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String data are often disseminated to support applications such as location-based service provision or DNA
sequence analysis. This dissemination, however, may expose sensitive patterns that model confidential
knowledge (e.g., trips to mental health clinics from a string representing a user’s location history). In this
paper, we consider the problem of sanitizing a string by concealing the occurrences of sensitive patterns,
while maintaining data utility, in two settings that are relevant to many common string processing tasks.

In the first setting, we aim to generate the minimal-length string that preserves the order of appearance
and frequency of all non-sensitive patterns. Such a string allows accurately performing tasks based on the
sequential nature and pattern frequencies of the string. To construct such a string, we propose a time-optimal
algorithm, TFS-ALGO. We also propose another time-optimal algorithm, PFS-ALGO, which preserves a partial
order of appearance of non-sensitive patterns but produces a much shorter string that can be analyzed more
efficiently. The strings produced by either of these algorithms are constructed by concatenating non-sensitive
parts of the input string. However, it is possible to detect the sensitive patterns by “reversing” the concatenation
operations. In response, we propose a heuristic, MCSR-ALGO, which replaces letters in the strings output
by the algorithms with carefully selected letters, so that sensitive patterns are not reinstated, implausible
patterns are not introduced, and occurrences of spurious patterns are prevented. In the second setting, we
aim to generate a string that is at minimal edit distance from the original string, in addition to preserving the
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order of appearance and frequency of all non-sensitive patterns. To construct such a string, we propose an
algorithm, ETFS-ALGO, based on solving specific instances of approximate regular expression matching.

We implemented our sanitization approach that applies TFS-ALGO, PFS-ALGO and then MCSR-ALGO and
experimentally show that it is effective and efficient. We also show that TFS-ALGO is nearly as effective at
minimizing the edit distance as ETFS-ALGO, while being substantially more efficient than ETFS-ALGO.
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1 INTRODUCTION

A large number of applications, in domains ranging from transportation to web analytics and
bioinformatics feature data modeled as strings, i.e., sequences of letters over some finite alphabet.
For instance, a string may represent the history of visited locations of one or more individuals, with
each letter corresponding to a location. Similarly, it may represent the history of search query terms
of one or more web users, with letters corresponding to query terms, or a medically important part
of the DNA sequence of a patient, with letters corresponding to DNA bases. Analyzing such strings
is key in applications including location-based service provision, product recommendation, and
DNA sequence analysis. Therefore, such strings are often disseminated beyond the party that has
collected them. For example, location-based service providers often outsource their data to data
analytics companies who perform tasks such as similarity evaluation between strings [30], and
retailers outsource their data to marketing agencies who perform tasks such as mining frequent
patterns from the strings [31].
However, disseminating a string intact may result in the exposure of confidential knowledge,

such as trips to mental health clinics in transportation data [48], query terms revealing political
beliefs or sexual orientation of individuals in web data [38], or diseases associated with certain
parts of DNA data [34]. Thus, it may be necessary to sanitize a string prior to its dissemination, so
that confidential knowledge is not exposed. At the same time, it is important to preserve the utility
of the sanitized string, so that data protection does not outweigh the benefits of disseminating the
string to the party that disseminates or analyzes the string, or to the society at large. For example,
a retailer should still be able to obtain actionable knowledge in the form of frequent patterns from
the marketing agency who analyzed their outsourced data; and researchers should still be able to
perform analyses such as identifying significant patterns in DNA sequences.

1.1 Our Model and Settings

Motivated by the discussion above, we introduce the following model which we call Combinatorial

String Dissemination (CSD). In CSD, a party has a stringW that it seeks to disseminate, while
satisfying a set of constraints and a set of desirable properties. For instance, the constraints aim to
capture privacy requirements and the properties aim to capture data utility considerations (e.g.,
posed by some other party based on applications). To satisfy both,W must be transformed to a string
by applying a sequence of edit operations. The computational task is to determine this sequence
of edit operations so that the transformed string satisfies the desirable properties subject to the
constraints. Clearly, the constraints and the properties must be specified based on the application.
Under the CSD model, we consider two specific settings addressing practical considerations in

common string processing applications; the Minimal String Length (MSL) setting, in which the goal
is to produce a shortest string that satisfies the set of constraints and the set of desirable properties,
and the Minimal Edit Distance (MED) setting, in which the goal is to produce a string that satisfies
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the set of constraints and the set of desirable properties and is at minimal edit distance fromW . In
the following, we discuss each setting in more detail.

MSL Setting. In this setting, the sanitized string X must satisfy the following constraint C1: for
an integer k > 0, no given length-k substring (also called pattern) modeling confidential knowledge
should occur in X . We call each such length-k substring a sensitive pattern. We aim at finding the
shortest possible string X satisfying the following desired properties: (P1) the order of appearance
of all other length-k substrings (non-sensitive patterns) is the same inW and in X ; and (P2) the
frequency of these length-k substrings is the same inW and in X . The problem of constructing X in
this setting is referred to as TFS (Total order, Frequency, Sanitization). Note that it is straightforward
to hide substrings of arbitrary lengths from X , by setting k equal to the length of the shortest
substring we wish to hide, and then setting, for each of these substrings, any length-k substring as
sensitive.
The MSL setting is motivated by real-world applications involving string dissemination. In

these applications, a data custodian disseminates the sanitized version X of a stringW to a data
recipient, for the purpose of analysis (e.g., mining).W contains confidential information that the
data custodian needs to hide, so that it does not occur in X . Such information is specified by the
data custodian based on domain expertise, as in [1, 13, 25, 31]. At the same time, the data recipient
specifies P1 and P2 that X must satisfy in order to be useful. These properties map directly to
common data utility considerations in string analysis. By satisfying P1, X allows tasks based on
the sequential nature of the string, such as blockwise q-gram distance computation [26], to be
performed accurately. By satisfying P2, X allows computing the frequency of length-k substrings
and hence mining frequent length-k substrings [41] with no utility loss. We require that X has
minimal length so that it does not contain redundant information. For instance, the string which
is constructed by concatenating all non-sensitive length-k substrings inW and separating them
with a special letter that does not occur inW , satisfies P1 and P2 but is not the shortest possible.
Such a string X will have a negative impact on the efficiency of any subsequent analysis tasks to be
performed on it.

MED Setting. In this setting, the sanitized version XED of stringW must satisfy the properties P1
and P2, subject to the constraint C1, and also be at minimal edit distance from stringW . Construct-
ing such a string XED allows many tasks that are based on edit distance to be performed accurately.
Examples of such tasks are frequent pattern mining [44], clustering [28], entity extraction [51]
and range query answering [33], which are important in domains such as bioinformatics [44], text
mining [51], and speech recognition [20].

Note, existing works for sequential data sanitization (e.g., [13, 25, 27, 31, 50]) or anonymization
(e.g., [4, 14, 17]) cannot be applied to our settings (see Section 2 for details).

1.2 Our Contributions

We define the TFS problem for string sanitization and a variant of it, referred to as PFS (Partial
order, Frequency, Sanitization), which aims at producing an even shorter string Y by relaxing P1
of TFS. We also develop algorithms for TFS and PFS. Our algorithms construct strings X and Y
using a separator letter #, which is not contained in the alphabet ofW , ensuring that sensitive
patterns do not occur in X or Y . The algorithms repeat proper substrings of sensitive patterns
so that the frequency of non-sensitive patterns overlapping with sensitive ones does not change.
For X , we give a deterministic construction which may be easily reversible (i.e., it may enable a
data recipient to constructW from X ), because the occurrences of # reveal the exact location of
sensitive patterns. ForY , we give a construction which breaks several ties arbitrarily, thus being less
easily reversible. We further address the reversibility issue by defining the MCSR (Minimum-Cost
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Separators Replacement) problem and designing an algorithm for dealing with it. In MCSR, we seek
to replace all separators, so that the location of sensitive patterns is not revealed, while preserving
data utility. In addition, we define the problem of constructing XED in the MED setting, which is
referred to as ETFS (Edit-distance, Total order, Frequency, Sanitization), and design an algorithm
framework to solve it.

Our work makes the following specific contributions:
1.We design an algorithm, TFS-ALGO, for solving the TFS problem in O(kn) time, where n is the
length ofW . In fact, we prove that O(kn) time is worst-case optimal by showing that the length of
X is in Θ(kn) in the worst case. The output of TFS-ALGO is a string X consisting of a sequence of
substrings over the alphabet ofW separated by # (see Example 1.1 below). An important feature of
our algorithm, which is useful in the efficient construction of Y discussed next, is that it can be
implemented to produce an O(n)-sized representation of X with respect toW in O(n) time. See
Section 4.

Example 1.1. LetW = aabaaacbcbbbaabbacaab, k = 4, and the set of sensitive patterns be
{baaa, bbaa}. The string X = aabaa#aaacbcbbba#baabbacaab consists of three substrings over
the alphabet {a, b, c} separated by #. Note that no sensitive pattern occurs in X , while all non-
sensitive substrings of length k = 4 have the same frequency inW and in X (e.g., aaba appears
once), and they appear in the same order inW and in X (e.g., aaba precedes abaa). Also, note that
any shorter string than X would either create sensitive patterns or change the frequencies (e.g.,
removing the last letter of X creates a string in which caab no longer appears). �

2. We define the PFS problem relaxing P1 of TFS to produce shorter strings that are more efficient
to analyze. Instead of a total order (P1), we require a partial order (Π1) that preserves the order of
appearance only for sequences of consecutive non-sensitive length-k substrings that overlap by k−1
letters. In other words, Π1 requires preserving the order of appearance of any two non-sensitive
length-k substrings U , V for which two conditions hold: (I) U and V occur consecutively inW ,
and (II) the length-(k − 1) suffix of U is the same as the length-(k − 1) prefix of V . This makes
sense because the order of two consecutive non-sensitive length-k substrings with no length-
(k − 1) overlap has anyway been “interrupted” (by one or more sensitive patterns). We exploit this
observation to shorten the string further. Specifically, we design an algorithm that solves PFS in
the optimal O(n + |Y |) time, where |Y | is the length of Y , using the O(n)-sized representation of X .
See Section 5.

Example 1.2. (Cont’d from Example 1.1) Recall thatW =aabaaacbcbbbaabbacaab. A string Y is
aaacbcbbba#aabaabbacaab. The order of aaba and abaa is preserved in Y as they are consecutive,
non-sensitive, and the length-3 suffix of aaba is the same as the length-3 prefix of abaa (i.e., they
have an overlap of k−1=3 letters). The order of abaa and aaac, which are consecutive non-sensitive,
is not preserved since they do not have an overlap of k−1=3 letters. �

3. We define the MCSR problem, which seeks to produce a string Z , by deleting or replacing all
separators in Y with letters from the alphabet ofW so that: no sensitive patterns are reinstated in
Z ; occurrences of spurious patterns that may not be mined fromW but can be mined from Z , at
a given support threshold τ , are prevented; and the distortion incurred by the replacements in Z
is bounded. The first requirement is to preserve privacy and the next two to preserve data utility.
We show that MCSR is NP-hard and propose a heuristic to attack it. We also show how to apply
the heuristic, so that letter replacements do not result in implausible patterns that may reveal the
location of sensitive patterns. An implausible pattern is a string which is unlikely to occur in Z
as a substring. For example, such a pattern may correspond to an impossible or unlikely trip in
a sanitized movement dataset Z . When an occurrence of an implausible pattern is identified in
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Z , it becomes easier to identify the letter that replaced a # in the implausible pattern, and thus
recover the sensitive pattern. To prevent this, we first define an implausible pattern as a statistically
unexpected string. Our definition is based on a statistical significance measure computed over a
reference dataset [7, 15, 42]. Specifically, an implausible pattern is a substring whose frequency in
W is significantly smaller than its expected frequency inW . Then, we modify MCSR-ALGO, so that
it does not replace any occurrence of # with letters that create implausible patterns. See Section 6.

Example 1.3. (Cont’d from Example 1.2) Recall that Y = aaacbcbbba#aabaabbacaab. Let τ = 1.
A string Z = aaacbcbbbacaabaabbacaab is produced by replacing letter # with letter c. Note that
Z contains no sensitive pattern, nor a non-sensitive pattern of length-4 substring that could not
be mined fromW at a support threshold τ (i.e., a pattern that does not occur inW ). In addition, Z
contains no implausible pattern, such as bbab, which is not expected to occur inW , according to
an established statistical significance measure for strings [7, 15, 42]. �

4.We design an algorithm for solving the ETFS problem. The algorithm, called ETFS-ALGO, is based
on a connection between ETFS and the approximate regular expression matching problem [37].
Given a stringW and a regular expression E, the latter problem seeks to find a stringT that matches
E and is at minimal edit distance fromW . ETFS-ALGO solves the ETFS problem in O(k |Σ|n2) time,
where |Σ| is the size of the alphabet ofW . See Section 7.

Example 1.4. LetW = aaaaaab, k = 4, and the set of sensitive patterns be {aaaa, aaab}. TFS-
ALGO constructs string X = ε , where ε is the empty string, with dE (W ,X ) = 7. On the contrary,
ETFS-ALGO constructs string XED = aaa#aab with dE (W ,XED) = 1 < 7. Clearly, string XED is
more suitable for applications, which are based on measuring sequence similarity. �

5. For the MSL setting, we implemented our combinatorial approach for sanitizing a stringW
(i.e., the aforementioned algorithms implementing the pipelineW → X → Y → Z ) and show its
effectiveness and efficiency on real and synthetic data. We also show that it possible to produce a
string Z that does not contain implausible patterns, while incurring insignificant additional utility
loss. See Section 8.

6. For the MED setting, we implemented ETFS-ALGO and experimentally compared it with TFS-
ALGO. Interestingly, we demonstrate that TFS-ALGO constructs optimal or near-optimal solutions
to the ETFS problem in practice. This is particularly encouraging because TFS-ALGO is linear in
the length of the input string n, whereas ETFS-ALGO is quadratic in n. See Section 8.

