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Abstract  
In early years schooling it is becoming common to propose activities that involve moving 
along paths, or programming robots to do so. In order to promote continuity towards the 
introduction of geometry in primary school, we developed a long-term teaching experiment 
(with 15 sessions) carried out over four months in a first grade classroom in northern Italy. 
Students were asked to program a robot to move along paths, to pretend to act as robots and 
to represent the sequence of commands and the resulting paths. In particular, in this teaching 
experiment, an overarching mathematical aim was to sow the seeds for a mathematical 
definition of rectangles that includes squares. Within the paradigm of semiotic mediation, we 
intended to foster the ���den��ǯ ��an�i�ion f�om a d�namic pe�cep�ion of pa�h� �o �eeing pa�h� 
also as static wholes, boundaries of figures with sets of geometric characteristics. The 
���den��ǯ �i��a�ed p�od�c�ion� �e�e collec�ed and anal��ed �oge�he� �i�h �he �pecific ac�ion� 
of the adults involved, aimed at fostering processes of semiotic mediation. In this paper we 
analyse the development of the situated texts produced by the students in relation to the 
pivot signs that were the beginnings of an inclusive definition of rectangles. 
 
1. Introduction and rationale 
Rectangles and squares represent a paradigmatic example of the conflict between the 
perceptual experience and the theoretical needs of a mathematical definition (on this delicate 
issue also see Kaur 2015 and Tsamir et al. 2015), where squares are to be considered as 
particular rectangles (we will refer to a definition of rectangles that includes squares as being 
inclusive). There is evidence that such conflict persists in older students (Hershkowitz 1990; 
Lehrer, Jenkins and Osana 1998; Clements, Swaminathan, Zeitler Hannibal and Sarama 1999; 
Clements 2004; Lin and Yang 2002; Battista 2007; Koleza and Giannisi 2013; Fujita 2012).  
In Mariotti and Fischbein (1997) mathematical definition is considered a true didactical 
problem, because of the conflict between perceptual experiences Ȃ and in particular visual 
Gestalts1 Ȃ and theoretical needs, between the figural and the conceptual aspects. For example, 
when the child deals with squares and non-square rectangles, a conflict arises: actuallyǡ ǲf�om 
the figural point of view squares and non-square rectangles look so different that they impose 
the need of being distinguished at least as much as triangles and quad�ila�e�al�ǳ ȋMariotti and 
Fischbein 1997, p. 224). So the didactical problem of mathematicall� defining ǲ�ec�angle�ǳ 
(inclusively with respect to squares) is related to the possibility of constructing 
harmonization between the figural and conceptual aspect�ǡ be��een ǲ�he need �o diffe�en�ia�e 
imposed by strong figural structures and the requirement to unify, to generalize imposed by 
the geometrical conceptualizationǳ (ibid., p. 245).  
Moreover, it is through developing theoretical control Ȃ and not simply growing in age Ȃ that a 
student is able to overcome his/her initial attachment to prototypes (Fischbein 1993). In the 

                                                        
1 Visual Gestalts refer to theories of visual perception, developed in Germany in the 
1920s, that attempt to describe how people tend to organize visual elements 
into groups or unified wholes when certain principles are applied. 
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case of a square or a rectangle, the prototype frequently has sides that are horizontal and 
vertical, and �he �q�a�e i� j��� a� �ide a� �allǡ �hile �he �ec�angle i� ǲlongǳǡ ǲfa�ǳ o� ǲ�allǳǤ 
Reaching a level of harmonious interaction between an incl��i�e defini�ion of ǲ�ec�angleǳ and 
figural aspects of the prototypes allows the student to ǲcon��ol �he meaning of �he fig��e b� i�� 
fo�mal con���ain��ǳ (Fischbein and Nachlieli 1998, p. 1197), and, for example, to recognize 
rectangles with different dimensions (including congruent dimensions), different positions or 
other different visual influences all as examples of ǲrectanglesǳ. This is how a student can 
overcome his/her blinding attachment to particular prototypes, especially in the cases of 
concepts to which a variety of figures (as in the case of squares and rectangles) corresponds. 
The process is much more straightforward when, instead, the student deals with concepts to 
which invariant figures correspond, for instance right angles (ibid., p. 1209). 
Such process of harmonization of figural and conceptual components must be fostered 
through specific interventions, because research shows that it does not occur spontaneously, 
and attachment to prototypes is not overcome with age alone.  
These results are consistent with those of notable studies conducted decades earlier by Luria 
(1976), who showed that naming and classifying geometrical figures depends heavily on the 
level of instruction received by the interviewed subject (pp. 31Ȃ47). In particular, he showed 
�ha� �he la�� of ǲna���al geome��ic pe�cep�ionǳ defined in Gestalt psychology are in fact 
dependent on the culture that subjects are exposed to. This allows us to state that even the 
perception of what Fischbein refers to as an ǲinvariant figureǳ, such as the right angle, seems 
to be such only for people �ho li�e in a ǲca�pen�e�ed �o�ldǳǡ in a culture of right angles and 
lines, where these geometric features are culturally important.  
These findings highlight the fundamental role of instruction in guiding perception along the 
lines of a cultural theory we want students to become a part of, and they lead us to believe it is 
important to design early (cultural) interventions to be initiated during the first years of 
formal instruction, and to be carried out in a continuous manner throughout the course of 
primary school. Unfortunately there are many widespread bad practices in school which 
reinforce the separation between squares and rectangles (for instance, activities with 
attribute blocks, where squares and non-square rectangles are classified in different sets). 
Everyday language may act as an additional obstacle towards the development of a 
mathematical definition: for instance, in both Italian and English (and in other European 
languages) the names quadrato [square] and rettangolo [rectangle] hint at a complete 
separation of the figures into two different classes (square and not-square rectangles). We 
note, however, that this is not necessarily the case in all languages. In fact, in Chinese, the 
�eq�ence� of ideog�am� fo� �he �o�d� ǲ�q�a�eǳ ȋ正方形) and ǲ�ec�angleǳ ȋ㐳方形) contain two 
out of three same ideogram�ǡ �ho�e �ha� indica�e ǲ�ide�ǳ and ǲ�hapeǳ, while the first indicates 
ǲe�ac�ǳ ȋfo� �he �q�a�eȌ and ǲlongǳ ȋfo� �he �ec�angleȌǤ So, linguistically, a square is seen as a 
ǲ�hape �i�h e�ac� �ide�ǳ and a �ec�angle as a ǲȋ�ameȌ �hape �i�h long �ide�ǳǤ In this case 
language makes explicit that square and rectangle are two kinds of a same thing, deeply 
related to each other and not separated into distinct categories (also see Lin and Yang 2002). 
In fact this is typical of Taoism in which a central idea is the evolution of events as a process of 
change and �he ideolog� of ǲg�a�ping �a�� be�ond ca�ego�ie�ǳ o� �o ǲca�ego�i�e in order to 
�ni�e ca�ego�ie�ǳ ȋ以法通㘃, 以㘃相從) (Bartolini Bussi et al. 2013). 
The rationale behind the design of the study we present is that there can be means for 
constructing the meaning of squares and rectangles, generalizing the perception of square and 
not-square rectangular shapes, other than everyday language (that reinforces the conditions 
for an obstacle against an inclusive definition). A viable means can be programming the bee-
bot in order to produce particular traced-paths that allow students to focus their attention on 
certain aspects of the path, such as changes of direction (in the context of the bee-bot, turns 
left or right of 90°), which can be put in meaningful relationships with (characterizing) parts 
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of figures (such as right angles). It is exactly upon the shared geometrical property of squares 
and rectangles of having four right angles that we foresaw the possibility of capitalizing: we 
expected it to allow the sowing of seeds as a variety of acts of spatial experiences that could 
be developed into a ǲlib�a��ǳ of pa�h� and ge����e�ǡ accompanied b� �e�bal de�c�ip�ion� and 
drawings for developing a meaningful inclusive definition of rectangles (see Bartolini Bussi et 
al. 2007 for a similar analysis in the context of circles). We advanced the hypothesis that the 
bee-bot might be particularly appropriate for fostering appreciation of �he ǲͶ �igh� angle�ǳ 
property because of how the semiotic activity may be promoted. In particular, the activity can 
naturally assume body syntonic features as well as ego syntonic ones (Papert 1980). The 
former, specifically, refers to Pape��ǯ� �i�ion �ha� lea�ne�� �o�ld be able to relate the 
behaviour of the microworld objects to their own sense and knowledge about their own 
bodies. We will see how this is possible with the bee-bot. 
In the following section the context of the teaching experiment is described, followed by the 
theoretical frame of semiotic mediation, and a presentation of the research questions and 
methodology used for the study. The data presented and discussed refer to one class and they 
represent critical episodes in an ideal trajectory from the semiotic activity around the 
production of early tasks to a final poster with important shared discoveries (a sort of initial 
ǲ�heo��ǳ of the shared discoveries2). These aim at sowing seeds for reaching a (inclusive) 
mathematical definition of rectangles, while focusing on the classroom as a whole. 
  
