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Abstract

Campylobacter jejuni, a common foodborne zoonotic pathogen, causes gastroenteritis

worldwide and is increasingly resistant to antibiotics. We aimed to investigate the antimicro-

bial resistance (AMR) genotypes of C. jejuni isolated from humans, poultry and birds from

wild and urban Italian habitats to identify correlations between phenotypic and genotypic

AMR in the isolates. Altogether, 644 C. jejuni isolates from humans (51), poultry (526) and

wild- and urban-habitat birds (67) were analysed. The resistance phenotypes of the isolates

were determined using the microdilution method with EUCAST breakpoints, and AMR-asso-

ciated genes and single nucleotide polymorphisms were obtained from a publicly available

database. Antimicrobial susceptibility testing showed that C. jejuni isolates from poultry and

humans were highly resistant to ciprofloxacin (85.55% and 76.47%, respectively), nalidixic

acid (75.48% and 74.51%, respectively) and tetracycline (67.87% and 49.02%, respec-

tively). Fewer isolates from the wild- and urban-habitat birds were resistant to tetracycline

(19.40%), fluoroquinolones (13.43%), and quinolone and streptomycin (10.45%). We

retrieved seven AMR genes (tet (O), cmeA, cmeB, cmeC, cmeR, blaOXA-61 and blaOXA-

184) and gyrA-associated point mutations. Two major B-lactam genes called blaOXA-61

and blaOXA-184 were prevalent at 62.93% and 82.08% in the poultry and the other bird

groups, respectively. Strong correlations between genotypic and phenotypic resistance

were found for fluoroquinolones and tetracycline. Compared with the farmed chickens, the

incidence of AMR in the C. jejuni isolates from the other bird groups was low, confirming that

the food-production birds are much more exposed to antimicrobials. The improper and over-

use of antibiotics in the human population and in animal husbandry has resulted in an

increase in antibiotic-resistant infections, particularly fluoroquinolone resistant ones. Better

understanding of the AMR mechanisms in C. jejuni is necessary to develop new strategies
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for improving AMR programs and provide the most appropriate therapies to human and vet-

erinary populations.

Introduction

Campylobacter jejuni infections are one of the most prevalent and widespread causes of bacte-

rial diarrhoeal disease in humans. Over the last 10 years, the incidence and prevalence of cam-

pylobacteriosis has increased in both developed and developing countries, with about 500

million cases of gastroenteritis reported annually [1]. In the European Union, campylobacter-

iosis is considered the most frequent foodborne infection, with more than 240,000 confirmed

human cases per year [2]. Most of the cases are self-limiting with symptoms such as fever,

abdominal cramping and bloody diarrhoea. Rarely, the infection might lead to post-infectious

neurological complications including Guillain-Barrè and Miller-Fischer syndromes. Campylo-
bacter infections can also predispose people to gastrointestinal autoimmune disorders like

celiac disease and inflammatory bowel disease [3]. Campylobacter transmission occurs mainly

from exposure to farm animals with such infections, with subsequent passage through the

food chain to retail food products [4, 5]. Poultry animals are considered the major infection

reservoir and humans most frequently become infected by handling raw, contaminated

chicken and turkey meat [4, 6]. Other food products, including beef, pork, lamb, unpasteur-

ized milk, untreated water and seafood are also considered risk factors for campylobacteriosis

[7–9]. Although Campylobacter enteritis is self-limiting and antibiotic treatment is usually not

indicated [10], in some cases the illness can progress to bacteraemia or become an extraintest-

inal infection and require antimicrobial therapy, especially in immunocompromised patients

[11, 12]. In such cases, the drugs of choice are macrolides and fluoroquinolones, the latter of

which is the last class of antimicrobials in common use for treating all diarrheal illnesses,

including traveller’s diarrhoea. However, over-use of antimicrobials in the human population

and in food animals has increased the number of antibiotic-resistant infections, especially fluo-

roquinolone-resistant ones [13]. This is a problem because campylobacteriosis is clinically

indistinguishable from the gastrointestinal infections caused by other bacterial pathogens.

Consequently, the empirical use of fluoroquinolones for treating gastrointestinal infections

promotes antibiotic resistance to this class of molecules.