A preliminary version of this paper, without the method that avoids implausible patterns and
without contributions 4 and 6, appeared in [10]. Furthermore, we include here all proofs omitted
from [10], as well as additional examples and discussion of related work.

2 RELATEDWORK

We review related work in data sanitization (a.k.a. knowledge hiding) and data anonymization, two
of the main topics in the area of privacy-preserving data mining [6, 12]. Data sanitization aims at
concealing confidential knowledge, so that it is not easily discovered by mining a disseminated
dataset [1, 25, 49]. For example, data sanitization may be used by a business to prevent a recipient of
a dataset from inferring that a specific set of products (e.g., baking powder and flour) is purchased
by many customers of the business [49]. This set of products needs to be concealed, as it provides
competitive advantage to the business.
On the other hand, data anonymization [4, 21, 36] aims at preventing a data recipient from

inferring information about individuals whose information is contained in the input dataset [22].
This includes inferences about the identity of an individual (identity disclosure), about whether
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or not an individual’s information is contained in the output dataset (membership disclosure), as
well as inferences that generally depend on an individual’s information (inferential disclosure). For
example, data anonymization works are used to prevent a data recipient from inferring the identity
of an individual based on the products purchased by the individual, or from inferring that the
individual has purchased a sensitive product (e.g., a medicine revealing their health condition) [53].

2.1 Data Sanitization

Existing data sanitization approaches can be classified, based on the type of data they are applied
to, into those applied to a collection of records and others applied to a single sequence.

We first discuss data sanitization approaches that are applied to a collection of records. A record
can be a set of values (itemset) [39, 46, 49], a trajectory [1], or a sequence [1, 25, 27]. In set-
valued (transaction) datasets, the confidential knowledge to be hidden is typically modeled as a
set of itemsets [52], association rules [49], or classification rules [39]. In trajectory datasets, the
confidential knowledge is modeled as a set of subtrajectories [1]. Last, in sequential datasets, the
confidential knowledge is modeled as a set of sequential patterns occurring in the dataset [1, 25, 27].

In what follows, we review three data sanitization approaches [1, 25, 27], which are applied to a
collection of sequences, since they are the most relevant to our work. The key difference of these
approaches from our work is that they aim to hide sensitive patterns occurring as subsequences
(not only as substrings) in the input collection (not in a single, long string). Moreover, they aim to
hide sensitive patterns when these are sufficiently frequent; i.e., when a sensitive pattern occurs as
a subsequence of least τ records, where τ is a given minimum frequency threshold. The hiding of
a sensitive pattern is then performed by modifying some of the records in the collection (e.g., by
letter deletion [1]), so that fewer than τ records contain the sensitive pattern as a subsequence. In
our work, C1 implies that no occurrence of a sensitive pattern exists in the sanitized sequence.
The problem of sanitizing a collection of sequences was first proposed by Abul et al. [1]. The

authors developed a heuristic that applies deletion of letters contained in sensitive patterns. The
heuristic aims to minimize the number of deleted letters in the collection. However, it does not focus
on minimizing changes to the set of non-sensitive frequent sequential patterns that are incurred
by deletions. In response, Gkoulalas-Divanis et al. [25] developed a heuristic that avoids such
changes, hence improving data utility for frequent sequential pattern mining and tasks based on it.
The heuristic of [25] first selects a sufficiently large subset of records to sanitize, favoring records
that can be sanitized with few deletions. Then, it sanitizes each selected record by constructing a
graph that represents the matchings between the record and sensitive patterns, and searching for
graph nodes corresponding to good letters to delete. However, due to the fact that graph search is
computationally inefficient, the heuristic searches only a small part of the graph.

Gwadera et al. [27] proposed a heuristic, called Permutation Hiding (PH). PH addresses the limi-
tation of [1], as it aims to minimize changes to the set of non-sensitive frequent sequential patterns.
Also, it addresses the limitation of [25], as it avoids the expensive graph search. Furthermore, PH
employs both letter permutation and deletion to hide sensitive patterns. Permuting the letters of a
sensitive pattern hides the pattern but may change the set of non-sensitive frequent sequential
patterns. Thus, PH explores the space of possible permutations of the letters of a sensitive pattern
to find a permutation that minimizes the number of such changes. When this is not possible, PH
resorts to letter deletion.

Thus, in summary, our approach differs from existing approaches that are applied to a collection
of sequences [1, 25, 27], in terms of: (I) input dataset (a collection of strings vs. a single string); (II)
occurrences of a sensitive pattern that must be hidden (occurrences as a subsequence vs. occurrences
as a substring); (III) data modification strategy (deletion and/or permutation vs. copying of non-
sensitive substrings and letter replacement); (IV) utility considerations (no guarantees onminimizing
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changes to non-confidential frequent sequential patterns vs. guarantees on utility properties).
Although these data sanitization methods were designed for the general case of a collection of
sequences, they could in principle be applied to a single string. Through the following example, we
illustrate this point and also highlight the difference with respect to the goals of our methods.

Example 2.1. LetW = aabaaacbcbbbaabbacaab, k = 4, and the set of sensitive patterns be
{baaa, bbaa}. Consider applying the PH heuristic [27] using a minimum frequency threshold τ = 1.
PH constructs a string I = aaba**cbcbbb**bb*ca*b, deleting six letters ofW that are represented
by the special letter * for the sake of clarity. PH also creates non-sensitive length-k substrings
that can be mined fromW but cannot be mined from Z at frequency threshold τ , as well as non-
sensitive length-k substrings that cannot be mined fromW but can be mined from Z at frequency
threshold τ . These substrings are referred to as τ -lost and τ -ghost patterns, respectively. Specifically,
as shown in Table 1, PH created 11 τ -lost and 6 τ -ghost patterns. On the other hand, applying
our approach (i.e., the pipeline TFS-ALGO→ PFS-ALGO→MCSR-ALGO) with τ = 1 produces a
string Z = aaacbcbbbacaabaabbacaab with neither τ -lost nor τ -ghost patterns, as mentioned in
Example 1.3. The reader can perhaps share the intuition that string Z is more useful than string I ,
as Z preserves the set of non-sensitive frequent sequential patterns that can be mined at τ = 1.
The main reason PH incurs substantially more τ -lost and τ -ghost patterns than our method is

because it hides the sensitive patterns when they occur as subsequences of the input string. That is,
it hides all occurrences of each sensitive pattern in the string, albeit only occurrences comprised of
consecutive letters (i.e., substrings) need to be hidden in our setting. For instance, two occurrences
of the letter a have been deleted from the suffix bbacaab ofW to prevent the sensitive pattern
bbaa from occurring as a subsequence (the subsequence is comprised of the underlined letters in
W ). Note, however, that pattern bbaa does not occur as a substring in this suffix ofW . �

τ -lost τ -ghost

PH [27] {abaa, aaac, aacb, bbba, baab, aabb,
abba, bbac, baca, acaa, caab}

{abac, bacb, bbbb,
bbbc,bbca, bcab}

Our method ∅ ∅

Table 1. The τ -lost and τ -ghost patterns, for τ = 1, created by applying the PH heuristic [27] and our method

on the string of Example 2.1.

In what follows, we review three data sanitization approaches [14, 31, 50], which are applied to
a single sequence.
The work of Loukides et al. [31] is applied to a single event-sequence, in which each event

is a multi-set of letters associated with a timestamp. Their work aims to hide sensitive patterns
comprised of a single letter. Each such pattern is considered hidden when its relative frequency
in any prefix of the event-sequence is sufficiently low. The hiding is performed by a dynamic-
programming algorithm that applies letter deletion, while preserving the distribution of events
across the sequence. The approach of [31] cannot be readily extended to hide sensitive patterns of
length k > 1, which is our privacy objective. Moreover, it has a different utility criterion than our
work, and it does not guarantee the satisfaction of the utility properties we consider here.

The work of Bonomi et al. [13] is applied to a single sequence and aims to prevent an attacker,
who has background knowledge about the frequency distribution of sensitive patterns in the input
sequence, from gaining additional knowledge about the frequency distribution of sensitive patterns
by observing the sanitized sequence. This is performed by limiting the mutual information between
the frequency distribution of sensitive patterns in the original and sanitized sequence. In other
words, sensitive patterns are protected when their frequencies are similar in the input and in the
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sanitized sequence. On the other hand, in our work, we consider a setting where sensitive patterns
are unknown to the attacker and aim to prevent the attacker from observing their presence in the
sanitized sequence. The hiding of sensitive patterns in [13] is performed by heuristics which aim to
apply a small amount of generalization [43]. Generalization replaces a letter with an aggregate letter
that is not part of the sequence alphabet, thereby introducing uncertainty. Thus, the work of [13]
aims to produce sanitized data with a low level of uncertainty and does not focus on guaranteeing
the accuracy of mining frequent substrings comprised of the letters of the alphabet.
The work of Wang et al. [50] is applied to an event-sequence, in which each event is a single

letter associated with a timestamp. Their work considers the problem of deleting events in a given
sequence, so as to reduce the ability of an attacker to detect sensitive patterns, while maximizing
the detection of non-sensitive patterns. A pattern is detected when it occurs as a subsequence
within a specified time window of the sequence. To solve this problem, the approach of [50] deletes
events from the sequence in order to maximize a weighted utility function expressed as a sum of
terms. An occurrence of a non-sensitive (respectively, sensitive) pattern in the sequence contributes
a positive (respectively, negative) term to this function. Thus, [50] considers protecting sensitive
patterns that occur as subsequences rather than as substrings, and it aims to achieve a good balance
between matching non-sensitive patterns and preventing the matching of sensitive patterns.

2.2 Data Anonymization

Data anonymization is a different direction in privacy-preserving data mining than data sanitiza-
tion [2, 5]. Data anonymization has been the focus of many research works (see [5, 23] for surveys).
This includes works for anonymizing string data [3, 4, 14, 17]. The works of Aggarwal and Yu [3, 4]
aim to enforce k-anonymity [43] on a collection of strings. This is performed by first grouping
strings, so that each group contains at least k similar strings, and then replacing the strings in each
group with a carefully constructed synthetic string. The work of [14] aims to release differentially
private [21] top-k frequent substrings from a collection of strings, where k denotes the number of
frequent substrings required. This is performed by building a noisy summary data structure that
represents the collection and then mining the top-k frequent substrings from the data structure.
The work of [17] aims to release a differentially private collection of strings. This is performed
by exploiting the variable-length n-gram model [35] and calibrating the noise needed to enforce
differential privacy based on the model.

The aforementioned anonymization methods aim to prevent privacy threats other than eliminat-
ing sensitive substrings from a string to prevent their mining. The threats they are dealing with,
following the terminology of [22], are: identity disclosure for [3, 4] and membership as well as
inferential disclosure for [14, 17]. Thus, our work is related to anonymization approaches in that it
shares the general objective of protecting string data with [3, 4] and that of protecting data while
supporting string mining with the work of [14].

3 PRELIMINARIES, PROBLEM STATEMENTS, AND MAIN RESULTS

In this section, we start with providing some preliminary definitions. Then, we define our problems
and introduce our main results. A summary of the acronyms introduced in the paper is in Table 2.

Preliminaries. Let T = T [0]T [1] . . .T [n − 1] be a string of length |T | = n over a finite ordered
alphabet Σ of size |Σ| = σ . By Σ∗ we denote the set of all strings over Σ. By Σk we denote the set of
all length-k strings over Σ. For two positions i and j on T , we denote by T [i . . j] = T [i] . . .T [j] the
substring of T that starts at position i and ends at position j of T . By ε we denote the empty string

of length 0. A prefix of T is a substring of the form T [0 . . j], and a suffix of T is a substring of the
form T [i . .n − 1]. A proper prefix (suffix) of a string is not equal to the string itself. By FreqV (U )
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Acronym Meaning
CSD Combinatorial String Dissemination model
MSL Minimal String Length setting
MED Minimal Edit Distance setting
TFS Total order, Frequency, Sanitization problem
PFS Partial order, Frequency, Sanitization problem

MCSR Minimum-Cost Separators Replacement problem
ETFS Edit-distance, Total order, Frequency, Sanitization problem
PH Permutation Hiding heuristic [27]
MCK Multiple Choice Knapsack problem [29]

FO-SSM Fixed-Overlap Shortest String with Multiplicities problem
SCS Shortest Common Superstring problem [24]
OLD Oldenburg dataset [1]
TRU Trucks dataset [25]
MSN MSNBC dataset [27]
DNA The complete genome of Escherichia coli dataset [31]
SYN Synthetic dataset

Table 2. Acronyms used throughout

we denote the number of occurrences of stringU in string V . Given two stringsU and V we say
that U has a suffix-prefix overlap of length ℓ > 0 with V if and only if the length-ℓ suffix of U is
equal to the length-ℓ prefix of V , i.e.,U [|U | − ℓ . . |U | − 1] = V [0 . . ℓ − 1].
We fix a stringW of length n over an alphabet Σ = {1, . . . ,nO(1)} and an integer 0 < k < n.

We refer to a length-k string or a pattern interchangeably. An occurrence of a pattern is uniquely
represented by its starting position. Let S be a set of positions over {0, . . . ,n−k} with the following
closure property: for every i ∈ S, if there exists j such thatW [j . . j + k − 1] =W [i . . i + k − 1],
then j ∈ S. That is, if an occurrence of a pattern is in S all its occurrences are in S. A substring
W [i . . i + k − 1] ofW is called sensitive if and only if i ∈ S. S is thus the set of occurrences of
sensitive patterns. The difference set I = {0, . . . ,n−k} \S is the set of occurrences of non-sensitive
patterns.