2. Theoretical frame 
The Italian standards (for students aged 3Ȃ14) give emphasis to the development of space 
knowledge and geometry, in parallel with number knowledge (MIUR 2012). An important 
ke��o�dǡ c�o��ing all �he ���den��ǯ age�ǡ i� mathematical laboratory that aims at the 
construction of mathematical meaning. In a mathematical laboratory (often realized in the 
classroom) physical or virtual artefac�� a�e p�e�en� �o fo��e� ���den��ǯ pe��onal in�ol�emen� 
in �he ac�i�i�� �nde� �he �eache�ǯ� guidance. A typical teaching experiment involving artefacts 
lasts several sessions, from several weeks to a few months, and it relies on a constant 
cooperation with teachers (the so-called ǲ�eache�-�e�ea�che��ǳȌǡ made po��ible b� �he on-
going involvement of the same mathematics teacher with the same group of students for 
many years. These extended periods with the same group of students make teachers less 
anxious about the short-term effects of their teaching and encourages them to take care of and 
to observe long-term processes (Bartolini Bussi and Martignone 2013). From decades of 
studies on laboratory activities, the theoretical frame of semiotic mediation was developed. 
We summarize only some elements of the Theory of Semiotic Mediation, focusing on the 
�eache�ǯ� �ole (Bartolini Bussi and Mariotti 2008). The teacher is in charge of two main 
processes: the design of activities; and the functioning of activities. In the former the teacher 
makes sound choices about the artefacts to be used, the tasks to be proposed and the pieces of 
mathematics knowledge at stake, according to the curricular choices. In the latter, the teacher 
e�ploi��ǡ moni�o�� and manage� �he ���den��ǯ ob�e��able p�oce��e� ȋ�emio�ic ��ace�Ȍǡ �o 
decide how to interact with the students and what and how to fix in the individual and group 
memory.  
In this teaching experiment, the chosen artefact is the bee-bot, a small programmable robot 
(see below). Task design is realized drawing on previous experiments made at pre-school 
level (Bartolini Bussi 2013) and also at primary and secondary school level (Bartolini Bussi et 
al. 2011). 

                                                        
2 Fo� a �imila� p�oce��ǡ �ee fo� in��ance �he ǲ�heo�� of gea��ǳ a� �epo��ed in Ba��olini B���i et al. (1999). 
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The design process is represented by the left triangle of Fig. 1 (tasks Ȃ artefact Ȃ knowledge), 
where the semiotic potential of the artefact is made explicit (that is, the links between tasks, 
the pieces of mathematics knowledge and the chosen artefact). 
 

 
Fig. 1 A diagram of the main processes involved in semiotic mediation 

The other parts of the scheme concern the functioning in the classroom. When students are 
given a task they start a rich and complex semiotic activity, producing traces (gestures, 
d�a�ing�ǡ o�al de�c�ip�ion�ǡ ��i��en �e��� and �o onȌǤ The �eache�ǯ� job i� fi��� �o collect all 
these traces (observing and listening to students), to analyse them and to organize a path for 
their evolution towards mathematical texts that can be put in relationship with the pieces of 
mathematics knowledge. The teacher acts as a cultural mediator, in order to exploit, for all the 
students, the semiotic potential of the bee-bot, in the left triangle of Fig. 1. 
In this last process, Bartolini Bussi and Mariotti (2008) identify three main categories of signs: 
artefact signs, mathematical signs and pivot signs. Artefact signs ǲrefer to the context of the 
use of the artefact, very often referring to one of its parts and/or to the action accomplished 
�i�h i� ȏǥȐǳǢ mathematical signs ǲrefe� �o �he ma�hema�ic� con�e��ǳ; and pivot signs ǲ�efe� �o 
specific in����men�ed ac�ion�ǡ b�� al�o �o na���al lang�ageǡ and �o �he ma�hema�ical domainǳ 
(ibid. p. 757).  
Pivot signs can act as bridges between the artefact signs and the mathematical signs. For 
example, if we use counting sticks (sticks bundled up in a set of 10), an artefact sign could be 
ǲb�ndle�ǳ o� ǲ�o �ieȀ�n�ieǳǤ The co��e�ponding ma�hema�ical �ign� co�ld be ǲ�en�ǳ o� 
ǲgroupingȀ�ng�o�pingǳ. For some time (even weeks) children may use only artefact signs (for 
example: ǲI have tied ten counting sticksǳ) or construct hybrid sentences (fo� e�ampleǣ ǲI have 
tied a tenǳ) or directly use mathematical signs (fo� e�ampleǣ ǲI have grouped a tenǳ). In 
collective mathematical discussions we can observe a variety of utterances related to different 
uses of these signs.  
Pivot signs, if correctly identified or introduced by the teacher, and intentionally used during 
discussion orchestration, can be particularly useful for fostering a transition from situated 
ǲ�e���ǳ �o ma�hema�ical �e���Ǥ Pivot signs develop and are enriched by their relationships with 
other pivot signs, hence building a network of pivot signs ȋfo� e�ampleǡ �he ǲb�ndleǳ of �en 
sticks may be related to single sticks/units or to bundles of bundles/hundreds) and so on. 
Mathematical signs are not intended to suddenly substitute artefact signs; in fact the latter 
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may survive for some time, especially for lower achievers or in cases in which the formal 
mathematical definition and the reasoning of the corresponding concepts require long-term 
processes to be achieved.  
The methodology proposed for the classroom process is described by Bartolini Bussi and 
Mariotti (2008) as the didactical cycle (see Fig. 2). 
 