Tetracycline and beta-lactam antimicrobials are also used to treat intestinal infections but

they are not generally recommended for treating Campylobacter infections [14–17]. Gentamy-

cin, however, shows potent in vitro activity and may be considered as an alternative treatment.

C. jejuni is naturally transformable, making the acquisition of antibiotic resistant genes from

other organisms likely [13]. The genetic determinants of antibiotic resistance in C. jejuni,
which are chromosomally or plasmid encoded, comprise both endogenous and acquired genes

[13]. In general, the different antibiotic resistance mechanisms can be summarised as follows:

modification of the antimicrobial target and/or its expression (e.g., DNA gyrase mutations),

inability of the antibiotic to reach its target (e.g., upregulated expression of the major outer

membrane protein), antibiotic efflux (e.g., multidrug efflux pumps such as CmeABC) and

modification or inactivation of the antibiotic (e.g., beta-lactam production) [13]. The different

mechanisms involved in antibiotic resistance in C. jejuni are often synergic. Trends in antimi-

crobial resistance (AMR) have shown a clear correlation related to the use of antibiotics in the

animal production industry, and antibiotic-resistant Campylobacter strains have been isolated

from humans [17]. Some studies have supported the hypothesis that resistance patterns in

Campylobacter isolates from humans, poultry and birds in Italy
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poultry could be used as predictors of human resistance patterns, particularly for fluoroquino-

lones [18, 19]. The increment of resistant strains to commonly used antibiotics in campylobac-

teriosis makes it necessary the research a more reliable methods in order to investigate

antimicrobial susceptibility as well as alternatives therapies [16].

These indications emphasizes the need for improved surveillance and data sharing, con-

firming the importance of rapid and reproducible methods predicting resistance phenotypes

and defining resistance mechanism for surveillance diagnostics. The objectives of this study

were to identify AMR genotypes in C. jejuni isolated from humans, poultry and birds from

wild and urban environments, and to assess whether any correlations exist between pheno-

typic and genotypic resistance in the isolates.

Materials and methods

Sample selection and experimental design

Altogether, 644 C. jejuni strains from the collection at the National Reference Laboratory for

Campylobacter (NRL, http://www.izs.it/IZS/Eccellenza/Centri_nazionali/LNR_-_Campylobacter)

were selected for this study. The collection comprises 51 strains isolated from humans, 246 iso-

lated from retail chicken meat, 280 strains isolated from broiler chickens and 67 wildlife strains

isolated from birds living in wild and urban habitats. All the strains were isolated by different

monitoring and surveillance plans. The human isolates were from acute campylobacteriosis cases

collected in Italy during 2015–2017. The food-related isolates were obtained from a nationwide

monitoring study during the one-year period from 2015–2016. The isolates from farmed animals,

which came from another nationwide monitoring plan, represent 85% of the intensive broiler

production facilities in Italy during the one year period from 2015–2016. The wildlife strains were

isolated via passive surveillance monitoring by the Istituti Zooprofilattici Sperimenatali (IIZZSS)

network during 2015–2017. The C. jejuni isolates from two greenfinches (Chloris chloris), one

whitewagtail (Motacilla Alba), one owl (Asio otus) and two mallards (Anas platyrhynchos) repre-

sent birds from wild habitats. The remaining C. jejuni isolates collected from 47 pigeons

(Columba livia), six magpies (Pica pica), six crows (Corvus frugilegus), one pheasant (Phasianus
colchicus) and one starling (Sturnus vulgaris) represent birds from urban habitats.

Microbiological analyses and antimicrobial susceptibility tests

The isolates were grown on Columbia blood agar and incubated at 42˚C for 48 h in a micro-

aerophilic atmosphere. After preliminary phenotypic characterization, the resultant colonies

were confirmed to be thermotolerant C. jejuni using a multiplex PCR, as described by Wang

et al. [20], and by a simplex PCR, as described by Di Giannatale et al. [21]. The primers list is

shown in Table 1. DNA was extracted using the Maxwell 16 Tissue DNA Purification Kit (Pro-

mega Corp., Madison, WI) according to the manufacturer’s instructions. Antimicrobial sus-

ceptibility tests on the isolates were performed using the microdilution method to determine

the minimum inhibitory concentrations (MICs) of streptomycin (S), ciprofloxacin (cip), tetra-

cycline (Te), gentamicin (G), erythromycin (E) and nalidixic acid (NA), following the harmo-

nised rules for the monitoring and reporting of AMR in Europe (Commission Implementing

Decision 2013/652/EC). Briefly, the colonies were grown on Columbia agar for 24 h and then

inoculated into Mueller Hinton Broth supplemented with blood (Oxoid, Basingstoke, UK).

