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A Robust Maximum Likelihood Scheme for PSS

Detection and Integer Frequency Offset Recovery in

LTE Systems
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Abstract—Before establishing a communication link in a cel-
lular network, the user terminal must activate a synchronization
procedure called initial cell search in order to acquire specific
information about the serving base station. To accomplish this
task, the primary synchronization signal (PSS) and secondary
synchronization signal (SSS) are periodically transmitted in the
downlink of a Long Term Evolution (LTE) network.

Since SSS detection can be performed only after successful
identification of the primary signal, in this work we present a
novel algorithm for joint PSS detection, sector index identifi-
cation and integer frequency offset (IFO) recovery in an LTE
system. The proposed scheme relies on the maximum likelihood
(ML) estimation criterion and exploits a suitable reduced-rank
representation of the channel frequency response which proves
robust against multipath distortions and residual timing errors.
We show that a number of PSS detection methods that were
originally introduced through heuristic reasoning can be derived
from our ML framework by simply selecting an appropriate
model for the channel gains over the PSS subcarriers.

Numerical simulations indicate that the proposed scheme
can be effectively applied in the presence of severe multipath
propagation, where existing alternatives provide unsatisfactory
performance.

Index Terms—LTE, cell search, sector index identification,
integer frequency offset recovery.

I. INTRODUCTION

The Long Term Evolution (LTE) mobile communication

standard has been developed by the 3rd Generation Partner-

ship Project (3GPP) in order to enhance the performance of

currently deployed 3G systems in terms of data throughput,

spectrum utilization and user mobility [1], [2]. This technology

supports various channel bandwidths ranging from 1.4 to 20

MHz and promises peak data rates of 100 Mbit/s in the

downlink (DL) and 50 Mbit/s in the uplink (UL) for the

20 MHz system bandwidth [3]. Improved resilience against

multipath distortion, high spectral efficiency and ability to

handle different data rates are achieved by using orthogonal

frequency-division multiple-access (OFDMA) in the DL, while

single-carrier frequency-division multiple-access (SC-FDMA)

is adopted in the UL due to its reduced peak-to-average

power-ratio [4]. There is also the possibility of choosing

between normal and extended cyclic prefix (CP), the latter

being considered for large delay spread environments.

LTE supports multi-cell communications, with cell informa-

tion being conveyed by an integer number called cell-ID. Upon
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entering the network or during an handover operation, the

user equipment (UE) must recover the cell-ID of the serving

base station (eNodeB) and has also to acquire correct timing

and frequency synchronization. This operation is known as

initial cell-search [5], [6] and is accomplished by exploiting a

dedicated synchronization channel (SCH) periodically inserted

in the DL radio frame [7]. The SCH conveys two signals called

Primary Synchronization Sequence (PSS) and Secondary Syn-

chronization Sequence (SSS). The former is generated from a

63-length frequency-domain Zadoff-Chu (ZC) sequence whose

root index univocally determines the sector identity. The latter

is an interleaved concatenation of two length-31 scrambled

m-sequences specifying the cell ID group.

Although in principle it is possible to consider the joint

estimation of all synchronization parameters and cell-ID in a

single step, a more pragmatic approach relies on the following

three-stage procedure [8]:

1) Firstly, fractional frequency offset (FFO) and coarse

symbol timing recovery is accomplished using the re-

dundancy introduced by the CP. This method was origi-

nally proposed in [9] and its accuracy can be improved

by averaging the timing and frequency metrics over

several OFDM symbols;

2) In the second step, the UE detects the position of the

PSS within the received DL signal in order to acquire

subframe timing information, and also determines the

sector index by identifying which primary sequence has

been transmitted out of three possible alternatives. The

integer frequency offset (IFO) can be retrieved at this

stage by evaluating the shift of the received PSS in the

frequency domain;

3) The final step recovers the cell ID group and identifies

the frame boundary by using the received SSS. Once

these operations have been completed, the UE is able

to read some basic configuration information broadcast

from the eNodeB, such as the system bandwidth, CP

length and duplexing mode.

Since SSS detection can be accomplished only after suc-

cessful identification of the primary sequence, PSS detection

represents a crucial task in the overall cell search procedure.

For this reason, it has attracted much attention in the last

few years and many solutions are currently available. Some

of them operate in the time-domain (TD), while others ex-

ploit the frequency-domain (FD) samples provided by the

receive discrete Fourier transform (DFT) unit. Examples of



2

TD schemes can be found in [10]-[13], where the PSS is

revealed by looking for the peak of the cross-correlation

between the received samples and the three locally regenerated

ZC sequences. However, since the SCH is transmitted onto

a set of 63 dedicated subcarriers with the other subcarriers

being modulated by data symbols, the PSS should be extracted

from the DL signal before the correlation stage. This requires

a high-order filtering operation of the received signal, which

results into an increase of the hardware complexity and also

leads to some performance degradation since the contribution

of data subcarriers cannot be totally filtered out due to the

spectral leakage and the uncompensated CFO. TD methods

with reduced complexity are suggested in [14] and [15], where

the tasks of PSS detection and sector index recovery are

decoupled by either exploiting the central symmetric-property

of the ZC sequences or by correlating the DL signal with the

sum of the three possible primary sequences.

As an alternative to the TD approach, in FD schemes the

contribution of the data-bearing subcarriers is eliminated by

selecting the SCH at the receive DFT output, and correlating

the resulting samples with replicas of the three tentative

frequency-domain ZC sequences [16]. This method works

properly as long as the channel gain can be considered as

approximately constant over the SCH subband. Unfortunately,

such an assumption is over-optimistic for transmissions over

severe multipath channels or in the presence of a non-

negligible timing error [17], which appears as a linearly

increasing phase shift at the DFT output. In these circum-

stances, the correlation properties of the received PSS will

be partially compromized, with an ensuing degradation of

the system performance. To solve this problem, differential

correlation in the FD has been proposed in [18]-[20], where

IFO detection is also accomplished during the PSS match

process. A disadvantage of the differential approach is that the

peaks of the resulting metric are quite close for different IFO

values, thereby reducing its ability to recover the frequency

error [21]. Furthermore, compared to [16], the accuracy of

the FD differential correlator is greatly reduced whenever

the channel frequency response (CFR) over the SCH keeps

approximately constant. For this reason, the authors of [22]

propose to adaptively choose between non-differential and

differential detection on the basis of a previous estimate of the

maximum channel delay spread. A simpler solution is found in

[23] by resorting to the partial correlation concept, wherein the

received SCH is partitioned into several adjacent FD segments

which are subsequently correlated with the corresponding

parts of the tentative ZC sequences. A fundamental design

parameter of this approach is represented by the number of

segments, which must be selected in accordance with the

coherence bandwidth of the transmission channel.