 
 
 
 
 
 
 
 
 

 

 

 

Fig. 2 Diagram of the didactical cycle  
 
The activities of the teaching sequence include the following: 

 

1. Activities with artefacts in which classroom discussions are promoted to allow the same 
artefact to be looked at from different perspectives. In this phase there is a typical 
sequence of tasks proposed: the warming up task (What is it?) that fosters the 
emergence of a narrator voice; the artefact task (How is it made? How could you describe 
it to a classmate?) that aims at identifying the artefactǯ� componen�� and naming �hem in 
a correct way and at describing the spatial relationships between them, fostering the 
emergence of a constructor voice; the instrument task (How does it work? How can you 
make it work?) that fosters the emergence of the user voice; the justification task (Why 
does it work in this way?) that fosters the emergence of the mathematician voice; new 
problems (Could we use this artefact to solve a new problem?) designed to foster the 
emergence of a problem poser and solver voice (Bartolini Bussi 2013). 

2. Individual production of signs (gesturing, speaking, drawing, writing, etc.). Students are 
individually engaged in the process of the production and elaboration of signs related to 
the previous activities with artefacts (Bartolini Bussi and Mariotti 2008). 

3. Collective production of signs (e.g. narratives, mimics, collective production of texts, and 
drawings). Students are engaged in mathematical di�c���ion �nde� �he �eache�ǯ� 
guidance about the previous activities (artefact manipulation and sign production) to 
compare and to share personal signs (Bartolini Bussi and Boni 2009). 
 

3. The chosen artefact: the bee-bot 
The bee-bot is a small programmable robot, especially designed for young students. Its 
ancestor is the classical LOGO turtle, originally a robotic creature that moved around on the 
floor (LOGO Foundation 2000). It is not necessary to have an external computer to 
programme the bee-bot, as the command buttons are on its back (see Fig. 3). 
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Fig. 3 The bee-bo�ǯ� back and enla�gemen�� of �he b���on� 
 
When the programme is executed, the bee-bot moves on the floor: the execution of each 
command is followed by a blink of the eyes and by a short beep-sound. We have introduced 
this small robot in dozens of classrooms (pre-schools and first/second grade classrooms) 
within two on-going projects of teacher development: BAMBINICHECONTANO for pre-school 
(Bartolini Bussi 2013), under the supervision of the first author; and PERCONTARE (ASPHI 
2011) for primary school (Baccaglini-Frank and Bartolini 2012; Baccaglini-Frank and Scorza 
2013), under the supervision of the second author.  
In spite of its very simple appearance, the bee-bot hints at many sets of meanings and 
mathematical processes, partly related to mathematics and partly related to computer science, 
for instance: counting (the commands); measuring (the length of the path, the distance); 
exploring space, constructing frames of reference and coordinating spatial perspectives 
(Falcade and Strozzi 2009; Baccaglini-Frank et al. 2014); and programming (e.g. Papert 1993; 
Noss and Hoyles 1996), planning and debugging. In a long-term teaching experiment, all these 
sets of meanings are at stake, sometimes in the foreground and sometimes in the background. 
Which ones to focus on depends on the adultǯ� �eaching in�en�ion (see Sect. 3). Our teaching 
experiment was designed to capitalize on the bee-bo�ǯ� po�en�ial for fostering awareness of 
�he ǲfo�� �igh� angle�ǳ p�ope��� of gene�ic �ec�angle�Ǥ 
The bee-bot walks on the floor and traces paths that can be perceived, observed, described 
with words, with gestures, with drawings, with sequences of command-icons and so on. Paths 
con��i���e a la�ge e�pe�ien�ial ba�e �o ǲ���d�ǳ plane fig��e� Ȃ not all figures, but only those 
that can be traced using the available commands. These are polygons with sides measured by 
a whole number of steps and with right angles only. With the additional restriction of the 
traced shape being convex, the bee-bot can be programmed to turn only left or only right, and 
therefore the polygons are always rectangles (including squares). Moreover, in experiences 
�he�e ǲp�e�ending �o be �he bee-bo�ǳ i� e��en�ialǡ child�en emb�ace �he �obo�ǯ� pe��pec�i�eǣ 
they move with the bee-bot and they see with its eyes. In particular, when walking along a 
closed convex path and ending up where they started, the children will turn 360o in four equal 
ǲch�nk�ǳ during which their orientation (and ending facing the same direction as when they 
started) is perceived as essential. These are some features that define the bee-botǯ� high 
semiotic potential with respect to the emergence of an inclusive definition of rectangles. 
 
4. The research questions 
Within the described framework and with the objectives outlined above we advanced the 
following specific research questions: 
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1. How might a long-term process of semiotic mediation that exploits the semiotic potential 
of the bee-bot with respect to the development of an inclusive definition of rectangles look 
for first graders?  
2. In particular, which kind of pivot signs (if any) can be identified and exploited during 
such long-term process? 
 
5. Methodology: the teaching experiment 
The class was described by the teacher as being average and relatively homogeneous: it has 
18 students (aged 6Ȃ7). Three adults were involved during the classroom activities: Roberta 
Munarini, the classroom teacher (T), is a very experienced teacher-researcher, accustomed to 
taking part in advanced teaching experiments and open to welcoming student-teachers 
during their internships; her expertise is invaluable when critical choices have to be made, 
both in the choice of tasks and in the management of tasks. Federica Baroni is a very good 
student-teacher (S)ǡ �i�h a ma��e�ǯ� deg�ee in ed�ca�ion fo� p�e-school, enrolled now in the 
primary school programme and doing her internship. Anna Baccaglini-Frank, a researcher (R), 
is active both as a participant in some critical phases of the experiment and as an observer. 
Several sessions (15) were carried out at the beginning of the school year, for four months 
(more or less once a week) either in the classroom (C) or in the gym (G), with a careful 
alternation of whole-class or small-g�o�p ac�i�i�� ȋ�i�h ad�l�ǯ� g�idanceȌ and �ome indi�id�al 
activity. Each session was carefully observed by one of the adults involved (T, S, R), with the 
collection of protocols, photos, graphical productions and videos. Transcripts of discussions 
were prepared by the student-teacher. The tasks were designed by the research team, 
drawing on the initial intention and on the needed changes to be introduced after classroom 
experiment. 
Due to space constraints it is not possible to report on all the activities, so we will focus on 
certain sessions in which the production of signs was particularly rich with respect to our 
objective (further details in Bartolini Bussi and Baccaglini-Frank, submitted). 
 