For any stringU , we denote by IU the set of occurrences of non-sensitive length-k strings over Σ
inU . (We have that IW = I.) We call an occurrence i the t-predecessor of another occurrence j in IU
if and only if i is the largest element in IU that is less than j . This relation induces a strict total order
on the occurrences in IU . We call i the p-predecessor of j in IU if and only if i is the t-predecessor
of j in IU and U [i . . i + k − 1] has a suffix-prefix overlap of length k − 1 with U [j . . j + k − 1].
This relation induces a strict partial order on the occurrences in IU . We call a subset J of IU a
t-chain (resp., p-chain) if for all elements in J except the minimum one, their t-predecessor (resp.,
p-predecessor) is also in J . For two stringsU and V , chains JU and JV are equivalent, denoted by
JU ≡ JV , if and only if |JU | = |JV | and U [u . .u + k − 1] = V [v . .v + k − 1], where u is the jth
smallest element of JU and v is the jth smallest of JV , for all j ≤ |JU |.
Given two strings U and V the edit distance dE (U ,V ) is defined as the minimum number of

elementary edit operations (letter insertion, deletion, or substitution) to transformU to V .
The set of regular expressions over an alphabet Σ is defined recursively as follows [37]: (I) a ∈ Σ∪
{ε}, where ε denotes the empty string, is a regular expression. (II) If E and F are regular expressions,
then so are EF , E |F , and E∗, where EF denotes the set of strings obtained by concatenating a string
in E and a string in F , E |F is the union of the strings in E and F , and E∗ consists of all strings
obtained by concatenating zero or more strings from E. Parentheses are used to override the natural
precedence of the operators, which places the operator ∗ highest, the concatenation next, and the
operator | last. We state that a string T matches a regular expression E, if T is equal to one of the
strings in E.
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Problem Statements and Main Results. We define the following problem for the MSL setting.

Problem 1 (TFS). GivenW , k , S, and IW construct the shortest string X :

C1 X does not contain any sensitive pattern.

P1 IW ≡ IX , i.e., the t-chains IW and IX are equivalent.

P2 FreqX (U ) = FreqW (U ), for allU ∈ Σ
k \ {W [i . . i + k − 1] : i ∈ S}.

TFS requires constructing the shortest string X in which all sensitive patterns from W are
concealed (C1), while preserving the order (P1) and the frequency (P2) of all non-sensitive patterns.
Our first result is the following.

Theorem 3.1. LetW be a string of length n over Σ = {1, . . . ,nO(1)}. Given k < n and S, TFS-ALGO

solves Problem 1 in O(kn) time, which is worst-case optimal. An O(n)-sized representation of X can be

built in O(n) time.

P1 implies P2, but P1 is a strong assumption that may result in long output strings that are
inefficient to analyze. We thus relax P1 to require that the order of appearance remains the same
only for sequences of consecutive non-sensitive length-k substrings that also overlap by k − 1
letters (p-chains). This leads to the following problem for the MSL setting.

Problem 2 (PFS). GivenW , k , S, and IW construct a shortest string Y :
C1 Y does not contain any sensitive pattern.

Π1 There exists an injective function f from the p-chains of IW to the p-chains of IY such that

f (JW ) ≡ JW for any p-chain JW of IW .

P2 FreqY (U ) = FreqW (U ), for allU ∈ Σ
k \ {W [i . . i + k − 1] : i ∈ S}.

Our second result, which builds on Theorem 3.1, is the following.

Theorem 3.2. LetW be a string of length n over Σ = {1, . . . ,nO(1)}. Given k < n and S, PFS-ALGO

solves Problem 2 in the optimal O(n + |Y |) time.

To arrive at Theorems 3.1 and 3.2, we use a special letter (separator) # < Σ when required.
However, the occurrences of # may reveal the locations of sensitive patterns. We thus seek to delete
or replace the occurrences of # in Y with letters from Σ. The new string Z should not reinstate
sensitive patterns or create implausible patterns. Given an integer threshold τ > 0, we call a pattern
U ∈ Σk a τ -ghost in Z if and only if FreqW (U ) < τ but FreqZ (U ) ≥ τ . Moreover, we seek to prevent
τ -ghost occurrences in Z by also bounding the total weight of the letter choices we make to replace
the occurrences of #. This is the MCSR problem. We show that already a restricted version of the
MCSR problem, namely, the version when k = 1, is NP-hard via the Multiple Choice Knapsack

(MCK) problem [40].

Theorem 3.3. The MCSR problem is NP-hard.

Based on this connection, we propose a non-trivial heuristic algorithm to attack the MCSR
problem for the general case of an arbitrary k .

We define the following problem for the MED setting.

Problem 3 (ETFS). GivenW , k , S, and I, construct a string XED which is at minimal edit distance

fromW and satisfies the following:

C1 XED does not contain any sensitive pattern.

P1 IW ≡ IXED
, i.e., the t-chains IW and IXED

are equivalent.

P2 FreqXED

(U ) = FreqW (U ), for allU ∈ Σ
k \ {W [i . . i + k − 1] : i ∈ S}.
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We show how to reduce any instance of the ETFS problem to some instance of the approximate
regular expression matching problem. In particular, the latter instance consists of a string of length
n (stringW ) and a regular expression E of length O(k |Σ|n). We thus prove the claim of Theorem 3.4
by employing the O(|W | · |E |)-time algorithm of [37].

Theorem 3.4. LetW be a string of length n over an alphabet Σ. Given k < n and S, ETFS-ALGO

solves Problem 3 in O(k |Σ|n2) time.

4 TFS-ALGO

We convert stringW into a string X over alphabet Σ ∪ {#}, # < Σ, by reading the letters ofW , from
left to right, and appending them to X while enforcing the following two rules:
R1: When the last letter of a sensitive substringU is read fromW , we append # to X (essentially
replacing this last letter of U with #). Then, we append the succeeding non-sensitive substring (in
the t-predecessor order) after #.
R2: When the k − 1 letters before # are the same as the k − 1 letters after #, we remove # and the
k − 1 succeeding letters (inspect Fig. 1).

R1 preventsU from occurring in X , and R2 reduces the length of X (i.e., allows to hide sensitive
patterns with fewer extra letters). Both rules leave unchanged the order and frequencies of non-
sensitive patterns. It is crucial to observe that applying the idea behind R2 on more than k − 1
letters would decrease the frequency of some pattern, while applying it on fewer than k − 1 letters
would create new patterns. Thus, we need to consider just R2 as-is.

Fig. 1. Sensitive patterns are underlined in red; non-sensitive patterns are overlined in blue; X̃ is obtained by

applying R1; and X by applying R1 and R2. In green we highlight an overlap of k − 1 = 3 letters.

Let C be an array of size n that stores the occurrences of sensitive and non-sensitive patterns:
C[i] = 1 if i ∈ S and C[i] = 0 if i ∈ I. For technical reasons we set the last k − 1 values in C equal
to C[n − k]; i.e., C[n − k + 1] := . . . := C[n − 1] := C[n − k]. Note that C is constructible from S in
O(n) time. Given C and k < n, TFS-ALGO efficiently constructs X by implementing R1 and R2
concurrently as opposed to implementing R1 and then R2 (see the proof of Lemma 4.1 for details of
the workings of TFS-ALGO and Fig. 1 for an example). We next show that string X enjoys several
properties.

Lemma 4.1. LetW be a string of length n over Σ. Given k < n and array C , TFS-ALGO constructs

the shortest string X such that the following hold:

(I) There exists noW [i . . i + k − 1] with C[i] = 1 occurring in X (C1).
(II) IW ≡ IX , i.e., the order of substringsW [i . . i + k − 1], for all i such thatC[i] = 0, is the same in

W and in X ; conversely, the order of all substringsU ∈ Σk of X is the same in X and inW (P1).
(III) FreqX (U ) = FreqW (U ), for allU ∈ Σ

k \ {W [i . . i + k − 1] : C[i] = 1} (P2).
(IV) The occurrences of letter # in X are at most ⌊ n−k+12 ⌋ and they are at least k positions apart (P3).
(V) 0 ≤ |X | ≤ ⌈n−k+12 ⌉ · k + ⌊

n−k+1
2 ⌋ and these bounds are tight (P4).

Proof. C1: Index j in TFS-ALGO runs over the positions of stringW ; at any moment it indicates
the ending position of the currently considered length-k substring ofW . When C[j − k + 1] = 1
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TFS-ALGO(W ∈ Σn,C,k, # < Σ)
1 X ← ε ; j ← |W |; ℓ ← 0;
2 j ← min{i |C[i] = 0}; /* j is the leftmost pos of a non-sens. pattern */

3 if j + k − 1 < |W | then /* Append the first non-sens. pattern to X */
4 X [0 . . k − 1] ←W [j . . j + k − 1]; j ← j + k ; ℓ ← ℓ + k ;
5 while j < |W | do /* Examine two consecutive patterns */
6 p ← j − k ; c ← p + 1;
7 if C[p] = C[c] = 0 then /* If both are non-sens., append the last letter of the rightmost one to X */
8 X [ℓ] ←W [j]; ℓ ← ℓ + 1; j ← j + 1;
9 if C[p] = 0 ∧C[c] = 1 then /* If the rightmost is sens., mark it and advance j */

10 f ← c ; j ← j + 1;
11 if C[p] = C[c] = 1 then j ← j + 1; /* If both are sens., advance j */

12 if C[p] = 1 ∧C[c] = 0 then /* If the leftmost is sens. and the rightmost is not */
13 ifW [c . . c + k − 2] =W [f . . f + k − 2] then /* If the last marked sens. pattern and the current

non-sens. overlap by k − 1, append the last letter of the latter to X */
14 X [ℓ] ←W [j]; ℓ ← ℓ + 1; j ← j + 1;
15 else /* Else append # and the current non-sens. pattern to X */
16 X [ℓ] ← #; ℓ ← ℓ + 1;
17 X [ℓ . . ℓ + k − 1] ←W [j − k + 1 . . j]; ℓ ← ℓ + k ; j ← j + 1;
18 report X

(Lines 9-11) TFS-ALGO never appendsW [j], i.e., the last letter of a sensitive length-k substring,
implying that, by construction of C , noW [i . . i + k − 1] with C[i] = 1 occurs in X .

P1: When C[j − k] = C[j − k + 1] = 0 (Lines 7-8) TFS-ALGO appendsW [j] to X , thus the order
ofW [j −k . . j − 1] andW [j −k + 1 . . j] is clearly preserved. WhenC[j −k] = 0 andC[j −k + 1] = 1,
index f stores the starting position onW of the (k − 1)-length suffix of the last non-sensitive
substring appended to X (see also Fig. 1). C1 ensures that no sensitive substring is added to X in
this case, nor when C[j − k] = C[j − k + 1] = 1. The next letter will thus be appended to X when
C[j − k] = 1 and C[j − k + 1] = 0 (Lines 12-17). The condition on Line 13 is satisfied if and only if
the last non-sensitive length-k substring appended to X overlaps with the immediately succeeding
non-sensitive one by k − 1 letters: in this case, the last letter of the latter is appended to X by Line
14, clearly maintaining the order of the two. Otherwise, Line 17 will appendW [j − k + 1 . . j] to X ,
once again maintaining the length-k substrings’ order. Conversely, by construction, anyU ∈ Σk
occurs in X only if it equals a length-k non-sensitive substring ofW . The only occasion when a
letter fromW is appended to X more then once is when Line 17 is executed: it is easy to see that
in this case, because of the occurrence of #, each of the k − 1 repeated letters creates exactly one
U < Σk , without introducing any new length-k string over Σ nor increasing the occurrences of
a previous one. Finally, Line 14 does not introduce any new U ∈ Σk except for the one present
inW , nor any extra occurrence of the latter, because it is only executed when two consecutive
non-sensitive length-k substrings ofW overlap exactly by k − 1 letters.
P2: It follows from the proof for C1 and P1.
P3: Letter # is added only by Line 16, which is executed only whenC[j−k] = 1 andC[j−k+1] = 0.

This can be the case up to ⌈n−k+12 ⌉ times as array C can have alternate values only in the first
n−k + 1 positions. By construction, X cannot start with # (Lines 2-4), and thus the maximal number
of occurrences of # is ⌊ n−k+12 ⌋. By construction, letter # inX is followed by at least k letters (Line 17):
the leftmost non-sensitive substring following a sequence of one or more occurrences of sensitive
substrings inW .

P4:Upper bound. TFS-ALGO increases the length of string X by more than one letter only when
letter # is added to X (Line 16). Every time Lines 16-17 are executed, the length of X increases by
k + 1 letters. Thus the length of X is maximized when the maximal number of occurrences of # is
attained. This length is thus bounded by ⌈n−k+12 ⌉ · k + ⌊

n−k+1
2 ⌋.

Tightness. For the lower bound, letW = an and ak be sensitive. The condition at Line 3 is not
satisfied because no element inC is set to 0: j = n. Then the condition on Line 5 is also not satisfied

ACM Trans. Knowl. Discov. Data., Vol. 15, No. 1, Article 8. Publication date: December 2021.



Combinatorial Algorithms for String Sanitization 8:13

because j = n, and thus TFS-ALGO outputs the empty string. A de Bruijn sequence of order k over
an alphabet Σ is a string in which every possible length-k string over Σ occurs exactly once as a
substring. For the upper bound, letW be the order-(k − 1) de Bruijn sequence over alphabet Σ,
n − k be even, and S = {1, 3, 5, . . . ,n − k − 1}. C[0] = 0 and so Line 4 will add the first k letters of
W to X . Then observe that C[1] = 1,C[2] = 0;C[3] = 1,C[4] = 0, . . ., and so on; this sequence of
values corresponds to satisfying Lines 12 and 9 alternately. Line 9 does not add any letter to X . The
if statement on Line 13 will always fail because of the de Bruijn sequence property. We thus have a
sequence of the non-sensitive length-k substrings ofW interleaved by occurrences of # appended
to X . TFS-ALGO thus outputs a string of length ⌈n−k+12 ⌉ · k + ⌊

n−k+1
2 ⌋ (see Example 4.2).