It is worth noting that all the aforementioned methods have

been derived by means of heuristic reasoning. In order to check

whether their performance can be substantially improved or

not, it is of interest to make comparisons with alternative

approaches based on some optimality criterion. With this goal

in mind, in the present work we employ maximum likelihood

(ML) methods to study the problem of PSS detection, sector

index identification and IFO recovery in an LTE system. Our

analysis is conducted in the FD [24] and, in contrast to

previous investigations, we explicitly take into account the

multipath distortion introduced by the propagation medium on

the received signal. This is achieved by treating the CFR over

the SCH subcarriers as a nuisance vector [25], which is jointly

estimated along with the synchronization parameters. As we

shall see, this approach may lead to an under-determined

estimation problem wherein the number of quantities to be

recovered exceeds the number of available data. Reduced-rank

approximations of the CFR are thus employed to cope with

such a situation using either the minimum mean-square-error

criterion (MMSE) or the classical polynomial basis expan-

sion. This approach results into a general framework which

accommodates both the conventional FD scheme [16] and the

partial correlation concept [23] through a suitable selection

of the CFR model. Furthermore, it leads to a novel ML-

oriented algorithm which outperforms existing alternatives and

represents the main contribution of this work.

A key assumption of our analysis is that symbol timing

and FFO have been previously acquired using the classical

CP-based method presented in [9]. However, since multipath

propagation may significantly reduce the accuracy of the

timing estimates provided by [9], a residual timing error is

included in the system model for the sake of generality, and

a suitable reduced-rank representation of the CFR is adopted

to mitigate its impact on the overall performance.

The rest of the paper is organized as follows. Next section

illustrates the signal model and formulates the estimation prob-

lem. Sect. III presents the joint ML estimator of the unknown

parameters using a generic expansion basis to represent the

CFR. An MMSE reduced-rank approximation of the CFR

is derived in Sect. IV along with other possible channel

representations that lead to known PSS detection schemes.

After discussing numerical simulations in Sect. V, we offer

some conclusions in Sect. VI.

Notation: Matrices and vectors are denoted by boldface

letters, with IN being the identity matrix of order N , 0K the

K-dimensional null vector and 1K a K-dimensional vector

with unit entries. The notation ‖ · ‖ indicates the norm of the

enclosed vector, while B
−1 and tr{B} are the inverse and

the trace of a matrix B. We use E{·}, (·)∗, (·)T and (·)H for

expectation, complex conjugation, transposition and Hermitian

transposition, respectively. The notation ℜe{·} stands for the

real part of a complex-valued quantity, while | · | represents the

corresponding modulus. Finally, we use λ̃ to indicate a trial

value of an unknown parameter λ.

II. SYSTEM MODEL

A. LTE frame structure

We consider the DL of an LTE system operating in

frequency-division-duplexing (FDD) mode. As shown in

Fig. 1, data transmission is organized in radio frame units of

length 10 ms. Each frame is divided into ten 1 ms subframes,

which are further partitioned into two slots of length 0.5 ms.

Every slot contains 7 OFDMA symbols in case of normal

CP, while 6 OFDMA symbols are present when the extended

CP is employed. According to the LTE specifications, 504
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Fig. 1. Position of PSS (green) and SSS (red) in the LTE downlink frame.

different physical-layer cell IDs are available and arranged into

168 distinct groups. Each group is identified by the cell ID

group N
(1)
ID ∈ {0, 1, 2, . . . , 167} and contains three different

sectors, which are specified by the sector ID N
(2)
ID ∈ {0, 1, 2}.

In addition to acquiring the correct timing and frequency

synchronization, during the cell search procedure the UE

must retrieve the integer-valued parameters N
(1)
ID and N

(2)
ID ,

from which the cell ID of the serving eNodeB is uniquely

computed as N cell
ID = 3N

(1)
ID + N

(2)
ID . To accomplish these

tasks, two synchronization sequences called PSS and SSS are

periodically transmitted on a dedicated SCH to specify the

sector ID and cell group, respectively. In particular, the PSS

is located in the last OFDM symbol of the first and 11th

slots of each radio frame, while the SSS is transmitted in the

symbol immediately preceding the PSS. As LTE allows for

various system bandwidths, the SCH occupies a 73-subcarriers

subband located symmetrically around DC, which corresponds

to the smallest allowable spectrum occupancy. Such design

choice enables the detection of the synchronization signals

without requiring prior knowledge of the system bandwidth.

B. Primary synchronization sequence

The PSS is chosen in a set of three different 63-

length ZC sequences characterized by excellent auto- and

cross-correlation properties [26]. More precisely, during

the PSS transmission the SCH subcarriers with indices

n ∈ {0,±1,±2, . . . ,±36} are modulated by the following

polyphase complex exponential terms

au(n) =

{

e−jπu(n2+63n+110)/63 if n ∈ I
0 otherwise

(1)

where u denotes the root index of the selected ZC sequence

and I = {n ∈ Z : |n| ≤ 31 and n 6= 0}. The above equation

indicates that, out of the 73 available subcarriers, only 62

are modulated by the PSS, while the remaining eleven (five

placed at the SCH boundaries and one placed at DC) are left

unfilled. The root index belongs to the set Ju = {25, 29, 34}
and specifies the sector ID N

(2)
ID as shown in Table I.

C. Overview of the cell search procedure

Cell search is a three-stage procedure which is performed

when the UE is switched on or when it loses synchronization.