6. Findings: the evolution of signs 
In this section we give details on selected activity sessions, describing particular signs that the 
children produced. 
 
6.1 The early signs 
The first session of the teaching experiment involved approaching a new artefact through 
classroom discussion. Students were encouraged to produce drawings. As expected, ���den��ǯ 
attention was focused mostly on the narrative aspects (the possible adventures of this small 
toy) and on the hypotheses as to i�� ǲna���eǳ ȋI� i� an animalǫ I� i� a beeǫ Whe�e a�e i�� �ing�ǫ 
I� i� a ǲ�alking beeǳǫ Whe�e co�ld i� li�eǫ Wh� ha� i� come �o o�� �choolǫȌǤ Thi� ac�i�i�� helped 
the children to enter a relationship with the bee-bot, at an ego-syntonic level, which probably 
helped to foster their later identification with the robot at a body-syntonic level (see Sect. 1). 
In the second session our aim was to help the children focus on some geometrical and 
technical features of the artefact: the shape, the presence of some buttons (the command 
icons) on its back and of others on its belly (on-off). The observation of this session revealed a 
very rich intertwining of words, gestures (sometimes used for missing words) and, later, upon 
request, of drawings. The drawings hinted at narratives, highlighting an affective dimension 
rather than a geometrical-technical one. Figs. 4aȂd show some examples of drawings. 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



                                  
 a   b    c   d 
Fig. 4 Child�enǯ� ini�ial d�a�ing� of �he bee-bot 
 
6.2 Programming the bee-bot: the first signs for representing sequences of commands 
and possible paths for the bee-bot 
After these two early sessions a much more complex semiotic process started with a stronger 
entrance of symbolic representations. Students introduced sketches hinting at the command-
icons and at the traces of the bee-bo�ǯ� pa�h� that sometimes involved counting (steps). The 
process was led by the tasks which focused the attention on the paths (What does it do?) 
rather than on the artefact. The students were able to focus on paths (imaginary trace marks) 
even when the bee-bot actually did not leave any concrete trace mark (see Figs 6aȂd, later).  
In one session, students were given two bee-bots that had been programmed with the same 
sequence ahead of time. The students watched the twin bee-bots move together, starting 
facing in the same or in different directions, and then separately. Then the memory of one of 
the bee-bots was erased (CLEAR command-icon) and the students were asked to re-
programme it so that it would move in the same way as the other bee-bot and to describe what 
they did. The ���den��ǯ p�od�c�ion� conce�ned both global and local aspects. Global aspects 
refer to the perception of a path as a whole (as if the bee-bot had drawn it on the floor), whilst 
local aspects refer to special points of the path. An e�ample of �he fo�me� i� �he e�p�e��ion ǲi� 
did an LǳǢ an e�ample of �he la��e� i� ǲ�he� ��i�ched �he ���nǳǤ 
Both aspects appeared also in gesturing: the path was represented by a single pointer finger 
tracing a path in the air (tracing gesture), whilst turning was represented by moving the right 
hand (for a right turn) or left hand (for a left turn) up and to the right or left in a rotation 
(turning gesture). The turning gesture was mirrored by S, as she recognized it as relevant, a 
pivot sign that would become very important in the network of pivot signs eventually 
�efe��ing �o ǲ�ec�angleǳ (Fig. 5). 
 

 
Fig. 5 S i� mi��o�ing �he child�enǯ� ���ning ge����e 
 
The local aspect appeared especially when students were asked to programme one bee-bot 
(after erasing its memory) in order to reproduce the same motion as the other: 
 

Marika: I pressed an arrow to go forwards ǥ then it has to go forwards again. 
Martina: We pressed four times forward then turn, then two times forward forward. To 
know what it had to do we counted its steps. 
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The students were asked to produce a drawing representing the given commands. They 
produced drawings in which numbers and arrows were mixed on the page. In the different 
drawings it is already possible to perceive different characterizing fea���e� of �he ���den��ǯ 
dominant perceptions. The four drawings shown in Figs. 6aȂd show the double attempt to 
draw the shape of the path (global representation) and the list of commands (local 
representation). 
Anita produced a complex drawing with numbers (steps), written descriptions, and arrows 
arranged to hint at the path (Fig. 6a). 
Francesca (as she explained orally) has drawn the arrows: ǲ3 times forward, 1 turn, 2 times 
forwardǳ; the turn is drawn aside and out of the line as if its status is not yet clear (Fig. 6b). 
Martina wro�e a �mall ǲLǳ ȋ�he pa�hȌ and onl� n�mbe�� ȋ�epea�ed �eq�ences of numbers: 
12345 or 123456, to mean that the little bee restarts) wavering between 6 commands (only 
the steps) or 7 commands (including the turn) (Fig. 6c). 
Simona used a kind of shorthand with either repeated arrows or a number to tell how many 
arrows (Fig. 6d). 

 
 
    
 
 
 
 
 

a        b 
 

 
 
c        d 
Fig. 6 S��den��ǯ initial productions of the bee-bo�ǯ� command� andȀo� pa�h in �he ǲ��in bee-bo��ǳ ac�i�i�� 
 