We finally prove thatX has minimal length. LetX j be the prefix of stringX obtained by processing
W [0 . . j]. Let jmin = min{i |C[i] = 0} + k − 1. We will proceed by induction on j , claiming that X j is
the shortest string such that C1 and P1-P4 hold forW [0 . . j], ∀ jmin ≤ j ≤ |W | − 1. We call such a
string optimal.
Base case: j = jmin. By Lines 3-4 of TFS-ALGO, X j is equal to the first non-sensitive length-k

substring ofW , and it is clearly the shortest string such that C1 and P1-P4 hold forW [0 . . j].
Inductive hypothesis and step: X j−1 is optimal for j > jmin. If C[j − k] = C[j − k + 1] = 0,

X j = X j−1W [j] and this is clearly optimal. IfC[j −k + 1] = 1, X j = X j−1 thus still optimal. Finally, if
C[j − k] = 1 andC[j − k + 1] = 0 we have two subcases: ifW [f . . f + k − 2] =W [j − k + 1 . . j − 1]
then X j = X j−1W [j], and once again X j is evidently optimal. Otherwise, X j = X j−1#W [j −k + 1 . . j].
Suppose by contradiction that there exists a shorterX ′j such thatC1 and P1-P4 still hold: either drop
# or append less than k letters after #. If we appended less than k letters after #, since TFS-ALGO
will not readW [j] ever again, P2-P3 would be violated, as an occurrence ofW [j − k + 1 . . j] would
be missed. Without #, the last k letters of X j−1W [j − k + 1] would violate either C1 or P1 and P2
(since we supposeW [f . . f + k − 2] ,W [j − k + 1 . . j − 1]). Then X j is optimal. �

Example 4.2 (Illustration of P3). Let k = 4. We construct the order-3 de Bruijn sequenceW =
baaabbbaba of length n = 10 over alphabet Σ = {a, b}, and choose S = {1, 3, 5}. TFS-ALGO
constructs:

X = baaa#aabb#bbba#baba.

The upper bound of ⌈n−k+12 ⌉ · k + ⌊
n−k+1

2 ⌋ = 19 on the length of X is attained. �

Let us now show the main result of this section.

Theorem 3.1. LetW be a string of length n over Σ = {1, . . . ,nO(1)}. Given k < n and S, TFS-ALGO

solves Problem 1 in O(kn) time, which is worst-case optimal. An O(n)-sized representation of X can be

built in O(n) time.

Proof. For the first part inspect TFS-ALGO. Lines 2-4 can be realized in O(n) time. The while
loop in Line 5 is executed no more than n times, and every operation inside the loop takes O(1) time
except for Line 13 and Line 17 which take O(k) time. Correctness and optimality follow directly
from Lemma 4.1 (P4).

For the second part, we assume that X is represented byW and a sequence of pointers [i, j] toW
interleaved (if necessary) by occurrences of #. In Line 17, we can use an interval [i, j] to represent
the length-k substring ofW added to X . In all other lines (Lines 4, 8 and 14) we can use [i, i] as one
letter is added to X per one letter ofW . By Lemma 4.1 we can have at most ⌊ n−k+12 ⌋ occurrences of
letter #. The check at Line 13 can be implemented in constant time after linear-time pre-processing
ofW for longest common extension queries [19]. All other operations take in total linear time in n.
Thus there exists an O(n)-sized representation of X and it is constructible in O(n) time. �
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5 PFS-ALGO

Lemma 4.1 tells us that X is the shortest string satisfying constraint C1 and properties P1-P4. If we
were to drop P1 and employ the partial order Π1 (see Problem 2), the length of X = X1# . . . #XN
would not always be minimal: if a permutation of the strings X1, . . . ,XN contains pairs Xi , X j with
a suffix-prefix overlap of length ℓ = k − 1, we may further apply R2, obtaining a shorter string.
To find such a permutation efficiently and construct a shorter string Y fromW , we propose

PFS-ALGO. The crux of our algorithm is an efficient method to solve a variant of the classic NP-
complete Shortest Common Superstring (SCS) problem [24]. Specifically our algorithm: (I) Computes
the string X using Theorem 3.1. (II) Constructs a collection B ′ of strings, each of two letters (two
ranks); the first (resp., second) letter is the lexicographic rank of the length-ℓ prefix (resp., suffix) of
each string in the collection B = {X1, . . . ,XN }. (III) Computes a shortest string containing every
element in B ′ as a distinct substring. (IV) Constructs Y by mapping back each element to its distinct
substring in B. If there are multiple possible shortest strings, one is selected arbitrarily.

Example 5.1 (Illustration of the workings of PFS-ALGO). Let ℓ = k − 1 = 3 and

X = aabaa#aaacbcbbba#baabbacaab.
The collection B is comprised of the following substrings: X1 = aabaa, X2 = aaacbcbbba, and

X3 = baabbacaab. The collection B ′ is comprised of the following two-letter strings: 23, 14, 32. To
construct B′, we first find the length-3 prefix and the length-3 suffix of each Xi , i ∈ [1, 3], which
leads to a collection {aab, baa, aaa, bba}. Then, we sort the collection lexicographically to obtain
{aaa, aab, baa, bba}, and last we replace each Xi , i ∈ [1, 3], with the lexicographic ranks of its
length-3 prefix and length-3 suffix. For instance, X1 is replaced by 23. After that, a shortest string
containing all elements of B ′ as distinct substrings is computed as: 14 · 232. This shortest string is
mapped back to the solution Y = aaacbcbbba#aabaabbacaab. Note, Y contains one occurrence of
# and has length 23, while X contains 2 occurrences of # and has length 27. �

We now present the details of PFS-ALGO. We first introduce the Fixed-Overlap Shortest String
with Multiplicities (FO-SSM) problem: Given a collection B of strings B1, . . . ,B |B | and an integer ℓ,
with |Bi | > ℓ, for all 1 ≤ i ≤ |B|, FO-SSM seeks to find a shortest string containing each element of
B as a distinct substring using the following operations on any pair of strings Bi ,Bj :

(I) concat(Bi ,Bj ) = Bi · Bj ;
(II) ℓ-merge(Bi ,Bj ) = Bi [0 . . |Bi | − 1 − ℓ]Bj [0 . . |Bj | − 1] = Bi [0 . . |Bi | − 1 − ℓ] · Bj .
Any solution to FO-SSM with ℓ := k − 1 and B := X1, . . . ,XN implies a solution to the PFS

problem, because |Xi | > k − 1 for all i’s (see Lemma 4.1, P3)
The FO-SSM problem is a variant of the SCS problem. In the SCS problem, we are given a set of

strings and we are asked to compute the shortest common superstring of the elements of this set.
The SCS problem is known to be NP-complete, even for binary strings [24]. However, if all strings
are of length two, the SCS problem admits a linear-time solution [24]. We exploit this crucial detail
positively to show a linear-time solution to the FO-SSM problem in Lemma 5.3. In order to arrive
to this result, we first adapt the SCS linear-time solution of [24] to our needs (see Lemma 5.2) and
plug this solution into Lemma 5.3.

Lemma 5.2. LetQ be a collection ofq strings, each of length two, over an alphabet Σ = {1, . . . , (2q)O(1)}.
We can compute a shortest string containing every element of Q as a distinct substring in O(q) time.

Proof. We sort the elements of Q lexicographically in O(q) time using radixsort. We also replace
every letter in these strings with their lexicographic rank from {1, . . . , 2q} in O(q) time using
radixsort. In O(q) time we construct the de Bruijn multigraph G of these strings [16]. Within the
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same time complexity, we find all nodes v in G with in-degree, denoted by IN(v), smaller than
out-degree, denoted by OUT(v). We perform the following two steps:

Step 1. While there exists a node v in G with IN(v) < OUT(v), we start an arbitrary path (with
possibly repeated nodes) from v , traverse consecutive edges and delete them. Each time we delete
an edge, we update the in- and out-degree of the affected nodes. We stop traversing edges when a
node v ′ with OUT(v ′) = 0 is reached: whenever IN(v ′) = OUT(v ′) = 0, we also delete v ′ from G.
Then, we add the traversed path p = v . . .v ′ to a set P of paths. The path can contain the same
node v more than once. IfG is empty we halt. Proceeding this way, there are no two elements p1
and p2 in P such that p1 starts with v and p2 ends with v ; thus this path decomposition is minimal.
If G is not empty at the end, by construction, it consists of only cycles.

Step 2. While G is not empty, we perform the following. If there exists a cycle c that intersects
with any path p in P we splice c into p, update p with the result of splicing, and delete c from G.
This operation can be efficiently implemented by maintaining an array A of size 2q of linked lists
over the paths in P: A[α] stores a list of pointers to all occurrences of letter α in the elements of
P. Thus in constant time per node of c we check if any such path p exists in P and splice the two
in this case. If no such path exists in P, we add to P any of the path-linearizations of the cycle,
and delete the cycle from G. After each change to P, we update A and delete every node u with
IN(u) = OUT(u) = 0 from G.

The correctness of this algorithm follows from the fact that P is a minimal path decomposition
of G. Thus any concatenation of paths in P represents a shortest string containing all elements in
Q as distinct substrings. �

Lemma 5.3. Let B be a collection of strings over an alphabet Σ = {1, . . . , | |B| |O(1)}. Given an

integer ℓ, the FO-SSM problem for B can be solved in O(||B||) time.

Proof. Consider the following renaming technique. Each length-ℓ substring of the collection
is assigned a lexicographic rank from the range {1, . . . , | |B| |}. Each string in B is converted to a
two-letter string as follows. The first letter is the lexicographic rank of its length-ℓ prefix and the
second letter is the lexicographic rank of its length-ℓ suffix. We thus obtain a new collection B ′ of
two-letter strings. Computing the ranks for all length-ℓ substrings in B can be implemented in
O(||B||) time by employing radixsort to sort Σ and then the well-known LCP data structure over
the concatenation of strings in B [19]. The FO-SSM problem is thus solved by finding a shortest
string containing every element of B ′ as a distinct substring. Since B ′ consists of two-letter strings
only we can solve the problem in O(|B ′ |) time by applying Lemma 5.2. The statement follows. �

Thus, PFS-ALGO applies Lemma 5.3 onB := X1, . . . ,XN with ℓ := k−1 (recall thatX1# . . . #XN =

X ). Note that each time the concat operation is performed, it also places the letter # in between
the two strings.

Lemma 5.4. LetW be a string of length n over an alphabet Σ. Given k < n and array C , PFS-ALGO
constructs a shortest string Y with C1, Π1, and P2-P4.

Proof. C1 and P2 hold trivially for Y as no length-k substring over Σ is added or removed from
X . Let X = X1# . . . #XN . The order of non-sensitive length-k substrings within Xi , for all i ∈ [1,N ],
is preserved in Y . Thus there exists an injective function f from the p-chains of IW to the p-chains
of IY such that f (JW ) ≡ JW for any p-chain JW of IW (Π1 is preserved). P3 also holds trivially for
Y as no occurrence of # is added. Since |Y | ≤ |X |, for P4, it suffices to note that the construction of
W in the proof of tightness in Lemma 4.1 (see also Example 4.2) ensures that there is no suffix-prefix
overlap of length k − 1 between any pair of length-k substrings of Y over Σ due to the property of
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the order-(k − 1) de Bruijn sequence. Thus the upper bound of ⌈n−k+12 ⌉ · k + ⌊
n−k+1

2 ⌋ on the length
of X is also tight for Y .
The minimality on the length of Y follows from the minimality of |X | and the correctness of

Lemma 5.3 that computes a shortest such string. �

Let us now show the main result of this section.

Theorem 3.2. LetW be a string of length n over Σ = {1, . . . ,nO(1)}. Given k < n and S, PFS-ALGO

solves Problem 2 in the optimal O(n + |Y |) time.

Proof. We compute the O(n)-sized representation of string X with respect toW described in
the proof of Theorem 3.1. This can be done in O(n) time. If X ∈ Σ∗, then we construct and return
Y := X in time O(|Y |) from the representation. If X ∈ (Σ ∪ {#})∗, implying |Y | ≤ |X |, we compute
the LCP data structure of stringW in O(n) time [19]; and implement Lemma 5.3 in O(n) time by
avoiding to read string X explicitly: we rather rename X1, . . . ,XN to a collection of two-letter
strings by employing the LCP information ofW directly. We then construct and report Y in time
O(|Y |). Correctness follows directly from Lemma 5.4. �

6 MCSR PROBLEM, MCSR-ALGO, AND IMPLAUSIBLE PATTERN ELIMINATION

In the following, we introduce the MCSR problem and prove that it is NP-hard (see Section 6.1).
Then, we introduce MCSR-ALGO, a heuristic to address this problem (see Section 6.2). Finally, we
discuss how to configure MCSR-ALGO in order to eliminate implausible patterns (see Section 6.3).

6.1 The MCSR Problem

The strings X and Y , constructed by TFS-ALGO and PFS-ALGO, respectively, may contain the
separator #, which reveals information about the location of the sensitive patterns inW . Specifically,
a malicious data recipient can go to the position of a # in X and “undo” Rule R1 that has been
applied by TFS-ALGO, removing # and the k − 1 letters after # from X . The result could be an
occurrence of the sensitive pattern. For example, applying this process to the first # in X shown in
Fig. 1, results in recovering the sensitive pattern abab. A similar attack is possible on the string Y
produced by PFS-ALGO, although it is hampered by the fact that substrings within two consecutive
#s in X often swap places in Y .
To address this issue, we seek to construct a new string Z , in which #s are either deleted or

replaced by letters from Σ. To preserve data utility, we favor separator replacements that have a
small cost in terms of occurrences of τ -ghosts (patterns with frequency less than τ inW and at least
τ in Z ) and incur a level of distortion bounded by a parameter θ in Z . The cost of an occurrence of
a τ -ghost at a certain position is given by function Ghost, while function Sub assigns a distortion
weight to each letter that could replace a #. Both functions will be described in further detail below.