Then, using the Sensititre1 system (Thermo Fisher Scientific, Dardilly, France) the broths

were separately dispensed into Eucamp2 microtiter plates (Thermo Fisher Scientific) contain-

ing known scalar concentrations of the following antibiotics: S (0.25–16 μg/mL), cip (0.12–16

μg/mL), Te (0.5–64 μg/mL), G (0.12–16 μg/mL) E (1–128 μg/mL) and NA (1–64 μg/mL). After

inoculation, the plates were incubated at 42˚C in a microaerophilic atmosphere for 24 h and

Campylobacter isolates from humans, poultry and birds in Italy
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then screened. To evaluate the MICs of the isolates, Swin v3.3 Software (Thermo Fisher Scien-

tific) was used in accordance with the epidemiological cutoff values (ECOFFs) as defined by

EUCAST (European Committee on antimicrobial breakpoints) (www.eucast.org) to interpret

their antimicrobial susceptibilities. We included the C. jejuni NCTC 11351 reference strain to

normalise the MIC tests.

Identification of antibiotic resistance genes

C. jejuni genome assemblies were searched for the presence of genomic AMR traits. AMR genes

were identified in silico using ABRicate v. 0.8 (https://github.com/tseemann/abricate/) and by que-

rying the publicly available Comprehensive Antibiotic Resistance Database [22]http://cge.cbs.dtu.

dk/services/ResFinder/. Assemblies were annotated using Prokka v1.13 [23] and gyrA sequences

were extracted using the query_pan_genome function in Roary v3.12.0 [24]. gyrA genes were

aligned using Uniprot UGENE v1.18.0 [25], from which the gene variants were identified. Only

mutations in the quinolone resistance-determining region (QRDR) of gyrA were regarded to be

the determinants of resistance, as only these loci have been linked with phenotypic resistance to

quinolones. In particular, for gyrA, we analysed the amino acid changes at position 86.

Correlations between phenotypic and genotypic susceptibility to

antimicrobials

Correlations between the resistance phenotypes obtained from the Sensititre system and the

genetic resistant determinants obtained from the genomic information available at the NRL

for Campylobacter for the various monitoring systems were determined for the aforemen-

tioned antimicrobials. Specifically, each interpretation for a given phenotypic antibiotic result

was manually compared with the presence or absence of the known corresponding resistance

gene or with specific mutations, and the percentage correlation between the resistance pheno-

type and genotype was calculated.

Results

Antimicrobial resistance phenotypes

Quinolone resistance was prevalent in C. jejuni from humans, with levels of 76.47% and

74.51% for ciprofloxacin and nalidixic acid, respectively. Ciprofloxacin and nalidixic acid

Table 1. List of primers used for PCR.

Multiplex PCR primers Sequence (5´-3´) reference

C.jejuni CJF (25 pm) ACTTCTTTATTGCTTGCTGC [20]

CJR (25 pm) GCCACAACAAGTAAAGAAGC [20]

C.coli CCF (50 pm) GTAAAACCAAAGCTTATCGTG [20]

CCR (50 pm) TCCAGCAATGTGTGCAATG [20]

C.lari CLF (25 pm) TAGAGAGATAGCAAAAGAGA [20]

CLR (25 pm) TACACATAATAATCCCACCC [20]

C.fetus CFF (50 pm) GCAAATATAAATGTAAGCGGAGAG [20]

CFR (50 pm) TGCAGCGGCCCCACCTAT [20]

C.upsaliensis CUF (100 pm) AATTGAAACTCTTGCTATCC [20]

CUR (100 pm) TCATACATTTTACCCGAGCT [20]

Simplex PCR primers Sequence (5´-3´)

C.jejuni P3Fs (50 pm) GGAAAAACAGGCGTTGTGGGGG [21]

P3Rs (50 pm) CCGAAGAAGCCATCATCGCACC [21]

https://doi.org/10.1371/journal.pone.0223804.t001
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resistance was common in a large portion of the strains from poultry (85.55% and 75.48%,

respectively). Tetracycline resistance was also evident in a large percentage of strains, with lev-

els of 49.02% for human isolates and 67.87% for poultry. In contrast, almost all the isolates

from humans and poultry were susceptible to aminoglycosides (gentamicin and streptomycin)

(Table 2). The antimicrobial test results for the different groups of strains are shown in Fig 1

and Table 2.