The graphical representations did not depict angles: ǲ���n�ǳ a�e �he onl� a�pec�� ȋpivot signs 
relating to angles) that were perceived and represented verbally and physically. However, the 
perception seemed to be completely dynamic and only functional to the change in direction of 
the straight segments of the bee-bo�ǯ� pa�h�Ǥ In fac� �he ���den�� were unsure whether or not 
�o e�en co�n� �he ���n a� a ǲ��epǳ of �he command �eq�enceǤ We remark that this may be the 
case also because the students have not yet felt the physicality of �he ǲ���nǳ. Fostering such 
physicality was the objective of later sessions. We also note that at this point the paths have a 
very dynamic connotation for the children: their shape is very seldom recognized as a whole, 
although their execution seems to be perceived, implicitly, a� ǲa �hingǳ ȋ�he child�en �o�ld �a� 
ǲHe did itǳ ȏI�ǣ ǲLǯha fa��oǳȐȌ. 
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6.3 Pretending to be the bee-bot 
During this session the students were asked to work in pairs: one would pretend to be the 
bee-bot and the other would give her commands to move according to some undisclosed (to 
the bee-bot student) path. The intention was to focus their attention towards the turn 
command, that seemed to have an uncertain status in the earlier session. Typical words used 
�o�ld be ǲS��aigh� Aheadǳ, ǲLef�ǳ, ǲRigh�ǳ, ǲBack�a�d�ǳ, usually without quantifying the 
number of steps, and frequently combining a translation with a change of direction. For 
example, when a studen� �o�ld �a� ǲLeftǳ �he bee-bot-student would frequently not only turn 
left, but also take a step in that direction, or even just take a step to the left without even 
turning in that direction. Sǯ� in�e��en�ion that asked the students to compare this particular 
behaviour with that of the bee-bot is fundamental because it led the students to attend to the 
ǲ���nǳ command and �o ��a�� �o e�plici�l� con�ide� �o�a�ion�Ǥ One child statedǣ ǲǥ so when I 
���n I mo�e b�� I donǯ� �alkǳ [I�ǣ ǲǥ allora quando giro mi muovo ma non camminoǳȐ and she 
gestured the turn with her whole body, while standing on the spot. This denotes rotations as 
important elements per se, ǲmo�ion�ǳ without having to be translations o� ǲstepsǳ, an 
important seed for the evolution of our sought definition. 
 
6.4 E�pe�ience �i�h pa�h� and �he ǲ�q�a�i�ed Ͳǳ3 
In these four sessions, realized in the gym, the students physically constructed paths to 
programme the bee-bot to move along and described the paths explicitly with sequences of 
command arrows lined up horizontally. The students were learning to trace letters of the 
alphabet, so we decided to elicit considerations about the possibility of drawing letters with 
the bee-bot, and, in particular, signs that would eventually refer to angles and sides. 
Various signs were produced in verbal, graphical-written forms and through gestures. Below 
we show an excerpt from an important exchange between a child and S, from which stemmed 
a pivot sign that was eventually embraced by the class and that would eventually be related to 
ǲangleǳ: 
 

S: How does the bee-bot turn? 
Alessandro: It turns like this [he picks up the bee-bot and rotates it through a 90° 

angle].  
S: But if I want it to do a smaller curve, can Iǫǳ  
Alessandro: No, because he turns completely. 
S: So can I make him do the curve of ǲ2ǳ? 
Alessandro: No, because he only does a curve like this [he draws a right angle as shown 
in Fig. 7] ǥ He canǯ� do a li��le c���e like �hi� ǥ or like this. 

 
In this excerpt a combination of gestures (turn), words (the oral description) and drawings 
appear. Figure 7 shows a combination of a dynamic and static perception of this ǲpieceǳ of a 
path imaginarily traced by the bee-bot. 
 

                                                        
3 We want to translate a non-e�i��ing I�alian �o�d ȋǲq�ad�a�i��a�oǳȌ in�en�ed b� �he ���den�� and la�e� ��ed a� a 
pivot sign, so we will use a similar non-existing English word. 
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Fig. 7 A student represents both a dynamic component and static ǲpieceǳ of a path; the turn to trace a right angle 

The children generated many signs aiming at distinguishing the shapes (letters) which could 
be drawn from the others (the letters with ǲ�ha�pǳ points, or the rounded ones). Soon the 
discussion became about the possibility of programming the bee-bot to make it draw 
particular letters. During this discussion a student (quickly mirrored by other students in the 
class) named a figure that is the ancestor of all the squares and rectangles that the students 
will talk about: 
 

Sǣ ǥ Did you do an ǲOǳ?  
Student: No. Then it could do like this this this and this [he gestures four consecutive 
right angles] a square ǲOǳ. Ah, then it can make a square! 

 
Other students then mirrored the statement using the term ǲsquarized Osǳ and they started 
talking about how it would be po��ible �o make o�he� ǲ�q�a�i�ed le��e��ǳǡ meaning letters that 
include one or more squarized Os within them (e.g. P, B). The�e ǲ�q�a�i�ed Ͳ�ǳ would become 
the main pivot sign around which the network of pivot signs would develop. The squarized O 
was the perfect pivot sign to use for �he no�ion of ǲ�ec�angleǳ that we were after, because it 
�a� cha�ac�e�i�ed e�ac�l� b� �he p�e�ence of �he ǲͶ �igh� angle�ǳ p�ope���. 
 
6.5. From ǲsquarized Ͳǳ �o �ec�angle� and �q�a�e� 
In these sessions, realized in the classroom, the student-teacher, the researcher and the 
teacher picked �p on �he ���den��ǯ �e�balǡ ge����al and g�aphical �ep�e�en�a�ion� of �he 
ǲ�q�a�i�ed Oǳ �o fo��e� �hei� e�ol��ion in�o ǲ�q�a�e�ǳ and ǲ�ec�angle�ǳ �i�h cha�ac�e�i�ing �e�� 
of geometrical properties involving sides and angles. As the students described and 
represented how sequences of commands could be put in relationship with paths traced for 
squarized Os, a student graphically introduced ǲa ���n like �hi�ǳ (highlighted arrows in Fig. 8) 
to indicate the turning points of the path for a particular squarized O. R saw in this sign the 
potential of becoming a pivot sign for the class �i�h �e�pec� �o �he no�ion of ǲangleǳ (external 
angle): the sign reminds one of the command-icon on bee-bo�ǯ� backǡ b�� it is slightly 
decontextualized and used both in drawings that depict the path as a figure and in horizontal 
sequences of commands that represent how the bee-bot was programmed. The students re-
appropriated quite easily the sign re-proposed by R fo� ǲ���nȀangleǳǤ 
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Fig. 8 A student used a pivot sign (highlighted with circles) for ǲ���nȀangleǳ in hi� d�a�ing of a pa�h fo� a 
particular squarized O, which R mirrored and re-proposed to the class successfully. The circles on the sides of 
the path represent the bee-bot tracing the path 
 
6.6 Matching trajectories and sequences of commands 
At this point two tasks were given by T concerning the relationship between different 
representations of paths for squarized Os (Fig. 9): 
 
Task 1: Choose the right sequence to make the bee-bot walk on the drawn path starting from the 
small star.  
Task 2: Choose the right sequence to make the bee-bot walk on the drawn path. 
 

        
a     b 
Fig. 9 Tasks 1 and 2 on choosing the correct sequence (translated above) to match different representations of 
paths for two different squarized Os 
 
As this was a crucial session, T herself orchestrated the discussion following some of the 
���den��ǯ individual solutions. 
We report on the moments of the discussion in which important considerations leading to the 
cha�ac�e�i�ing ǲͶ �igh� angle�ǳ p�ope��� of �he �q�a�i�ed O� eme�ged. Here, the discussion 
was on the first task: 

1. T: You said that to do this kind of path ǥ is it an open or closed path? 
2. Cecilia: Closed 
3. T: Closed. Our bee had to always do what? 
4. Cecilia: Four angles 
5. T: Four angle�Ǥ Wha� doe� ǲangle�ǳ meanǫ 
6. Cecilia: Angles means the points here. 
7. T: The points. And what do these points correspond to in the commands for our bee? 
8. Student: To the turns! 
9. T: To some turns. So you say it needed to have four4 turns. 