To preserve privacy, we require separator replacements not to reinstate sensitive patterns. This is
the MCSR problem, a restricted version of which is presented in Problem 4. The restricted version
is referred to as MCSRk=1 and differs from MCSR in that it uses k = 1 for the pattern length instead
of an arbitrary value k > 0. MCSRk=1 is presented next for simplicity and because it is used in the
proof of Lemma 6.1. Lemma 6.1 implies Theorem 3.3.

Problem 4 (MCSRk=1). Given a string Y over an alphabet Σ ∪ {#} with δ > 0 occurrences of letter
#, and parameters τ and θ , construct a new string Z by substituting the δ occurrences of # in Y with

letters from Σ, such that:

(I)
∑

i :Y [i]=#, FreqY (Z [i])<τ
FreqZ (Z [i])≥τ

Ghost(i,Z [i]) is minimum, and (II)
∑

i :Y [i]=#
Sub(i,Z [i]) ≤ θ .
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Lemma 6.1. The MCSRk=1 problem is NP-hard.

Proof. We reduce the NP-hard Multiple Choice Knapsack (MCK) problem [45] to MCSRk=1 in
polynomial time. In MCK, we are given a set of elements subdivided into δ , mutually exclusive
classes, C1, . . . ,Cδ , and a knapsack. Each class Ci has |Ci | elements. Each element j ∈ Ci has an
arbitrary cost ci j ≥ 0 and an arbitrary weight wi j . The goal is to minimize the total cost (Eq. 1)
by filling the knapsack with one element from each class (constraint II), such that the weights of
the elements in the knapsack satisfy constraint I, where constant b ≥ 0 represents the minimum
allowable total weight of the elements in the knapsack:

min
∑

i ∈[1,δ ]

∑
j ∈Ci

ci j · xi j (1)

subject to the constraints: (I)
∑

i ∈[1,δ ]
∑

j ∈Ci wi j · xi j ≥ b, (II)
∑

j ∈Ci xi j = 1, i = 1, . . . δ , and (III)
xi j ∈ {0, 1}, i = 1, . . . , δ , j ∈ Ci .

The variable xi j takes value 1 if the element j is chosen from classCi , 0 otherwise (constraint III).
We reduce any instance IMCK to an instance IMCSRk=1 in polynomial time, as follows:

(I) Alphabet Σ consists of letters αi j , for each j ∈ Ci and each class Ci , i ∈ [1, δ ].
(II) We set Y = α11α12 . . . α1 |C1 |# . . . #αδ1αδ2 . . . αδ |Cδ |#. Every element of Σ occurs exactly once:

FreqY (αi j ) = 1. Letter # occurs δ times in Y . For convenience, let us denote by µ(i) the ith
occurrence of # in Y .

(III) We set τ = 2 and θ = δ − b.
(IV) Ghost(µ(i),αi j ) = ci j and Sub(µ(i),αi j ) = 1 −wi j . The functions are otherwise not defined.
This is clearly a polynomial-time reduction. We now prove the correspondence between a

solution SIMCK to the given instance IMCK and a solution SIMCSRk=1
to the instance IMCSRk=1 .

We first show that if SIMCK is a solution to IMCK, then SIMCSRk=1
is a solution to IMCSRk=1 . Since

the elements in SIMCK have minimum
∑

i ∈[1,δ ]
∑

j ∈Ci ci j · xi j , FreqY (αi j ) = 1, and τ = 2, the letters
α1, . . . ,αδ corresponding to the selected elements lead to a Z that incurs a minimum∑

i ∈[1,δ ]

∑
j=µ(i):FreqY (Z [j])<τ

FreqZ (Z [j])≥τ

Ghost(j,Z [j]). (2)

In addition, each letter Z [j] that is considered by the inner sum of Eq. 2 corresponds to a single
occurrence of #, and these are all the occurrences of #. Thus we obtain that∑

i ∈[1,δ ]

∑
j=µ(i):FreqY (Z [j])<τ

FreqZ (Z [j])≥τ

Ghost(j,Z [j]) =
∑

i :Y [i]=#, FreqY (Z [i])<τ
FreqZ (Z [i])≥τ

Ghost(i,Z [i]) (3)

(i.e., condition I in Problem 4 is satisfied). Since the elements in SIMCK have total weight
∑

i ∈[1,δ ]
∑

j ∈Ci wi j ·

xi j ≥ b, the letters α1, . . . ,αδ , they map to, lead to a Z with
∑

i ∈[1,δ ]
∑

j ∈Ci (1 − Sub(µ(i),αi )) · xi j ≥
δ − θ , which implies ∑

i ∈[1,δ ]

∑
j ∈Ci

Sub(µ(i),αi j ) · xi j =
∑

i :Y [i]=#
Sub(i,Z [i]) ≤ θ (4)

(i.e., condition II in Problem 4 is satisfied). SIMCSRk=1
is thus a solution to IMCSRk=1 .

We finally show that, if SIMCSRk=1
is a solution to IMCSRk=1 , then SIMCK is a solution to IMCK.

Since each #i , i ∈ [1, δ ], is replaced by a single letter αi in SIMCSRk=1
, exactly one element will

be selected from each class Ci (i.e., conditions II-III of MCK are satisfied). Since the letters in
SIMCSRk=1

satisfy condition I of Problem 4, every element of Σ occurs exactly once in Y , and τ = 2,
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their corresponding selected elements j1 ∈ C1, . . . , jδ ∈ Cδ will have a minimum total cost. Since
SIMCSRk=1

satisfies
∑

i :Y [i]=# Sub(i,Z [i]) =
∑

i ∈[1,δ ]
∑

j ∈Ci Sub(µ(i),αi j ) ·xi j ≤ θ , the selected elements
j1 ∈ C1, . . . , jδ ∈ Cδ that correspond to α1 . . . ,αδ will satisfy

∑
i ∈[1,δ ]

∑
j ∈Ci (1 −wi j ) · xi j ≤ δ − b,

which implies
∑

i ∈[1,δ ]
∑

j ∈Ci wi j · xi j ≥ b (i.e., condition I of MCK is satisfied). Therefore, SIMCK is a
solution to IMCK. The statement follows. �

Lemma 6.1 implies the main result of this section.

Theorem 3.3. The MCSR problem is NP-hard.

The cost of τ -ghosts is captured by a function Ghost. This function assigns a cost to an occurrence
of a τ -ghost, which is caused by a separator replacement at position i , and is specified based on
domain knowledge. For example, with a cost equal to 1 for each gained occurrence of each τ -ghost,
we penalize more heavily a τ -ghost with frequency much below τ in Y and the penalty increases
with the number of gained occurrences. Moreover, we may want to penalize positions towards the
end of a temporally ordered string, to avoid spurious patterns that would be deemed important in
applications based on time-decaying models [18].

The replacement distortion is captured by a function Sub which assigns a weight to a letter that
could replace a # and is specified based on domain knowledge. The maximum allowable replacement
distortion is θ . Small weights favor the replacement of separators with desirable letters (e.g., letters
that reinstate non-sensitive frequent patterns) and letters that reinstate sensitive patterns are
assigned a weight larger than θ that prohibits them from replacing a #. As will be explained in
Section 6.3, weights larger than θ are also assigned to letters which would lead to implausible
substrings [27] if they replaced #s.

6.2 MCSR-ALGO

We next present MCSR-ALGO, a non-trivial heuristic that exploits the connection of the MCSR
and MCK [40] problems. We start with a high-level description of MCSR-ALGO:

(I) Construct the set of all candidate τ -ghost patterns (i.e., length-k strings over Σwith frequency
below τ in Y that can have frequency at least τ in Z ).

(II) Create an instance of MCK from an instance of MCSR. For this, we map the ith occurrence
of # to a class Ci in MCK and each possible replacement of the occurrence with a letter j to
a different item in Ci . Specifically, we consider all possible replacements with letters in Σ
and also a replacement with the empty string, which models deleting (instead of replacing)
the ith occurrence of #. In addition, we set the costs and weights that are input to MCK as
follows. The cost for replacing the ith occurrence of # with the letter j is set to the sum of the
Ghost function for all candidate τ -ghost patterns when the ith occurrence of # is replaced
by j. That is, we make the worst-case assumption that the replacement forces all candidate
τ -ghosts to become τ -ghosts in Z . The weight for replacing the ith occurrence of # with letter
j is set to Sub(i, j).

(III) Solve the instance of MCK and translate the solution back to a (possibly suboptimal) solution
of theMCSR problem. For this, we replace the ith occurrence of # with the letter corresponding
to the element chosen by the MCK algorithm from class Ci , and similarly for each other
occurrence of #. If the instance has no solution (i.e., no possible replacement can hide the
sensitive patterns), MCSR-ALGO reports that Z cannot be constructed and terminates.

Lemma 6.2 below states the running time of an efficient implementation of MCSR-ALGO.
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Lemma 6.2. MCSR-ALGO runs in O(|Y | + kδσ + T(δ ,σ )) time, where T(δ ,σ ) is the running time

of the MCK algorithm for δ classes with σ + 1 elements each.

Proof. It should be clear that if we conceptually extend Σ with the empty string, our approach
takes into account the possibility of deleting (instead of replacing) an occurrence of #. To ease
comprehension though we only describe the case of letter replacements.

Step 1. GivenY , Σ,k , δ , and τ , we construct a set C of candidate τ -ghosts as follows. The candidates
are at most (|Y | − k + 1 − kδ ) + (kδσ ) = O(|Y | + kσδ ) distinct strings of length k . The first term
corresponds to all substrings of length k over Σ occurring in Y (i.e., if Y did not contain #, we would
have |Y | − k + 1 such substrings; each of the δ # causes the loss of k such substrings). The second
term corresponds to all possible substrings of length k that may be introduced in Z but do not occur
in Y . For any string U from the set of these O(|Y | + kδσ ) strings, we want to compute FreqY (U )
and its maximal frequency in Z , denoted by max FreqZ (U ), i.e., the largest possible frequency that
U can have in Z , to construct set C. Let Si j denote the string of length 2k − 1, containing the k
consecutive length-k substrings, obtained after replacing the ith occurrence of # with letter j in Y .

(I) If FreqY (U ) ≥ τ ,U by definition can never become τ -ghost in Z , and we thus exclude it from
C. FreqY (U ), for allU occurring in Y , can be computed in O(|Y |) total time using the suffix
tree of Y [19].

(II) If max FreqZ (U ) < τ ,U by definition can never become τ -ghost in Z , and we thus exclude
it from C. max FreqZ (U ) can be computed by adding to FreqY (U ), the maximum additional
number of occurrences ofU caused by a letter replacement among all possible letter replace-
ments. We sum up this quantity for each U and for all replacements of occurrences of # to
obtain max FreqZ (U ). To do this, we first build the generalized suffix tree of Y , S11, . . . , Sδσ
in O(|Y | + kδσ ) time [19]. We then spell Si1, . . . , Siσ , for all i , in the generalized suffix tree
in O(kσ ) time per i . We exploit suffix links to spell the length-k substrings of Si j in O(k)
time and memorize the maximum number of occurrences ofU caused by replacing the ith
occurrence of # among all j. We represent set C on the generalized suffix tree by marking
the corresponding nodes, and we denote this representation by T (C). The total size of this
representation is O(|Y | + kσδ ).

Step 2. We now want to construct an instance of the MCK problem usingT (C). We first set letter
j as element αi j of class Ci . We then set ci j equal to the sum of the Ghost function cost incurred
by replacing the ith occurrence of # by letter j for all (at most k) affected length-k substrings that
are marked in T (C). The main assumption of our heuristic is precisely the fact that we assume
that this letter replacement will force all of these affected length-k substrings becoming τ -ghosts
in Z . The computation of ci j is done as follows. For each (i, j), i ∈ [1, δ ] and j ∈ [1,σ ], we have
k substrings whose frequency changes, each of length k . LetU be one such pattern occurring at
position t of Z , where µ(i) − k + 1 ≤ t ≤ µ(i) and µ(i) is the ith occurrence of # in Y . We check ifU
is marked in T (C) or not. If U is not marked we add nothing to ci j . IfU is marked, we increment
ci j by Ghost(t,U ). We also setwi j = Sub(i, j) (as stated above, any letter that reinstates a sensitive
pattern is assigned a weight Sub > θ , so that it cannot be selected to replace an occurrence of # in
Step 3). Similar to Step 1, the total time required for this computation is O(|Y | + kδσ ).

Step 3. In Step 2, we have computed ci j andwi j , for all i, j , i ∈ [1, δ ] and j ∈ [1,σ ]. We thus have an
instance of the MCK problem. We solve it and translate the solution back to a (suboptimal) solution
of the MCSR problem: the element αi j chosen by the MCK algorithm from class Ci corresponds to
letter j and it is used to replace the ith occurrence of #, for all i ∈ [1, δ ]. The cost of solving MCK
depends on the chosen algorithm and is given by a function T(δ ,σ ).

Thus, the total cost of MCSR-ALGO is O(|Y | + kδσ + T(δ ,σ )). �
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6.3 Eliminating Implausible Patterns

We present the notion of implausible substring and explain how we can ensure that implausible
patterns do not occur in Z , as a result of applying the MCSR-ALGO algorithm to string Y .

Consider, for instance, an input string Y = . . . a#c . . . that models the movement of an individual,
and the string abc, which is created as a substring of Z when we replace # with b. Consider further
that an individual can, generally, not go from a to c through b, or that it is highly unlikely for them
to do so. We call a substring such as abc implausible. Clearly, if abc occurs in Z , it may be possible
for an attacker to infer that b replaced #, and then infer a sensitive pattern by “undoing” R1 as
explained in Section 6.1. In order to effectively model this scenario, we define implausible patterns
based on a statistical significance measure for strings [7, 15, 42]. The measure is defined as follows
[15]:

zW (U ) =
FreqW (U ) − EW [U ]

max(
√
EW [U ], 1)

,

whereU is a string with |U | > 2,W is the reference string, and

EW [U ] =

{ FreqW (U [0. . |U |−2])·FreqW (U [1. . |U |−1])
FreqW (U [1. . |U |−2])

, FreqW (U [1 . . |U | − 2]) > 0
0, otherwise

is the expected frequency ofU inW , computed based on an independence assumption between the
event “U [0 . . |U |−1] occurs inW ” and “U [1 . . |U |−1] occurs inW ”. The measure zW is a normalized
version of the standard score of U , based on the fact that the variance VarW [U ] ≈

√
EW [U ] [42].

