al- Shoaiba (20°N)	Ghandour et al., 2014	no dating	Low-angle cross- bedding	Ar, HMC	lsopachous micritic and fibrous rim	Not provided	Cement	Marine- phreatic	(MTL+ML W)/2	Tidal amplitude (MTL to MLW)

Spain	Galicia (9°N)	Rey et al., 2004	no dating	Not provided	LMC	Isopachous fibrous rim	Meniscus	Not provided	supratidal	MTL	undefined
Spain	La Palma (28°N)	Calvet et al., 2003	Cement; ¹⁴ C	Not provided	Ar, HMC	Isopachous fibrous needle, isopachous spar rim, isopachous micritic rim	Meniscus	Cement	Intertidal to upper shoreface	MTL	Tidal range
USA	Florida (27°N)	Spurgeon et al., 2003	Bulk carbonate and cement; ¹⁴ C	Swash cross bedding and landward- dipping beds	LMC	Blocky spar rim; isopachous bladed spar rim	Not provided	Sediment architecture and cement	Supratidal	MTL	undefined
India	Maharast ra (18°)	Badve et al., 1997	Gastropod; ¹⁴ C	Not provided	Ar	lsopachous fibrous rim	Fossil assem- blage	cement	Lower intertidal	(MTL+ML W)/2	Tidal amplitude (MLW to MTL)
Turkey	Parion (40°N)	Erginal, 2012	Bulk carbonate; ¹⁴ C	Not provided	НМС	Micritic	Meniscus, dissolution pits of meteoric water	Cement	Intertidal to supratidal	MTL	undefined
Israel	Tel Haratz (31°)	Bakler et al., 1985	Shell; ¹⁴ C	Low angle cross bedding	Ar, LMC	lsopachous fibrous needle rim, blocky	Not provided	Sediment architecture and cement	Intertidal to supratidal	(MHW- MTL)/2	Tidal amplitude (MHW to MTL

South Africa	Sodwana bay (27°S)	Ramsey; 1995; Ramsey and Cooper, 2002	U-series (²³⁴ U/ ²³⁰ Th)	Basal unit of a beachrock- aeolianite complex	Not provided	Isopachous fibrous rim, blocky equant	Not provided	Sediment architecture	Palaeo-sea level, ±1.5	MTL	undefined
Greece	Kalamaki, Crete (35°N)	Neumeier , 1998	Bulk carbonate and bioclasts; ¹⁴ C	Not provided	НМС	Micritic, Isopachous bladed spar rim		Cement	Intertidal	(MHW- MLW)/2	Tidal range
French Polynesi a	Taraire (17°S)	Neumeier , 1998	Bulk carbonate; ¹⁴ C	Not provided	Ar	Isopachous fibrous needle rim		Cement	Intertidal	(MHW- MLW)/2	Tidal range
Egypt	Ras Garib (28° N)	Neumeier , 1998	Cement; ¹⁴ C	Not provided	Ar	lsopachous fibrous needle rim,	Not provided	Cement	Intertidal	(MHW- MLW)/2	Tidal range
Egypt	El Baida (25° N)	Neumeier , 1998	Cement; ¹⁴ C	Not provided	Ar	lsopachous fibrous needle rim,	Not provided	Cement	Intertidal	(MHW- MLW)/2	Tidal range
Saudi Arabia	Aqaba gulf (28°N)	Al- Ramadan, 2013	Bulk carbonate; ¹⁴ C	low angle seaward dipping cross beds	Ar; HMC	lsopachous fibrous needle, micritic	Not provided	Cement	Intertidal	(MHW- MLW)/2	Tidal range
Saudi Arabia	Arabic gulf (25° N)	Al- Ramadan, 2013	Bulk carbonate; ¹⁴ C	low angle seaward dipping cross	Ar; HMC	Isopachous fibrous needle,	Not provided	Cement	Intertidal zone	(MHW- MLW)/2	Tidal range

				beds		micritic					
Australi a	Shark bay (25°S)	Neumeier , 1998	Bulk carbonate; ¹⁴ C	Not provided	Ar	Isopachous micritic, isopachous fibrous needle	Not provided	Cement	Intertidal	(MHW- MLW)/2	Tidal range
Greece	Lesvos (39°N)	Vacchi et al., 2012	Bioclasts; ¹⁴ C	Not provided	НМС	Isopachous Micritic, isopachous fibrous	Not provided	Cement	Palaeo-sea level, ±0.5	(MHW- MLW)/2	Tidal range
Tunisia	Bahiret el Biban (33°N)	Strasser et al., 1989	Bulk carbonate; ¹⁴ C	Seaward dipping beds	Ar; HMC	Isopachous fibrous needle; isopachous spar	Keystone vugs,	Sediment architecture and cement	Palaeo shoreline	(MHW- MLW)/2	Tidal range
Spain	Bilbao (43°N)	Arrieta et al., 2011	Modern fragments cemented in beachrock	Parallel laminated seaward dipping beds	Ar; HMC	Isopachous fibrous needle; micritic	Conglomerat ic beds with imbricated clasts	Sediment architecture and cement	Shoreface to foreshore	(MTL+ML W)/2	Tidal amplitude (MLW to MTL)
China	Haishan Island (23°N)	Fuzhi and Youshen, 1988; Shen et al., 2013	Shell; ¹⁴ C	Low angle seaward dipping cross beds	Ar, LMC	Micritic, isopachous fibrous needle, spar	Fossil assemblage	Sediment architecture, fossils and cement	Semi- enclosed lagoon; Intertidal to supratidal	(MTL- MLW)/2	Tidal amplitude (MHW to MTL)
Bahama s	Bimini (25°N)	Strasser and Davaud, 1986	No dating	Seaward dipping tabular cross beds with keystone vugs	Ar	lsopachous fibrous needle	Keystone vugs	Sediment architecture and cement	Upper intertidal	(MTL- MLW)/2	Tidal amplitude (MHW to MTL)

Bahama s	Joulter Cays (25°N)	Strasser and Davaud, 1986	No dating	Seaward dipping tabular cross beds	Ar	lsopachous fibrous needle	Keystone vugs	Sediment architecture and cement	Upper intertidal	(MTL- MLW)/2	Tidal amplitude (MHW to MTL)
USA	Maui (21°N)	Meyers, 1987	No dating	Not provided	НМС	lsopachous rim	Meniscus	Cement	Marine vadose zone of the beach	(MTL- MLW)/2	Tidal amplitude (MHW to MTL)
Gran Cayman	Car (19°N)	Moore, 1973	No dating	Not provided	Ar, HMC	Isopachous fibrous, micritic or bladed rim	Not provided	Cement	Intertidal	(MHW- MLW)/2	Tidal range
Bahama s	San Salvador (24°N)	Kindler and Bain, 1993	Bulk carbonate; ¹⁴ C	Low angle seaward dipping planar lamination	Ar; LMC	Isopachous fibrous needle rim, micritic	Meniscus, keystone vugs	Stratification and cement	Intertidal to supratidal	MTL	undefined