Since LTE must provide mobility up to 350 km/h, this process

is periodically repeated to find a candidate cell for the han-

dover operation. In the first stage, the UE retrieves the FFO and

TABLE I
RELATIONSHIP BETWEEN N

(2)
ID

AND ZC ROOTS

N
(2)
ID

Root index u

0 25
1 29
2 34

acquires coarse information about the OFDM symbol timing.

This operation is typically accomplished in the time domain

using the conventional CP-based delay correlation method

presented in [9]. After FFO correction and CP removal, the

resulting samples are converted in the frequency domain using

a DFT unit. The second stage detects the position of the PSS

within the received DL signal and recovers the ZC root index

u. These tasks can be accomplished either in the time or

frequency domain, and provide subframe timing information

as well as the sector ID. In the third stage, the SSS is exploited

to get the cell ID group and the frame boundary. Recalling that

the SSS is located in the symbol immediately preceding the

PSS, the latter is normally used as a phase reference to perform

coherent detection of the SSS in the frequency domain. As

for the IFO, it can be estimated either in the second or third

step by evaluating the frequency domain shift of the received

PSS or SSS at the DFT output. However, since there are 168

different secondary sequences compared to only three primary

sequences, the complexity of the IFO search is greatly reduced

if it is performed in the second step in conjunction with PSS

detection [21].

D. Signal model and problem formulation

We now concentrate on the second stage of the cell search

process and provide the signal model for PSS detection

and IFO recovery. The DL signal propagates through a

multipath channel with discrete-time impulse response h =
[h(0), h(1), . . . , h(L−1)]T of order L. At the UE receiver, the

incoming signal is down-converted to baseband and sampled

with period Ts. Then, the CP delay correlation method [9] is

applied to retrieve the FFO and the OFDM symbol timing.

After FFO compensation, timing information is exploited to

remove the CP and to divide the stream of time-domain sam-

ples into segments xk = [xk(0), xk(1), . . . , xk(N−1)]T (with

k = 1, 2, . . .) which are subsequently fed to the N−point DFT

unit. We denote by

Xk(n) =
1√
N

N−1
∑

ℓ=0

xk(ℓ)e
−j2πℓn/N (2)

the nth DFT output corresponding to the kth segment and

assume that the accuracy of the frequency and timing estimates

is such that we can reasonably neglect any inter-channel or

inter-block interference present on Xk(n). However, bearing in

mind that accurate timing information is difficult to achieve in

the presence of highly dispersive channels [17], a residual tim-

ing error is included in the system model by applying a phase

shift to the quantities Xk(n) that increases linearly with n.

Since the PSS is transmitted twice per frame, the observation

window for PSS detection encompasses NQ adjacent OFDM
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symbols composing a half frame, with NQ being either 60 or

70 for the extended or normal CP transmission mode, respec-

tively. Without loss of generality, in this work we consider an

LTE system with an extended CP and let NQ = 60. Further-

more, we assume that the PSS is transmitted on the qth OFDM

symbol within the observation window k = 1, 2, . . . , NQ and

denote by Xk = [Xk(−36), Xk(−35), . . . , Xk(36)]
T the 73-

dimensional vector collecting the DFT output over the SCH

channel. Then, for k 6= q we model Xk as a zero mean

Gaussian vector with covariance matrix Ck = σ2
kI73 (σ2

k being

an unknown parameter), while for k = q we have

Xq(n) = H(n−ν)au(n−ν)e−j2π(n−ν)θ/N+wq(n) |n| ≤ 36
(3)

where ν represents the IFO, θ denotes the residual timing error

(normalized by the sampling period) and H(n) is the CFR over

the nth subcarrier. Finally, wq(n) is the noise contribution,

which is modeled as a circularly-symmetric white Gaussian

process with average power σ2
w =E{|wq(n)|2}. Without loss

of generality, we consider θ as an integer-valued parameter.

The reason is that any residual fractional timing offset (FTO)

can be incorporated into h(ℓ) by letting h(ℓ) = h(t)|t=(ℓ+ε)Ts
,

where ε denotes the FTO and h(t) is the continuous-time

version of the channel impulse response (CIR).

Our goal is to exploit the set of observations X =
[XT

1 X
T
2 . . . X

T
NQ

]T to find the joint ML estimate of the

unknown parameters {q, u, ν} specifying the PSS position, the

sector ID and the IFO. Unfortunately, this task is complicated

by the presence of the nuisance quantities {H,θ,σ2, σ2
w},

where H = {H(n); |n| ≤ 31} and σ2 = {σ2
k; 1 ≤ k ≤ NQ

and k 6= q}. In order to reduce the number of estimation

parameters, we propose to merge H and θ into an equivalent

CFR Heq = {Heq(n); |n| ≤ 31} with elements Heq(n) =
H(n)e−j2πnθ/N . Moreover, since channel gains over blocks

of contiguous subcarriers are highly correlated, we expect that

Heq can be accurately expanded over a reduced-rank basis of

P < 63 vectors {b1,b2, . . . ,bP }. This amounts to putting

Heq ≃ Bξ (4)

where B is a matrix with columns bi (i = 1, 2, . . . , P ) and

ξ = [ξ(1), ξ(2), . . . , ξ(P )]T is a vector of expansion coeffi-

cients. A number of possible reduced-rank representations of

Heq will be presented later.