A small zW (U ) indicates that U occurs less likely than expected, and hence it can naturally be
considered as an artefact of sanitization.
Given a user-defined threshold ρ < 0, we define a stringU as ρ-implausible if zW (U ) < ρ. The

set of ρ-implausible substrings ofW can be computed in the optimal O(|Σ| · |W |) time [7]. We
useW as the reference string, assuming that it is a good representation of the domain; e.g., a trip
(substring) that is ρ-implausible inW is also implausible in general. Alternatively, one could use
any other string as reference, impose length constraints on implausible patterns [32, 47], or even
directly specify substrings that should not occur in Z based on domain knowledge.
Given the set U of (ρ-)implausible patterns, we ensure that no # replacement creates U =

U1αU2 ∈ U in Z , where α is the letter that replaces #, by assigning a weight Sub(i,Z [i]) > θ , for
each Z [i] such that Y [i] = # andU1 · Z [i] ·U2 ∈ U. This guarantees that no replacement leading to
an artefact occurrence of an element ofU is performed by MCSR-ALGO. Note, however, that a
ρ-implausible pattern may occur in Z as a substring, either because it occurred in a part ofW that
was copied to Z (e.g., a non-sensitive pattern), or due to the change of frequency of some substrings
that are created in Z after the replacement of a #. However, since such ρ-implausible patterns did
not contain a # in the first place, they cannot be exploited by an attacker seeking to reverse the
construction of Z .

7 ETFS-ALGO

Let U and V be two non-sensitive length-k substrings ofW such that U is the t-predecessor of V .
SinceU andV must occur in the same order in the solution string XED, the main choice we have to
make in order to solve the ETFS problem is whether to:

(I) “merge”U andV when the length-(k − 1) suffix ofU and the length-(k − 1) prefix ofV match;
or

(II) “interleave”U and V with a carefully selected string over Σ ∪ {#}.
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Among operations I and II, for every such pair U and V , we must select the operation that
globally results in the smallest number of edit operations. Operations I and II can naturally be
expressed by means of a regular expression E. In particular, this implies that any instance of the
ETFS problem can be reduced to an instance of approximate regular expression matching and thus
an algorithm for approximate regular expression matching between E andW [37] can be employed.
More formally, given a stringW and a regular expression E, the approximate regular expression

matching problem is to find a string T that matches E with minimal dE (W ,T ). The following result
is known.

Theorem 7.1 ([37]). Given a stringW and a regular expression E, the approximate regular expression

matching problem can be solved in O(|W | · |E |) time.

In the following, we define a specific type of a regular expression E. Let us first define the
following regular expression:

Σ<k = ((a1 |a2 | . . . |a |Σ | |ε) . . . (a1 |a2 | . . . |a |Σ | |ε)︸                                             ︷︷                                             ︸
k − 1 times

),

where Σ = {a1,a2, . . . ,a |Σ |} is the alphabet ofW and k > 1. We also define the following regular-
expression gadgets, for a letter # < Σ:

⊕ = #(Σ<k#)∗, ⊖ = (Σ<k#)∗, ⊗ = (#Σ<k )∗.

Intuitively, the gadget ⊕ represents a string we may choose to include in the output in an effort
to minimize the edit distance betweenW and the solution string XED. It should be clear that the
length of ⊕ is in O(k |Σ|) and that ⊕ cannot generate any length-k substring over Σ. Furthermore,
inserting ⊕ in E cannot create any sensitive or non-sensitive pattern due to the occurrences of #
on both ends of ⊕. The gadgets ⊖ and ⊗ are similar to ⊕. They are added in the beginning and
at the end of E, respectively. This is because E should not start or end with # as this would only
increase the edit distance toW . As it will be explained later, to construct E, we also make use of
the | operator. Intuitively, the | operator represents the choice we make between operation “merge”
or “interleave”.
We are now in a position to describe ETFS-ALGO, an algorithm for solving the ETFS problem.

ETFS-ALGO starts by constructing E. Let (N1,N2 . . . ,N |I |) be the sequence of non-sensitive length-
k substrings as they occur inW from left to right. We first set E = ⊖N1 and then process the
pairs of non-sensitive length-k substrings Ni and Ni+1, for all i ∈ {1, |I | − 1}. At the ith step,
we examine whether or not Ni and Ni+1 can be merged. If they can, we append to E a regular
expression (A| ⊕ Ni+1), where A is obtained by chopping-off the length-(k − 1) prefix of Ni+1 (that
is, the remainder of Ni+1 after merging it with Ni ). Otherwise, we append ⊕Ni+1 to E. Intuitively,
using A corresponds to choosing “merge” and ⊕Ni+1 to choosing “interleave”. After examining
each pair Ni and Ni+1, we append ⊗ to E. This concludes the construction of E. Note how, for any
combination of choices, Ni+1 will always appear in the string obtained.
Next, ETFS-ALGO employs Theorem 7.1 to construct XED. In particular, it finds a string T that

matches E with minimal dE (W ,T ). Last, it sets XED = T . We arrive at the main result of this section.

Theorem 3.4. LetW be a string of length n over an alphabet Σ. Given k < n and S, ETFS-ALGO

solves Problem 3 in O(k |Σ|n2) time.

Proof. Constructing E can be done inO(n+kn+ |E |) = O(k |Σ|n) time, since: (I) The non-sensitive
length-k substrings ofW can be obtained in O(n) time, by readingW from left to right and checking
S. (II) Checking whether Ni and Ni+1 are mergeable takes O(k) time via letter comparisons, and
it is performed in each of the O(n) steps. (III) The length is |E | = O(kn + k |Σ|n) = O(k |Σ|n).
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This is because E contains at most n occurrences of non-sensitive length-k substrings, at most n
occurrences of ⊕, and one occurrence of each of ⊖ and ⊗ and because the lengths of ⊕, ⊖ and ⊗
are O(k |Σ|).

ComputingT fromW and E can be performed in O(|W | · |E |) = O(n · |E |) time using Theorem 7.1.
Thus ETFS-ALGO takes O(k |Σ|n2) time in total.

The correctness of ETFS-ALGO follows from the fact that by construction: (I)T does not contain
any sensitive pattern, so C1 is satisfied; (II) T satisfies P1 and P2 as no length-k substring over Σ
(other than the non-sensitive ones) is inserted in E; (III) All strings satisfying C1, P1 and P2 can
be obtained by E, since they must have the same t-chain of non-sensitive patterns over Σ∗ asW ,
interleaved by length-k substrings that are on (Σ ∪ #)∗ but not on Σ∗; and (IV) the minimality on
edit distance is guaranteed by Theorem 7.1. The statement follows. �

A factor of |Σ| can be shaved from O(k |Σ|n2) via dynamic programming [9], albeit it seems
unlikely to yield a strongly subquadratic time bound [8]. In any case, as our experiments show,
TFS-ALGO, which runs in O(kn) time, outputs optimal or near-optimal solutions in practice.

Example 7.2 (Illustration of the workings of ETFS-ALGO). LetW = aaabbaabaccbbb, k = 4,
and the set of sensitive patterns be {aabb, abba, bbaa, baab, ccbb}. The sequence of non-sensitive
patterns is thus (N1, . . . ,N6) = (aaab, aaba, abac, bacc, accb, cbbb). Given that k = 4 and Σ =
{a, b, c}, ETFS-ALGO constructs the following gadgets,

⊕ = #(Σ<4#)∗ = #(((a|b|c|ε)(a|b|c|ε)(a|b|c|ε))#)∗

⊖ = (Σ<4#)∗ = (((a|b|c|ε)(a|b|c|ε)(a|b|c|ε))#)∗

⊗ = (#Σ<4)∗ = (#((a|b|c|ε)(a|b|c|ε)(a|b|c|ε)))∗

and sets E = ⊖N1 = ⊖aaab. Then, it iterates over each pair of consecutive non-sensitive length-k
substrings in the order they appear inW (i.e., pair (Ni ,Ni+1) is considered in Step i ∈ [1, 5]) and
the regular expression E is updated, as detailed below.
In Step 1, ETFS-ALGO considers the pair (N1,N2) = (aaab, aaba). Observe that in this case N1

and N2 can be merged, since the length-3 suffix of N1 and the length-3 prefix of N2 match. Thus,
(A|N2) = (a| ⊕ aaba) is appended to E. Recall that when merging, we chop off the length-(k − 1)
prefix of Ni+1 = N2 (because we have merged it already) and write down what is left of N2 (a in
this case) before |. Thus, E = ⊖aaab(a| ⊕ aaba).

In Step 2, ETFS-ALGO considers (N2,N3) = (aaba, abac). Again, N2 and N3 can be merged. Thus,
(c| ⊕ abac) is appended into E, which leads to E = ⊖aaab(a| ⊕ aaba)(c| ⊕ abac).
In Steps 3 and 4, ETFS-ALGO considers the pairs (N3,N4) = (abac, bacc) and (N4,N5) =

(bacc, accb), respectively. Since the patterns in each pair can be merged, the algorithm appends
into E the regular expression (c| ⊕ bacc) and (b| ⊕ accb), for the first and second pair, respectively.
This leads to E = ⊖aaab(a| ⊕ aaba)(c| ⊕ abac)(c| ⊕ bacc)(b| ⊕ accb).

In Step 5, ETFS-ALGO considers the last pair (N5,N6) = (accb, cbbb), which cannot be merged,
and appends ⊕cccb to E. Since there is no other pair to be considered, ⊗ is also appended to E,
leading to:

E = ⊖aaab(a|⊕aaba)(c| ⊕ abac)(c| ⊕ bacc)(b| ⊕ accb)⊕cbbb ⊗ .

At this point, ETFS-ALGO employs Theorem 7.1 to find the following string T that matches E (the
choices that were made in the construction of T are underlined in E and ⊖, ⊕, ⊗ are matched by
the empty string):

T = aaab#aabaccb#cbbb,

with minimal dE (T ,W ) = 4. Last, ETFS-ALGO returns XED = T . �
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Note thatXED = T in Example 7.2 does not contain any sensitive pattern and that all non-sensitive
patterns ofW appear in T in the same order and with the same frequency as they appear inW .
Note also that, for the same instance, TFS-ALGO would return string X =aaabaccb#cbbb with
dE (W ,X ) = 5 > dE (W ,XED) = 4 and |X | = 13 < |XED | = 17.

8 EXPERIMENTAL EVALUATION

We evaluate our algorithms in terms of effectiveness and efficiency. Effectiveness is measured based
on data utility and number of implausible patterns. Efficiency is measured based on runtime.

Evaluated Algorithms. First, we consider the pipeline TFS-ALGO→ PFS-ALGO→MCSR-ALGO,
referred to as TPM. Given a stringW over Σ, TPM sanitizesW by applying TFS-ALGO, PFS-ALGO,
and then MCSR-ALGO. MCSR-ALGO uses the O(δσθ )-time algorithm of [40] for solving the MCK
instances. The final output is a string Z over Σ. MCSR-ALGO is configured with an empty setU
(i.e., it may lead to implausible patterns that are created in Z after the replacement of a #).

Among the relatedworks discussed in Section 2.1, we compared TPM against the PH heuristic [27].
This is because we found PH to be the closest to our setting, and, moreover, because it outperforms
other related sequence sanitization methods [1, 25] (see Section 2.1 for details). We also compared
TPM against a greedy baseline referred to as BA, in terms of data utility and efficiency. BA initializes
its output string ZBA toW and then considers each sensitive pattern R in ZBA, from left to right.
For each R, BA replaces the letter r of R that has the largest frequency in ZBA with another letter
r ′ that is not contained in R and has the smallest frequency in ZBA, breaking all ties arbitrarily.
Note that this letter replacement should not introduce any other sensitive pattern in ZBA. If no
such r ′ exists, r is replaced by # to ensure that a solution is produced (even if it may reveal the
location of a sensitive pattern). Each replacement removes the occurrence of R and aims to prevent
τ -ghost occurrences by selecting an r ′ that will not substantially increase the frequency of patterns
overlapping with R. Note that BA does not preserve the frequency of non-sensitive patterns, and
thus, unlike TPM, it can incur τ -lost patterns. We also implemented a similar baseline that replaces
the letter in R that has the smallest frequency in ZBA with another letter that is not contained in R
and has the largest frequency in ZBA, but omit its results as it was worse than BA.
In addition, we consider the pipelines TFS-ALGO→MCSR-ALGO and TFS-ALGO→MCSRI-

ALGO, referred to as TM and TMI, respectively. With MCSRI-ALGO we refer to the configuration
of MCSR in which there is a non-empty setU of ρ-implausible patterns that must not occur in the
output string Z . We omit PFS-ALGO from the TM and TMI pipelines to avoid the elimination of
some implausible patterns due to re-ordering of blocks of non-sensitive patterns that is performed
by PFS-ALGO.

Last, we consider ETFS-ALGO, which we compare to TFS-ALGO, to demonstrate that the latter
is a very effective heuristic for the ETFS problem.

Experimental Data. We considered the following publicly available datasets used in [1, 11, 25,
27, 31]: Oldenburg (OLD), Trucks (TRU), MSNBC (MSN), the complete genome of Escherichia coli
(DNA), and synthetic data (uniformly random strings, the largest of which is referred to as SYN).
See Table 3 for the characteristics of these datasets and the parameter values used in experiments,
unless stated otherwise.