                                                        
4 Very early on in the activities the students argued that there needed to be four turns because 
ǲWhen she is finished the bee-bo� need� �o look �he �ame �a� �he ��a��edǤǳ Thi� a�g�men� �a� 
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10. Alessandro: This way the figure did not stay open. 
11. T: This way the figure did not stay open. And those four turns, Cecilia, how were they 

supposed to be, you said it before? 
[Cecilia has trouble answering immediately, and mumbles something incomprehensible.] 

12. T: The turns so that the bee-bot does this kind of path, how do they have to be? 
[T refocu�e� Ceciliaǯ� a��en�ion on �he ǲpoin��ǳ �he had men�ioned ea�lie�.] 

13. Cecilia: All turned in the same direction. 
14. T: All turned in the same direction. 
15. Cecilia: So to the right. 
16. T: In this case to the right. Could it have been only to the right? 
17. Student: Yes, otherwise it would have gone ǥ 
18. T: Was there a way to make the bee turn to the left? 

[T lets the students think about her question and different students start shouting out 
answers. T picks up the comment of one student, mirroring and re-launching a question.] 

19. T: It would start from the angle and then what shape did it have? 
20. Student: A rectangle! 
21. T: If �o� al�ead� kno� �he nameǡ okǡ i�ǯ� called a �ec�angleǤ 

ȏT �efoc��e� �he child�enǯ� a��en�ion on �he di�ec�ion of �he ���n�Ǥ One student is called to the 
whiteboard and he shows how the bee-bot could have always turned to the left.] 

22. Tǣ So i�ǯ� no� ���e �ha� i� ha� �o do all �he ���n� �o �he �igh�Ǥ I� co�ld al�o do �hem all �o 
the left.  

[Murmuring of many children, and T addresses directly one student who was talking to a 
classmate.] 

23. T: How do the turns have to be, Laura? Always to the left? 
24. Laura: No. Sometimes also to the right. 
25. Student: In any case the turns have to always be the same. 
26. T: In any case, for it to be a squarized O, they have to always be ǥ 
27. Students together: The same. 
28. T: Is that clear? 
29. Students: Yes. 

 
T systematically mirrored (Bartolini Bussi and Boni ʹͲͲͻȌ ���den��ǯ ���e�ance� and o�ien�ed 
the discussion towards what is considered important: a first generalization for the squarized 
Os as figures that always have four turns-angles (3Ȃ14); and the turns have to be in the same 
direction no matter whether it is to the left or to the right (18Ȃ29). The generalization was 
reached through the generation and reflection upon examples of sequences and ways of 
having the bee-bot trace a same squarized O, and then it was stated in general terms, with an 
appropriate (mathematically speakingȌ ��e of �he �o�d� ǲin an� ca�eǳ and ǲal�a��ǳ. 
In the discussion after the second task as well, T stressed the important property, that is, 
having four turns/angles. Then T led the children to agree upon the �e�minolog� ǲ�ide�ǳ and 
ǲangle�ǳ, mirroring words that had been introduced by certain students, and explicitly putting 
them in relationship with parts of the different representations. T also guided the discussion 
towards the recognition of similarities between the different types of squarized Os (for this 
part of the discussion she has on the board a 2x2 and a 3x2 rectangle with the respective 
sequences of command-icons). 
 
6.7 Di�c���ing a po��e� on ǲo��ǳ di�co�e�ie� 

                                                                                                                                                                                        
supported through mirroring by S and T, since it was important for the desired evolution of 
the network of pivot signs around the squarized O. 
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The children engaged in other activities in which they consolidated their discoveries on 
squarized Os. Then, during the last session, T, in charge of the construction of the classroom 
memory, introduced a summary poster with �he cla��ǯs discoveries, that she had agreed upon 
with R and S. The poster is reproduced in Fig. 10 and it aims at fixing ǲthe important things to 
be remembered for the futureǳ. The poster was given to the students both as a large banner to 
put up on the wall, and as a small A4 copy to be attached to their notebooks. Tǯ� intention was 
to pave the way towards a more precise mathematical definition to be constructed in the 
second or third grade. She consciously chose to offer four examples, none of which were in the 
canonical orientation. This choice was intentional, �o ��� �o limi� �he child�enǯ� �igid 
development of the typical prototypes (on this issue, with respect to triangles, also see Kaur 
2015). 
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Fig. 10 The final poster (translated) 
As she walked into the classroom with the rolled-up poster, T declared she had written down 
�he ���den��ǯ �ho�gh�� and �he a�ked �he child�en �o g�e�� a� �ha� they would see on the 
po��e�Ǥ Man� immedia�el� �ai�ed �hei� hand and �aidǣ ǲThe li��le beeǨǳǡ ǲThe �q�a�i�ed O�Ǩǳǡ 
ǲSquaresǨǳǡ ǲRec�angle�Ǩǳ A� �he h�ng �p �he po��e�ǡ �he ���den� �ho had p�opo�ed �he �ign 
for the turn (external angle or bee-bo�ǯ� �o�a�ionȌ �aidǣ ǲTho�e a�e m� ���n�Ǩǳ, and a student 
�ho had men�ioned �he �q�a�i�ed O� b�aggedǣ ǲSeeǡ I was right: �ho�e a�e all �q�a�i�ed O�Ǩǳ 
 
6.8 A post-test 
During the last week of school (about four months after the teaching experiment was 
finished) T assigned three post-test tasks to investigate what had ǲ���ckǳ in he� ���den��,5 as 
she declared in the interview in which she explained what she observed.  
 

 
 
Fig. 11 A ���den�ǯs answer to task 2 from the post-test given by T at the end of the year. The letters were added in this picture 
in order to identify the shapes in the comments 

The post-test consisted of three sheets of paper containing the same shapes with the same 
orientation (see Fig. 11) but arranged differently. The tasks on each sheet were: 
 
1. Circle all the squarized Os that you see below. 
2. Circle all the rectangles that you see below. 
3. Circle all the squares that you see below. 
 