III. JOINT ESTIMATION OF THE UNKNOWN PARAMETERS

We arrange the PSS position, sector ID and IFO into a vector

ϕ = [q, u, ν] and let η = [ξ,σ2, σ2
w] be the set of nuisance

parameters. Given the unknown quantities {ϕ,η}, vectors Xk

(k = 1, 2, . . . , NQ) are statistically independent and Gaussian

distributed. Hence, the probability density function (pdf) of X

turns out to be

pX(X) =

NQ
∏

k=1

pXk
(Xk) (5)

where

pXk
(Xk) =

exp
{

− ‖Xk‖
2

σ2

k

}

(πσ2
k)

73
(6)

is the pdf of Xk when k 6= q , while

pXq
(Xq) =

exp







−
36∑

n=−36

|Xq(n)−Heq(n−ν)au(n−ν)|2

σ2
w







(πσ2
w)

73
(7)

is the pdf of Xq . In writing (7) we have borne in mind the

expression of Xq(n) given in (3) and we have used the identity

Heq(n) = H(n)e−j2πnθ/N . The log-likelihood function (LLF)

for the unknown quantities {ϕ,η} is obtained after substitut-

ing (6) and (7) into (5), and applying the logarithmic function

to the resulting quantity. This produces

Λ(ϕ̃, η̃) =−
NQ
∑

k=1
k 6=q̃

[

73 ln(πσ̃2
k) +

1

σ̃2
k

‖Xk‖2
]

(8)

− 73 ln(πσ̃2
w)−

1

σ̃2
w

36
∑

n=−36

∣

∣

∣
Xq̃(n)− s(ϕ̃, ξ̃;n)

∣

∣

∣

2

where we have defined s(ϕ̃, ξ̃;n) = H̃eq(n − ν̃)aũ(n − ν̃)
with H̃eq = Bξ̃. The joint ML estimate of the unknown

parameters is found by looking for the global maximum of

Λ(ϕ̃, η̃). Maximizing with respect to σ̃2 and σ̃2
w yields

σ̂2
k =

1

73
‖Xk‖2 (9)

and

σ̂2
w =

1

73

36
∑

n=−36

∣

∣

∣
Xq̃(n)− s(ϕ̃, ξ̃;n)

∣

∣

∣

2

. (10)

These results are substituted back into (8) in place of σ̃2
k and

σ̃2
w, leading to

Λ(ϕ̃, ξ̃) =73



−
NQ
∑

k=1

ln
( π

73
‖Xk‖2

)

+ ln
( π

73
‖Xq̃‖2

)

(11)

−NQ − ln

(

π

73

36
∑

n=−36

∣

∣

∣
Xq̃(n)− s(ϕ̃, ξ̃;n)

∣

∣

∣

2
)]

.

Skipping irrelevant multiplicative and additive terms indepen-

dent of the optimization variables and exploiting the mono-

tonicity of the log function, we may replace Λ(ϕ̃, ξ̃) by the

equivalent objective function

Λ1(ϕ̃, ξ̃) = −

36
∑

n=−36

∣

∣

∣
Xq̃(n)− H̃eq(n− ν̃)aũ(n− ν̃)

∣

∣

∣

2

∥

∥X
q̃

∥

∥

2 .

(12)

To proceed further, we make a change of the indexing variable

n − ν̃ → m and recall that the PSS values au(m) are non-

zero only for m ∈ I as specified in (1). Hence, assuming that
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|ν̃| ≤ 5, after dropping an immaterial term in (12) we obtain

Λ2(ϕ̃, ξ̃) =

2ℜe

{

31
∑

m=−31
Zq̃(ũ, ν̃;m)H̃∗

eq(m)

}

−
∥

∥

∥
H̃eq

∥

∥

∥

2

∥

∥X
q̃

∥

∥

2

(13)

where we have defined Zq̃(ũ, ν̃;m) = Xq̃(m + ν̃)a∗ũ(m).
Denoting by Zq̃(ũ, ν̃) the 63-dimensional vector with entries

{Zq̃(ũ, ν̃;m); |m| ≤ 31}, we may express Λ2(ϕ̃, ξ̃) in matrix

notation as

Λ2(ϕ̃, ξ̃) =
2ℜe

{

ξ̃
H
B

H
Zq̃(ũ, ν̃)

}

− ξ̃
H
B

H
Bξ̃

∥

∥X
q̃

∥

∥

2 . (14)

The maximum of Λ2(ϕ̃, ξ̃) with respect to ξ̃ is achieved at

ξ̂ =
(

B
H
B
)−1

B
H
Zq̃(ũ, ν̃) (15)

and plugging this result back into (14) yields the concentrated

likelihood function

Λ3(ϕ̃) =
Z
H
q̃ (ũ, ν̃)GZq̃(ũ, ν̃)

∥

∥X
q̃

∥

∥

2 (16)

where G = B
(

B
H
B
)−1

B
H . The joint ML estimate of the

unknown parameters is eventually obtained as

ϕ̂ = argmax
ϕ̃

{Λ3(ϕ̃)} (17)

which requires a search over the multi-dimensional domain

spanned by ϕ̃. However, since ϕ̃ = [q̃, ũ, ν̃] has integer-valued

entries, there is only a finite number of hypothesized values of

ϕ̃. At this stage, the problem arises as how to select a suitable

basis {b1,b2, . . . ,bP } for the reduced-rank representation of

Heq which can exhibit low-sensitivity to the timing error θ.

Possible solutions are presented in the next Section.

IV. REDUCED-RANK REPRESENTATION OF THE CHANNEL

FREQUENCY RESPONSE

A. Problem formulation

In OFDM systems, the CFR is typically expressed in terms

of the discrete-time CIR as

H(n) =

L−1
∑

ℓ=0

h(ℓ)e−j2πnℓ/N . (18)

Recalling that Heq(n) = H(n)e−j2πnθ/N , from (18) it follows

that the equivalent CFR takes the form

Heq(n) =

L+θ−1
∑

ℓ=θ

h(ℓ − θ)e−j2πnℓ/N . (19)

Since coarse timing recovery schemes for OFDM systems

adopt a back-off design wherein the timing estimates are

pre-advanced to avoid inter-block-interference at the DFT

output [27], in the sequel it is assumed that there is no

negative timing error. This amounts to letting θ vary in the set

{0, 1, . . . , θmax}, where θmax must be selected on the basis

of the accuracy of the timing estimator. In such a case, the

equivalent CFR can be written in matrix notation as

Heq = Fheq (20)

where heq = [0T
θ h

T
0
T
θmax−θ]

T is the equivalent CIR vector

of order Leq = L + θmax and F is a 63 × Leq matrix with

entries

[F]n,ℓ = e−j2πnℓ/N |n| ≤ 31, 0 ≤ ℓ ≤ Leq − 1. (21)

Since in a practical LTE scenario the normalized timing error

may be as large as 40 [21], the channel order Leq is expected to

be close or even to exceed the value 63. In this case, we cannot

interpret (20) as a reduced-rank representation of Heq and the

goal is to find a basis {b1,b2, . . . ,bP } of order P ≪ 63
such that the orthogonal projection of Heq on the selected

basis, say HP = GHeq , is a good approximation of Heq .