Experimental Setup. The sensitive patterns were selected randomly among the frequent length-k
substrings at minimum support τ following [25, 27, 31]. We used the fairly low values (τ = 10 for
TRU, SYN, and SYNbin; τ = 20 for OLD and DNA; and τ = 200 for MSN), to have a wider selection
of sensitive patterns. In MCSR-ALGO, we used a uniform cost of 1 for every occurrence of each
τ -ghost, a weight of 1 (resp., ∞) for each letter replacement that does not (resp., does) create a
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Dataset Data domain Length Alphabet # sensitive # sensitive Pattern Implausible pat.
n size |Σ | patterns positions |S | length k threshold ρ

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4) [−2, −0.1] (−1)
TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4) [−3, −0.1] (−4)
MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4) [−6, −3] (−1)
DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13) [−4.5, −2.5] (−2.5)
SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6) -

SYNbin Synthetic 1,000 2 [4, 32] (16) [16, 128] [4, 7] (4) -

Table 3. Characteristics of datasets and values used (default values are in bold).

sensitive pattern, and we further set θ = δ . This setup treats all candidate τ -ghost patterns and all
candidate letters for replacement uniformly, to facilitate a fair comparison with BA which cannot
distinguish between τ -ghost candidates or favor specific letters. In MCSRI-ALGO, we instead set
a weight∞ for each letter replacement that does not create a sensitive pattern or an implausible
pattern of length k .
In PH, we used a minimum frequency threshold of τ = 1 to ensure that sensitive patterns will

not occur as subsequences (and hence nor as substrings) in the output. We also transformed the
input string into a collection of strings and provided the collection as input to PH. This is because,
although in principle PH can be applied to a single string, as in Example 2.1, this was not possible for
any of the datasets of Table 3. In fact, as it will be shown later, PH did not terminate within 12 hours,
even for very short strings of length 25 that took milliseconds to be sanitized by our algorithms.
The reason is that PH requires finding all occurrences of every sensitive pattern in the string and
computing changes to the set of non-sensitive frequent sequential patterns incurred by permutation
and deletion. When τ = 1 and for reasonably long strings, this is a very computationally intensive
task. This observation agrees with the findings in [27] and similar findings were reported for other
sanitization algorithms [1, 25].
Therefore, to be able to compare with PH, we converted a long string to a collection of short

strings (i.e., the type of dataset that PH was designed for). Specifically, we created a collection
of stringsW1,W2, . . . ,Wm from a stringW , such thatW = W1 ·W2 · . . . ·Wm and |Wi | = r , for
i ∈ [1,m], and then we applied PH to the collection. In our experiments, we varied r in [5, 25] and
used r = 15 as the default value. The smallest value r = 5 was selected to enable the hiding of
sensitive patterns of length k = 5 that we used; the largest value r = 25 was selected empirically.
PH took much longer as we increased r and did not terminate within 12 hours for r = 25. After
applying PH, we obtained a sanitized collection of stringsW ′

1 ,W
′
2 , . . . ,W

′
m and constructed a final

string I =W ′
1 ·W

′
2 · . . . ·W

′
m by concatenating the strings in the sanitized collection. Note that we

favor PH by neglecting the possibility that sensitive patterns may be created when concatenating
the strings in the sanitized collection.

To capture the utility of sanitized data, we used the (frequency) distortion measure∑
U

(FreqW (U ) − FreqZ (U ))
2,

whereU ∈ Σk is a non-sensitive pattern. The distortion measure quantifies changes in the frequency
of non-sensitive patterns with low values suggesting that Z remains useful for tasks based on
pattern frequency (e.g., identifying motifs corresponding to functional or conserved DNA [41]).
We also measured the number of τ -ghost and τ -lost patterns in Z following [25, 27, 31], where

a pattern U is τ -lost in Z if and only if FreqW (U ) ≥ τ but FreqZ (U ) < τ . That is, τ -lost patterns
model knowledge that can no longer be mined from Z but could be mined fromW , whereas
τ -ghost patterns model knowledge that can be mined from Z but not fromW . A small number
of τ -lost/ghost patterns suggests that frequent pattern mining can be accurately performed on
Z [25, 27, 31]. Unlike BA, by design TPM does not incur any τ -lost pattern, as TFS-ALGO and
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PFS-ALGO preserve frequencies of non-sensitive patterns, and MCSR-ALGO can only increase
pattern frequencies.

To examine the benefit of usingMCSRI-ALGO instead of MCSR-ALGOwhen implausible patterns
need to be eliminated, we measured the percentage of ρ-implausible patterns of length k that may
occur in Z , when a letter replaces a #. Clearly, the percentage is 0 when MCSRI-ALGO is used, and
a large percentage for MCSR-ALGO implies that it is beneficial to use MCSRI-ALGO instead.
To capture the effectiveness of TFS-ALGO in terms of constructing a string X that is at small

edit distance fromW (see the ETFS problem), we used the Edit Distance Relative Error, defined as
dE (W ,X ) − dE (W ,XED)

dE (W ,XED)
.

All experiments ran on a Desktop PC with an Intel Xeon E5-2640 at 2.66GHz and 16GB RAM.
Our source code is written in C++ and is accessible from https://bitbucket.org/stringsanitization/
stringsanitizationtkdd/. The code for PH is also written in C++ and was provided by the authors
of [27]. The results presented below have been averaged over 10 runs.

8.1 TPM vs. PH

Data Utility. We first demonstrate that TPM substantially outperformed PH in terms of distortion.
This suggests that TPM is a much better method for preserving utility in tasks based on the
frequency of substrings (e.g., [41]). Fig. 2a shows that, for varying number of sensitive patterns,
TPM incurred on average 477 (and up to 1045) times lower distortion than PH did. These results are
expected because PH applies permutation and/or deletion to eliminate all occurrences of a sensitive
pattern as a subsequence from the sanitized output, whereas only the occurrences in which the
pattern is comprised of consecutive letters (i.e., the sensitive pattern occurs as a substring) should
be eliminated. This “overprotection” incurs distortion unnecessarily and severely harms utility,
particularly when there are more sensitive patterns. Indeed, Fig. 2a shows that PH becomes less
effective as the number of sensitive patterns increases. In addition, TPM incurred substantially less
distortion than PH for all tested values of k . Fig. 2b shows that TPM incurred on average 78 (and up
to 169) times lower distortion than PH. This is again because our setting calls for hiding occurrences
of sensitive patterns as substrings and, in this setting, PH overprotects data unnecessarily.
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Fig. 2. Distortion vs. (a) number of sensitive patterns and their total number |S| of occurrences inW (first

two lines on the X axis), and (b) length of sensitive patterns k (and |S|). Total number of τ -lost and τ -ghost
patterns vs. (c) length of sensitive patterns k , and (d) length of sensitive patterns k (and |S|). xy on the top of

each bar denotes x τ -lost and y τ -ghost patterns.

We now demonstrate that TPM allows substantially more accurate frequent substring mining
than PH. Fig. 2c shows that, for varying number of sensitive patterns, the number of τ -lost and
τ -ghost patterns for TPM was on average 376 (and up to 586 times) lower compared to that of PH.
Quantitatively similar results were obtained for varying k , as can be seen in Fig. 2d. Specifically, the
number of τ -lost and τ -ghost patterns for TPM was at least 21 (and up to 234) times lower than that
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of PH. Note that TPM creates no τ -lost patterns by design and it created no more than 2 τ -ghost
patterns in the experiments of Fig. 2d, while PH created up to 234 τ -lost and 1107 τ -ghost patterns.

Impact of r on Efficiency. We demonstrate the runtime of PH as a function of r , the length of
records in the collection of recordsW1,W2, . . . ,Wm that was created from a string datasetW and
given as input to PH. As can be seen in Fig. 3a, the runtime of PH increased from 4 seconds when
r = 5 to 2.5 hours when r = 20. Also, PH did not terminate within 12 hours for r = 25. This shows
why it was not feasible to apply PH directly to an entire string dataset of Table 3, and we needed
to construct a collection of sequences instead. As mentioned in “Experimental setup” above, the
reason is that PH needs much time to hide all occurrences of sensitive patterns as subsequences
for large strings, particularly when τ = 1, which is needed to reduce the frequency of sensitive
patterns (substrings) to zero. On the other hand, TPM required less than a second to processW .
Note that the results reported for TPM are the same for all values of r , because r is not an input
parameter to TPM.
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Fig. 3. (a) Runtime, (b) distortion, and (c) total number of τ -lost and τ -ghost patterns vs. length of the records

of the input dataset to PH. Note that PH did not terminate within 12 hours when r = 25.

Impact of r on Data Utility. We demonstrate that TPM substantially outperforms PH, for all tested
values of r , both in terms of distortion and number of τ -lost and τ -ghost patterns. Specifically, TPM
incurred on average 169 (and up to 201) times lower distortion than PH. Also, it created only 1
τ -lost pattern, while PH created at least 29 τ -lost and 421 τ -ghost patterns. The reason that PH gets
worse when r increases is because a longer record implies that there are generally more occurrences
of sensitive patterns (as subsequences) that PH needs to hide, and this requires more substantial
changes to the input data. Note that the results reported for TPM are the same for all values of r ,
because r is not an input parameter to TPM.

8.2 TPM vs. BA

Data Utility. We first demonstrate that TPM incurs very low distortion. Fig. 4 shows that, for
varying number of sensitive patterns, TPM incurred on average 18.4 (and up to 95) times lower
distortion than BA over all experiments. Also, Fig. 4 shows that TPM remains effective even in
challenging settings, with many sensitive patterns (e.g., the last point in Fig. 4b where about 42% of
the positions inW are sensitive). Fig. 5 shows that, for varying k , TPM caused on average 7.6 (and
up to 14) times lower distortion than BA over all experiments.

Next, we demonstrate that TPM permits accurate frequent pattern mining: Fig. 6 shows that TPM
led to no τ -lost or τ -ghost patterns for the TRU and MSN datasets. This implies no utility loss for
mining frequent length-k substrings with threshold τ . In all other cases, the number of τ -ghosts
was on average 6 (and up to 12) times smaller than the total number of τ -lost and τ -ghost patterns
for BA. BA performed poorly (e.g., up to 44% of frequent patterns became τ -lost for TRU and 27%
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Fig. 4. Distortion vs. number of sensitive patterns and their total number |S| of occurrences inW (first two

lines on the X axis).
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Fig. 5. Distortion vs. length of sensitive patterns k (and |S|).
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Fig. 6. Total number of τ -lost and τ -ghost patterns vs. number of sensitive patterns (and |S|). xy on the top of

each bar for BA denotes x τ -lost and y τ -ghost patterns.

for DNA). Fig. 7 shows that, for varying k , TPM led to on average 5.8 (and up to 19) times fewer
τ -lost/ghost patterns than BA. BA performed poorly (e.g., up to 98% of frequent patterns became
τ -lost for DNA).

We also demonstrate that PFS-ALGO reduces the length of the output string X of TFS-ALGO
substantially, creating a string Y that contains less redundant information and allows for more
efficient analysis. Fig. 8a shows the length of X and of Y and their difference for k = 5. Y was much
shorter thanX and its length decreased with the number of sensitive patterns, since more substrings
had a suffix-prefix overlap of length k − 1 = 4 and were removed (see Section 5). Interestingly, the
length of Y was close to that ofW (the string before sanitization). A larger k led to less substantial
length reduction as shown in Fig. 8b (but still few thousand letters were removed), since it is less
likely for long substrings of sensitive patterns to have an overlap and be removed.

Efficiency. We finally measured the runtime of TPM using prefixes of the synthetic string SYN
whose lengthn is 20million letters. Fig. 8c (resp., Fig. 8d) shows that TPM scaled linearlywithn (resp.,
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|Y | = |Z |.

k), as predicted by our analysis in Section 6 (TPM takes O(n+ |Y |+kδσ +δσθ ) = O(kn+kδσ +δσθ )
time, since the algorithm of [40] was used for MCK instances). In addition, TPM is efficient, with a
runtime similar to that of BA and less than 40 seconds for SYN.

8.3 TM vs. TMI

We compare TM with TMI based on data utility and the number of implausible patterns incurred.
The objective of these experiments is to show that TMI is able to produce a string Z that does not
contain implausible patterns, while being comparable to TM in terms of the amount of distortion
and number of ghost patterns incurred.
We do not report the results of comparing TM with TMI in terms of efficiency, because the

runtime of TMI was almost identical to that of TM.
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Fig. 9. Percentage of implausible patterns vs. number of sensitive patterns (and |S|). The percentages of

implausible patterns for DNA are all 0%.
Impact of |S|. We first demonstrate that many implausible patterns may occur as a result of

replacing #s with letters, when MCSR is used. This can be seen from Figs. 9a, 9b, and 9c, which
show the percentage of implausible patterns incurred by TM, for varying |S| in OLD, TRU, and
MSN, respectively. The percentage is on average 33.08% (and up to 35.63%). The percentage for
DNA is 0% (omitted), because this dataset has a very small alphabet size. Thus, in this experiment,
MCSR-ALGO and MCSRI-ALGO are essentially the same algorithm. Since TMI is guaranteed to
eliminate implausible patterns, its corresponding percentages are zero (omitted).
We then demonstrate that TMI eliminates implausible patterns without incurring substantial

utility loss compared to TM. Figs. 10 and 11 show that TMI incurred a comparable amount of
distortion to TM. Specifically, TMI incurred 8% and 1% less distortion in the case of OLD and TRU
datasets and 37% more distortion in the case of MSN. TMI also incurred a similar number of ghosts
than TM. Specifically, TMI incurred 7.1% fewer ghosts in the case of TRU and 54% more ghosts in
the case of MSN. Note that no τ -ghost patterns were incurred in the case of OLD (for both TM and
TMI). The worse performance of TMI in the case of the MSN dataset is attributed to its relatively
small alphabet size, which makes it more difficult to select a letter replacement that does not incur
implausible patterns.
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Fig. 10. Distortion vs. number of sensitive patterns and their total number |S| of occurrences inW (first two

lines on the X axis).