When T shared her observations with R in an interview, she described three tests that in her 
opinion were representative of ǲin�e�e��ing typesǳ of answers that her students gave: 
 

                                                        
5 Not all students were involved in the post-test activity because it was carried out during the 
final weeks of school, while various end-of-year activities were taking place. In total 7 of the 
18 children were selected (2 high achievers, 3 average achievers, 2 low achievers) and 
assigned the post-test.  
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Type 1:6 In the first task the student circles the four shapes that represent rectangles 
according to an inclusive definition (b, c, e, j); the student recognizes the same shapes in task 
2 e�en �ho�gh �he� a�e in diffe�en� place� on �he �hee�ǡ and �ome�ime� e�en ��a�e�ǣ ǲThe� a�e 
�he �ame a� befo�eǨǳ In �a�k ͵ �he ���den� onl� ci�cle� �he ��o �hape� he (correctly) 
recognizes as squares (b and e). 
Type 2:7 In �a�k ͳ �he ���den� ci�cle� all fo�� co��ec� �hape� and ��a�e�ǣ ǲThe� a�e �he one� 
�i�h fo�� eq�al angle�Ǥǳ In �a�k ʹ �he �elec�� three of the four rectangles (b, c, j); and in task 3 
she correctly identifies the two squares (e and b). 
We will briefly comment on these answers in the discussion. 
Type 3:8 In task 1 the student circles only b and jǡ �he ǲone� �ha� look mo�e �q�a�eǳǢ in �a�k ʹ 
the student identifies three of the four rectangles (b, c, j), but not e; in task 3 the student 
circles only b. 
 
7. Discussion 
In this teaching experiment our aim was to exploit the semiotic potential of the artefact bee-
bot with respect to sowing seeds for an inclusive definition of rectangles. In particular, we 
wanted to observe what a long-term process of semiotic mediation would look like for first 
graders, especially what pivot signs (if any) might be identified and exploited during such 
process. 
Within the classroom activities proposed it was in fact possible to observe the evolution of a 
network of pivot signs associated with the ǲ�q�a�i�ed Oǳ. We will describe how this network 
of pivot signs emerged from the signs developed to describe the bee-bo�ǯ� pa�h� and �o 
describe commands given to the bee-bot, that became more and more focused on rectangles, 
thanks to the design of the activities and the guidance of S, T and R. 
 
7.1 The bee-bo�ǯ� pa�h� as wholes 
At the beginning students produced drawings containing different signs (numbers, words, 
lists of commands). The rationales for the choices were frequently not clear. We hypothesize 
that the students had a global image of the experience and that they produced signs based on 
what caught their attention the most and also on their individual skills. Very seldom (see the 
little L in Fig. 6c) did they draw the ǲ�holeǳ path, as a figure, even though they described the 
ǲ�a� �he bee-bo� �alkedǳ a� an ǲLǳ. Frequently, especially in this initial phase when specific 
terminology had not been developed and shared by the students, they used gestures in the air. 
One interpretation of this might be that the children were compensating for missing words. 
On the other hand, it could be that in this situation the gestures were perceived as being more 
effective at communicating, perhaps especially in self-communication (this is consistent with 
findings in Kaur 2015). In this sense the turn gesture mirrored by S became part of the shared 
signs, and it was a first instantiation of a sign to eventually refer to the idea of ǲangleǳ. Still the 
dynamic aspect of the signs seemed to be prevalent. In some cases, although the dynamic 
component was dominant, students perceived the path as whole static elements even when 
there was no permanent sign (e.g. no trace left by a marker). We hypothesize that this 
depends very much on the confidence the students had with the particular shape (e.g. L) they 
perceived in the path (or that they made the path in the shape of). Also, the presence of 
rhythmic eye blinks and sounds produced by the bee-bot and ended by a double number of 

                                                        
6 This type of response was provided by the two high-achieving students and by one of the 
average-achieving students. 
7 This type of response was provided by the other two average-achieving students. 
8 This type of response was provided by the two low-achieving students. 
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beeps and blinks may have fostered the perception of a path, in terms of a sequence of steps 
with a starting point and end point, as a body syntonic whole. 
The definite transition �o �eeing pa�h� a� ǲ�hole�ǳ and being able �o �ep�e�en� �hem was 
fostered by the activities in which students programmed the bee-bo� �o ǲ��aceǳ ȋe�en �ho�gh 
it did not actually leave a mark) particular letters, conceived as stand-alone figures. In 
particular, the children came to attend to specific characteristics of the letters when 
discussing which ones the bee-bot was able to trace or not. The conjectures advanced by the 
children in this context were relatively advanced and showed an ability to di��ing�i�h ǲc���e�ǳ 
f�om ǲ�egmen��ǳ and ǲangle�ǳǡ and e�en to distinguish between angles greater than or smaller 
than right angles, with the right angles being a strong perceptive landmark. We believe, 
however, that this is not evidence for the fact that right angles are universally recognized as 
invariant figures, but rather of the fact that the children we worked with are immersed in a 
c�l���e �ha� �al�e� �igh� angle� and line�ǡ a ǲca�pen�e�ed �o�ldǳ, as Luria would say (1976, p. 
31). 
 
7.2 Paths as sequences of commands 
In parallel with the evolution of the signs representing paths as figures, the children 
elaborated signs to represent paths in terms of sequences of commands, a separate but 
related semiotic register (Duval 2000), within which important properties were identified. 
Initially these signs were copied from the command icons on the bee-bo�ǯ� back and arranged 
in various manners (orientation and position on the page; see Figs. 6aȂd): they appeared to be 
mixed with other signs, including words, expressing the commands or actions realized by the 
bee-bot. Eventually the class agreed to write the sequence of commands as arrows lined up in 
a horizontal line.9  
When relating the arrow signs to the paths drawn as figures, the students would transcribe 
�he a��o�� in�o a �eq�ence ǲa�o�ndǳ �he fig��eǤ In �he�e ac�i�i�ie� a g�ea� ��ne�g� be�ween the 
different representational registers emerged, and spontaneously some children gestured 
ǲ���n�ǳ �i�h �he pi�o� �ign di�c���ed abo�eǡ �hile �im�l�aneo��l� d�a�ing a sign like the 
ǲ���nǳ command-icon on the bee-bo�ǯ� back at the vertex of the path represented as a figure. 
This way the same sign, simply rotated in different places on the whiteboard or on paper, 
would represent both a command in the programmed sequence and a turn in a certain point, 
and the vertex of an angle, in the drawn path (see Fig. 8). This pivot sign reminded the 
children, on one hand, of the command-icon on the bee-bo�ǯ� backǡ �he pe�cei�ed �o�a�ion of 
the bee-bot, and the action of turning in the path on the floor; and, on the other hand, the 
mathematical sign for angle (an external angle, in this case).  
When specifically analysing the process of evolution of this pivot sign, we noticed that it 
originated with the turn gesture (Fig. 5) and evolved during the experience of turning while 
pretending to be a bee-bot, when the children would feel with their own body the action of 
turning, thanks to the design of the activities that exploited the body syntonicity of the bee-
bo�ǯ� mic�o�o�ld. The process was reinforced by the children noticing that when they turned 
�he� ǲmo�eǳ b�� �he� did no� ǲ�alkǳ: it can be interpreted as the children realizing that 
turning does not involve any movement of the centre of rotation. The gesture (with a hand 
and/or with the whole body) was then related to the pivot sign de�eloped f�om �he ǲ���nǳ 
arrow on the bee-bo�ǯ� backǤ This sign was then used systematically in the following sessions 
proposed by R, T and S, and it was reinvested in the characterization of squarized Os. 
The representation of sequences of commands as horizontal arrays of command icons (little 
arrows, straight or curved) had the effect of fostering, for some students, the shift towards a 