Conversely, tetracycline resistance was seen more frequently in isolates from the wild and

urban habitat birds (19.40%) compared with ciprofloxacin (13.43%), nalidixic acid (10.45%)

and streptomycin (10.45%) (Fig 1, Table 2). In the urban habitat, nine pigeon-isolated strains

showed tetracycline resistance, six showed ciprofloxacin resistance, five showed nalidixic acid

resistance, five showed streptomycin resistance, three showed erythromycin resistance and

two showed gentamycin resistance. While one pheasant isolate was resistant to erythromycin,

tetracycline, ciprofloxacin and nalidixic acid, one isolate from the six crows was resistant to tet-

racycline and streptomycin and one isolate from the six magpies was resistant to nalidixic acid

and streptomycin. Interestingly, with the birds from wild habitats, one strain from the white-

wagtail showed resistance to erythromycin and tetracycline, while the two strains isolated

from greenfinches were resistant to tetracycline and ciprofloxacin. In the latter cases, no iso-

lates showed resistance to gentamycin, nalidixic acid and streptomycin.

It is worth noting that the strains isolated from birds inhabiting urban and wild environ-

ments, which amounted to 82.09% of the total, showed intermediate levels of susceptibility to

erythromycin (Table 2).

Table 2. Percentage of C. jejuni isolates from humans, poultry and birds from wild and urban habitats displaying different antimicrobial susceptibility levels.

Source Erythromycin Gentamycin Tetracycline Ciprofloxacin Nalidixic acid Streptomycin

R I S R I S R I S R I S R I S R I S

Human 7.84 29.41 62.75 1.96 0.00 98.04 49.02 0.00 50.98 76.47 0.00 23.53 74.51 0.00 25.49 1.96 5.88 92.16

Chicken—Total 12.17 61.98 25.86 1.52 0.19 98.29 67.87 2.47 29.66 85.55 0.00 14.45 75.48 0.00 24.52 2.85 15.78 81.37

Chicken—Animals 11.07 57.86 31.07 1.07 0.36 98.57 72.86 2.50 24.64 87.86 0.00 12.14 77.86 0.00 22.14 2.14 11.79 86.07

Chicken—Food 13.41 66.67 19.92 2.03 0.00 97.97 62.20 2.44 35.37 82.93 0.00 17.07 72.76 0.00 27.24 3.66 20.33 76.02

Wild and Urban Birds 7.46 82.09 10.45 2.99 0.00 97.01 19.40 1.49 79.10 13.43 0.00 86.57 10.45 0.00 89.55 10.45 7.46 82.09

R = resistant; S = sensitive; I = intermediate

https://doi.org/10.1371/journal.pone.0223804.t002

Fig 1. Percentage of C. jejuni strains isolated from chickens, birds from wild and urban habitats, and from

humans showing resistance to antimicrobials (shown on the x-axis).

https://doi.org/10.1371/journal.pone.0223804.g001
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The multidrug resistance (MDR) profiles for C. jejuni are shown in Table 3. We identified

six C. jejuni-specific antimicrobial resistance profiles. At 47.90% and 17.76%, the TeCipNa

MDR category was the most common for the C. jejuni strains isolated from poultry and

humans, respectively. Interestingly, isolates from the birds belonging to the wild and urban

environments dominated the EGTeCipNaS and ETeCipNaS MDR categories compared with

the other isolate groups (poultry and human isolates) (Table 3).

Detection of resistance genes and mutations, and concordance between

resistance phenotypes and genotypes

All isolates showing resistance to both ciprofloxacin and nalidixic acid were screened for point

mutations within gyrA. With the exception of eight isolates from chickens that carried the

A256G point mutation, which produces a T86V substitution, the remaining isolates from

chickens, humans and the birds from wild habitats possessed the C257T point mutation,

resulting in a T86I substitution in GyrA, a known quinolone resistance mutation (Table 4).