The accuracy of such an approximation can be measured in

terms of the mean-square-error (MSE) between Heq and HP ,

which is defined as E{‖Heq −HP ‖2}. Recalling that G =

B
(

B
H
B
)−1

B
H , from (20) the MSE is found to be

MSE(B) = E{hH
eqF

H
G

⊥
Fheq} (22)

where we have taken into account that G
⊥ = I63 − G is

an idempotent matrix and we have explicitly indicated the

dependence of the MSE on the expansion matrix B. After

standard manipulations, we can rewrite (22) as

MSE(B) = tr{G⊥
FCeqF

H} (23)

with Ceq =E{heqh
H
eq} being the covariance matrix of heq .

B. MMSE reduced-rank representation

For a fixed value of P , the optimum expansion basis is

the one that minimizes MSE(B). Neglecting an irrelevant

additive term independent of B, it is seen that the minimum

of MSE(B) is achieved by maximizing the metric

γ(B) = tr{B
(

B
H
B
)−1

B
H
FCeqF

H} (24)

with respect to B. To solve this problem, it is convenient to

consider the compact singular value decomposition (SVD) of

B, which is given by

B = UΣV
H (25)

where Σ ∈ R
P×P is the diagonal matrix containing the P

non-zero singular values of B sorted in a decreasing order,

with the columns of U ∈ C
63×P and V ∈ C

P×P being the

corresponding left and right eigenvectors, respectively. Substi-

tuting (25) into (24) and observing that UH
U = V

H
V = IP ,

after some algebraic computations we can rewrite γ(B) as

γ(B) = tr{UH
FCeqF

H
U} (26)

from which we see that the objective function only depends

on U. Maximizing the right-hand-side of (26) with respect

to U is a well-known optimization problem, whose solution

is obtained by selecting as columns of U the P normalized

eigenvectors of FCeqF
H associated to the P largest eigen-

values. In the sequel, we denote by UMMSE the matrix U

provided by such a design criterion. Since Σ and V can be

arbitrarily chosen without affecting the value of the MSE, for

simplicity we let Σ = V = IP and obtain B = UMMSE .

An interesting interpretation of this result is found

by substituting B = UMMSE into (15), yielding ξ̂ =
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U
H
MMSE Zq̃(ũ, ν̃). Then, from (4) an estimate of Heq (for

a given ϕ̃) is obtained in the form Ĥeq(ϕ̃) = UMMSE ξ̂ or,

equivalently,

Ĥeq(ϕ̃) = UMMSE U
H
MMSE Zq̃(ũ, ν̃). (27)

This solution is reminiscent of the reduced-rank linear MMSE

(LMMSE) channel estimator presented in [28]. Specifically,

the latter is a function of the operating signal-to-noise ratio

(SNR) and reduces to (27) as the SNR approaches infinity.

Unfortunately, computing UMMSE requires knowledge of

Ceq , which depends on the channel power delay profile and

the timing error. Since these quantities are generally unknown

at the receiver, the exact MMSE solution cannot be pursued in

practice. A possible way out is found by allowing the system

to operate in a mismatched mode wherein the true channel

correlation matrix Ceq is replaced by some fixed matrix Ceq .

A similar problem was encountered in [28] in the context of

LMMSE channel estimation using the SVD. In that case, a

robust scheme with reduced sensitivity to variations of the

channel statistics was found by designing the estimator for a

uniform power delay profile. This approach amounts to putting

Ceq = ILeq
and leads to an approximated MMSE (AMMSE)

solution, say B = UAMMSE , in which the columns of B are

the P normalized eigenvectors of FF
H associated to the P

largest eigenvalues. In such a case, the concentrated likelihood

function in (16) becomes

Λ3(ϕ̃) =

∥

∥U
H
AMMSE Zq̃(ũ, ν̃)

∥

∥

2

∥

∥X
q̃

∥

∥

2 . (28)

C. Polynomial-based reduced-rank (PRR) representation

An alternative reduced-rank representation of Heq can be

obtained by approximating the CFR with a (P − 1)−order

polynomial function as

Heq(n) ≃
P
∑

p=1

ξ(p)np−1 |n| ≤ 31. (29)

This amounts to putting B = BPRR, where BPRR is a 63×P
matrix with entries

[BPRR]n,p = np−1 |n| ≤ 31, 1 ≤ p ≤ P. (30)

D. Piecewise-constant reduced-rank (PCRR) representation

The piecewise-constant reduced-rank representation

(PCRR) of the CFR is obtained by arranging the 63

modulated SCH subcarriers into P adjacent subbands and

assuming that Heq(n) keeps approximately constant on each

subband. Hence, denoting by Kp the number of subcarriers

contained in the pth subband (with p = 1, 2, . . . , P ), we have

Heq(n) ≃ ξ(p) Jp−1 − 31 ≤ n ≤ Jp − 32 (31)

where

Jp =

p
∑

m=1

Km 1 ≤ p ≤ P (32)

and J0 = 0. If P is an integer divider of 63, all subbands have

the same number of subcarriers Kp = 63/P . Otherwise, we let

63 = MP+R, where M =int{63/P} and R ∈ {1, 2, . . . , P−
1} are the quotient and remainder of the integer division 63/P ,

respectively. Then, the size of the P subbands are designed

such that Kp = M + 1 for 1 ≤ p ≤ R and Kp = M for

R+ 1 ≤ p ≤ P . In matrix notation, Heq can be written as in

(4) after letting B = BPCRR, where BPCRR is the following

63× P matrix

BPCRR =











1K1
0K1

· · · 0K1

0K2
1K2

· · · 0K2

...
...

. . .
...