                                                        
9 This convention is also a design feature in the app Mak-Trace (see Baccaglini-Frank et al. 
2014). 
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kind of pre-algeb�aic no�a�ionǣ ǲTh�ee ��ep� �hen �h�ee �hen �h�ee then three we make a 
�q�a�eǡǳ o� ǲ��o fo��a�dǡ ���n �igh�ǡ �hree forward, turn right, two forward, turn right, three 
fo��a�dǡ ���n �igh�Ǥǳ 
 
7.3 The network of pivot signs around squarized Os 
The eme�gence of �he �ign ǲ�q�a�i�ed Oǳǡ a �e�bal sign, accompanied by a number of figural 
representations, was a very happy episode, upon which R, S and T capitalized heavily, seeing 
in it the potential of sowing the seeds for an inclusive definition of rectangles, as desired. This 
sign quickly became a pivot sign and was put in relationship with other signs that had 
emerged, in particular those related to the right angles present in squarized Os. We 
hypothesize that such a sign was proposed and embraced so quickly by the whole class 
because of the childrenǯs immersion in a ǲdigi�al �o�ldǳǡ in �hich �ec�ang�la� �haped fig��e� 
can be experienced frequently (for example on digital displays or on supermarket labels to 
�ep�e�en� ǲ�e�o�ǳ). Possibly, this is an example of how technology affects processes of 
meaning-making. In a different culture it is likely that children would not have suggested such 
a sign, nor might they have understood it even if it were proposed by an external adult. As 
Luria described in his studies that involved non-educated adults in their thirties (1976), 
possible pivot signs (according to our framework) might have been ǲ�indo�� �i�h diffe�en� 
f�ame�ǳ (ibid., p. 38), that is, square or non-square rectangles. 
An important characteristic of the squarized Os, that was noticed by the students, and re-
proposed in whole-class discussions by T, is their having ǲ���n�ǳ all in ǲ�he �ame di�ec�ionǳ 
(see the excerpt in Sect. 6.6). Moreover, it was possible to exploit again the body syntonicity of 
the bee-bo�ǯ� mic�o�o�ld �hen �eflec�ing �pon �he n�mbe� of nece��a�� ǲ���n�ǳǤ While one 
child ini�iall� a�g�ed �ha� �he �q�a�i�ed O �a� ǲclo�edǳ e�en af�e� onl� three turns, many 
children objected to the fact that the bee-bot would not have ǲfini�hedǳ if i� �a� no� ǲ�eeing 
the same �hing�ǳ a� �hen i� ��a��edǡ going ǲ�he �hole �a� a�o�ndǳ. This was the reasoning we 
embraced to reach the characterization of squarized Os summarized in the final poster. 
The final poster introduced by T (Sect. 6.7Ȍ ��e� �ome of �he ���den��ǯ e�p�e��ions and the 
network of pivot signs developed around the main one Ȃ the squarized O Ȃ aiming at fostering 
a gradual transition towards mathematical definitions. Squares are not yet seen as special 
rectangles, as it is too early to invite students to see the possible inclusion of the set of squares 
into the set of rectangles; however, some common features are emphasized as special 
discoveries (Fig. 10), including the denomination of all the bee-bo�ǯ� pa�h� a� ǲ�q�a�i�ed O�ǳ 
(the ancestors of rectangles according to the mathematical definition).  
Finally, in the post-tests, we gladly noticed how two of �he �h�ee main ǲin�e�e��ing ��pe�ǳ of 
answers (types 1 and 2) included (with one small exception) an equivalence between 
ǲ�q�a�i�ed O�ǳ and ǲ�ec�angle�ǳ. The exception was in type 2 where the students selected as a 
squarized O and as a square but not as a rectangle. Unfortunately, although we could make 
inferences as to why this might be the case, we do not have enough data to advance 
meaningful hypotheses on these results at the present time. 
 
8. Concluding remarks 
Although the Italian (and English) language does not foster the conception of a square as a 
pa��ic�la� kind of �ec�angleǡ �he e�p�e��ion in�en�ed b� �he ���den��ǡ ǲ�q�a�i�ed Oǳǡ ac��all� 
seems to unify under a same name all convex polygons that the bee-bot can trace (in 
mathematics these correspond exclusively to rectangles, including squares). In other words, 
the children seem to have spontaneously produced a conception of the common ancestor (in 
the context of the bee-bo�ǯ� pa�h�Ȍ of �he fig��e� we were interested in defining. Although this 
particular pivot sign was not expected from the a priori analyses of the activities, we believe 
that similar signs can be either produced by other students or easily accepted if proposed by 
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an adult (as we did in the other classroom). Moreover, because of the digital culture in which 
the children of many countries are raised today, we believe that a sign such as �he ǲ�q�a�i�ed 
Oǳ co�ld ea�ily be introduced by the teacher and it would be picked up swiftly by the students. 
In this sense this pivot sign was a very important finding that we believe a significant part of 
our community can capitalize on for other teaching sequences. 
Finally, we observe that the didactical sequence outlined is only one of many possibilities for a 
teaching experiment aimed at sowing seeds for an inclusive definition of rectangles. A very 
different Ȃ but equally rich Ȃ venue is offered by dynamic geometry software that can and 
should be used to design similar teaching experiments. In fact, these students will very likely 
also work with dynamic geometry. The means by which the semiotic potential of these 
different microworlds can be exploited are, of course, different. Efforts should be made by the 
teacher and by the designers of the activity sequences to construct meaningful relationships 
be��een �he �i��a�ed �e��� �ha� can eme�ge f�om �he ���den��ǯ e�pe�ience� within these 
different environments around the same mathematical meanings. 
Our choices were based on the particularly rich context the bee-bot offered for very young 
students, knowing that it would open doors to many other mathematical meanings: we do not 
believe that otherwise it would have made sense to invest this long a period of time on trying 
to define rectangles. In the following years the teacher will pick up different seeds planted 
(for example, those related to introducing measure or coordination of spatial perspectives) to 
develop other mathematical meanings.  
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