The gyrA gene was detected in 83.84% of the isolates from the chickens, in 5.97% of the isolates

from birds inhabiting wild and urban areas and in 74.51% of the isolates from humans (Fig

2A). Strong correlations were found for the chicken and human isolates for phenotypic and

genotypic resistance, with a high level of concordance (96.22% and 97.43%) for the two resis-

tance rates, respectively. The CmeABC multidrug efflux pump and its CmeR regulator, which

together act as a major efflux pump mechanism conferring resistance to a wide range of anti-

microbials, were both identified in every strain we analysed (Fig 2B). In the tetracycline-

Table 3. Percentage of antimicrobial multi-resistance patterns among C. jejuni from chickens, birds from wild and urban habitats and humans.

Antibiotic resistance pattern Chickens–Total (%) Birds from wild and urban habitats (%) Humans (%)

EGTeCipNaS (n = 6) 0.38 1.49� 0.00

ETeCipNaS (n = 5) 0.90 1.49� 0.00

ETeCipNa (n = 4) 8.70�� 2.98 0.00

TeCipNaS (n = 4) 1.30 1.49¶ 1.96���

TeCipNa (n = 3) 47.90� 1.49 17.76

CipNaS (n = 3) 0.00 0.00 1.96

� t-test p<0.001: birds from wild and urban habitats vs. chickens

�� t-test p<0.001: chickens vs. birds from wild and urban habitats
¶ t-test p<0.001: birds from wild and urban habitats vs. chickens

��� t-test p<0.001: humans vs. chickens and birds from wild and urban habitats
� t-test p<0.001: humans vs. chickens and birds from wild and urban habitats

https://doi.org/10.1371/journal.pone.0223804.t003

Table 4. Correlations between resistance phenotypes and genotypes among C. jejuni isolates.

Drug class drug (s)

tested

species no. of isolates with R

phenotype

Presence of resistance genes or mutations

corresponding to resistance phenotype (no. of isolates)

Correlation between genotypes

and phenotype (%)

Tetracycline Te Chickens n = 357 tet (O) (n = 333) 93.27

Wild

birds

n = 13 tet (O) (n = 12) 92.30

Humans n = 25 tet (O) (n = 22) 88

Quinolones,

fluoroquinolones

Cip, NA Chicken n = 450 GyrA T86I (n = 433)—GyrA T86V (n = 8) 96.22

Wild

birds

n = 9 GyrA T86I (n = 4) 44.44

Humans n = 39 GyrA T86I (n = 38) 97.43

https://doi.org/10.1371/journal.pone.0223804.t004
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resistant isolates from this study, the tet (O) gene was detected in 74.33% of the chicken iso-

lates, 56.86% of the human isolates and 14.92% of all the isolates from birds (Fig 2C). The cor-

relation percentages between the phenotypes (resistant and susceptible) and genotypes were

93.27% for chickens, 92.30% for birds from wild and urban habitats and 88% for humans

(Table 4). Beta-lactam resistance-encoding genes (blaOXA-61 and blaOXA-184) [26] were

present at different levels in the analysed species. blaOXA-61 was detected in 70.59% of the

human strains, 62.14% of the chicken strains and 17.14% of the strains from the birds from

wild and urban habitats (Fig 2D). In contrast, blaOXA-184 was detected in 11.76% of the

human strains, 31.56% of the chicken strains and 82.08% of the strains from the birds from

wild and urban habitats (Fig 2D). Strong correlations between phenotypic and genotypic resis-

tance were found for fluoroquinolones and tetracycline.