0KP
0KP

· · · 1KP











. (33)

In such a case, the concentrated likelihood function in (16)

becomes

Λ3(ϕ̃) =
1

‖Xq̃‖2
P
∑

p=1

1

Kp

∣

∣

∣

∣

∣

∣

Jp−32
∑

n=Jp−1−31

Zq̃(ũ, ν̃;n)

∣

∣

∣

∣

∣

∣

2

(34)

which coincides with the partial correlation method presented

in [23]. Interestingly, letting P = 1 in (34) yields

Λ3(ϕ̃) =
1

63 ‖Xq̃‖2

∣

∣

∣

∣

∣

31
∑

n=−31

Zq̃(ũ, ν̃;n)

∣

∣

∣

∣

∣

2

(35)

which is reminiscent of the conventional frequency-domain

correlation-based (CFDC) metric originally proposed in [16]

for sector index recovery. Although IFO estimation is accom-

plished in [16] during the SSS detection stage, in Sect. V we

will investigate the possibility of using the metric (35) for the

joint estimation of {q, u, ν}.

E. Complexity issues

The processing load of the estimator (17) depends on which

reduced-rank representation is adopted for the CFR. For both

the AMMSE and PRR solutions, the metric Λ3(ϕ̃) can be

efficiently computed as

Λ3(ϕ̃) =

∥

∥C
H
B

H
Zq̃(ũ, ν̃)

∥

∥

2

∥

∥X
q̃

∥

∥

2 (36)

where CC
H =

(

B
H
B
)−1

is the Choleski decomposition of
(

B
H
B
)−1

, while for the PCRR it is convenient to evaluate

Λ3(ϕ̃) as indicated in (34). In any case, for each new received

OFDM symbol, the receiver must compute the quantities
∥

∥X
q̃

∥

∥

2
and Zq̃(ũ, ν̃). Assuming that the entries of X

q̃
are

available, 291 floating-point-operations (flops) are required to

get
∥

∥X
q̃

∥

∥

2
, while 372 flops are needed to evaluate Zq̃(ũ, ν̃)

for each couple (ũ, ν̃). When using the AMMSE solution, the

numerator of Λ3(ϕ̃) in (36) is computed with 498P flops

for each (ũ, ν̃). This figure reduces to 250P flops with the

PRR approximation as in this case the matrix C
H
B

H is real-

valued. As for the PCRR, evaluating Λ3(ϕ̃) in (34) starting

from
∥

∥X
q̃

∥

∥

2
and Zq̃(ũ, ν̃) needs 123 + 3P flops for each

couple (ũ, ν̃), which reduces to 126 flops when considering the

CFDC. The overall complexity of the investigated schemes is

summarized in the second column of Table II for each received

OFDM symbol. In writing these figures we have borne in mind
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that ũ varies in the set {25, 29, 34} and we have denoted by

Nν the number of different values of ν̃.

In addition to the AMMSE, PRR, PCRR and CFDC, in

Table II we also report the complexity of the PSS differential

detector (DD) proposed in [19] and the sequential detector

(SD) introduced in [20]. The DD provides an estimate of the

unknown parameters [q, u, ν] by looking for the maximum of

the following metric

ΛDD(ϕ̃) =

ℜe

{

31
∑

n=−30
Zq̃(ũ, ν̃;n)Z

∗
q̃ (ũ, ν̃;n− 1)

}

‖Xq̃‖2
(37)

in which the quantities Zq̃(ũ, ν̃;n) and Z∗
q̃ (ũ, ν̃;n − 1) ob-

tained from two adjacent frequency bins are multiplied in order

to mitigate the impact of the timing error and channel selec-

tivity on the system performance. Computing the numerator

of ΛDD(ϕ̃) starting from Zq̃(ũ, ν̃) needs 245 flops for each

couple (ũ, ν̃) which, after including the computational burden

required to get the quantities
∥

∥X
q̃

∥

∥

2
and Zq̃(ũ, ν̃), leads to an

overall processing requirement of 291 + 1820Nv flops.

The SD exploits the symmetric property of the PSS to

decouple the estimation of the sector index from the IFO

recovery task. More precisely, parameters [q, u] are firstly

retrieved by locating the minimum of the objective function

Λ
(1)
SD(q̃, ν̃) =

∣

∣

∣

∣

∣

1− 1

30

−2
∑

n=−31

Gq̃(n+ ν̃)Gq̃(−n− 1 + ν̃)

∣

∣

∣

∣

∣

(38)

with Gq(n) = Xq(n)X
∗
q (n+ 1)/

∣

∣Xq(n)X
∗
q (n+ 1)

∣

∣, and the

sector ID is eventually found from the estimates q̂ and ν̂ using

the metric

Λ
(2)
SD(ũ) =

−2
∑

n=−31

ℜe
{

[Gq̂(n+ ν̂) +G∗
q̂(−n− 1 + ν̂)]

× a∗ũ(n)aũ(n+ 1)} . (39)

For each OFDM symbol, the SD computes the quantity

Gq(n) with 630 + 10Nν flops, while additional 240Nν flops

are required to complete the evaluation of Λ
(1)
SD(q̃, ν̃) for

all the hypothesized ν̃ values. Assuming that the quantities

a∗ũ(n)aũ(n + 1) have been pre-calculated and stored, the

metric Λ
(2)
SD(ũ) is next computed using 270 flops for each

ũ ∈ {25, 29, 34}. Collecting these results together produces

the overall complexity of SD as listed in II.

TABLE II
COMPLEXITY OF THE INVESTIGATED SCHEMES IN TERMS OF NUMBER OF

FLOPS FOR EACH OFDM SYMBOL.

Algorithm Required flops Required kflops in
the simulation set-up

AMMSE 291 + 1116Nν + 1494NνP 60.4
PRR 291 + 1116Nν + 750NνP 34.3
PCRR 291 + 1485Nν + 9NνP 11.0
CFDC 291 + 1494Nν 10.8
DD 291 + 1821Nν 12.8
SD 1440 + 250Nν 3.2

V. SIMULATION RESULTS

Computer simulations have been run to assess the per-

formance of the presented PSS detection and IFO recovery

schemes using different reduced-rank representations of the

CFR. The LTE simulation set-up is chosen according to the

3GPP specifications [7] and is summarized as follows.