Impact of k . Fig. 12a shows that the percentage of implausible patterns incurred by TM for the
OLD dataset was on average 4.3% (and up to 9.6%). Again, this confirms the need to eliminate
implausible patterns in practice. The results for TRU, MSN, and DNA are qualitatively similar and
omitted from all remaining experiments.
We now demonstrate that TMI eliminates implausible patterns, while incurring a comparable

amount of distortion and ghosts (on average) compared to TM. Specifically, the distortion for TMI
was 17% lower than TM on average (see Fig. 12b), and the number of τ -ghost patterns for TMI was
16.2% lower on average (see Fig. 12c).
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Impact of ρ. We demonstrate that TMI can eliminate implausible patterns, while preserving data
utility as well as TM does. This can be seen from Fig. 13a, which shows that the percentage of
implausible patterns incurred by TM was 4.1% on average (and up to 5.3%), and from Figs. 13b
and 13c, which show that TMI caused on average 19.5% lower distortion and 9.4% fewer τ -ghosts,
respectively, compared to TM.
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8.4 TFS-ALGO vs. ETFS-ALGO

We demonstrate that TFS-ALGO is a very effective heuristic for the ETFS problem. Specifically,
it constructs a string X that is either an optimal solution to the problem or it is at slightly larger
edit distance fromW compared to the exact solution string XED that is constructed by ETFS-ALGO.
This can be seen from Fig. 14a (resp., 14b), which shows that TFS-ALGO constructed optimal
solutions (i.e., Edit Distance Relative Error was 0) in 98% (resp., 93%) of the tested strings, on
average. These strings are uniformly random and have the same length and alphabet as SYNbin.
Qualitatively similar results were obtained for uniformly random strings of different lengths and
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alphabet sizes (omitted). In addition, the effectiveness of TFS-ALGO can be seen from Figs. 14c
and 14d, which show that the Edit Distance Relative Error in TRU was no more than 2.8%. These
results are encouraging because, unlike ETFS-ALGO, TFS-ALGO is applicable to large strings such
as OLD, MSN, and DNA (recall that its time complexity is linear instead of quadratic in |W |).
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each of the 50, 000 random strings. Edit Distance Relative Error vs. (c) k (and |S|), and (d) number of sensitive

patterns (and |S|) for TRU.

9 CONCLUSION

In this paper, we introduced the Combinatorial String Dissemination model. The focus of this model
is on guaranteeing privacy-utility trade-offs in sequential data (e.g., C1 vs. Π1 and P2).

Under this model, we considered two different settings. The common privacy constraint in both
settings is that the output string must not contain any sensitive pattern. In the first setting, we aim
to generate the minimal-length string that preserves the order of appearance and the frequency
of all non-sensitive patterns. We defined a problem, TFS, to capture these requirements, and a
variant of it, PFS, that preserves a partial order and the frequency of the non-sensitive patterns
but generally produces a shorter string. We developed two time-optimal algorithms, TFS-ALGO
and PFS-ALGO, for TFS and PFS, respectively. We also developed MCSR-ALGO, a heuristic that
prevents the disclosure of the location of sensitive patterns, ensuring that sensitive patterns are
not reinstated, implausible patterns are not introduced, and occurrences of spurious patterns are
prevented from the outputs of TFS-ALGO and PFS-ALGO. In the second setting, we aim to generate
a string that is at minimal edit distance from the original string, in addition to preserving the order
of appearance and the frequency of all non-sensitive patterns. We defined a problem, ETFS, to
capture these requirements, and proposed ETFS-ALGO, an algorithm, which is based on solving
specific instances of approximate regular expression matching, to construct such a string.
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Our experiments show that string sanitization by TFS-ALGO, PFS-ALGO and then MCSR-ALGO
is both effective and efficient. They also demonstrate that TFS-ALGO can be employed as an
effective heuristic to the ETFS problem producing optimal or near-optimal solutions in practice.

We leave the following question unanswered: given a string X containing #s, a positive integer
k , and a positive integer τ , how should we replace the #s in X with letters in Σ, so that the number
of distinct length-k τ -ghosts in the resulting string Z is minimized?

Acknowledgments. We acknowledge the use of the Rosalind HPC cluster hosted by King’s
College London.

REFERENCES

[1] Abul, O., Bonchi, F., Giannotti, F.: Hiding sequential and spatiotemporal patterns. TKDE 22(12), 1709–1723 (2010)
[2] Abul, O.: Knowledge hiding in emerging application domains. In: Privacy-Aware Knowledge Discovery: Novel Appli-

cations and New Techniques. CRC Press (2010)
[3] Aggarwal, C.C., Yu, P.S.: On anonymization of string data. In: SDM. pp. 419–424 (2007)
[4] Aggarwal, C.C., Yu, P.S.: A framework for condensation-based anonymization of string data. DMKD 16(3), 251–275

(2008)
[5] Aggarwal, C.C., Yu, P.S.: A general survey of privacy-preserving data mining models and algorithms. In: Aggarwal,

C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining: Models and Algorithms. Springer (2008)
[6] Aggarwal, C.C., Yu, P.S.: Privacy-Preserving Data Mining: Models and Algorithms. Springer (2008)
[7] Almirantis, Y., Charalampopoulos, P., Gao, J., Iliopoulos, C.S., Mohamed, M., Pissis, S.P., Polychronopoulos, D.: On

avoided words, absent words, and their application to biological sequence analysis. Algorithms for molecular biology :
AMB 12 (2017)

[8] Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). In: STOC.
pp. 51–58 (2015)

[9] Bernardini, G., Chen, H., Loukides, G., Pisanti, N., Pissis, S.P., Stougie, L., Sweering, M.: String sanitization under edit
distance. In: CPM. pp. 7:1–7:14 (2020)

[10] Bernardini, G., Chen, H., Conte, A., Grossi, R., Loukides, G., Pisanti, N., Pissis, S.P., Rosone, G.: String sanitization: A
combinatorial approach. In: ECML PKDD. pp. 627–644 (2019)

[11] Bernardini, G., Chen, H., Fici, G., Loukides, G., Pissis, S.P.: Reverse-safe data structures for text indexing. In: ALENEX.
pp. 199–213. SIAM (2020)

[12] Bonchi, F., Ferrari, E.: Privacy-Aware Knowledge Discovery: Novel Applications and New Techniques. CRC Press
(2010)

[13] Bonomi, L., Fan, L., Jin, H.: An information-theoretic approach to individual sequential data sanitization. In: WSDM.
pp. 337–346 (2016)

[14] Bonomi, L., Xiong, L.: A two-phase algorithm for mining sequential patterns with differential privacy. In: CIKM. pp.
269–278 (2013)

[15] Brendel, V., Beckmann, J.S., Trifonov, E.N.: Linguistics of nucleotide sequences: Morphology and comparison of
vocabularies. Journal of Biomolecular Structure and Dynamics 4(1), 11–21 (1986)

[16] Cazaux, B., Lecroq, T., Rivals, E.: Linking indexing data structures to de Bruijn graphs: Construction and update. J.
Comput. Syst. Sci. (2016)

[17] Chen, R., Acs, G., Castelluccia, C.: Differentially private sequential data publication via variable-length n-grams. In:
CCS. pp. 638–649 (2012)

[18] Cormode, G., Korn, F., Tirthapura, S.: Exponentially decayed aggregates on data streams. In: ICDE. pp. 1379–1381
(2008)

[19] Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge University Press (2007)
[20] Droppo, J., Acero, A.: Context dependent phonetic string edit distance for automatic speech recognition. In: ICASSP.

pp. 4358–4361 (2010)
[21] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: TCC. pp.

265–284 (2006)
[22] Foresti, S.: Microdata protection. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security,

2nd Ed, pp. 781–783. Springer (2011)
[23] Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent developments. ACM

Comput. Surv. 42(4) (Jun 2010)
[24] Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. J. Comput. Syst. Sci. 20(1), 50–58 (1980)

ACM Trans. Knowl. Discov. Data., Vol. 15, No. 1, Article 8. Publication date: December 2021.



Combinatorial Algorithms for String Sanitization 8:33

[25] Gkoulalas-Divanis, A., Loukides, G.: Revisiting sequential pattern hiding to enhance utility. In: KDD. pp. 1316–1324
(2011)

[26] Grossi, R., Iliopoulos, C.S., Mercas, R., Pisanti, N., Pissis, S.P., Retha, A., Vayani, F.: Circular sequence comparison:
algorithms and applications. AMB 11, 12 (2016)

[27] Gwadera, R., Gkoulalas-Divanis, A., Loukides, G.: Permutation-based sequential pattern hiding. In: ICDM. pp. 241–250
(2013)

[28] Jin, L., Li, C., Vernica, R.: Sepia: estimating selectivities of approximate string predicates in large databases. The VLDB
Journal 17(5), 1213–1229 (Aug 2008)

[29] Kellerer, H., Pferschy, U., Pisinger, D.: The Multiple-Choice Knapsack Problem, pp. 317–347. Springer Berlin Heidelberg
(2004)

[30] Liu, A., Zhengy, K., Liz, L., Liu, G., Zhao, L., Zhou, X.: Efficient secure similarity computation on encrypted trajectory
data. In: ICDE. pp. 66–77 (2015)

[31] Loukides, G., Gwadera, R.: Optimal event sequence sanitization. In: SDM. pp. 775–783 (2015)
[32] Loukides, G., Gkoulalas-Divanis, A., Malin, B.: Anonymization of electronic medical records for validating genome-wide

association studies. Proceedings of the National Academy of Sciences 107(17), 7898–7903 (2010)
[33] Lu, W., Du, X., Hadjieleftheriou, M., Ooi, B.C.: Efficiently supporting edit distance based string similarity search using

b+-trees. TKDE 26(12), 2983–2996 (2014)
[34] Malin, B., Sweeney, L.: Determining the identifiability of DNA database entries. In: AMIA. pp. 537–541 (2000)
[35] Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge, MA, USA

(1999)
[36] Monreale, A., Pedreschi, D., Pensa, R.G., Pinelli, F.: Anonymity preserving sequential pattern mining. Artif. Intell. Law

22(2), 141–173 (2014)
[37] Myers, E.W., Miller, W.: Approximate matching of regular expressions. Bulletin of Mathematical Biology 51(1), 5–37

(1989)
[38] Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: S&P. pp. 111–125 (2008)
[39] Natwichai, J., Li, X., Orlowska, M.: Hiding classification rules for data sharing with privacy preservation. In: Data

Warehousing and Knowledge Discovery. pp. 468–477. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)
[40] Pissinger, D.: A minimal algorithm for the multiple-choice knapsack problem. Eur J Oper Res 83(2), 394–410 (1995)
[41] Pissis, S.P.: MoTeX-II: structured MoTif eXtraction from large-scale datasets. BMC Bioinformatics 15, 235 (2014)
[42] Régnier, M., Vandenbogaert, M.: Comparison of statistical significance criteria. J. Bioinformatics and Computational

Biology 4(2), 537–552 (2006)
[43] Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: PODS.

p. 188 (1998)
[44] Shang, J., Peng, J., Han, J.: Macfp: Maximal approximate consecutive frequent pattern mining under edit distance. In:

Proceedings of the 2016 SIAM International Conference on Data Mining. pp. 558–566
[45] Sinha, P., Zoltners, A.A.: The multiple-choice knapsack problem. Operations Research 27(3), 431–627 (1979)
[46] Sun, X., Yu, P.S.: A border-based approach for hiding sensitive frequent itemsets. In: ICDM. pp. 426–433 (2005)
[47] Terrovitis, M., Poulis, G., Mamoulis, N., Skiadopoulos, S.: Local suppression and splitting techniques for privacy

preserving publication of trajectories. TKDE 29(7), 1466–1479 (2017)
[48] Theodorakopoulos, G., Shokri, R., Troncoso, C., Hubaux, J., Boudec, J.L.: Prolonging the hide-and-seek game: Optimal

trajectory privacy for location-based services. In: WPES. pp. 73–82 (2014)
[49] Verykios, V.S., Elmagarmid, A.K., Bertino, E., Saygin, Y., Dasseni, E.: Association rule hiding. TKDE 16(4), 434–447

(2004)
[50] Wang, D., He, Y., Rundensteiner, E., Naughton, J.F.: Utility-maximizing event stream suppression. In: SIGMOD. pp.

589–600 (2013)
[51] Wen, Z., Deng, D., Zhang, R., Kotagiri, R.: 2ed: An efficient entity extraction algorithm using two-level edit-distance.

In: ICDE. pp. 998–1009 (2019)
[52] X. Sun, Yu, P.S.: A border-based approach for hiding sensitive frequent itemsets. In: ICDM. pp. 8 pp.– (2005)
[53] Xu, Y., Wang, K., Fu, A.W., Yu, P.S.: Anonymizing transaction databases for publication. In: KDD. pp. 767–775 (2008)

ACM Trans. Knowl. Discov. Data., Vol. 15, No. 1, Article 8. Publication date: December 2021.


	Abstract
	1 Introduction
	1.1 Our Model and Settings
	1.2 Our Contributions

	2 Related Work
	2.1 Data Sanitization
	2.2 Data Anonymization

	3 Preliminaries, Problem Statements, and Main Results
	4 TFS-ALGO
	5 PFS-ALGO
	6 MCSR Problem, MCSR-ALGO, and Implausible Pattern Elimination
	6.1 The MCSR Problem
	6.2 MCSR-ALGO
	6.3 Eliminating Implausible Patterns

	7 ETFS-ALGO
	8 Experimental Evaluation
	8.1 TPM vs. PH
	8.2 TPM vs. BA
	8.3 TM vs. TMI
	8.4 TFS-ALGO vs. ETFS-ALGO

	9 Conclusion
	References