Discussion

The increasing trend of drug resistance, particularly MDR, to the major antibiotics currently

in use among C. jejuni strains is considered a serious public health problem [27]. A European

Union summary report has shown that many worldwide studies have reported on high levels

of resistance to ciprofloxacin, nalidixic acid, and tetracycline [28]. Furthermore, a worrying

emerging resistance to macrolides was recently observed for Campylobacter [16, 28–29]. In

Europe, the rates of fluoroquinolones-resistance in broilers are highly variable, ranging from

1.2% in Norway [30] to 44% in Belgium [31]. An alarming situation was found in Spain where

the resistance rate to fluoroquinolones was reported to be 90% [32], while in Poland ciproflox-

acin resistance increased from 47.9% during 2005–2008 to 90.2% during 2005–2008 [29]. Sev-

eral studies from Denmark and Finland have reported that fluoroquinolones and tetracycline

resistance rates were significantly higher in travel-associated infections when compared with

Fig 2. Percentage of isolates harbouring gyrA and tet (O) genes and the multi-drug resistance-related cmeABC

operon, and the percentage of B-lactam genes in the resistant isolates.

https://doi.org/10.1371/journal.pone.0223804.g002
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domestically acquired infections [33–34]. Interestingly, it appears that fluoroquinolone resis-

tance has emerged on poultry farms even in the absence of the above-mentioned antimicrobials

[35]. It has been also been suggested that other antimicrobials may select for fluoroquinolone-

resistance in Campylobacter [36], but the mechanisms involved are still not completely clarified.

For these reasons, continuous monitoring of the resistance rates and investigating the resistance

mechanisms is fundamental to combating the potential spread of AMR C. jejuni in humans, as

well as across the food chain and in the environment. The present study was undertaken to pro-

vide better insight into the dynamics of antibiotic resistance in C. jejuni in Italy by characteris-

ing C. jejuni strains from humans, poultry and birds from wild and urban habitats. We also

sought to determine whether a correlation exists between the resistance phenotypes and geno-

types of the C.jejuni isolates from this study.

Our results show that ciprofloxacin and nalidixic acid resistance was very high in the iso-

lates from humans and poultry (range: 74% to 85%), while 67% of the poultry isolates and

approximately half of the human isolates displayed tetracycline resistance. These levels of resis-

tance are consistent with those reported by other recent studies [37]. Similar findings were

observed in our previous study of AMR in C. jejuni isolated from broilers, where we noted

higher rates of resistance against fluoroquinolones (90%) and similar rates of resistance against

tetracycline (64%) [38].

Fluoroquinolones and tetracycline have been used to treat infections in poultry and as

growth promoters over the last 50 years [39]. Hence, the high resistance rates to these antimi-

crobials are likely to be the consequence of their continuous over use [40]. Consistent with

this, we observed much lower levels of antibiotic resistance in the isolates obtained from the

birds living in urban and wild habitats, which reinforces the argument that the extreme levels

of AMR observed in the strains from poultry result from the common use of antibiotics in the

farm environment. The MDR profiles of birds from the urban and non-urban habitats suggest

that both types of birds could be an important reservoir of MDR C.jejuni strains, and a poten-

tial risk population for the spread of resistant bacteria.

Low levels of gentamycin, streptomycin and erythromycin resistance were observed in this

study, a finding concordant with previous studies reporting low resistance levels to these anti-

microbials in C. jejuni isolated from broiler meat [37–39, 41]. In the present study, 7.84% of

the human isolates showed resistance to erythromycin, a higher rate than that identified in

similar strains by other authors [42–45] but similar to that reported in a recent study [46]. A

recent European Union report stated that the mean European level of erythromycin resistance

in C. jejuni was 2.1% in the 21,993 tested isolates [28]. However, a worrying increase in inter-

mediate susceptibility to erythromycin (82.09%) was observed for birds from wild and urban

habitats.

MDR, which is defined as resistance to three or more antimicrobial classes [47], has greatly

increased worldwide in C. jejuni [39]. In the present study, 47.90% of the chicken strains and

17.76% of the human strains showed MDR phenotypes towards fluoroquinolones and tetracy-

cline, demonstrating the severity of the problem linked to increases in AMR in microorgan-

isms. Although sampling from the birds in the urban habitat was limited, we observed

worrying MDR profiles in them, reaching up to five and six drugs. Nevertheless, the infection

prevalence rates were statistically significant in the urban habitat-associated birds, suggesting

their potential as a vehicle for the transmission of pathogenic C. jejuni and AMR traits to

humans.

We screened the quinolone-resistant C. jejuni isolates for the presence of mutations in the

QRDR of the gyrA gene. The T86I amino acid substitution was found to be the most common;

indeed, it was present in 97.43% and 96.22% of the isolates from humans and poultry, respec-

tively, displaying resistance to ciprofloxacin and nalidixic acid. However, isolates from birds
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inhabiting the wild and urban study areas harboured a lower percentage of this mutation

(44.44%).