A. Simulation model

We consider a 20 MHz LTE communication system with 15

kHz subcarrier spacing. At the receiver side, the baseband sig-

nal is sampled with frequency fs = 30.72 MHz and converted

in the frequency-domain through a 2048-point DFT unit. To

demonstrate the capability of the investigated scheme in a chal-

lenging scenario, we adopt the Extended Typical Urban (ETU)

channel model characterized by 9 channel taps with maximum

excess delay τmax = 5 µs. The path gains are modeled

as statistically independent random variables with zero-mean

and Gaussian distribution (Rayleigh fading). A raised-cosine

functions with roll-off 0.22 and time-duration of 6 sampling

periods is employed for the pulse shaping, which corresponds

to an overall CIR of order L =int{fsτmax + 6} = 160.

Assuming a maximum normalized timing error θmax = 40
[21], the length of the equivalent CIR vector heq is found to be

L+θmax = 200. However, since parameter P (and the system

complexity) is expected to increase with the CIR duration,

in the design of the AMMSE we use Leq = 120 , which

amounts to reducing the size of matrix F from 63 × 200 to

63×120. This choice is motivated by the fact that in the ETU

channel model there is only one multipath component with a

path delay greater than 2.3 µs which, moreover, collects less

than 3% of the average channel power. The value Leq = 120
is also compliant with other LTE channel models, such as

the Extended Vehicular A (EVA) and Extended Pedestrian A

(EPA), which are characterized by a maximum excess delay

of 2.51 µs and 0.41 µs, respectively.

Without any loss of generality, we adopt the extended CP

transmission mode wherein 6 OFDM symbols are present in

each slot. Since the PSS is transmitted every 10 slots, in our

simulations we let NQ = 60. The range of CFO values is

related to the oscillator instability, while it is only marginally

affected by the UE mobility. Hence, assuming that the stability

of commercial oscillators for mobile applications is in the

order of ±10 parts-per-million (ppm) at both the transmit and

receive ends, the maximum CFO value is approximately 2.66
subcarrier spacing at the carrier frequency of 2 GHz. Accord-

ingly, the search range for the IFO is Jν = {0,±1,±2,±3},

which amounts to putting Nν = 7. Recalling that the PSS is

chosen from a set of three possible ZC sequences with root

index u ∈ {25, 29, 34}, the overall search space for the triplet

ϕ̃ = [q̃, ũ, ν̃] has cardinality Nϕ = 3NqNν = 1260.

The accuracy of the PSS detection and IFO recovery

schemes is measured in terms of the error rate incurred in

the estimation of each parameter of interest q, u and ν. As

a global performance indicator, we also consider the overall

probability of failure Pf = Pr{ϕ̂ 6= ϕ}.
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B. Performance evaluation

Fig. 2 illustrates the quantity MSE(B) reported in (23)

as a function of P for the investigated reduced-rank CFR

representations. As expected, the best results are obtained

with B = UMMSE since this choice minimizes MSE(B) for

a fixed value of P . Compared to the true MMSE solution,

the AMMSE is characterized by a higher MSE, even though

it largely outperforms both the PRR and PCRR schemes.

Although the accuracy of the considered reduced-rank repre-

sentations steadily improves with P , the probability of failure

Pf cannot exhibit a similar behaviour. The reason is that B

has dimension 63 × P and, accordingly, it becomes a square

matrix when P = 63. In the latter case, G = B
(

B
H
B
)−1

B
H

reduces to I63 and G
⊥ = I63−G is therefore the null matrix.

This situation has two consequences. On one hand, from (23)

we see that MSE(B) = 0, thereby justifying the fact that the

MSE decreases as P approaches the value 63. On the other

hand, substituting G = I63 into (16) leads to

Λ3(ϕ̃) =
‖Zq̃(ũ, ν̃)‖2
∥

∥X
q̃

∥

∥

2 (40)

or, equivalently,

Λ3(ϕ̃) =

31
∑

m=−31
|Xq̃(m+ ν̃)|2

‖Xq̃‖2
. (41)

This equation indicates that the metric Λ3(ϕ̃) becomes inde-

pendent of ũ when P = 63, thereby preventing any possibility

to recover the sector index. From the above discussion it

follows that parameter P must be judiciously designed so as

to meet two conflicting requirements. On one hand, it must

be large enough to produce a sufficiently accurate reduced-

rank representation of the CFR. On the other hand, it must be

adequately small since otherwise the estimation problem con-

tains too many unknown quantities which cannot be estimated

reliably.

1 3 5 7 9 11 13 15
10

−6

10
−4

10
−2

10
0

10
2
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M
S
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)

 

 

PRR
PCRR
AMMSE
MMSE

Fig. 2. MSE(B) vs. P for different reduced-rank CFR representations.

This intuition is corroborated by the results of Fig. 3, where

Pf is shown as a function of P . Here, the SNR is fixed at 8

dB and the timing error is θ = θmax = 40. As is seen, for

each curve there is an optimum value of P which minimizes

Pf . Since the minimum is approximately attained at P = 5 by

all the considered reduced-rank representations, such a value

is used in the subsequent simulations except for the CFDC

scheme, which is obtained from the PCRR by letting P = 1.

1 3 5 7 9 11 13 15
10

−3

10
−2

10
−1

10
0

 

 

P
f

P

PRR
PCRR
AMMSE
MMSE

Fig. 3. Probability of synchronization failure vs. P for SNR = 8 dB and
θ = 40.

Fig. 4 illustrates the error rate incurred in detecting the

presence of the PSS, say Pq = Pr{q̂ 6= q}, vs. the SNR for

θ = 40. The curve labeled ”MMSE” is obtained by replacing

UAMMSE by UMMSE in (28), and can be interpreted as

a sort of benchmark to the system performance since in this

case the estimation process is provided with ideal knowledge

of the channel statistics and timing error. We see that the loss

of AMMSE with respect to the benchmark is negligible at all

considered SNR values. Furthermore, AMMSE outperforms

all the other methods and achieves a gain of approximately 2

dB over the DD, which further increases to 2.5 dB and 3 dB

with respect to PCRR and PRR, respectively. Due to its high

sensitivity to timing errors and channel distortions, the CFDC

does not work properly in such adverse scenario, and exhibits

an error rate which is close to one at all SNR values. Our

measurements reveal that unsatisfactory performance is also

provided by the SD.

Figs. 5 and 6 show the error rate incurred in the estimation

of the sector index and IFO, respectively, say Pu = Pr{û 6= u}
and Pν = Pr{ν̂ 6= ν}. The operating scenario is the same

as that in Fig. 4 and also the trend of the curves is similar,

with AMMSE outperforming the other schemes. It is worth

noting that the use of AMMSE is more advantageous for the

estimation of the IFO than for the other two parameters q
and u. Indeed, in this case the AMMSE exhibits a larger gain

compared to the other estimators, even though the loss with

respect to the MMSE curve is increased.

The overall system performance is summarized in Fig. 7,

where Pf is shown as a function of the SNR with the timing

error being fixed to θ = 40. These measurements validate

the results of Figs. 4-6 and clearly indicate the superiority of
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Fig. 4. Error rate incurred in the detection of the PSS vs. SNR for θ = 40.
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Fig. 5. Error rate incurred in the detection of the sector index u vs. SNR
for θ = 40.

AMMSE over the other methods. In particular, at SNR = 10
dB we see that the probability of failure of AMMSE is 10−3,

while it increases to 5 · 10−2 with DD and to 10−1 with

both PCRR and PRR. The improved performance of AMMSE

can be intuitively explained by recalling that this scheme has

been designed under the assumption of a uniform power delay

profile where no information about the channel statistics is

specified except for the maximum excess propagation delay.

For this reason, the resulting approach is expected to perform

well under a variety of transmission environments and exhibits

low sensitivity against possible variations of the power delay

profile [28]. In contrast, the CFDC is designed under a flat

fading channel model and, accordingly, it performs poorly in a

severe multipath propagation scenario wherein each subcarrier

is subject to a different channel attenuation. A similar argu-

ment can be used with the PCRR, which is derived assuming

that groups of contiguous subcarriers experience the same

attenuation factor. Again, this corresponds to a specific channel
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Fig. 6. Error rate incurred in the detection of the IFO ν vs. SNR for θ = 40.

model which leads to some performance degradation whenever

it departs from the true channel characteristics.

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR  (dB)

P
f

 

 

CFDC
SD
PRR (P=5)
PCRR (P=5)
DD
AMMSE (P=5)
MMSE (P=5)

Fig. 7. Probability of synchronization failure vs. SNR for θ = 40.

Fig. 8 illustrates Pf as a function of θ when the SNR is fixed

to 8 dB. These results are useful to assess the sensitivity of the

considered schemes to residual timing errors and demonstrate

the remarkable robustness of AMMSE and DD to such an

impairment. In contrast, the probability of failure of PCRR,

PRR and CFDC rapidly deteriorates as θ increases. This is

particularly evident for the CFDC, which cannot cope with

timing errors exceeding a few sampling periods. It is worth

noting that AMMSE outperforms all the other schemes even

when θ = 0, i.e., in the presence of ideal timing information,

and provides a Pf value which is approximately three times

greater compared to the true MMSE solution.

So far ideal FCFO estimation and compensation has been

assumed in assessing the performance of the PSS and IFO

recovery algorithms. This choice is motivated by the fact that

ZC sequences are particularly robust against frequency drifts
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Fig. 8. Probability of synchronization failure vs. θ for SNR = 8 dB.

as documented in [2], where it is stated that PSS detection

can easily be accomplished even in the presence of residual

frequency errors as large as ±7.5 kHz, corresponding to one

half of the subcarrier spacing. This idea is validated by the

results shown in Fig. 9, illustrating Pf as a function of the

FCFO (normalized by the subcarrier spacing) when θ = 40
and SNR = 8 dB. As is seen, for all the considered schemes

the quantity Pf is virtually independent of the FCFO value if

the latter varies in the interval [0, 0.05]. This means that the

presence of a small residual FCFO is not a so big problem for

IFO and sector ID recovery.
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Fig. 9. Probability of synchronization failure vs. FCFO for SNR = 8 dB.

C. Complexity comparison

We conclude our study by comparing the investigated

schemes in terms of their computational complexity. In the

considered scenario with Nν = 7 and P = 5, the number of

required kiloflops (kflops) for each received OFDM symbol is

shown in the third column of Table II. These figures indicate

that the improved accuracy of the AMMSE is achieved at

the price of a higher system complexity. In particular, the

number of flops is increased by nearly a factor of two with

respect to PRR, and by a factor 5.5 with respect to PCRR,

CFDC and DD. The SD turns out to be the simplest method

with only 3.2 kflops required. Such a significant reduction of

complexity is achieved by decoupling the IFO recovery task

from the sector ID identification. However, considering the fact

that in the investigated simulation set-up the AMMSE is the

only scheme that can ensure acceptable error rate performance,

its use should be considered despite the penalty in terms of

computational load.

VI. CONCLUSIONS

We have presented an ML approach for joint PSS detection,

sector index identification and IFO recovery in the downlink of

an LTE system. The proposed scheme (AMMSE) operates in

the frequency-domain and relies on a robust MMSE reduced-

rank representation of the channel frequency response over

the SCH subcarriers, which mitigates the impact of mul-

tipath distortions and residual timing errors on the system

performance. Compared to existing schemes available in the

literature, our method exhibits improved accuracy at the price

of a higher computational complexity. The penalty in terms

of required flops is justified by the fact that AMMSE can be

used in a harsh environment characterized by prolonged delay

spreads and non-negligible timing errors, where other compet-

ing schemes provide unacceptable performance. Furthermore,

it represents a promising candidate for future heterogeneous

networks in which the coexistence of femto-, pico- and macro-

cells will require fast and successful detection of neighboring

cells for efficient interference management and fast handover

operations.
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