We identified another amino acid substitution, T86V, in only eight chicken isolates. Nine

poultry isolates were resistant to ciprofloxacin, but they lacked this mutation. These results

seem to confirm that quinolone resistance does not depend exclusively on the aforementioned

mutations, but can also be attributed to other and/or unknown resistance mechanisms, such as

the efflux pump system, as has been also reported in other studies [48–50].

The CmeABC multidrug efflux system, which is the best described multidrug efflux pump

to date, plays an important role in antimicrobial resistance. It was present in all the isolates we

analysed. The efflux system consists of an outer membrane protein (encoded by CmeC), an

internal membrane drug transporter (encoded by CmeB) and a periplasmic protein (encoded

by CmeA). Together, these components form a membrane channel that expels toxic substances

from the cell [49]. In C. jejuni, the cmeABC operon is negatively regulated by the cmeR repres-

sor, which binds to a 16-base inverted repeat sequence (called the cmeR-Box) located in the

promoter region of the cmeABC operon [50–52]. Because a single-nucleotide insertion or dele-

tion in the cmeR-Box has been shown to lead to reduced binding by CmeR, this might in turn

increase the expression of cmeABC and enhance the ciprofloxacin resistance level in C. jejuni
isolates [53].

The blaOXA-61 gene has been shown to confer resistance to beta-lactams in C. jejuni strains

[54]. Over 70% of the human isolates and 80% of the isolates from the wild non-urban habitat

birds possessed blaOXA-61 and blaOXA-184 genes, respectively, a finding reported by other

authors also [54–55]. However, Campylobacter is intrinsically resistant to beta-lactams; there-

fore, this class of molecules is not recommended for treating infections caused by this

bacterium.

We noted a high correlation between phenotypic resistance to tetracycline and quinolones

and the presence of one or more resistance genes or the nucleotide polymorphisms expected

to confer resistance to these antimicrobials. For tetracycline, the correlation varied between

88% and 93.27% for the presence of a putative resistance gene and the observed resistance phe-

notype. A few discrepancies were found with respect to the gyrA mutation and the observed

phenotype for the isolates from the birds from wild habitats, which may be explained by the

existence of efflux pump mechanisms.

Conclusions

The results of our study suggest that antimicrobial resistance in C. jejuni isolated from humans

is correlated with the use of antibiotics in veterinary medicine, and that antimicrobial over

use/inappropriate use is an important selective process. Our findings also suggest that multiple

resistance patterns to several classes of antibiotics continue to emerge in C. jejuni. Considering

the genomic plasticity of Campylobacter and its commensalism with various animal species

that are likely to be exposed to different antibiotics, additional resistance mechanisms may

continue to evolve in this bacterium. Our data clearly show that antibiotic resistance in Cam-
pylobacter is rising. Therefore, AMR monitoring is crucial for designing containment strate-

gies for zoonotic microorganisms like Campylobacter because proper monitoring should help

to foresee future AMR spread in animal populations, in humans, and in environmental bacte-

rial populations.

As macrolides are the current treatment choice for campylobacteriosis, the emergence of

widespread macrolide resistance remains of primary interest. Knowledge about which genetic

resistance elements are present in a bacterial population is crucial for the successful develop-

ment of new programs of foodborne disease surveillance and control. Phenotypic susceptibility
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testing, in our opinion, remains fundamental to being able to detect resistance to the principal

antimicrobials, even when traditional antibiotic panels can only test a limited number of anti-

biotics. Additional molecular approaches, such as genomics or proteomics are therefore

required to provide new insights into the molecular mechanisms involved in the development

of antibiotic resistance in Campylobacter.
To provide information for agricultural production systems and the associated veterinary

usage of antimicrobial pharmaceuticals, we also assessed AMR in birds from wild and urban

habitats. By addressing the linkage between livestock and wildlife, our study has provided pre-

liminary insight into the potential role of wildlife to act as vectors, reservoirs or amplifiers of

antimicrobial resistant microbes. We suggest using birds from wild and urban habitats as key

sentinel animals for the surveillance of ecosystem contamination.
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